1
|
Liang Q, Wu Z, Zhu S, Du Y, Cheng Z, Chen Y, Lin F, Wang J. A bibliometric analysis of research trends and hotspots of pilocytic astrocytoma from 2004 to 2023. Neurosurg Rev 2024; 48:3. [PMID: 39724457 DOI: 10.1007/s10143-024-03139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/02/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Pilocytic astrocytoma (PA) is a WHO grade I neoplasm with a favorable prognosis. It is the most common pediatric benign tumor. Recently, PA has attracted more and more attention and discussion from scholars. The aim of this study is to comprehensively generalize the evolution of this field over the past two decades through bibliometric analysis and to predict future research trends and hotspots. The literature over the last two decades (2004-2023) related to PA was obtained from the Web of Science Core Collection (WoSCC) database. Bibliometric analyses were conducted based on the following aspects: (1) Annual publication trends; (2) Publications, citations/co-citations of different countries/institutions/journals/authors; (3) the map of Bradford's Law and Lotka's Law for core journals and author productivity; (4) Co-occurrence, cluster, thematic map analysis of keywords. All analyses were performed on VOSviewer and R bibliometrix package, and Excel 2024. Our results showed that research on PA displayed a considerable development trend in the past 20 years. The USA had a leading position in terms of scientific outputs and collaborations. Meanwhile, German Cancer Research Center contributed the most publications. Child's Nervous System had the highest number of publications and Acta Neuropathologica was the most co-cited journal on this subject. Gutmann, D.H. and Louis, D.N. were the authors with the most articles and co-citations in this field. The research emphases were molecular mechanisms, neurofibromatosis, pilomyxoid astrocytoma, differential diagnosis, and therapy. We systematically analyzed the literature on PA from a bibliometric perspective. The demonstrated results of the knowledge mapping would provide valuable insights into the global research landscape.
Collapse
Affiliation(s)
- Qingtian Liang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zuqing Wu
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Sihan Zhu
- University Hospital Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Yizhi Du
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuqing Cheng
- University Hospital Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Yinsheng Chen
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fuhua Lin
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Jian Wang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Roberto K, Keith J, Levine A, Pirouzmand F, Soliman H, Lim-Fat MJ. MEK Inhibition in a Pilocytic Astrocytoma With a Rare KRAS Q61R Mutation in a Young Adult Patient: A Case Report. JCO Precis Oncol 2024; 8:e2400174. [PMID: 38905571 PMCID: PMC11371098 DOI: 10.1200/po.24.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
This case illustrates the utility and impact of molecular testing and molecular tumor board discussion in the management of AYA patients with brain tumors.
Collapse
Affiliation(s)
- Katrina Roberto
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Adrian Levine
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Farhad Pirouzmand
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Galbraith K, Snuderl M. Molecular Pathology of Gliomas. Clin Lab Med 2024; 44:149-159. [PMID: 38821638 DOI: 10.1016/j.cll.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA.
| |
Collapse
|
5
|
Salles D, Santino SF, Diana P, Malinverni ACM, Stávale JN. Pilocytic astrocytoma in adults: Histopathological, immunohistochemical and molecular study with clinical association. Pathol Res Pract 2023; 252:154942. [PMID: 37984046 DOI: 10.1016/j.prp.2023.154942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Pilocytic astrocytoma is the most common primary CNS neoplasm in children and adolescents, rare after the first two decades of life. While some authors report a favorable prognosis in the adult age group with the tumor, others have associated it with higher mortality. The molecular alteration most observed in cases of pilocytic astrocytoma in the pediatric group is the BRAF-KIAA1549 gene fusion, and there are still few studies confirming the presence of this fusion in the adult population. This work investigated genetic alterations involving the 7q34 region in BRAF gene in 21 adult individuals with pilocytic astrocytoma, by FISH. In addition, was identified the immunohistochemical expression of BRAFV600E, correlating these findings with histopathological and clinical ones. BRAF-KIAA1549 fusion appeared in only one case, while in two other cases were found deletions related to the FAM131B-BRAF fusion, suggesting that maybe the latter is more frequently in this population. Through the evaluation of immunoreactivity, 71% of the cases were considered positive and 29% negative. Cases considered positive for BRAFV600E immunoreactivity can potentially be treated through drug therapy with BRAF inhibitors; however, it is always recommended to carry out a molecular study for diagnostic confirmation. This is the first Brazilian study that aimed to investigate possible genetic alterations in the BRAF gene in pilocytic astrocytomas, specifically in adults. Only 1 patient died, but due to operative complications and not the disease itself, suggesting a good evolution of these individuals.
Collapse
Affiliation(s)
- Débora Salles
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista, de Medicina, São Paulo, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Samara F Santino
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista, de Medicina, São Paulo, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Paula Diana
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista, de Medicina, São Paulo, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andréa C M Malinverni
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista, de Medicina, São Paulo, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.
| | - João N Stávale
- Department of Pathology, Universidade Federal de São Paulo, Escola Paulista, de Medicina, São Paulo, Brazil
| |
Collapse
|
6
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
8
|
Seker-Cin H, Tay TKY, Kazdal D, Kluck K, Ball M, Neumann O, Winter H, Herth F, Heußel CP, Savai R, Schirmacher P, Thomas M, Budczies J, Allgäuer M, Christopoulos P, Stenzinger A, Volckmar AL. Analysis of rare fusions in NSCLC: Genomic architecture and clinical implications. Lung Cancer 2023; 184:107317. [PMID: 37586177 DOI: 10.1016/j.lungcan.2023.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Molecular diagnosis for targeted therapies has been improved significantly in non-small-cell lung cancer (NSCLC) patients in recent years. Here we report on the prevalence of rare fusions in NSCLC and dissect their genomic architecture and potential clinical implications. MATERIALS AND METHODS Overall, n = 5554 NSCLC patients underwent next-generation sequencing (NGS) for combined detection of oncogenic mutations and fusions either at primary diagnosis (n = 5246) or after therapy resistance (n = 308). Panels of different sizes were employed with closed amplicon-based, or open assays, i.e. anchored multiplex PCR (AMP) and hybrid capture-based, for detection of translocations, including "rare" fusions, defined as those beyond ALK, ROS1, RET and <0.5 % frequency in NSCLC. RESULTS Rare fusions involving EGFR, MET, HER2, BRAF and other potentially actionable oncogenes were detected in 0.5% (n = 26) of therapy-naive and 2% (n = 6) TKI-treated tumors. Detection was increased using open assays and/or larger panels, especially those covering >25 genes, by approximately 1-2% (p = 0.001 for both). Patient characteristics (age, gender, smoking, TP53 co-mutations (56%), or mean tumor mutational burden (TMB) (4.8 mut/Mb)) showed no association with presence of rare fusions. Non-functional alterations, i.e. out-of-frame or lacking kinase domains, comprised one-third of detected rare fusions and were significantly associated with simultaneous presence of classical oncogenic drivers, e.g. EGFR or KRAS mutations (p < 0.001), or use of larger panels (frequency of non-functional among the detected rare fusions 57% for 25+ gene- vs. 12% for smaller panels, p < 0.001). As many rare fusions were identified before availability of targeted therapy, mean survival for therapy-naïve patients was 23.8 months, comparable with wild-type tumors. CONCLUSION Approximately 1-2% of advanced NSCLC harbor rare fusions, which are potentially actionable and may support diagnosis. Routine adoption of broad NGS assays capable to identify exact fusion points and potentially retained protein domains can increase the yield of therapeutically relevant molecular information in advanced NSCLC.
Collapse
Affiliation(s)
- Huriye Seker-Cin
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Kwang Yong Tay
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Department of Anatomical Pathology, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Herth
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Pulmonology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Claus-Peter Heußel
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine Heidelberg (ZPM), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Center for Personalized Medicine Heidelberg (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany.
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
9
|
Cipri S, Del Baldo G, Fabozzi F, Boccuto L, Carai A, Mastronuzzi A. Unlocking the power of precision medicine for pediatric low-grade gliomas: molecular characterization for targeted therapies with enhanced safety and efficacy. Front Oncol 2023; 13:1204829. [PMID: 37397394 PMCID: PMC10311254 DOI: 10.3389/fonc.2023.1204829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
In the past decade significant advancements have been made in the discovery of targetable lesions in pediatric low-grade gliomas (pLGGs). These tumors account for 30-50% of all pediatric brain tumors with generally a favorable prognosis. The latest 2021 WHO classification of pLGGs places a strong emphasis on molecular characterization for significant implications on prognosis, diagnosis, management, and the potential target treatment. With the technological advances and new applications in molecular diagnostics, the molecular characterization of pLGGs has revealed that tumors that appear similar under a microscope can have different genetic and molecular characteristics. Therefore, the new classification system divides pLGGs into several distinct subtypes based on these characteristics, enabling a more accurate strategy for diagnosis and personalized therapy based on the specific genetic and molecular abnormalities present in each tumor. This approach holds great promise for improving outcomes for patients with pLGGs, highlighting the importance of the recent breakthroughs in the discovery of targetable lesions.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
Saadeldin IM, Tanga BM, Bang S, Maigoro AY, Kang H, Cha D, Lee S, Lee S, Cho J. MicroRNA profiling of royal jelly extracellular vesicles and their potential role in cell viability and reversing cell apoptosis. Funct Integr Genomics 2023; 23:200. [PMID: 37284890 DOI: 10.1007/s10142-023-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
MiRNAs are small non-coding RNA molecules that play important regulatory roles in diverse biological processes. Royal jelly, a milky-white substance produced by nurse honeybees (Apis mellifera), is the primary food of queen bees and plays a crucial role in their development. However, little is known about the microRNA (miRNAs) content of royal jelly and their potential functions. In this study, we isolated extracellular vesicles from the royal jelly of 36 samples through sequential centrifugation and targeted nanofiltration and performed high-throughput sequencing to identify and quantify the miRNA content of honeybee royal jelly extracellular vesicles (RJEVs). We found a total of 29 known mature miRNAs and 17 novel miRNAs. Through bioinformatic analysis, we identified several potential target genes of the miRNAs present in royal jelly, including those involved in developmental processes and cell differentiation. To investigate the potential roles of RJEVs in cell viability, RJEVs were supplemented to apoptotic porcine kidney fibroblasts induced by ethanol 6% exposure for 30 min. TUNEL assay showed a significant reduction in the apoptosis percentage after RJEV supplementation when compared with the non-supplemented control group. Moreover, the wound healing assay performed on the apoptotic cells showed a rapid healing capacity of RJEV-supplemented cells compared to the control group. We observed a significant reduction in the expression of the miRNA target genes such as FAM131B, ZEB1, COL5A1, TRIB2, YBX3, MAP2, CTNNA1, and ADAMTS9 suggesting that RJEVs may regulate the target gene expression associated with cellular motility and cell viability. Moreover, RJEVs reduced the expression of apoptotic genes (CASP3, TP53, BAX, and BAK), while significantly increasing the expression of anti-apoptotic genes (BCL2 and BCL-XL). Our findings provide the first comprehensive analysis of the miRNA content of RJEVs and suggest a potential role for these vesicles in the regulation of gene expression and cell survival as well as augmenting cell resurrection or anastasis.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Incheon, Yeonsu-gu, 22012, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Heinrich K, Fischer LE, De Toni EN, Markwardt D, Roessler D, Beyer G, Günther M, Ormanns S, Klauschen F, Kunz WG, Fröhling S, Brummer T, Heinemann V, Westphalen CB. Case of a Patient With Pancreatic Cancer With Sporadic Microsatellite Instability Associated With a BRAF Fusion Achieving Excellent Response to Immunotherapy. JCO Precis Oncol 2023; 7:e2200650. [PMID: 37364232 PMCID: PMC10309529 DOI: 10.1200/po.22.00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In this case report, we discuss a case of pancreatic cancer bearing a BRAF fusion, leading to MAPK activation, MLHph, and finally MSI.
Collapse
Affiliation(s)
- Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Laura E. Fischer
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Enrico N. De Toni
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Markwardt
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Roessler
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Georg Beyer
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Wolfgang G. Kunz
- Department of Radiology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKTZ), Heidelberg, Germany
- DKTK, Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - C. Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
13
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
15
|
Zwaig M, Baguette A, Hu B, Johnston M, Lakkis H, Nakada EM, Faury D, Juretic N, Ellezam B, Weil AG, Karamchandani J, Majewski J, Blanchette M, Taylor MD, Gallo M, Kleinman CL, Jabado N, Ragoussis J. Detection and genomic analysis of BRAF fusions in Juvenile Pilocytic Astrocytoma through the combination and integration of multi-omic data. BMC Cancer 2022; 22:1297. [PMID: 36503484 PMCID: PMC9743522 DOI: 10.1186/s12885-022-10359-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Juvenile Pilocytic Astrocytomas (JPAs) are one of the most common pediatric brain tumors, and they are driven by aberrant activation of the mitogen-activated protein kinase (MAPK) signaling pathway. RAF-fusions are the most common genetic alterations identified in JPAs, with the prototypical KIAA1549-BRAF fusion leading to loss of BRAF's auto-inhibitory domain and subsequent constitutive kinase activation. JPAs are highly vascular and show pervasive immune infiltration, which can lead to low tumor cell purity in clinical samples. This can result in gene fusions that are difficult to detect with conventional omics approaches including RNA-Seq. METHODS To this effect, we applied RNA-Seq as well as linked-read whole-genome sequencing and in situ Hi-C as new approaches to detect and characterize low-frequency gene fusions at the genomic, transcriptomic and spatial level. RESULTS Integration of these datasets allowed the identification and detailed characterization of two novel BRAF fusion partners, PTPRZ1 and TOP2B, in addition to the canonical fusion with partner KIAA1549. Additionally, our Hi-C datasets enabled investigations of 3D genome architecture in JPAs which showed a high level of correlation in 3D compartment annotations between JPAs compared to other pediatric tumors, and high similarity to normal adult astrocytes. We detected interactions between BRAF and its fusion partners exclusively in tumor samples containing BRAF fusions. CONCLUSIONS We demonstrate the power of integrating multi-omic datasets to identify low frequency fusions and characterize the JPA genome at high resolution. We suggest that linked-reads and Hi-C could be used in clinic for the detection and characterization of JPAs.
Collapse
Affiliation(s)
- Melissa Zwaig
- grid.14709.3b0000 0004 1936 8649McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Canada
| | - Audrey Baguette
- grid.414980.00000 0000 9401 2774Quantitative Life Sciences and Lady Davis Institute for Medical Research, Montreal, Quebec Canada
| | - Bo Hu
- grid.14709.3b0000 0004 1936 8649McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Canada
| | - Michael Johnston
- grid.22072.350000 0004 1936 7697Alberta Children‘s Hospital Research Institute, Charbonneau Cancer Institute, and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Hussein Lakkis
- grid.414980.00000 0000 9401 2774Department of Human Genetics and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec Canada
| | - Emily M. Nakada
- grid.63984.300000 0000 9064 4811The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Damien Faury
- grid.63984.300000 0000 9064 4811The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Nikoleta Juretic
- grid.63984.300000 0000 9064 4811The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Ellezam
- grid.14848.310000 0001 2292 3357Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5 Canada
| | - Alexandre G. Weil
- grid.14848.310000 0001 2292 3357Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5 Canada
| | - Jason Karamchandani
- grid.14709.3b0000 0004 1936 8649Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| | - Jacek Majewski
- grid.14709.3b0000 0004 1936 8649McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Canada
| | - Mathieu Blanchette
- grid.14709.3b0000 0004 1936 8649School of Computer Science and McGill Center for Bioinformatics, McGill University, Montréal, Québec Canada
| | - Michael D. Taylor
- grid.42327.300000 0004 0473 9646Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Marco Gallo
- grid.22072.350000 0004 1936 7697Alberta Children‘s Hospital Research Institute, Charbonneau Cancer Institute, and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Claudia L. Kleinman
- grid.414980.00000 0000 9401 2774Department of Human Genetics and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec Canada
| | - Nada Jabado
- grid.63984.300000 0000 9064 4811Department of Human Genetics, Department of Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jiannis Ragoussis
- grid.14709.3b0000 0004 1936 8649McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Jesus-Ribeiro J, Rebelo O, Ribeiro IP, Pires LM, Melo JD, Sales F, Santana I, Freire A, Melo JB. The landscape of common genetic drivers and DNA methylation in low-grade (epilepsy-associated) neuroepithelial tumors: A review. Neuropathology 2022; 42:467-482. [PMID: 35844095 DOI: 10.1111/neup.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Low-grade neuroepithelial tumors (LNETs) represent an important group of central nervous system neoplasms, some of which may be associated to epilepsy. The concept of long-term epilepsy-associated tumors (LEATs) includes a heterogenous group of low-grade, cortically based tumors, associated to drug-resistant epilepsy, often requiring surgical treatment. LEATs entities can sometimes be poorly discriminated by histological features, precluding a confident classification in the absence of additional diagnostic tools. This study aimed to provide an updated review on the genomic findings and DNA methylation profiling advances in LNETs, including histological entities of LEATs. A comprehensive search strategy was conducted on PubMed, Embase, and Web of Science Core Collection. High-quality peer-reviewed original manuscripts and review articles with full-text in English, published between 2003 and 2022, were included. Results were screened based on titles and abstracts to determine suitability for inclusion, and when addressed the topic of the review was screened by full-text reading. Data extraction was performed through a qualitative content analysis approach. Most LNETs appear to be driven mainly by a single genomic abnormality and respective affected signaling pathway, including BRAF p.V600E mutations in ganglioglioma, FGFR1 abnormalities in dysembryoplastic neuroepithelial tumor, MYB alterations in angiocentric glioma, BRAF fusions in pilocytic astrocytoma, PRKCA fusions in papillary glioneuronal tumor, between others. However, these molecular alterations are not exclusive, with some overlap amongst different tumor histologies. Also, clustering analysis of DNA methylation profiles allowed the identification of biologically similar molecular groups that sometimes transcend conventional histopathological classification. The exciting developments on the molecular basis of these tumors reinforce the importance of an integrative histopathological and (epi)genetic classification, which can be translated into precision medicine approaches.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Neurology Department, Centro Hospitalar de Leiria, Leiria, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Daniel Melo
- Internal Medicine Department, CUF Coimbra Hospital, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra Luz Hospital, Coimbra, Portugal
| | - Joana Barbosa Melo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Ahmed N, Ferini G, Barua KK, Halder R, Barua S, Priola S, Tomasi O, Umana GE, Shlobin NA, Scalia G, Garg K, Chaurasia B. Adult-Onset Pilocytic Astrocytoma Predilecting Temporal Lobe: A Brief Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070931. [PMID: 35888021 PMCID: PMC9323873 DOI: 10.3390/life12070931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022]
Abstract
(1) Introduction: Adult-onset pilocytic astrocytoma (APA) accounts for only 1.5% of all brain tumors, and studies regarding APA are limited. This review is focused on the history, clinical course, cytogenetics, neuroimaging features, management, and outcome of APAs. (2) Methods: Using a systematic search protocol in Google Scholar, PubMed, and Science Direct databases, the authors extracted cases of APA predilecting the temporal lobe from inception to December 2020. Articles lacking necessary data were excluded from this study. Data were analyzed using IBM SPSS 23 statistical package software. (3) Results: A total of 32 patients, 14 (43.8%) males and 18 (56.2%) females, with a male/female ratio of 0.77/1, were grouped. The mean age of the patients was 34.22 ± 15.17 years, ranging from 19 to 75. The tumors were predominantly located in the left side. We have also discussed the clinical presentation, and headache was the most common complaint, followed by visual disturbance. Preoperative neuroimaging features demonstrated cystic lesions in 16 patients, with mural nodule in 5 patients; intracerebral hemorrhage was present in 1 patient, and solid enhancing mass was observed in 3 patients. Only our reported case presented as a solid calcified mass. Most of the patients (78.1%) underwent a gross total resection (GTR), only 5 (21.9%) underwent subtotal resection (STR). The outcome and prognosis history were excellent, and no recurrence was observed. (4) Conclusion: Most of the APAs of the temporal lobe follow benign clinical courses, but some patients exhibit aggressive clinical behavior. There was no history of recurrence after treatment at up to 27 years of follow-up.
Collapse
Affiliation(s)
- Nazmin Ahmed
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute, Shahbagh, Dhaka 1000, Bangladesh;
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95029 Viagrande, Italy;
| | - Kanak Kanti Barua
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Shahbagh, Dhaka 1000, Bangladesh; (K.K.B.); (R.H.)
| | - Rathin Halder
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University, Shahbagh, Dhaka 1000, Bangladesh; (K.K.B.); (R.H.)
| | - Sudip Barua
- Department of Neurosurgery, National Institute of Neurosciences and Hospital Agargaon, Dhaka 1207, Bangladesh;
| | - Stefano Priola
- Division of Neurosurgery, Health Sciences North, Northern Ontario School of Medicine University, Sudbury, ON P3E 2C6, Canada;
| | - Ottavio Tomasi
- Department of Neurosurgery, Christian-Doppler- Klinik, Paracelsus Private Medical University, 5020 Salzburg, Austria;
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy
- Correspondence:
| | - Nathan A. Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Gianluca Scalia
- Department of Neurosurgery, ARNAS Garibaldi, 95123 Catania, Italy;
| | - Kanwaljeet Garg
- Department of Neurosurgery and Gamma Knife, All India Institute of Medical Science, New Delhi 110029, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| |
Collapse
|
18
|
Li Z, Sun Q, Shi Y. Somatic structural variations in pediatric brain tumors. Minerva Pediatr (Torino) 2022; 74:358-364. [DOI: 10.23736/s2724-5276.17.04830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Salles D, Santino SF, Ribeiro DA, Malinverni AC, Stávale JN. The involvement of the MAPK pathway in pilocytic astrocytomas. Pathol Res Pract 2022; 232:153821. [DOI: 10.1016/j.prp.2022.153821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
21
|
Lind KT, Chatwin HV, DeSisto J, Coleman P, Sanford B, Donson AM, Davies KD, Willard N, Ewing CA, Knox AJ, Mulcahy Levy JM, Gilani A, Green AL. Novel RAF Fusions in Pediatric Low-Grade Gliomas Demonstrate MAPK Pathway Activation. J Neuropathol Exp Neurol 2021; 80:1099-1107. [PMID: 34850053 DOI: 10.1093/jnen/nlab110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain tumors are the most common solid tumor in children, and low-grade gliomas (LGGs) are the most common childhood brain tumor. Here, we report on 3 patients with LGG harboring previously unreported or rarely reported RAF fusions: FYCO1-RAF1, CTTNBP2-BRAF, and SLC44A1-BRAF. We hypothesized that these tumors would show molecular similarity to the canonical KIAA1549-BRAF fusion that is the most widely seen alteration in pilocytic astrocytoma (PA), the most common pediatric LGG variant, and that this similarity would include mitogen-activated protein kinase (MAPK) pathway activation. To test our hypothesis, we utilized immunofluorescent imaging and RNA-sequencing in normal brain, KIAA1549-BRAF-harboring tumors, and our 3 tumors with novel fusions. We performed immunofluorescent staining of ERK and phosphorylated ERK (p-ERK), identifying increased p-ERK expression in KIAA1549-BRAF fused PA and the novel fusion samples, indicative of MAPK pathway activation. Geneset enrichment analysis further confirmed upregulated downstream MAPK activation. These results suggest that MAPK activation is the oncogenic mechanism in noncanonical RAF fusion-driven LGG. Similarity in the oncogenic mechanism suggests that LGGs with noncanonical RAF fusions are likely to respond to MEK inhibitors.
Collapse
Affiliation(s)
- Katherine T Lind
- From the Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Hannah V Chatwin
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - John DeSisto
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Philip Coleman
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Kurtis D Davies
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Calvin A Ewing
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Aaron J Knox
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | | | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Adam L Green
- Department of Pediatrics, University of Colorado School of Medicine, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| |
Collapse
|
22
|
Review of the genomic landscape of common pediatric CNS tumors and how data sharing will continue to shape this landscape in the future. Mol Biol Rep 2021; 48:7537-7544. [PMID: 34643931 DOI: 10.1007/s11033-021-06811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Over the past decade we have witnessed a rapid increase in our understanding of the molecular characteristics of pediatric central nervous system (CNS) tumors. Studies that utilize genomic sequencing have revealed a heterogeneous group of genetic drivers in pediatric CNS tumors including point mutations, gene fusions, and copy number alterations. This manuscript provides an overview of somatic genomic alterations in the most common pediatric CNS tumors including low grade gliomas, high grade gliomas, medulloblastomas, and ependymomas. Additionally, we will discuss the need and opportunity for genomic and clinical data sharing through the children's brain tumor network and other international initiatives.
Collapse
|
23
|
Makino Y, Arakawa Y, Yoshioka E, Shofuda T, Minamiguchi S, Kawauchi T, Tanji M, Kanematsu D, Nonaka M, Okita Y, Kodama Y, Mano M, Hirose T, Mineharu Y, Miyamoto S, Kanemura Y. Infrequent RAS mutation is not associated with specific histological phenotype in gliomas. BMC Cancer 2021; 21:1025. [PMID: 34525976 PMCID: PMC8442437 DOI: 10.1186/s12885-021-08733-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mutations in driver genes such as IDH and BRAF have been identified in gliomas. Meanwhile, dysregulations in the p53, RB1, and MAPK and/or PI3K pathways are involved in the molecular pathogenesis of glioblastoma. RAS family genes activate MAPK through activation of RAF and PI3K to promote cell proliferation. RAS mutations are a well-known driver of mutation in many types of cancers, but knowledge of their significance for glioma is insufficient. The purpose of this study was to reveal the frequency and the clinical phenotype of RAS mutant in gliomas. METHODS This study analysed RAS mutations and their clinical significance in 242 gliomas that were stored as unfixed or cryopreserved specimens removed at Kyoto University and Osaka National Hospital between May 2006 and October 2017. The hot spots mutation of IDH1/2, H3F3A, HIST1H3B, and TERT promoter and exon 2 and exon 3 of KRAS, HRAS, and NRAS were analysed with Sanger sequencing method, and 1p/19q codeletion was analysed with multiplex ligation-dependent probe amplification. DNA methylation array was performed in some RAS mutant tumours to improve accuracy of diagnosis. RESULTS RAS mutations were identified in four gliomas with three KRAS mutations and one NRAS mutation in one anaplastic oligodendroglioma, two anaplastic astrocytomas (IDH wild-type in each), and one ganglioglioma. RAS-mutant gliomas were identified with various types of glioma histology. CONCLUSION RAS mutation appears infrequent, and it is not associated with any specific histological phenotype of glioma.
Collapse
Affiliation(s)
- Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kawauchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Kodama
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Division of Pathology Network, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Mano
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takanori Hirose
- Department of Diagnostic Pathology, Hyogo Cancer Center, Hyogo, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.
| |
Collapse
|
24
|
Abstract
Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, 240 East 38th Street, 22nd Floor, New York, NY 10016, USA.
| |
Collapse
|
25
|
Schmidt SH, Weng JH, Aoto PC, Boassa D, Mathea S, Silletti S, Hu J, Wallbott M, Komives EA, Knapp S, Herberg FW, Taylor SS. Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc Natl Acad Sci U S A 2021; 118:e2100844118. [PMID: 34088839 PMCID: PMC8201809 DOI: 10.1073/pnas.2100844118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.
Collapse
Affiliation(s)
- Sven H Schmidt
- Department of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Phillip C Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, D-60438 Frankfurt am Main, Germany
| | | | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093;
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
26
|
Jain P, Surrey LF, Straka J, Russo P, Womer R, Li MM, Storm PB, Waanders AJ, Hogarty MD, Resnick AC, Picarsic J. BRAF fusions in pediatric histiocytic neoplasms define distinct therapeutic responsiveness to RAF paradox breakers. Pediatr Blood Cancer 2021; 68:e28933. [PMID: 33565241 DOI: 10.1002/pbc.28933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 01/26/2023]
Abstract
Pediatric histiocytic neoplasms are hematopoietic disorders frequently driven by the BRAF-V600E mutation. Here, we identified two BRAF gene fusions (novel MTAP-BRAF and MS4A6A-BRAF) in two aggressive histiocytic neoplasms. In contrast to previously described BRAF fusions, MTAP-BRAF and MS4A6A-BRAF do not respond to the paradox breaker RAF inhibitor (RAFi) PLX8394 due to stable fusion dimerization mediated by the N-terminal fusion partners. This highlights a significant and clinically relevant shift from the current dogma that BRAF-fusions respond similarly to BRAF-inhibitors. As an alternative, we show suppression of fusion-driven oncogenic growth with the pan-RAFi LY3009120 and MEK inhibition.
Collapse
Affiliation(s)
- Payal Jain
- Center for Data Driven Discovery in Biomedicine (D3B), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua Straka
- Center for Data Driven Discovery in Biomedicine (D3B), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Richard Womer
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Center for Data Driven Discovery in Biomedicine (D3B), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Angela J Waanders
- Department of Pediatrics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA
| | - Michael D Hogarty
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine (D3B), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer Picarsic
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Aichmüller CF, Iskar M, Jones DTW, Korshunov A, Radlwimmer B, Kool M, Ernst A, Pfister SM, Lichter P, Zapatka M. Pilocytic astrocytoma demethylation and transcriptional landscapes link bZIP transcription factors to immune response. Neuro Oncol 2021; 22:1327-1338. [PMID: 32052037 DOI: 10.1093/neuonc/noaa035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. While genome and transcriptome landscapes are well studied, data of the complete methylome, tumor cell composition, and immune infiltration are scarce. METHODS We generated whole genome bisulfite sequence (WGBS) data of 9 PAs and 16 control samples and integrated available 154 PA and 57 control methylation array data. RNA sequence data of 49 PAs and 11 control samples as well as gene expression arrays of 248 PAs and 28 controls were used to assess transcriptional activity. RESULTS DNA-methylation patterns of partially methylated domains suggested high stability of the methylomes during tumorigenesis. Comparing tumor and control tissues of infra- and supratentorial location using methylation arrays revealed a site specific pattern. Analysis of WGBS data revealed 9381 significantly differentially methylated regions (DMRs) in PA versus control tissue. Enhancers and transcription factor (TF) motifs of five distinct TF families were found to be enriched in DMRs. Methylation together with gene expression data-based in silico tissue deconvolution analysis indicated a striking variation in the immune cell infiltration in PA. A TF network analysis showed a regulatory relation between basic leucine zipper (bZIP) transcription factors and genes involved in immune-related processes. CONCLUSION We provide evidence for a link of focal methylation differences and differential gene expression to immune infiltration.
Collapse
Affiliation(s)
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center, Heidelberg, Germany
| | - Aurelie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
28
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Khoa Ta HD, Tang WC, Phan NN, Anuraga G, Hou SY, Chiao CC, Liu YH, Wu YF, Lee KH, Wang CY. Analysis of LAGEs Family Gene Signature and Prognostic Relevance in Breast Cancer. Diagnostics (Basel) 2021; 11:726. [PMID: 33921749 PMCID: PMC8074247 DOI: 10.3390/diagnostics11040726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BRCA) is one of the most complex diseases and involves several biological processes. Members of the L-antigen (LAGE) family participate in the development of various cancers, but their expressions and prognostic values in breast cancer remain to be clarified. High-throughput methods for exploring disease progression mechanisms might play a pivotal role in the improvement of novel therapeutics. Therefore, gene expression profiles and clinical data of LAGE family members were acquired from the cBioportal database, followed by verification using the Oncomine and The Cancer Genome Atlas (TCGA) databases. In addition, the Kaplan-Meier method was applied to explore correlations between expressions of LAGE family members and prognoses of breast cancer patients. MetaCore, GlueGo, and GluePedia were used to comprehensively study the transcript expression signatures of LAGEs and their co-expressed genes together with LAGE-related signal transduction pathways in BRCA. The result indicated that higher LAGE3 messenger (m)RNA expressions were observed in BRCA tissues than in normal tissues, and they were also associated with the stage of BRCA patients. Kaplan-Meier plots showed that overexpression of LAGE1, LAGE2A, LAGE2B, and LAGE3 were highly correlated to poor survival in most types of breast cancer. Significant associations of LAGE family genes were correlated with the cell cycle, focal adhesion, and extracellular matrix (ECM) receptor interactions as indicated by functional enrichment analyses. Collectively, LAGE family members' gene expression levels were related to adverse clinicopathological factors and prognoses of BRCA patients; therefore, LAGEs have the potential to serve as prognosticators of BRCA patients.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Wan-Chun Tang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Sz-Ying Hou
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-H.L.)
| | - Yen-Hsi Liu
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-H.L.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (W.-C.T.); (S.-Y.H.)
| |
Collapse
|
30
|
Deland L, Keane S, Olsson Bontell T, Sjögren H, Fagman H, Øra I, De La Cuesta E, Tisell M, Nilsson JA, Ejeskär K, Sabel M, Abel F. Discovery of a rare GKAP1-NTRK2 fusion in a pediatric low-grade glioma, leading to targeted treatment with TRK-inhibitor larotrectinib. Cancer Biol Ther 2021; 22:184-195. [PMID: 33820494 PMCID: PMC8043191 DOI: 10.1080/15384047.2021.1899573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we report a case of an 11-year-old girl with an inoperable tumor in the optic chiasm/hypothalamus, who experienced several tumor progressions despite three lines of chemotherapy treatment. Routine clinical examination classified the tumor as a BRAF-negative pilocytic astrocytoma. Copy-number variation profiling of fresh frozen tumor material identified two duplications in 9q21.32–33 leading to breakpoints within the GKAP1 and NTRK2 genes. RT-PCR Sanger sequencing revealed a GKAP1-NTRK2 exon 10–16 in-frame fusion, generating a putative fusion protein of 658 amino acids with a retained tyrosine kinase (TK) domain. Functional analysis by transient transfection of HEK293 cells showed the GKAP1-NTRK2 fusion protein to be activated through phosphorylation of the TK domain (Tyr705). Subsequently, downstream mediators of the MAPK- and PI3K-signaling pathways were upregulated in GKAP1-NTRK2 cells compared to NTRK2 wild-type; phosphorylated (p)ERK (3.6-fold), pAKT (1.8- fold), and pS6 ribosomal protein (1.4-fold). Following these findings, the patient was enrolled in a clinical trial and treated with the specific TRK-inhibitor larotrectinib, resulting in the arrest of tumor growth. The patient’s condition is currently stable and the quality of life has improved significantly. Our findings highlight the value of comprehensive clinical molecular screening of BRAF-negative pediatric low-grade gliomas, to reveal rare fusions serving as targets for precision therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Øra
- Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,HOPE/ITCC Phase I/II Trial Unit, Pediatric Oncology, Karolinska Hospital, Stockholm, Sweden
| | - Esther De La Cuesta
- Pharmaceuticals, Global Medical Affairs - Oncology, Bayer U.S., Whippany, USA
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Magnus Sabel
- Childhood Cancer Centre, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Abstract
Well-circumscribed intra-axial CNS tumors encompass a wide variety of gliomas and glioneuronal tumors, usually corresponding to WHO grades I and II. Nonetheless, sometimes high-grade 'diffuse' gliomas such as gliosarcoma and giant cell glioblastoma can be relatively circumscribed but are often found to have foci of diffuse infiltration on careful examination, harboring distinct molecular alterations. These tumors are excluded from the discussion in this chapter with the current review emphasizing on lower-grade entities to include a brief description of their histology and associated molecular findings. Like elsewhere in brain biopsy evaluation, imaging is crucial and acts as a surrogate to gross examination. Given the circumscribed nature of these tumors, surgery alone is the mainstay treatment in most entities.
Collapse
|
32
|
Gregory TA, Chumbley LB, Henson JW, Theeler BJ. Adult pilocytic astrocytoma in the molecular era: a comprehensive review. CNS Oncol 2021; 10:CNS68. [PMID: 33448230 PMCID: PMC7962176 DOI: 10.2217/cns-2020-0027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Adult pilocytic astrocytoma (PA) is less prevalent than pediatric PA and is associated with a worse prognosis. In a literature review, we found that 88.3% of the molecular alterations in adult PA are associated with MAPK pathway dysregulation. The most common alterations are fusions of BRAF. Understanding of the mechanisms underlying this pathway has evolved substantially, heralding advancements in specific targeted therapy. Here, we review clinical and molecular features of adult PA, characteristics predicting aggressive behavior and approaches to standard and investigational therapies. We highlight epigenetic profiling and integrated diagnosis as an essential component of classifying PA.
Collapse
Affiliation(s)
- Timothy A Gregory
- Department of Medicine, Neurology, Madigan Army Medical Center, Tacoma, WA 98431, USA
| | - Lyndon B Chumbley
- University of Rochester School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John W Henson
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Medical Center, Seattle, WA 98122, USA
| | - Brett J Theeler
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- John P Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- NIH/NCI Neuro-Oncology Branch, Bethesda, MD 20892-8202, USA
| |
Collapse
|
33
|
Bobach IS, Stougaard M. SNP-based detection of allelic imbalance: A novel approach for identifying KIAA1549-BRAF fusion in pilocytic astrocytoma using DNA sequencing. Exp Mol Pathol 2021; 120:104621. [PMID: 33626378 DOI: 10.1016/j.yexmp.2021.104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common glioma subtype found in children, and it is a non-malignant tumor type. The majority of PAs is caused by an approximately 2 Mb tandem duplication within 7q34 which creates an in-frame KIAA1549-BRAF fusion gene. The kinase domain of BRAF is fused to the N-terminal of KIAA1549, whereby BRAF is constitutively activated. We here present a novel approach for identifying KIAA1549-BRAF fusion based on single nucleotide polymorphism (SNP) analysis and next generation sequencing (NGS). Highly polymorphic SNPs in the duplicated area and in adjacent areas were selected and a custom targeted amplicon based NGS panel was designed. The panel was tested on DNA extracted from formalin fixed and paraffin embedded tissue from a retrospective cohort, consisting of biopsies from patients with PA, anaplastic astrocytoma, oligodendroglioma and glioblastoma as well as two non-tumor biopsies. The panel could distinguish chromosome 7 gain from BRAF fusion and correctly identified 8/9 PA samples with KIAA1549-BRAF fusion confirmed by RNA sequencing. The one biopsy where no fusion was detected was fresh frozen and from the RNA sequencing expected to have very low tumor content. No allelic imbalance was detected in either oligodendroglioma or in the non-tumor biopsies.
Collapse
Affiliation(s)
- Ida Schwartz Bobach
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| |
Collapse
|
34
|
Tan JY, Wijesinghe IVS, Alfarizal Kamarudin MN, Parhar I. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers (Basel) 2021; 13:cancers13040607. [PMID: 33557011 PMCID: PMC7913734 DOI: 10.3390/cancers13040607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gliomas are major causes of worldwide cancer-associated deaths in children. Generally, paediatric gliomas can be classified into low-grade and high-grade gliomas. They differ significantly from adult gliomas in terms of prevalence, molecular alterations, molecular mechanisms and predominant histological types. The aims of this review article are: (i) to discuss the current updates of biomarkers in paediatric low-grade and high-grade gliomas including their diagnostic and prognostic values, and (ii) to discuss potential targeted therapies in treating paediatric low-grade and high-grade gliomas. Our findings revealed that liquid biopsy is less invasive than tissue biopsy in obtaining the samples for biomarker detections in children. In addition, future clinical trials should consider blood-brain barrier (BBB) penetration of therapeutic drugs in paediatric population. Abstract Paediatric gliomas categorised as low- or high-grade vary markedly from their adult counterparts, and denoted as the second most prevalent childhood cancers after leukaemia. As compared to adult gliomas, the studies of diagnostic and prognostic biomarkers, as well as the development of therapy in paediatric gliomas, are still in their infancy. A body of evidence demonstrates that B-Raf Proto-Oncogene or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) and histone H3 mutations are valuable biomarkers for paediatric low-grade gliomas (pLGGs) and high-grade gliomas (pHGGs). Various diagnostic methods involving fluorescence in situ hybridisation, whole-genomic sequencing, PCR, next-generation sequencing and NanoString are currently used for detecting BRAF and histone H3 mutations. Additionally, liquid biopsies are gaining popularity as an alternative to tumour materials in detecting these biomarkers, but still, they cannot fully replace solid biopsies due to several limitations. Although histone H3 mutations are reliable prognosis biomarkers in pHGGs, children with these mutations have a dismal prognosis. Conversely, the role of BRAF alterations as prognostic biomarkers in pLGGs is still in doubt due to contradictory findings. The BRAF V600E mutation is seen in the majority of pLGGs (as seen in pleomorphic xanthoastrocytoma and gangliomas). By contrast, the H3K27M mutation is found in the majority of paediatric diffuse intrinsic pontine glioma and other midline gliomas in pHGGs. pLGG patients with a BRAF V600E mutation often have a lower progression-free survival rate in comparison to wild-type pLGGs when treated with conventional therapies. BRAF inhibitors (Dabrafenib and Vemurafenib), however, show higher overall survival and tumour response in BRAF V600E mutated pLGGs than conventional therapies in some studies. To date, targeted therapy and precision medicine are promising avenues for paediatric gliomas with BRAF V600E and diffuse intrinsic pontine glioma with the H3K27M mutations. Given these shortcomings in the current treatments of paediatric gliomas, there is a dire need for novel therapies that yield a better therapeutic response. The present review discusses the diagnostic tools and the perspective of liquid biopsies in the detection of BRAF V600E and H3K27M mutations. An in-depth understanding of these biomarkers and the therapeutics associated with the respective challenges will bridge the gap between paediatric glioma patients and the development of effective therapies.
Collapse
Affiliation(s)
| | | | | | - Ishwar Parhar
- Correspondence: ; Tel.: +603-5514-6304; Fax: +603-5515-6341
| |
Collapse
|
35
|
Stichel D, Schrimpf D, Sievers P, Reinhardt A, Suwala AK, Sill M, Reuss DE, Korshunov A, Casalini BM, Sommerkamp AC, Ecker J, Selt F, Sturm D, Gnekow A, Koch A, Simon M, Hernáiz Driever P, Schüller U, Capper D, van Tilburg CM, Witt O, Milde T, Pfister SM, Jones DTW, von Deimling A, Sahm F, Wefers AK. Accurate calling of KIAA1549-BRAF fusions from DNA of human brain tumours using methylation array-based copy number and gene panel sequencing data. Neuropathol Appl Neurobiol 2021; 47:406-414. [PMID: 33336421 DOI: 10.1111/nan.12683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS KIAA1549-BRAF fusions occur in certain brain tumours and provide druggable targets due to a constitutive activation of the MAP-kinase pathway. We introduce workflows for calling the KIAA1549-BRAF fusion from DNA methylation array-derived copy number as well as DNA panel sequencing data. METHODS Copy number profiles were analysed by automated screening and visual verification of a tandem duplication on chromosome 7q34, indicative of the KIAA1549-BRAF fusion. Pilocytic astrocytomas of the ICGC cohort with known fusion status were used for validation. KIAA1549-BRAF fusions were called from DNA panel sequencing data using the fusion callers Manta, Arriba with modified filtering criteria and deFuse. We screened DNA methylation and panel sequencing data of 7790 specimens from brain tumour and sarcoma entities. RESULTS We identified the fusion in 337 brain tumours with both DNA methylation and panel sequencing data. Among these, we detected the fusion from copy number data in 84% and from DNA panel sequencing data in more than 90% using Arriba with modified filters. While in 74% the KIAA1549-BRAF fusion was detected from both methylation array-derived copy number and panel sequencing data, in 9% it was detected from copy number data only and in 16% from panel data only. The fusion was almost exclusively found in pilocytic astrocytomas, diffuse leptomeningeal glioneuronal tumours and high-grade astrocytomas with piloid features. CONCLUSIONS The KIAA1549-BRAF fusion can be reliably detected from either DNA methylation array or DNA panel data. The use of both methods is recommended for the most sensitive detection of this diagnostically and therapeutically important marker.
Collapse
Affiliation(s)
- Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Belén M Casalini
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander C Sommerkamp
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Astrid Gnekow
- Swabian Children's Cancer Center, University Hospital Augsburg, Augsburg, Germany
| | - Arend Koch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK, Partner Site Berlin, German Cancer Research Center (DKFZ, Heidelberg, Germany
| | - Michèle Simon
- Department of Pediatric Oncology/Hematology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology and Stem Cell Transplantation, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK, Partner Site Berlin, German Cancer Research Center (DKFZ, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
36
|
Rankin A, Johnson A, Roos A, Kannan G, Knipstein J, Britt N, Rosenzweig M, Haberberger J, Pavlick D, Severson E, Vergilio J, Squillace R, Erlich R, Sathyan P, Cramer S, Kram D, Ross J, Miller V, Reddy P, Alexander B, Ali SM, Ramkissoon S. Targetable BRAF and RAF1 Alterations in Advanced Pediatric Cancers. Oncologist 2021; 26:e153-e163. [PMID: 32918774 PMCID: PMC7794197 DOI: 10.1002/onco.13519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
RAF family protein kinases signal through the MAPK pathway to orchestrate cellular proliferation, survival, and transformation. Identifying BRAF alterations in pediatric cancers is critically important as therapeutic agents targeting BRAF or MEK may be incorporated into the clinical management of these patients. In this study, we performed comprehensive genomic profiling on 3,633 pediatric cancer samples and identified a cohort of 221 (6.1%) cases with known or novel alterations in BRAF or RAF1 detected in extracranial solid tumors, brain tumors, or hematological malignancies. Eighty percent (176/221) of these tumors had a known-activating short variant (98, 55.7%), fusion (72, 40.9%), or insertion/deletion (6, 3.4%). Among BRAF altered cancers, the most common tumor types were brain tumors (74.4%), solid tumors (10.8%), hematological malignancies (9.1%), sarcomas (3.4%), and extracranial embryonal tumors (2.3%). RAF1 fusions containing intact RAF1 kinase domain (encoded by exons 10-17) were identified in seven tumors, including two novel fusions TMF1-RAF1 and SOX6-RAF1. Additionally, we highlight a subset of patients with brain tumor with positive clinical response to BRAF inhibitors, demonstrating the rationale for incorporating precision medicine into pediatric oncology. IMPLICATIONS FOR PRACTICE: Precision medicine has not yet gained a strong foothold in pediatric cancers. This study describes the landscape of BRAF and RAF1 genomic alterations across a diverse spectrum of pediatric cancers, primarily brain tumors, but also encompassing melanoma, sarcoma, several types of hematologic malignancy, and others. Given the availability of multiple U.S. Food and Drug Administration-approved BRAF inhibitors, identification of these alterations may assist with treatment decision making, as described here in three cases of pediatric cancer.
Collapse
Affiliation(s)
| | | | - Alison Roos
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | - Geoffrey Kannan
- Center for Cancer and Blood Disorders, Pediatric Specialists of VirginiaFalls ChurchVirginiaUSA
| | - Jeffrey Knipstein
- Pediatric Hematology/Oncology/BMT, Medical College of WisconsinMilwaukeeWisconsinUSA
| | | | | | | | - Dean Pavlick
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | | | | | | | | | | | - Stuart Cramer
- University of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - David Kram
- Wake Forest Pediatric OncologyWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Ross
- Foundation Medicine Inc.CambridgeMassachusettsUSA
- SUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Vince Miller
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | | | | | - Siraj M. Ali
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | - Shakti Ramkissoon
- Foundation Medicine Inc.MorrisvilleNorthCarolinaUSA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
37
|
Younes ST, Herrington B. In silico analysis identifies a putative cell-of-origin for BRAF fusion-positive cerebellar pilocytic astrocytoma. PLoS One 2020; 15:e0242521. [PMID: 33206716 PMCID: PMC7673500 DOI: 10.1371/journal.pone.0242521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Childhood cancers are increasingly recognized as disorders of cellular development. This study sought to identify the cellular and developmental origins of cerebellar pilocytic astrocytoma, the most common brain tumor of childhood. Using publicly available gene expression data from pilocytic astrocytoma tumors and controlling for driver mutation, a set of developmental-related genes which were overexpressed in cerebellar pilocytic astrocytoma was identified. These genes were then mapped onto several developmental atlases in order to identify normal cells with similar gene expression patterns and the developmental trajectory of those cells was interrogated. Eight known neuro-developmental genes were identified as being expressed in cerebellar pilocytic astrocytoma. Mapping those genes or their orthologs onto mouse neuro-developmental atlases identified overlap in their expression within the ventricular zone of the cerebellar anlage. Further analysis with a single cell RNA-sequencing atlas of the developing mouse cerebellum defined this overlap as occurring in ventricular zone progenitor cells at the division point between GABA-ergic neuronal and glial lineages, a developmental trajectory which closely mirrors that previously described to occur within pilocytic astrocytoma cells. Furthermore, ventricular zone progenitor cells and their progeny exhibited evidence of MAPK pathway activation, the paradigmatic oncogenic cascade known to be active in cerebellar pilocytic astrocytoma. Gene expression from developing human brain atlases recapitulated the same anatomic localizations and developmental trajectories as those found in mice. Taken together, these data suggest this population of ventricular zone progenitor cells as the cell-of-origin for BRAF fusion-positive cerebellar pilocytic astrocytoma.
Collapse
Affiliation(s)
- Subhi Talal Younes
- MD/PhD Program, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Betty Herrington
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
38
|
Brunhara BB, Becker AP, Neder L, Gonçalves PG, de Oliveira C, Clara CA, Reis RM, Bidinotto LT. Evaluation of the prognostic potential of EGFL7 in pilocytic astrocytomas. Neuropathology 2020; 41:21-28. [PMID: 33191640 DOI: 10.1111/neup.12698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Pilocytic astrocytoma (PA) is the most frequent solid neoplasm in childhood. It has a good 5-year overall survival (90% in childhood and 52% in adults). However, up to 20% of patients experience residual tumor growth, recurrence, and death. Although the main genetic alteration of PAs, including KIAA1549:BRAF fusion, involves chromosome 7q34, we previously found frequent loss in chr9q34.3 locus in a small subset of these tumors. Among the genes present in this locus, EGFL7 is related to poor prognosis in several tumor types. In this study, we aimed to assess EGFL7 expression through immunohistochemistry, and to evaluate its prognostic value in a series of 64 clinically and molecularly well-characterized pilocytic astrocytomas. We found high expression of EGFL7 in 71.9% of patients. Low EGFL7 expression was associated with older patients, the mean age mainly older than 11 years (P = 0.027). EGFL7 expression was not associated with presence of KIAA1549:BRAF fusion, BRAF mutation, FGFR1 mutation, nor FGFR1 duplication. Moreover, high EGFL7 expression was associated with high FGFR1 (P = 0.037) and 5'-deoxy-5'-methyltioadenosine phosphorylase (MTAP) (P = 0.005) expression, and with unfavorable outcome of patients (P = 0.047). Multivariate analysis revealed low EGFL7 expression related to older patients and high EGFL7 expression related to retained expression of MTAP. In addition, we found a borderline significance of unfavorable outcome and high EGFL7 expression. Finally, EGFL7 expression was not associated with overall or event-free survival of PA patients. Our findings point to EGFL7 expression as a novel candidate prognostic marker in PA, which should be further investigated.
Collapse
Affiliation(s)
- Bruno B Brunhara
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Aline P Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Luciano Neder
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Paola G Gonçalves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Botucatu, Brazil
| | - Cristiane de Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos A Clara
- Department of Neurosurgery, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|
39
|
Appay R, Fina F, Barets D, Gallardo C, Nanni-Metellus I, Scavarda D, Henaff D, Vincent J, Grewis L, Pourquier P, Colin C, Figarella-Branger D. Multiplexed Droplet Digital PCR Assays for the Simultaneous Screening of Major Genetic Alterations in Tumors of the Central Nervous System. Front Oncol 2020; 10:579762. [PMID: 33282733 PMCID: PMC7689380 DOI: 10.3389/fonc.2020.579762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
The increased integration of molecular alterations to define tumor type or grade in central nervous system (CNS) tumor classification brings new challenges for the pathologist to make the best use of a precious limited tissue specimen for molecular studies. Within the different methods available to identify gene alterations, the droplet digital PCR (dPCR) constitutes a rapid, cost-effective, and very sensitive tool. In this study, we describe the development and validation of five multiplexed dPCR assays to detect major CNS biomarkers by using only small amounts of DNA extracted from formalin-fixed paraffin-embedded specimens. When compared to HRM-sequencing, NGS-sequencing, RNA-sequencing, or simplex digital PCR assays used as “gold standard” methods, these multiplexed dPCR assays displayed 100% specificity and sensitivity for the simultaneous detection of: 1/BRAF V600E mutation and KIAA1549:BRAF fusion; 2/FGFR1 N546K and K656E mutations and FGFR1 duplication; 3/H3F3A K27M and G34R/V mutations; 4/IDH1 R132X and IDH2 R172X mutations; and 5/TERT promoter mutations C228T and C250T. In light of the increased integration of molecular alteration, we believe that such strategies might help laboratories to optimize their screening strategies for routine diagnosis of pediatric and adult CNS tumors.
Collapse
Affiliation(s)
- Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Frederic Fina
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,ID Solutions, Research and Development, Grabels, France
| | - Doriane Barets
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Catherine Gallardo
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Isabelle Nanni-Metellus
- APHM, CHU Nord, Service de Transfert d'Oncologie Biologique, Laboratoire de Biologie Médicale, Marseille, France
| | - Didier Scavarda
- APHM, CHU Timone, Service de Neurochirurgie pédiatrique, Marseille, France
| | - Daniel Henaff
- ID Solutions, Research and Development, Grabels, France
| | | | - Lise Grewis
- ID Solutions, Research and Development, Grabels, France
| | | | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
40
|
Salles D, Laviola G, Malinverni ACDM, Stávale JN. Pilocytic Astrocytoma: A Review of General, Clinical, and Molecular Characteristics. J Child Neurol 2020; 35:852-858. [PMID: 32691644 DOI: 10.1177/0883073820937225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pilocytic astrocytomas are the primary tumors most frequently found in children and adolescents, accounting for approximately 15.6% of all brain tumors and 5.4% of all gliomas. They are mostly found in infratentorial structures such as the cerebellum and in midline cerebral structures such as the optic nerve, hypothalamus, and brain stem. The present study aimed to list the main characteristics about this tumor, to better understand the diagnosis and treatment of these patients, and was conducted on search of the published studies available in NCBI, PubMed, MEDLINE, Scielo, and Google Scholar. It was possible to define the main histologic findings observed in these cases, such as mitoses, necrosis, and Rosenthal fibers. We described the locations usually most affected by tumor development, and this was associated with the most frequent clinical features. The comparison between the molecular diagnostic methods showed great use of fluorescent in situ hybridization, polymerase chain reaction (PCR), and reverse transcriptase-PCR, important techniques for the detection of BRAF V600E mutation and BRAF-KIAA1549 fusion, characteristic molecular alterations in pilocytic astrocytomas.
Collapse
Affiliation(s)
- Débora Salles
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Gabriela Laviola
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andréa Cristina de Moraes Malinverni
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - João Norberto Stávale
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
41
|
Srinivasa K, Cross KA, Dahiya S. BRAF Alteration in Central and Peripheral Nervous System Tumors. Front Oncol 2020; 10:574974. [PMID: 33042847 PMCID: PMC7523461 DOI: 10.3389/fonc.2020.574974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
BRAF (alternately referred to as v-raf murine sarcoma viral oncogene homolog B1) is a proto-oncogene involved in the mitogen-activated protein kinase (MAPK) pathway. BRAF alterations are most commonly missense mutations or aberrant fusions. These mutations are observed in numerous primary central nervous system tumors as well as metastases. This review discusses the prevalence of BRAF alteration within select notable CNS tumors, and their prognostic associations. Included are some novel entities such as diffuse leptomeningeal glioneuronal tumor (DLGNT), polymorphous low grade neuroepithelial tumor of the young (PLNTY), and multinodular and vacuolating neuronal tumor (MVNT). Knowledge of this gene’s integrity in CNS and PNS tumors can have profound diagnostic and therapeutic implications. Also reviewed are the current state of targeted therapy against aberrant BRAF as it pertains mostly to the CNS and to a lesser extent in PNS, and certain diagnostic aspects.
Collapse
Affiliation(s)
- Komal Srinivasa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin A Cross
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Sonika Dahiya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
42
|
Alhamar M, Tudor Vladislav I, Smith SC, Gao Y, Cheng L, Favazza LA, Alani AM, Ittmann MM, Riddle ND, Whiteley LJ, Gupta NS, Carskadon S, Gomez-Gelvez JC, Chitale DA, Palanisamy N, Hes O, Trpkov K, Williamson SR. Gene fusion characterisation of rare aggressive prostate cancer variants-adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases. Histopathology 2020; 77:890-899. [PMID: 32639612 DOI: 10.1111/his.14205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
AIMS To evaluate the molecular underpinnings of the rare aggressive prostate cancer variants adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma. METHODS AND RESULTS We retrieved 19 tumours with one or more variant(s), and performed ERG immunohistochemistry, a next-generation sequencing assay targeting recurrent gene fusions, and fluorescence in-situ hybridisation (FISH) for ERG and BRAF. Divergent differentiation included: sarcomatoid carcinoma (n = 10), adenosquamous carcinoma (n = 7), and pleomorphic giant-cell carcinoma (n = 7). Five patients had more than one variant. Four had variants only in metastases. ERG rearrangement was detected in nine (47%, seven via sequencing, showing TMPRSS2-ERG fusions and one GRHL2-ERG fusion, and two via FISH, showing rearrangement via deletion). ERG was immunohistochemically positive in the adenocarcinoma in eight of nine (89%) patients, but was immunohistochemically positive in the variant in only five of nine patients (56%, typically decreased). One patient had a false-positive ERG immunohistochemical result in the sarcomatoid component despite a negative FISH result. Two (11%) harboured BRAF fusions (FAM131A-BRAF and SND1-BRAF). CONCLUSIONS ERG fusions are present in these rare prostate cancer variants with a frequency close to that in conventional prostate cancer (9/19, 47%). ERG immunohistochemistry usually detects rearrangement in the adenocarcinoma, but is less sensitive for the variant histology, with weak to negative staining. Adenosquamous and sarcomatoid variants can, particularly, occur together. Molecular assessment may be an additional tool in selected cases to confirm the prostatic origin of unusual tumours. The presence of two BRAF rearrangements suggests that this gene fusion may be enriched in this setting, as RAF kinase fusions have been previously reported in 1-2% of prostate cancers.
Collapse
Affiliation(s)
- Mohamed Alhamar
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - I Tudor Vladislav
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Steven C Smith
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuan Gao
- Department of Pathology, Memorial University, St John's, Newfoundland, Canada
| | - Liang Cheng
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura A Favazza
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Ali M Alani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Michael M Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Nicole D Riddle
- Department of Pathology, USF Health, Ruffolo, Hooper, and Associates, Tampa, FL, USA
| | - Lisa J Whiteley
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Nilesh S Gupta
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Shannon Carskadon
- Department of Urology, Vattikutti Urology Institute, Henry Ford Health System, Detroit, MI, USA
| | - Juan C Gomez-Gelvez
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Dhananjay A Chitale
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nallasivam Palanisamy
- Department of Urology, Vattikutti Urology Institute, Henry Ford Health System, Detroit, MI, USA
| | - Ondrej Hes
- Department of Pathology, Charles University Faculty of Medicine, Plzen, Czech Republic
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sean R Williamson
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
43
|
Botton T, Talevich E, Mishra VK, Zhang T, Shain AH, Berquet C, Gagnon A, Judson RL, Ballotti R, Ribas A, Herlyn M, Rocchi S, Brown KM, Hayward NK, Yeh I, Bastian BC. Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Rep 2020; 29:573-588.e7. [PMID: 31618628 DOI: 10.1016/j.celrep.2019.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.
Collapse
Affiliation(s)
- Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA.
| | - Eric Talevich
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Vivek Kumar Mishra
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Céline Berquet
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Alexander Gagnon
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Stéphane Rocchi
- U1065, Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Nicholas K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
44
|
Clinical Relevance of BRAF V600E Mutation Status in Brain Tumors with a Focus on a Novel Management Algorithm. Target Oncol 2020; 15:531-540. [PMID: 32648041 PMCID: PMC7434793 DOI: 10.1007/s11523-020-00735-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possible application of BRAF-targeted therapy in brain tumors is growing continuously. We have analyzed clinical strategies that address BRAF activation in primary brain tumors and verified current recommendations regarding screening for BRAF mutations. There is preliminary evidence for a range of positive responses in certain brain tumor types harboring the BRAF V600E mutation. National Comprehensive Cancer Network Guidelines for central nervous system cancers recommend screening for the BRAF V600E mutation in pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma. We suggest additional testing in glioblastomas WHO grade IV below the age of 30 years, especially those with epithelioid features, papillary craniopharyngiomas, and pediatric low-grade astrocytomas. BRAF-targeted therapy should be limited to the setting of a clinical trial. If the patient harboring a V600E mutation does not qualify for a trial, multimodality treatment is recommended. Dual inhibition of both RAF and MEK is expected to provide more potent and durable effects than anti-BRAF monotherapy. First-generation RAF inhibitors should be avoided. Gain-of-function mutations of EGFR and KIAA fusions may compromise BRAF-targeted therapy. BRAF alterations that result in MAPK pathway activation are common events in several types of brain tumors. BRAF V600E mutation emerges as a promising molecular target. The proposed algorithm was designed to help oncologists to provide the best therapeutic options for brain tumor patients.
Collapse
|
45
|
Chowdhury T, Lee Y, Kim S, Yu HJ, Ji SY, Bae JM, Won JK, Shin JH, Weinberger DR, Choi SH, Park CK, Kim JI, Park SH. A glioneuronal tumor with CLIP2-MET fusion. NPJ Genom Med 2020; 5:24. [PMID: 32550005 PMCID: PMC7270112 DOI: 10.1038/s41525-020-0131-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/29/2020] [Indexed: 01/13/2023] Open
Abstract
We report a case of glioneuronal tumor (GNT) with a discovery of novel gene fusion of CLIP2-MET resulting from aberrant chromosome 7 abnormalities. We executed an elaborate genomic study on this case including whole-exome sequencing and RNA sequencing. Genomic analysis of the tumor revealed aberrations in chromosomes 1 and 7 and a CLIP2-MET fusion. Further analysis of the upregulated genes revealed substantial connections with MAPK pathway activation. We concluded that the chromosome 7 abnormalities prompted CLIP2-MET gene fusion which successively leads to MAPK pathway activation. We deliberated that MAPK pathway activation is one of the driver pathways responsible for the oncogenesis of GNT.
Collapse
Affiliation(s)
- Tamrin Chowdhury
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Yeajina Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080 Korea.,Genomic Medicine Institute, Medical Research Centre, Seoul National University, Seoul, 03080 Korea
| | - Sojin Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - So Young Ji
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080 Korea.,Genomic Medicine Institute, Medical Research Centre, Seoul National University, Seoul, 03080 Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| |
Collapse
|
46
|
Hennani S, Dehbi H, Nadifi S, Karkouri M. Detection of KIAA1549/BRAF fusion in Moroccan patients with Pediatric Low-Grade Gliomas. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 2020; 8:30. [PMID: 32164789 PMCID: PMC7066826 DOI: 10.1186/s40478-020-00902-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Low grade gliomas are the most frequent brain tumors in children and encompass a spectrum of histologic entities which are currently assigned World Health Organisation grades I and II. They differ substantially from their adult counterparts in both their underlying genetic alterations and in the infrequency with which they transform to higher grade tumors. Nonetheless, children with low grade glioma are a therapeutic challenge due to the heterogeneity in their clinical behavior – in particular, those with incomplete surgical resection often suffer repeat progressions with resultant morbidity and, in some cases, mortality. The identification of up-regulation of the RAS–mitogen-activated protein kinase (RAS/MAPK) pathway as a near universal feature of these tumors has led to the development of targeted therapeutics aimed at improving responses while mitigating patient morbidity. Here, we review how molecular information can help to further define the entities which fall under the umbrella of pediatric-type low-grade glioma. In doing so we discuss the specific molecular drivers of pediatric low grade glioma and how to effectively test for them, review the newest therapeutic agents and their utility in treating this disease, and propose a risk-based stratification system that considers both clinical and molecular parameters to aid clinicians in making treatment decisions.
Collapse
|
48
|
Neill SG, Hauenstein J, Li MM, Liu YJ, Luo M, Saxe DF, Ligon AH. Copy number assessment in the genomic analysis of CNS neoplasia: An evidence-based review from the cancer genomics consortium (CGC) working group on primary CNS tumors. Cancer Genet 2020; 243:19-47. [PMID: 32203924 DOI: 10.1016/j.cancergen.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The period from the 1990s to the 2010s has witnessed a burgeoning sea change in the practice of surgical neuropathology due to the incorporation of genomic data into the assessment of a range of central nervous system (CNS) neoplasms. This change has since matured into the adoption of genomic information into the definition of several World Health Organization (WHO)-established diagnostic entities. The data needed to accomplish the modern diagnosis of CNS neoplasia includes DNA copy number aberrations that may be assessed through a variety of mechanisms. Through a review of the relevant literature and professional practice guidelines, here we provide a condensed and scored overview of the most critical DNA copy number aberrations to assess for a selection of primary CNS neoplasms.
Collapse
Affiliation(s)
- Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Hauenstein
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Marilyn M Li
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Minjie Luo
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Debra F Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Azra H Ligon
- Department of Pathology, Center for Advanced Molecular Diagnostics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
50
|
Ho CY, Supakul N, Patel PU, Seit V, Groswald M, Cardinal J, Lin C, Kralik SF. Differentiation of pilocytic and pilomyxoid astrocytomas using dynamic susceptibility contrast perfusion and diffusion weighted imaging. Neuroradiology 2019; 62:81-88. [PMID: 31676961 DOI: 10.1007/s00234-019-02310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/15/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE Pilocytic (PA) and pilomyxoid astrocytomas (PMA) are related low-grade tumors which occur predominantly in children. PMAs have a predilection for a supratentorial location in younger children with worse outcomes. However, the two have similar imaging characteristics. Quantitative MR sequences such as dynamic susceptibility contrast (DSC) perfusion and diffusion (DWI) were assessed for significant differences between the two tumor types and locations. METHODS A retrospective search for MRI with DSC and DWI on pathology-proven cases of PMA and PA in children was performed. Tumors were manually segmented on anatomic images registered to rCBV, K2, and ADC maps. Tumors were categorized as PA or PMA, with subclassification of supratentorial and infratentorial locations. Mean values were obtained for tumor groups and locations compared with Student's t test for significant differences with post hoc correction for multiple comparisons. ROC analysis for significant t test values was performed. Histogram evaluation was also performed. RESULTS A total of 49 patients met inclusion criteria. This included 30 patients with infratentorial PA, 8 with supratentorial PA, 6 with supratentorial PMA, and 5 with infratentorial PMA. Mean analysis showed significantly increased rCBV for infratentorial PMA (2.39 ± 1.1) vs PA (1.39 ± 0.16, p = 0.0006). ROC analysis for infratentorial PA vs PMA yielded AUC = 0.87 (p < 0.001). Histogram analysis also demonstrated a higher ADC peak location for PMA (1.8 ± 0.2) vs PA (1.56 ± 0.28). CONCLUSION PMA has a significantly higher rCBV than PA in the infratentorial space. DSC perfusion and diffusion MR imaging may be helpful to distinguish between the two tumor types in this location.
Collapse
Affiliation(s)
- Chang Y Ho
- Department of Radiology and Imaging Sciences, MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA.
| | - Nucharin Supakul
- Department of Radiology and Imaging Sciences, MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Parth U Patel
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Vetana Seit
- Department of Radiology and Imaging Sciences, MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Michael Groswald
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jeremy Cardinal
- Department of Radiology and Imaging Sciences, MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Chen Lin
- Department of Radiology and Imaging Sciences, MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Stephen F Kralik
- Department of Radiology, Texas Children's Hospital, Houston, USA
| |
Collapse
|