1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The intersections between neuroscience and medulloblastoma. Cancer Lett 2025; 620:217660. [PMID: 40154912 DOI: 10.1016/j.canlet.2025.217660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Medulloblastoma (MB) represents the most common malignant central nervous system tumor in childhood. The nervous system plays a critical role in the progression of MB, with interactions between the nervous system and cancer significantly influencing oncogenesis, tumor growth, invasion, stemness, and metabolism. These interactions also regulate angiogenesis, metastatic dissemination, the tumor immune microenvironment, and drug resistance. Investigating the nervous system-MB axis holds promise for identifying diagnostic markers, prognostic biomarkers, and therapeutic targets. It also provides insights into the molecular mechanisms underlying MB and informs the development of novel therapeutic strategies. This review summarizes the latest advancements in understanding the interplay between the nervous system and MB, including the role of glial cells in MB and the potential of drug repurposing targeting nervous system components for MB treatment. These findings underscore promising diagnostic and therapeutic opportunities for MB management. Additionally, we outline future research directions in neurosciences that may pave the way for innovative therapeutic approaches and deepen our understanding of this complex disease.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Harry JL, Shezi NB, Mwazha A. Molecular classification of medulloblastoma using immunohistochemistry: A single centre study. Ann Diagn Pathol 2025; 76:152463. [PMID: 40056547 DOI: 10.1016/j.anndiagpath.2025.152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Medulloblastoma (MB) is the second most common malignant paediatric central nervous system (CNS) tumour. The World Health Organisation (WHO) advocates an integrated pathological and molecular approach to diagnosis. Immunohistochemistry (IHC) has been proven to be a valid surrogate for molecular subtyping in low resource settings. This study aimed to use IHC to classify MB into different molecular subtypes. Patients diagnosed with medulloblastoma between 2011 and 2021 were included in the study. Clinicopathological characteristics, treatment patterns and outcomes were reviewed. Molecular subgrouping into wingless signalling activated (WNT), sonic hedgehog (SHH), and non-WNT/non-SHH was performed by immunohistochemical staining, using β-catenin, Yes-associated protein 1 (YAP1) and GRB2-Associated Binding Protein 1 (GAB1) antibodies. Of the 32 children evaluated, the mean age at diagnosis was 9.9 years with M: F ratio of 1.5:1. Classic (75.8 %) and desmoplastic/nodular (24.2 %) were the only two histopathological variants reported. Non-WNT/non-SHH constituted the majority of cases (54.5 %), followed by SHH (36.4 %) and WNT subgroups (9.1 %). The 5-year overall survival and 5-year progression-free survival was 41 % and 38 % respectively. The 30-day operative mortality rate was 28.1 %. Molecular subgroups determined by immunohistochemistry, can be easily incorporated into routine practice in low resource settings. The overall survival rate in our cohort is lower than thate reported in the literature due to high post-operative mortality and low uptake of adjuvant oncotherapy.
Collapse
Affiliation(s)
- Jason L Harry
- Department of Anatomical Pathology, National Health Laboratory Service, Durban, South Africa; Discipline of Anatomical Pathology, University of KwaZulu-Natal, Durban, South Africa
| | - Nomusa B Shezi
- Department of Neurosurgery, Inkosi Albert Luthuli Central Hospital, Durban, South Africa; Discipline of Neurosurgery, University of KwaZulu-Natal, Durban, South Africa
| | - Absalom Mwazha
- Department of Anatomical Pathology, National Health Laboratory Service, Durban, South Africa; Discipline of Anatomical Pathology, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
3
|
Erdogan O, Eröksüz M, Şahin Y, Gedik B, Sakar M, Dağçınar A. Epidural seeding in medulloblastoma: A rare presentation of tumor seeding. Childs Nerv Syst 2025; 41:181. [PMID: 40377728 DOI: 10.1007/s00381-025-06849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Medulloblastoma is the most common malignant brain tumor in children, known for its high propensity to disseminate through the cerebrospinal fluid (CSF), particularly within the subarachnoid space. Leptomeningeal seeding, where tumor cells attach and proliferate within the leptomeninges, is a common manifestation. However, epidural seeding is an exceptionally rare occurrence, with very few cases documented in the literature. We present the case of an 8-year-old male diagnosed with anaplastic large cell medulloblastoma, who underwent complete tumor resection followed by radiotherapy and chemotherapy. Four years postoperatively, routine imaging revealed multiple thoracic spinal seedings and an epidural lesion at the S2-3 level. Surgical intervention confirmed the mass was confined to the epidural space, without intradural involvement, a notable finding given the rarity of this presentation. The mechanism behind epidural seeding remains unclear, though it was hypothesized that tumor cells may have been introduced during a lumbar puncture performed in the post-diagnosis period. This case contributes to the limited body of literature on epidural seeding in medulloblastoma, highlighting the importance of considering this rare phenomenon in long-term follow-up and surveillance of patients.
Collapse
Affiliation(s)
- Onur Erdogan
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey.
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey.
| | - Melih Eröksüz
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Yener Şahin
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Buket Gedik
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mustafa Sakar
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Adnan Dağçınar
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
4
|
Hein KH, Woo WL, Rafiee G. Integrative Machine Learning Framework for Enhanced Subgroup Classification in Medulloblastoma. Healthcare (Basel) 2025; 13:1114. [PMID: 40427951 PMCID: PMC12111120 DOI: 10.3390/healthcare13101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children, classified into four primary molecular subgroups: WNT, SHH, Group 3, and Group 4, each exhibiting significant molecular heterogeneity and varied survival outcomes. Accurate classification of these subgroups is crucial for optimizing treatments and improving patient outcomes. DNA methylation profiling is a promising approach for subgroup classification; however, its application is still evolving, with ongoing efforts to improve accessibility and develop more accurate classification methods. OBJECTIVES This study aims to develop a supervised machine learning-based framework using Illumina 450K methylation data to classify medulloblastoma into seven molecular subgroups: WNT, SHH-Infant, SHH-Child, Group3-LowRisk, Group3-HighRisk, Group4-LowRisk, and Group4-HighRisk, incorporating age and risk factors for enhanced subgroup differentiation. METHODS The proposed model leverages six metagenes, capturing the underlying patterns of the top 10,000 probes with the highest variances from Illumina 450K data, thus enhancing methylation data representation while reducing computational demands. RESULTS Among the models evaluated, the SVM achieved the highest performance, with a mean balanced accuracy 98% and a macro-averaged AUC of 0.99 in an independent validation. This suggests that the model effectively captures the relevant methylation patterns for medulloblastoma subgroup classification. CONCLUSIONS The developed SVM-based model provides a robust framework for accurate classification of medulloblastoma subgroups using DNA methylation data. Integrating this model into clinical decision making could enhance subgroup-directed therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Kaung Htet Hein
- School of Electronics, Electrical Engineering, and Computer Science, Queen’s University Belfast, Belfast BT9 5BN, UK;
| | - Wai Lok Woo
- Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK;
| | - Gholamreza Rafiee
- School of Electronics, Electrical Engineering, and Computer Science, Queen’s University Belfast, Belfast BT9 5BN, UK;
| |
Collapse
|
5
|
Sun M, Wang J, Wan S. Accurate identification of medulloblastoma subtypes from diverse data sources with severe batch effects by RaMBat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.640010. [PMID: 40060540 PMCID: PMC11888263 DOI: 10.1101/2025.02.24.640010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
As the most common pediatric brain malignancy, medulloblastoma (MB) includes multiple distinct molecular subtypes characterized by clinical heterogeneity and genetic alterations. Accurate identification of MB subtypes is essential for downstream risk stratification and tailored therapeutic design. Existing MB subtyping approaches perform poorly due to limited cohorts and severe batch effects when integrating various MB data sources. To address these concerns, we propose a novel approach called RaMBat for accurate MB subtyping from diverse data sources with severe batch effects. Benchmarking tests based on 13 datasets with severe batch effects suggested that RaMBat achieved a median accuracy of 99%, significantly outperforming state-of-the-art MB subtyping approaches and conventional machine learning classifiers. RaMBat could efficiently deal with the batch effects and clearly separate subtypes of MB samples from diverse data sources. We believe RaMBat will bring direct positive impacts on downstream MB risk stratification and tailored treatment design.
Collapse
|
6
|
Zhao HG, Ren SK, Zhou WT, Liu ZM, Wang LM, Tian YJ, Zhao F. Immunohistochemical detection of 5-hydroxymethylcytosine as a prognostic biomarker in non-WNT/Non-SHH medulloblastomas. Sci Rep 2025; 15:15633. [PMID: 40325038 PMCID: PMC12053619 DOI: 10.1038/s41598-025-00052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Although reduced levels of global 5-hydroxymethylcytosine (5hmC) have been observed in medulloblastomas (MBs), it remains unclear whether immunohistochemical (IHC) evaluation of 5hmC can serve as a prognostic biomarker for patients with MB. We performed IHC staining using a 5hmC antibody on a cohort of 114 pediatric MBs, including 69 non-WNT/non-SHH MBs. The 5hmC staining score was evaluated using a 9-point scale based on both the staining intensity and the percentage positive cells. We found that a low 5hmC staining score (< 5 points) was associated with poor outcomes in patients with non-WNT/non-SHH MB (both P < 0.001). Multivariate Cox regression analyses demonstrated the 5hmC staining score was an independent prognostic predictor for progression-free survival (P < 0.001) and overall survival (P = 0.004) in patients with non-WNT/non-SHH MB. Both the receiver operating characteristic curves and calibration curves demonstrated the excellent performance of the nomogram models established based on the Cox regression models. The high predictive accuracy of the nomogram models was confirmed in a validation cohort comprising 32 patients with non-WNT/non-SHH MB. In conclusion, IHC evaluation of 5hmC may serve as a cost-effective and readily accessible approach for the prognostic stratification of patients with non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Han-Guang Zhao
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 119 south 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Si-Kang Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Tao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhi-Ming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei-Ming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yong-Ji Tian
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 119 south 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fu Zhao
- Department of Pediatric Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 119 south 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Adhvaryu VV, Gurav M, Deshpande G, Rumde R, Shetty O, Sahay A, Sahu A, Dasgupta A, Chatterji A, Gupta T, Shetty P, Moiyadi A, Epari S. Adult Medulloblastoma: Clinicomolecular Spectrum, An Institutional Experience. Int J Surg Pathol 2025:10668969251332926. [PMID: 40302434 DOI: 10.1177/10668969251332926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Medulloblastoma is uncommon and molecularly lesser known in adults than their pediatric counterparts. This study aims to describe the clinicopathological and molecular characteristics of medulloblastoma in adults. Methods. The clinical, histopathological, and molecular features of 113 medulloblastoma patients of >18 years of age were reviewed. Molecular grouping (wingless pathway activated [WNT]-activated, sonic hedgehog activated [SHH]-activated, non-WNT/non-SHH, Group 3 and non-WNT/non-SHH, Group 4) was done by gene expression profiling. Results. The age-range was 19 to 59 years. The most common histoarchitecture was classic (64%), followed by desmoplastic/nodular (31%) and large cell/anaplastic (5%). The most common molecular group was SHH-activated (65%), followed by WNT-activated (14%), non-WNT/non-SHH, Group 4 (10%), and non-WNT/non-SHH, Group 3 (3%). All desmoplastic/nodular tumors were SHH-activated; while large cell/anaplastic had SHH-activated, WNT-activated and non-WNT/non-SHH, Group 3. TP53-mutant pattern of immunophenotype was observed in 7% (3 SHH-activated; 1 WNT-activated; 1 non-WNT/non-SHH, Group 3; 2 indeterminate). Within the SHH-activated group, TP53-mutant pattern immunophenotype was noted in 3 tumors and 1 was MYCN-amplified. In the WNT-activated group, both monosomy 6 and CTNNB1 mutation were seen in 3 tumors and 3 each had an isolated alteration. Conclusion. SHH-activated medulloblastoma is the most common group and WNT-activated is not rare in adults. Non-WNT/non-SHH, Group 3 though rare is not nonexistent in adults.
Collapse
Affiliation(s)
- Vishesha V Adhvaryu
- Department of Pathology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Mamta Gurav
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gauri Deshpande
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Rachana Rumde
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Omshree Shetty
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterji
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Dhar SS, Brown C, Rizvi A, Reed L, Kotla S, Zod C, Abraham J, Abe JI, Rajaram V, Chen K, Lee MG. Heterozygous Kmt2d loss diminishes enhancers to render medulloblastoma cells vulnerable to combinatory inhibition of LSD1 and OXPHOS. Cell Rep 2025; 44:115619. [PMID: 40286267 DOI: 10.1016/j.celrep.2025.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in many cancers, including medulloblastoma (MB). Notably, heterozygous KMT2D loss frequently occurs in MB and other cancers. However, its oncogenic role remains largely uncharacterized. Here, we show that heterozygous Kmt2d loss in murine cerebellar regions promotes MB genesis driven by heterozygous loss of the MB-suppressor gene Ptch via the upregulation of tumor-promoting programs (e.g., oxidative phosphorylation [OXPHOS]). Downregulation of the transcription-repressive tumor suppressor NCOR2 by heterozygous Kmt2d loss, along with Ptch+/--increased MYCN, upregulated tumor-promoting genes. Heterozygous Kmt2d loss substantially diminished enhancer marks (H3K4me1 and H3K27ac) and the H3K4me3 signature, including those for Ncor2. Combinatory pharmacological inhibition of the enhancer-decommissioning H3K4 demethylase LSD1 and OXPHOS significantly reduced the tumorigenicity of MB cells bearing heterozygous Kmt2d loss. Our findings suggest the molecular and epigenetic pathogenesis underlying the MB-promoting effect of heterozygous KMT2D loss.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Calena Brown
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ali Rizvi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lauren Reed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Constantin Zod
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Janak Abraham
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Veena Rajaram
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Fontão P, Teixeira GR, Moreno DA, Marques RF, Stavale JN, Malheiros SMF, Júnior CA, Mançano BM, Reis RM. High B7-H3 protein expression in Medulloblastoma is associated with metastasis and unfavorable patient outcomes. Diagn Pathol 2025; 20:49. [PMID: 40269882 PMCID: PMC12016131 DOI: 10.1186/s13000-025-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children. Although the 5-year survival rate is approximately 70-80%, the current standard treatment results in severe and long-term side effects. The search for new anticancer immunotherapeutic targets has identified B7-H3 as a promising candidate in various solid tumors. However, the role of B7-H3 in MB remains unclear, and studies reporting its protein expression and association with clinicopathological characteristics are still limited. METHODS In this study, B7-H3 protein expression was evaluated by immunohistochemistry in seven non-tumor samples and 43 molecularly characterized MB tissues. Its expression profile was correlated with B7-H3 (CD276) mRNA levels, which were previously determined by nCounter, as well as with the patients' clinical features. RESULTS Only 14.3% (1/7) of non-tumor brain and cerebellum tissues showed B7-H3 positivity, whereas 95.6% (41/43) of the MB samples expressed this protein at distinct levels. B7-H3 was found in the cytoplasm and on the membrane of cancer cells. A significant positive correlation was observed between CD276 mRNA and B7-H3 protein levels. Moreover, high expression of B7-H3 protein was associated with worse overall survival and the presence of metastasis at diagnosis. CONCLUSIONS This is the first study to associate CD276 mRNA and B7-H3 protein levels in MB, revealing a significant positive correlation. We observed that B7-H3 was overexpressed in MB compared to non-tumor brain tissue. High B7-H3 expression was associated with a worse outcome and with the presence of metastasis at diagnosis.
Collapse
Affiliation(s)
- Patrícia Fontão
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gustavo Ramos Teixeira
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | - Bruna Minniti Mançano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Stockwell CA, Thang M, Kram DE, Satterlee AB, Hingtgen S. Therapeutic approaches for targeting the pediatric brain tumor microenvironment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01839-3. [PMID: 40257744 DOI: 10.1007/s13346-025-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Central nervous system (CNS) tumors are the most frequent solid malignant tumors in pediatric patients and are the leading cause of tumor-related death in children. Treatment for this heterogeneous group of tumors consists of various combinations of safe maximal surgical resection, chemotherapy, and radiation therapy which offer a cure for some children but often cause debilitating adverse late effects in others. While therapies targeting the tumor microenvironment (TME) like immune checkpoint inhibition (ICI) have been successful in treating some cancers, these therapies failed to exhibit treatment efficacy in the majority of pediatric brain tumors in the clinic. Importantly, the pediatric TME is unique and distinct from adult brain tumors and designing therapies to effectively target these tumors requires understanding the unique biology of pediatric brain tumors and the use of translational models that recapitulate the TME. Here we describe the TME of medulloblastoma (MB) and diffuse midline glioma (DMG), specifically diffuse intrinsic pontine glioma (DIPG), and further present the current drug delivery approaches and clinical administration routes targeting the TME in these tumors, including preclinical and clinical studies.
Collapse
Affiliation(s)
- Caroline A Stockwell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Zhu L, Helal A, Doorenbosch X. Paediatric extra-axial medulloblastoma presenting with obstructive hydrocephalus and tonsillar herniation: clinical presentation and treatment challenges. BMJ Case Rep 2025; 18:e263710. [PMID: 40199599 DOI: 10.1136/bcr-2024-263710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Medulloblastoma is the most common paediatric tumour presenting in the posterior fossa. Typically, they are found midline and intra-axially located. Medulloblastomas presenting in an extra-axial location, however, are rare, and of those, they are usually found in the cerebellopontine angle. We present a case of an extra-axial medulloblastoma projecting from the lateral cerebellar hemisphere. As far as we know, there have only been two other cases of a paediatric extra-axial medulloblastoma in the cerebellar hemisphere reported in the literature. After initial medical stabilisation and insertion of an external ventricular drain, further imaging was obtained. MRI demonstrated a heterogeneously enhancing mass with diffusion restriction, a dural tail and a CSF cleft in the left lateral cerebellar hemisphere. A far lateral craniotomy was performed, with the tumour being encountered immediately on dural opening and a defined cleavage plane seen between the tumour and the cerebellar hemisphere. Gross total resection was achieved, and after a short recovery period, adjuvant craniospinal irradiation plus chemotherapy is started. This case illustrates an exceptionally rare location of a relatively common paediatric malignant brain tumour.
Collapse
Affiliation(s)
- Linyi Zhu
- Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amer Helal
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Xenia Doorenbosch
- Paediatric Neurosurgery, Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Sesen J, Martinez T, Busatto S, Poluben L, Nassour H, Stone C, Ashok K, Moses MA, Smith ER, Ghalali A. AZIN1 level is increased in medulloblastoma and correlates with c-Myc activity and tumor phenotype. J Exp Clin Cancer Res 2025; 44:56. [PMID: 39962590 PMCID: PMC11831846 DOI: 10.1186/s13046-025-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AZIN1 is a cell cycle regulator that is upregulated in a variety of cancers. AZIN1 overexpression can induce a more aggressive tumor phenotype via increased binding and resultant inhibition of antizyme. Antizyme is a protein that normally functions as an anti-tumor regulator that facilitates the deactivation of several growth-promoting proteins including c-Myc. MYC plays a critical role in medulloblastoma pathogenesis. Its amplification serves as a defining characteristic of group 3 medulloblastomas, associated with the most aggressive clinical course, greater frequency of metastases, and shorter survival times. METHODS Medulloblastoma tissues (68 TMA, and 45 fresh tissues, and 31 controls) were stained (fluorescence and immunohistochemical) for AZIN1. Western blotting and ELISA were used to detect the AZIN1 level. Phenotypically aggressive cellular features were measured by increased invasion, colony formation and proliferation. CRISPR-Cas9-mediated AZIN1 knocked-out cells were orthotopically implanted in the cerebellum of nude mice (n = 8/group) with a stereotactic frame. Tumor growth was monitored using the In Vivo Imaging System (IVIS). RESULTS Here, we investigated the role of AZIN1 expression in medulloblastoma. We found that overexpression of AZIN1 in medulloblastoma cells induces phenotypically aggressive features. Conducting in vivo studies we found that knocking-out AZIN1 in tumors corresponds with reduced tumor progression and prolonged survival. Clinical specimens are revealing that AZIN1 is highly expressed and directly correlates with MYC amplification status in patients. CONCLUSION These data implicate AZIN1 as a putative regulator of medulloblastoma pathogenesis and suggest that it may have clinical application as both a biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Nassour
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Velz J, Freudenmann LK, Medici G, Dubbelaar M, Mohme M, Ghasemi DR, Scheid J, Kowalewski DJ, Patterson AB, Zeitlberger AM, Lamszus K, Westphal M, Eyrich M, Messing-Jünger M, Röhrig A, Reinhard H, Beccaria K, Craveiro RB, Frey BM, Sill M, Nahnsen S, Gauder M, Kapolou K, Silginer M, Weiss T, Wirsching HG, Roth P, Grotzer M, Krayenbühl N, Bozinov O, Regli L, Rammensee HG, Rushing EJ, Sahm F, Walz JS, Weller M, Neidert MC. Mapping naturally presented T cell antigens in medulloblastoma based on integrative multi-omics. Nat Commun 2025; 16:1364. [PMID: 39904979 PMCID: PMC11794601 DOI: 10.1038/s41467-025-56268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Medulloblastoma is the most frequent malignant primary brain tumor in children. Despite recent advances in integrated genomics, the prognosis in children with high-risk medulloblastoma remains devastating, and new tumor-specific therapeutic approaches are needed. Here, we present an atlas of naturally presented T cell antigens in medulloblastoma. We map the human leukocyte antigen (HLA)-presented peptidomes of 28 tumors and perform comparative immunopeptidome profiling against an in-house benign database. Medulloblastoma is shown to be a rich source of tumor-associated antigens, naturally presented on HLA class I and II molecules. Remarkably, most tumor-associated peptides and proteins are subgroup-specific, whereas shared presentation among all subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) is rare. Functional testing of top-ranking novel candidate antigens demonstrates the induction of peptide-specific T cell responses, supporting their potential for T cell immunotherapy. This study is an in-depth mapping of naturally presented T cell antigens in medulloblastoma. Integration of immunopeptidomics, transcriptomics, and epigenetic data leads to the identification of a large set of actionable targets that can be further used for the translation into the clinical setting by facilitating the informed design of immunotherapeutic approaches to children with medulloblastoma.
Collapse
Affiliation(s)
- Julia Velz
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lena K Freudenmann
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Gioele Medici
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David R Ghasemi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Scheid
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Angelica B Patterson
- Institute of Immunobiology, Cantonal Hospital St.Gallen, St. Gallen, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Eyrich
- Department of Pediatric Haematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| | | | - Andreas Röhrig
- Department of Neurosurgery, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Children's Hospital, Sankt Augustin, Germany
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cite, Paris, France
| | - Rogeiro B Craveiro
- Department of Orthodontic, Dental Clinic, University Hospital of RWTH Aachen, Aachen, Germany
| | - Beat M Frey
- Blood Transfusion Service, Swiss Red Cross, Schlieren, Switzerland
| | - Martin Sill
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Department for Computer Science, Biomedical Data Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Baden- Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Marie Gauder
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Konstantina Kapolou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Divison of Pediatric Neurosurgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Rammensee
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane S Walz
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian C Neidert
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland.
| |
Collapse
|
14
|
Cong G, Zhu X, Chen XR, Chen H, Chong W. Mechanisms and therapeutic potential of the hedgehog signaling pathway in cancer. Cell Death Discov 2025; 11:40. [PMID: 39900571 PMCID: PMC11791101 DOI: 10.1038/s41420-025-02327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
A sort of major malignant disease, cancer can compromise human health wherever. Some mechanisms of the occurrence and evolution of cancer still seem elusive even now. Consequently, the therapeutic strategies for cancer must continually evolve. The hedgehog signaling pathway, a critical mediator in the normal development of numerous organs and the pathogenesis of cancer, is typically quiescent but is aberrantly activated in several malignancies. Extensive research has delineated that the aberrant activity of the hedgehog signaling pathway, whether autocrine or paracrine, is implicated in the initiation and progression of various neoplasms, including medulloblastoma (MB), basal cell carcinoma (BCC) and so on. Thus, notably Smo inhibitors, the opening of inhibitors of the hedgehog signaling pathway has become a topic of research attention. This review aims to summarize four aberrant activation pathways and the influence of hedgehog signaling pathway associated chemicals on tumor formation and development. Additionally, it will explore the therapeutic potential of targeted interventions in the hedgehog signaling pathway for cancer treatment.
Collapse
Affiliation(s)
- Ge Cong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xin Ru Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250021, Jinan, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| |
Collapse
|
15
|
Hoang TT, Scheurer ME, Lupo PJ. Overview of the etiology of childhood cancer and future directions. Curr Opin Pediatr 2025; 37:59-66. [PMID: 39699102 DOI: 10.1097/mop.0000000000001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW We provide an overview of the etiology of childhood cancer, the state of the literature, and highlight some opportunities for future research, including technological advancements that could be applied to etiologic studies of childhood cancer to accelerate our understanding. RECENT FINDINGS Risk factors of childhood cancer were summarized based on demographics and perinatal factors, environmental risk factors, and genetic risk factors. Overall, demographics and perinatal factors are the most well studied in relation to childhood cancer. While environmental risk factors have been implicated, more work is needed to pinpoint specific exposures, identify window(s) of susceptibility, and understand mechanisms. With genome-wide association studies (GWAS), genetic risk factors of eight childhood cancers have emerged, and opportunities remain to conduct GWAS for other cancer types and determine whether risk variants are inherited or de novo. Technological advancements that can shed light into the susceptibility of childhood cancer include metabolomics, using primary teeth as an exposure matrix, and long-read sequencing. SUMMARY The development of childhood cancer remains largely not well understood. Collaboration to increase sample size to conduct analyses by histology and/or molecular subtype and application of novel technologies will accelerate our understanding of childhood cancer.
Collapse
Affiliation(s)
- Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J, Francés R. Ferroptosis Transcriptional Regulation and Prognostic Impact in Medulloblastoma Subtypes Revealed by RNA-Seq. Antioxidants (Basel) 2025; 14:96. [PMID: 39857430 PMCID: PMC11761645 DOI: 10.3390/antiox14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3. Using two independent medulloblastoma RNA-sequencing cohorts (MB-PBTA and MTAB-10767), we investigated the expression of ferroptosis-related molecules through multiple approaches, including Weighted Gene Co-Expression Network Analysis (WGCNA), molecular subtype stratification, protein-protein interaction (PPI) networks, and univariable and multivariable overall survival analyses. A prognostic expression score was computed based on a cross-validated ferroptosis signature. In training and validation cohorts, the regulation of the ferroptosis transcriptional program distinguished the four molecular subtypes of medulloblastoma. WGCNA identified nine gene modules in the MB tumor transcriptome; five correlated with molecular subtypes, implicating pathways related to oxidative stress, hypoxia, and trans-synaptic signaling. One module, associated with disease recurrence, included epigenetic regulators and nucleosome organizers. Univariable survival analyses identified a 45-gene ferroptosis prognostic signature associated with nutrient sensing, cysteine and methionine metabolism, and trans-sulfuration within a one-carbon metabolism. The top ten unfavorable ferroptosis genes included CCT3, SNX5, SQOR, G3BP1, CARS1, SLC39A14, FAM98A, FXR1, TFAP2C, and ATF4. Patients with a high ferroptosis score showed a worse prognosis, particularly in the G3 and SHH subtypes. The PPI network highlighted IL6 and CBS as unfavorable hub genes. In a multivariable overall survival model, which included gender, age, and the molecular subtype classification, the ferroptosis expression score was validated as an independent adverse prognostic marker (hazard ratio: 5.8; p-value = 1.04 × 10-9). This study demonstrates that the regulation of the ferroptosis transcriptional program is linked to medulloblastoma molecular subtypes and patient prognosis. A cross-validated ferroptosis signature was identified in two independent RNA-sequencing cohorts, and the ferroptosis score was confirmed as an independent and adverse prognostic factor in medulloblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UMRS-1310, Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France;
| | - Yuanji Fu
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, F-75015 Paris, France;
| | - Jenny Bonifacio-Mundaca
- National Tumor Bank, Department of Pathology, National Institute of Neoplastic Diseases, Surquillo 15038, Peru;
| | - Claudia Monge
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Pascal Pineau
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Jorge Mata-Garrido
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, F-75006 Paris, France
| |
Collapse
|
17
|
Schwalbe EC, Lindsey JC, Danilenko M, Hill RM, Crosier S, Ryan SL, Williamson D, Castle J, Hicks D, Kool M, Milde T, Korshunov A, Pfister SM, Bailey S, Clifford SC. Molecular and clinical heterogeneity within MYC-family amplified medulloblastoma is associated with survival outcomes: A multicenter cohort study. Neuro Oncol 2025; 27:222-236. [PMID: 39377358 PMCID: PMC11726341 DOI: 10.1093/neuonc/noae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND MYC/MYCN are the most frequent oncogene amplifications in medulloblastoma (MB) and its primary biomarkers of high-risk (HR) disease. However, while many patients' MYC(N)-amplified tumors are treatment-refractory, some achieve long-term survival. We therefore investigated clinicobiological heterogeneity within MYC(N)-amplified MB and determined its relevance for improved disease management. METHODS We characterized the clinical and molecular correlates of MYC- (MYC-MB; n = 64) and MYCN-amplified MBs (MYCN-MB; n = 95), drawn from >1600 diagnostic cases. RESULTS Most MYC-MBs were molecular group 3 (46/58; 79% assessable) and aged ≥3 years at diagnosis (44/64 [69%]). We identified a "canonical" very high-risk (VHR) MYC-amplified group (n = 51/62; 82%) with dismal survival irrespective of treatment (11% 5-year progression-free survival [PFS]), defined by co-occurrence with ≥1 additional established risk factor(s) (subtotal surgical-resection [STR], metastatic disease, LCA pathology), and commonly group 3/4 subgroup 2 with a high proportion of amplified cells. The majority of remaining noncanonical MYC-MBs survived (i.e. non-group 3/group 3 without other risk features; 11/62 (18%); 61% 5-year PFS). MYCN survival was primarily related to molecular group; MYCN-amplified SHH MB, and group 3/4 MB with additional risk factors, respectively defined VHR and HR groups (VHR, 39% [35/89]; 20% 5-year PFS/HR, 33% [29/89]; 46% 5-year PFS). Twenty-two out of 35 assessable MYCN-amplified SHH tumors harbored TP53 mutations; 9/12 (75%) with data were germline. MYCN-amplified group 3/4 MB with no other risk factors (28%; 25/89) had 70% 5-year PFS. CONCLUSIONS MYC(N)-amplified MB displays significant clinicobiological heterogeneity. Diagnostics incorporating molecular groups, subgroups, and clinical factors enable their risk assessment. VHR "canonical" MYC tumors are essentially incurable and SHH-MYCN-amplified MBs fare extremely poorly (20% survival at 5 years); both require urgent development of alternative treatment strategies. Conventional risk-adapted therapies are appropriate for more responsive groups, such as noncanonical MYC and non-SHH-MYCN MB.
Collapse
Affiliation(s)
- Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marina Danilenko
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jemma Castle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Gottardo NG, Gajjar A. Determining risk features for medulloblastoma in the molecular era. Neuro Oncol 2025; 27:219-221. [PMID: 39450440 PMCID: PMC11726340 DOI: 10.1093/neuonc/noae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 10/26/2024] Open
Affiliation(s)
- Nicholas G Gottardo
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children’s Hospital, Perth, Western Australia, Australia
- Brain Tumor Research Program, Kids Cancer Centre, The Kids Research Institute Australia, University of Western Australia, Perth, Western Australia, Australia
| | - Amar Gajjar
- Department of Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: the dysfunctional life history of medulloblastoma. Genes Dev 2025; 39:4-17. [PMID: 39231614 PMCID: PMC11789489 DOI: 10.1101/gad.351936.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.
Collapse
Affiliation(s)
- Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Katie Han
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jake D Friske
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
20
|
Lee JJY, Johnston MJ, Farooq H, Chen HM, Younes ST, Suarez R, Zwaig M, Juretic N, Weiss WA, Ragoussis J, Jabado N, Taylor MD, Gallo M. 3D genome topology distinguishes molecular subgroups of medulloblastoma. Am J Hum Genet 2024; 111:2720-2734. [PMID: 39481374 PMCID: PMC11639096 DOI: 10.1016/j.ajhg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Four main medulloblastoma (MB) molecular subtypes have been identified based on transcriptional, DNA methylation, and genetic profiles. However, it is currently not known whether 3D genome architecture differs between MB subtypes. To address this question, we performed in situ Hi-C to reconstruct the 3D genome architecture of MB subtypes. In total, we generated Hi-C and matching transcriptome data for 28 surgical specimens and Hi-C data for one patient-derived xenograft. The average resolution of the Hi-C maps was 6,833 bp. Using these data, we found that insulation scores of topologically associating domains (TADs) were effective at distinguishing MB molecular subgroups. TAD insulation score differences between subtypes were globally not associated with differential gene expression, although we identified few exceptions near genes expressed in the lineages of origin of specific MB subtypes. Our study therefore supports the notion that TAD insulation scores can distinguish MB subtypes independently of their transcriptional differences.
Collapse
Affiliation(s)
- John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael J Johnston
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Huey-Miin Chen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Subhi Talal Younes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Raul Suarez
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Melissa Zwaig
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marco Gallo
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Fotouhi M, Shahbandi A, Mehr FSK, Shahla MM, Nouredini SM, Kankam SB, Khorasanizadeh M, Chambless LB. Application of radiomics for diagnosis, subtyping, and prognostication of medulloblastomas: a systematic review. Neurosurg Rev 2024; 47:827. [PMID: 39467891 DOI: 10.1007/s10143-024-03060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Applications of radiomics for clinical management of medulloblastomas are expanding. This systematic review aims to aggregate and overview the current role of radiomics in the diagnosis, subtyping, and prognostication of medulloblastomas. The present systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed/MEDLINE were searched using a standardized search term. Articles found within the database from the inception until November 2022 were considered for screening. Retrieved records were screened independently by two authors based on their titles and abstracts. The full text of selected articles was reviewed to finalize the eligibility. Due to the heterogeneity of included studies, no formal data synthesis was conducted. Of the 249 screened citations, 21 studies were included and analyzed. Radiomics demonstrated promising performance for discriminating medulloblastomas from other posterior fossa tumors, particularly ependymomas and pilocytic astrocytomas. It was also efficacious in determining the subtype (i.e., WNT+, SHH+, group 3, and group 4) of medulloblastomas non-invasively. Regarding prognostication, radiomics exhibited some ability to predict overall survival and progression-free survival of patients with medulloblastomas. Our systematic review revealed that radiomics represents a promising tool for diagnosis and prognostication of medulloblastomas. Further prospective research measuring the clinical value of radiomics in this setting is warranted.
Collapse
Affiliation(s)
- Maryam Fotouhi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Samuel B Kankam
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | | | - Lola B Chambless
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
P M MM, Farheen S, Sharma RM, Shahi MH. Differential regulation of Shh-Gli1 cell signalling pathway on homeodomain transcription factors Nkx2.2 and Pax6 during the medulloblastoma genesis. Mol Biol Rep 2024; 51:1096. [PMID: 39460795 DOI: 10.1007/s11033-024-10026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Medulloblastoma is a pediatric malignant brain tumor associated with an aberrantly activated Shh pathway. The Shh pathway acts via downstream effector molecules, including Pax6 and Nkx2.2. Transcription factor Nkx2.2 plays crucial roles during early embryonic patterning and development. In this study, we aimed to determine the role of transcription factor Nkx2.2 in medulloblastoma development. METHODS AND RESULTS Here, whole transcriptome levels and suppressive effect of transcription factor Nkx2.2 on Pax6 were assessed using one normal human brain and three surgically removed medulloblastoma samples. Additionally, protein levels of Shh, Gli1, Pax6, and Nkx2.2 and co-expression patterns of Pax6 and Nkx2.2 were assessed in 14 medulloblastoma samples. Quantitative reverse transcription-polymerase chain reaction revealed the suppressive effect of Nkx2.2 on Pax6. D283 cells were treated with the Shh pathway activator, SAG, and Gli1 inhibitor, GANT61, which revealed Pax6-Nkx2.2 regulation. Increased cell proliferation was observed in D283 cells transfected with Nkx2.2 small interfering RNA. Moreover, mRNA expression levels of Shh, Pax6, Nkx2.2, and Gli1 were assessed in Daoy cells transfected with Gli1 and Nkx2.2 small interfering RNAs using quantitative reverse transcription-polymerase chain reaction. Pax6 levels were increased in Nkx2.2 siRNA-transfected cells. CONCLUSIONS Aberrantly activated Shh pathway leads to the ectopic expression of Pax6 in granular cells, inducing medulloblastoma development. Moreover, Nkx2.2 transcription factor acts as a suppressor of Pax6 during medulloblastoma development and maintenance. Overall, this study provides novel insights for the development of effective therapeutic strategies and suggests potential targets for medulloblastoma.
Collapse
Affiliation(s)
- Mubeena Mariyath P M
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Raman Mohan Sharma
- Department of Neurosurgery, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
23
|
Almousa A, Erjan A, Sarhan N, Obeidat M, Alshorbaji A, Amarin R, Alawabdeh T, Abu-Hijlih R, Mujlli M, Kh. Ibrahimi A, Abu Laban D, Maraqa B, Al-Ani A, Al Sharie S, Al-Hussaini M. Clinical and Molecular Characteristics and Outcome of Adult Medulloblastoma at a Tertiary Cancer Center. Cancers (Basel) 2024; 16:3609. [PMID: 39518048 PMCID: PMC11545686 DOI: 10.3390/cancers16213609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Adult medulloblastoma is a rare entity, with management data extrapolated from pediatric medulloblastoma cases. We aim to report the clinical characteristics, prognostic factors, and treatment outcome of a cohort of adult patients with medulloblastoma. Methods: Fifty-three patients aged ≥ 18 years with medulloblastoma treated at King Hussein Cancer Center between 2007 and 2019 were retrospectively reviewed. Patients' diseases were staged according to modified Chang's staging system. All patients received adjuvant craniospinal irradiation followed by a posterior fossa boost. Baseline disease characteristics, including molecular subgrouping, were tested as prognostic factors of progression-free survival (PFS) and overall survival (OS) by using univariate analysis. Results: Median follow-up was 70 months (range 37.5-104.5 months). Twenty-two tumors were of the SHH-activated subtype. Conversely, WNT-activated and group 4 tumors had three cases each. Only 37.7% of patients died. The mean 3-year, 5-year, and 10-year OS were 85% (75-95%), 74% (62-87%), and 50% (33-75%), respectively. Significant differences in OS were associated with the extent of surgery (p = 0.017), M stage (p = 0.009), and risk status (p < 0.001). Relapses were detected in 28.3% of cases. The 3-year, 5-year, and 10-year PFS were 81% (71-92%), 75% (63-88%), and 66% (52-83%), respectively. Significant differences in PFS were associated with the extent of surgery (p = 0.008) and risk status (p = 0.012). Molecular subgrouping did not correlate with OS or PFS. Conclusions: Our results revealed poor survival of patients with high-risk disease, which may necessitate the intensification of chemotherapy. Molecular subgrouping did not correlate with the outcome in this cohort.
Collapse
Affiliation(s)
- Abdelatif Almousa
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.); (A.E.); (N.S.); (R.A.-H.); (A.K.I.)
| | - Ayah Erjan
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.); (A.E.); (N.S.); (R.A.-H.); (A.K.I.)
| | - Nasim Sarhan
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.); (A.E.); (N.S.); (R.A.-H.); (A.K.I.)
| | - Mouness Obeidat
- Department of Neurosurgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.A.)
| | - Amer Alshorbaji
- Department of Neurosurgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.A.)
| | - Rula Amarin
- Department of Neuro-Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Tala Alawabdeh
- Department of Neuro-Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Ramiz Abu-Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.); (A.E.); (N.S.); (R.A.-H.); (A.K.I.)
| | - Mohammad Mujlli
- Department of Neuro-Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (M.M.); (D.A.L.)
| | - Ahmad Kh. Ibrahimi
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.); (A.E.); (N.S.); (R.A.-H.); (A.K.I.)
| | - Dima Abu Laban
- Department of Neuro-Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (M.M.); (D.A.L.)
| | - Bayan Maraqa
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (S.A.S.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (S.A.S.)
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
24
|
Zhou L, van Bree N, Boutin L, Ryu J, Moussaud S, Liu M, Otrocka M, Olsson M, Falk A, Wilhelm M. High-throughput neural stem cell-based drug screening identifies S6K1 inhibition as a selective vulnerability in sonic hedgehog-medulloblastoma. Neuro Oncol 2024; 26:1685-1699. [PMID: 38860311 PMCID: PMC11376459 DOI: 10.1093/neuonc/noae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant brain tumors in children. Current treatments have increased overall survival but can lead to devastating side effects and late complications in survivors, emphasizing the need for new, improved targeted therapies that specifically eliminate tumor cells while sparing the normally developing brain. METHODS Here, we used a sonic hedgehog (SHH)-MB model based on a patient-derived neuroepithelial stem cell system for an unbiased high-throughput screen with a library of 172 compounds with known targets. Compounds were evaluated in both healthy neural stem cells (NSCs) and tumor cells derived from the same patient. Based on the difference of cell viability and drug sensitivity score between normal cells and tumor cells, hit compounds were selected and further validated in vitro and in vivo. RESULTS We identified PF4708671 (S6K1 inhibitor) as a potential agent that selectively targets SHH-driven MB tumor cells while sparing NSCs and differentiated neurons. Subsequent validation studies confirmed that PF4708671 inhibited the growth of SHH-MB tumor cells both in vitro and in vivo, and that knockdown of S6K1 resulted in reduced tumor formation. CONCLUSIONS Overall, our results suggest that inhibition of S6K1 specifically affects tumor growth, whereas it has less effect on non-tumor cells. Our data also show that the NES cell platform can be used to identify potentially effective new therapies and targets for SHH-MB.
Collapse
Affiliation(s)
- Leilei Zhou
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niek van Bree
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lola Boutin
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jinhye Ryu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Simon Moussaud
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Tariq R. Predicting response to chemotherapy in brain tumor patients based on MRI features. Clin Neurol Neurosurg 2024; 244:108409. [PMID: 38959786 DOI: 10.1016/j.clineuro.2024.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chemotherapy in brain tumors is tailored based on tumor type, grade, and molecular markers, which are crucial for predicting responses and survival outcomes. This review summarizes the role of chemotherapy in gliomas, glioneuronal and neuronal tumors, ependymomas, choroid plexus tumors, medulloblastomas, and meningiomas, discussing standard treatment protocols and recent developments in targeted therapies.Furthermore, the studies reporting the integration of MRI-based radiomics and deep learning models for predicting treatment outcomes are reviewed. Advances in MRI-based radiomics and deep learning models have significantly enhanced the prediction of chemotherapeutic benefits, survival prediction following chemotherapy, and differentiating tumor progression with psuedoprogression. These non-invasive techniques offer valuable insights into tumor characteristics and treatment responses, facilitating personalized therapeutic strategies. Further research is warranted to refine these models and expand their applicability across different brain tumor types.
Collapse
Affiliation(s)
- Rabeet Tariq
- Department of Neurosurgery, Section of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
26
|
Reznicek J, Sharifai N, Jamshidi P, Wadhwani N, Ahrendsen JT. Embryonal and pineal tumours. Cytopathology 2024; 35:561-571. [PMID: 38100134 DOI: 10.1111/cyt.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 08/11/2024]
Abstract
Embryonal and pineal tumours represent a diverse group of central nervous system (CNS) neoplasms. While many of the small round blue cell tumours that make up the embryonal neoplasms share similar histologic qualities, there are several morphologic and cytologic characteristics that are useful in distinguishing different tumour types. Similarly, pineal parenchymal tumours represent clinically diverse tumours, ranging from benign to overtly malignant. The most recent iteration of the World Health Organization Classification of CNS Tumours expanded greatly on the significance of molecular alterations in brain tumour diagnostics. In this article, we summarize the salient cytologic and histologic features of CNS embryonal and pineal tumours, and highlight diagnostically relevant molecular alterations within each tumour type.
Collapse
Affiliation(s)
- Joseph Reznicek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nima Sharifai
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Pacchiano F, Tortora M, Doneda C, Izzo G, Arrigoni F, Ugga L, Cuocolo R, Parazzini C, Righini A, Brunetti A. Radiomics and artificial intelligence applications in pediatric brain tumors. World J Pediatr 2024; 20:747-763. [PMID: 38935233 PMCID: PMC11402857 DOI: 10.1007/s12519-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children. DATA SOURCES We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected. RESULTS A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model. CONCLUSIONS In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.
Collapse
Affiliation(s)
- Francesco Pacchiano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Department of Head and Neck, Neuroradiology Unit, AORN Moscati, Avellino, Italy.
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Giana Izzo
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Filippo Arrigoni
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Cecilia Parazzini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Andrea Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
28
|
G G, Bharti S, Jha VC, Nigam JS, Ganesh R A, Bhadani P. Immunoexpression of Survivin and P53 in the Histological Subtypes of Medulloblastoma: A Cross-Sectional Observational Study. Cureus 2024; 16:e65627. [PMID: 39205763 PMCID: PMC11350522 DOI: 10.7759/cureus.65627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Medulloblastoma (MB) is a common malignant intracranial neoplasms in children. The treatment and prognosis of this tumor depends on histology and molecular subtypes. Survivin, implicated in various malignancies, may hold prognostic significance. We investigated survivin and p53 immunoreactivity in different histological subtypes in 20 MB cases from January 2018 to June 2021. Immunohistochemistry revealed survivin expression in 75% (15/20) of cases, with cytoplasmic (10 cases), nuclear (four cases), or combined expression (one case). p53 nuclear expression was present in 35% (7/20) of cases. Classical variant MB exhibited predominant p53 and cytoplasmic survivin expression. Given the association of survivin and p53 expression with poor prognosis, especially in the prevalent classical variant, targeted therapies may hold promise for MB treatment advancement.
Collapse
Affiliation(s)
- Guralarasan G
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Shreekant Bharti
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Vikas C Jha
- Neurosurgery, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Jitendra S Nigam
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | - Abhirami Ganesh R
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Punam Bhadani
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| |
Collapse
|
29
|
Gupta T, Mani S, Chatterjee A, Dasgupta A, Epari S, Chinnaswamy G. Risk-stratification for treatment de-intensification in WNT-pathway medulloblastoma: finding the optimal balance between survival and quality of survivorship. Expert Rev Anticancer Ther 2024; 24:589-598. [PMID: 38761170 DOI: 10.1080/14737140.2024.2357807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Advances in molecular biology have led to consensus classification of medulloblastoma into four broad molecular subgroups - wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4, respectively. Traditionally, children >3 years of age, with no/minimal residual tumor (<1.5 cm2) and lack of metastasis were classified as average-risk disease with >80% long-term survival. Younger age (<3 years), large residual disease (≥1.5 cm2), and leptomeningeal metastases either alone or in combination were considered high-risk features yielding much worse 5-year survival (30-60%). This clinico-radiological risk-stratification has been refined by incorporating molecular/genetic information. Contemporary multi-modality management for non-infantile medulloblastoma entails maximal safe resection followed by risk-stratified adjuvant radio(chemo)therapy. Aggressive multi-modality management achieves good survival but is associated with substantial dose-dependent treatment-related toxicity prompting conduct of subgroup-specific prospective clinical trials. AREAS COVERED We conducted literature search on PubMed from 1969 till 2023 to identify putative prognostic factors and risk-stratification for medulloblastoma, including molecular subgrouping. Based on previously published data, including our own institutional experience, we discuss molecular risk-stratification focusing on WNT-pathway medulloblastoma to identify candidates suitable for treatment de-intensification to strike the optimal balance between survival and quality of survivorship. EXPERT OPINION Prospective clinical trials and emerging biological information should further refine risk-stratification in WNT-pathway medulloblastoma.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shakthivel Mani
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
30
|
Zhang Z, Wu Y, Zhao X, Ji W, Li L, Zhai X, Liang P, Cheng Y, Zhou J. Neurosurgical short-term outcomes for pediatric medulloblastoma patients and molecular correlations: a 10-year single-center observation cohort study. Neurosurg Rev 2024; 47:283. [PMID: 38904885 DOI: 10.1007/s10143-024-02526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
This study examined the risk factors for short-term outcomes, focusing particularly on the associations among molecular subgroups. The analysis focused on the data of pediatric patients with medulloblastoma between 2013 and 2023, as well as operative complications, length of stay from surgery to adjuvant treatment, 30-day unplanned reoperation, unplanned readmission, and mortality. 148 patients were included. Patients with the SHH TP53-wildtype exhibited a lower incidence of complications (45.2% vs. 66.0%, odds ratio [OR] 0.358, 95% confidence interval [CI] 0.160 - 0.802). Female sex (0.437, 0.207 - 0.919) was identified as an independent protective factor for complications, and brainstem involvement (1.900, 1.297 - 2.784) was identified as a risk factor. Surgical time was associated with an increased risk of complications (1.004, 1.001 - 1.008), duration of hospitalization (1.006, 1.003 - 1.010), and reoperation (1.003, 1.001 - 1.006). Age was found to be a predictor of improved outcomes, as each additional year was associated with a 14.1% decrease in the likelihood of experiencing a prolonged length of stay (0.859, 0.772 - 0.956). Patients without metastasis exhibited a reduced risk of reoperation (0.322, 0.133 - 0.784) and readmission (0.208, 0.074 - 0.581). There is a significant degree of variability in the occurrence of operative complications in pediatric patients with medulloblastoma. SHH TP53-wildtype medulloblastoma is commonly correlated with a decreased incidence of complications. The short-term outcomes of patients are influenced by various unmodifiable endogenous factors. These findings could enhance the knowledge of onconeurosurgeons and alleviate the challenges associated with patient/parent education through personalized risk communication. However, the importance of a dedicated center with expertise surgical team and experienced neurosurgeon in improving neurosurgical outcomes appears self-evident.
Collapse
Affiliation(s)
- Zaiyu Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xueling Zhao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Wenyuan Ji
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Lusheng Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianjun Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
| |
Collapse
|
31
|
Ismail M, Um H, Salloum R, Hollnagel F, Ahmed R, de Blank P, Tiwari P. A Radiomic Approach for Evaluating Intra-Subgroup Heterogeneity in SHH and Group 4 Pediatric Medulloblastoma: A Preliminary Multi-Institutional Study. Cancers (Basel) 2024; 16:2248. [PMID: 38927953 PMCID: PMC11201623 DOI: 10.3390/cancers16122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children with extensive heterogeneity that results in varied clinical outcomes. Recently, MB was categorized into four molecular subgroups, WNT, SHH, Group 3, and Group 4. While SHH and Group 4 are known for their intermediate prognosis, studies have reported wide disparities in patient outcomes within these subgroups. This study aims to create a radiomic prognostic signature, medulloblastoma radiomics risk (mRRisk), to identify the risk levels within the SHH and Group 4 subgroups, individually, for reliable risk stratification. Our hypothesis is that this signature can comprehensively capture tumor characteristics that enable the accurate identification of the risk level. In total, 70 MB studies (48 Group 4, and 22 SHH) were retrospectively curated from three institutions. For each subgroup, 232 hand-crafted features that capture the entropy, surface changes, and contour characteristics of the tumor were extracted. Features were concatenated and fed into regression models for risk stratification. Contrasted with Chang stratification that did not yield any significant differences within subgroups, significant differences were observed between two risk groups in Group 4 (p = 0.04, Concordance Index (CI) = 0.82) on the cystic core and non-enhancing tumor, and SHH (p = 0.03, CI = 0.74) on the enhancing tumor. Our results indicate that radiomics may serve as a prognostic tool for refining MB risk stratification, towards improved patient care.
Collapse
Affiliation(s)
- Marwa Ismail
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
| | - Hyemin Um
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
| | - Ralph Salloum
- Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Fauzia Hollnagel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raheel Ahmed
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peter de Blank
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA (P.T.)
- Departments of Medical Physics and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
32
|
Pissas KP, Gründer S, Tian Y. Functional expression of the proton sensors ASIC1a, TMEM206, and OGR1 together with BK Ca channels is associated with cell volume changes and cell death under strongly acidic conditions in DAOY medulloblastoma cells. Pflugers Arch 2024; 476:923-937. [PMID: 38627262 PMCID: PMC11139714 DOI: 10.1007/s00424-024-02964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.
Collapse
Affiliation(s)
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
33
|
Franchino F, Morra I, Forni M, Bertero L, Zanini C, Roveta F, Ricardi U, Mantovani C, Carpaneto A, Migliore E, Pellerino A, Ferrio F, Cassoni P, Garbossa D, Soffietti R, Rudà R. Medulloblastoma in adults: an analysis of clinico-pathological, molecular and treatment factors. J Neurosurg Sci 2024; 68:260-269. [PMID: 34763393 DOI: 10.23736/s0390-5616.21.05548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Medulloblastoma is a highly malignant, embryonal tumor, which is rare in adults, and shows distinct clinical, histopathological, molecular and treatment response features. METHODS We retrospectively investigated 44 adults (age 17-48 years) with a histological diagnosis of medulloblastoma, and in 23 immunohistochemistry was used to identify the molecular subgroups. We analyzed demographic, diagnostic, therapeutic and cognitive data, and correlated with PFS (progression-free-survival) and OS (overall survival). RESULTS We observed a male prevalence and a median age of 31 years. Symptoms at onset were related to infratentorial location, while myeloradicular and/or cranial nerve involvement was rare. Histological examination showed the classic variant in 75% of patients, the desmoplastic/nodular in 23% and the anaplastic in one. As for molecular diagnosis, 17 patients were SHH and 6 non-WNT/non-SHH (5 group 4 and 1 group 3), while no WNT subgroup was found. The SHH subgroup had a prevalence of high-risk patients and leptomeningeal involvement. Patients underwent gross total or subtotal/partial resection, and craniospinal irradiation, followed in 20 cases by adjuvant chemotherapy. Median OS and PFS were 16.9 and 12 years, respectively. Metastatic disease at presentation and subtotal/partial resection were associated with worse prognosis, while the addition of chemotherapy did not yield a significant advantage over radiotherapy alone. Cognitive impairment in long-term survivors was limited and late relapses occurred in 15% of patients. CONCLUSIONS Future studies with adequate sample size and long-term follow-up should prospectively investigate the role of surgery and adjuvant therapies across the different molecular subgroups to see whether a personalized approach is feasible.
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy -
| | - Isabella Morra
- Unit of Pathology, Department of Medical Sciences, Città della Salute e della Scienza, Turin, Italy
| | - Marco Forni
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Luca Bertero
- Unit of Pathology, Department of Medical Sciences, Città della Salute e della Scienza, Turin, Italy
| | - Cristina Zanini
- Scientific Department, BioAir Spa, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Fausto Roveta
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy
| | - Umberto Ricardi
- Department of Radiotherapy, Città della Salute e della Scienza, Turin, Italy
| | - Cristina Mantovani
- Department of Radiotherapy, Città della Salute e della Scienza, Turin, Italy
| | - Allegra Carpaneto
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy
| | - Enrica Migliore
- Unit of Cancer Epidemiology (CPO Piemonte), University of Turin, Turin, Italy
| | - Alessia Pellerino
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy
| | - Federica Ferrio
- Department of Neuroradiology, Città della Salute e della Scienza, Turin, Italy
| | - Paola Cassoni
- Unit of Pathology, Department of Medical Sciences, Città della Salute e della Scienza, Turin, Italy
| | - Diego Garbossa
- Department of Neurosurgery, Città della Salute e della Scienza, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, Città della Salute e della Scienza, Turin, Italy
- Department of Neurology, Castelfranco Veneto, Treviso, Italy
| |
Collapse
|
34
|
Pacult MA, Przybylowski CJ, Raza SM, DeMonte F. Surgical Management of High-Grade Meningiomas. Cancers (Basel) 2024; 16:1978. [PMID: 38893100 PMCID: PMC11171173 DOI: 10.3390/cancers16111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Maximal resection with the preservation of neurological function are the mainstays of the surgical management of high-grade meningiomas. Surgical morbidity is strongly associated with tumor size, location, and invasiveness, whereas patient survival is strongly associated with the extent of resection, tumor biology, and patient health. A versatile microsurgical skill set combined with a cogent multimodality treatment plan is critical in order to achieve optimal patient outcomes. Continued refinement in surgical techniques in conjunction with directed radiotherapeutic and medical therapies will define future treatment.
Collapse
Affiliation(s)
- Mark A. Pacult
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Colin J. Przybylowski
- Division of Neurosurgery, Fukushima Brain Tumor Center, Raleigh Neurosurgical Clinic, Raleigh, NC 27609, USA;
| | - Shaan M. Raza
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
35
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|
36
|
Holmberg KO, Borgenvik A, Zhao M, Giraud G, Swartling FJ. Drivers Underlying Metastasis and Relapse in Medulloblastoma and Targeting Strategies. Cancers (Basel) 2024; 16:1752. [PMID: 38730706 PMCID: PMC11083189 DOI: 10.3390/cancers16091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.
Collapse
Affiliation(s)
- Karl O. Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Anna Borgenvik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| | - Géraldine Giraud
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
- Department of Women and Child Health, Uppsala University, 75124 Uppsala, Sweden
- Department of Pediatric Hematology and Oncology, Uppsala University Children’s Hospital, 75185 Uppsala, Sweden
| | - Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (K.O.H.); (M.Z.); (G.G.)
| |
Collapse
|
37
|
Qi L, Baxter P, Kogiso M, Zhang H, Braun FK, Lindsay H, Zhao S, Xiao S, Abdallah AS, Suarez M, Huang Z, Teo WY, Yu L, Zhao X, Liu Z, Huang Y, Su JM, Man TK, Lau CC, Perlaky L, Du Y, Li XN. Direct Implantation of Patient Brain Tumor Cells into Matching Locations in Mouse Brains for Patient-Derived Orthotopic Xenograft Model Development. Cancers (Basel) 2024; 16:1716. [PMID: 38730671 PMCID: PMC11083000 DOI: 10.3390/cancers16091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen 510080, China;
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Patricia Baxter
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mari Kogiso
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank K. Braun
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly Lindsay
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sibo Zhao
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sophie Xiao
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Aalaa Sanad Abdallah
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Milagros Suarez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Zilu Huang
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Wan Yee Teo
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| | - Litian Yu
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiumei Zhao
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhigang Liu
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yulun Huang
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jack M. Su
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Tsz-Kwong Man
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Ching C. Lau
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Laszlo Perlaky
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Yuchen Du
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Xiao-Nan Li
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| |
Collapse
|
38
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
39
|
Richard SA. The pivotal role of irradiation-induced apoptosis in the pathogenesis and therapy of medulloblastoma. Cancer Rep (Hoboken) 2024; 7:e2048. [PMID: 38599791 PMCID: PMC11006592 DOI: 10.1002/cnr2.2048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a rare primitive neuroectodermal tumors originating from the cerebellum. MB is the most common malignant primary brain tumor of childhood. MB originates from neural precursor cells in distinctive regions of the rhombic lip, and their maturation occurs in the cerebellum or the brain stem during embryonal development. Also, apoptosis is a programmed cell death associated with numerous physiological as well as pathological regulations. RECENT FINDINGS Irradiation (IR)-induce apoptosis triggers cell death, with or without intervening mitosis within a few hours of IR and these share different morphologic alteration such as, loss of normal nuclear structure as well as degradation of DNA. Moreover, MB is strikingly sensitive to DNA-damaging therapies and the role of apoptosis a key treatment modality. Furthermore, in MB, the apoptotic pathways are made up of several triggers, modulators, as well as effectors. Notably, IR-induced apoptotic mechanisms in MB therapy are very complex and they either induce radiosensitivity or inhibit radioresistance leading to potential effective treatment strategies for MB. CONCLUSION This review explicitly explores the pivotal roles of IR-induced apoptosis in the pathogenesis and therapy of MB.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of MedicinePrincefield UniversityHoGhana
- Institute of Neuroscience, Third Affiliated HospitalZhengzhou UniversityZhengzhouChina
| |
Collapse
|
40
|
Mehta A, Yadav M, Shilpakar SK, Bohara S, Yadav D. Extra-axial cerebellopontine angle nodular medulloblastoma mimicking meningioma: a case report with literature review. Ann Med Surg (Lond) 2024; 86:1669-1675. [PMID: 38463083 PMCID: PMC10923268 DOI: 10.1097/ms9.0000000000001713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 03/12/2024] Open
Abstract
Introduction Medulloblastoma, a highly malignant embryonal tumor predominantly found in the pediatric population, typically arises within the cerebellum. This case report holds particular importance due to the rarity of medulloblastoma within the cerebellopontine angle (CPA). The distinct anatomical challenge posed by the CPA complex neurovascular structures, along with the absence of pathognomonic clinical or radiographic features, highlights the unique diagnostic and management challenge of this case. Case presentation A 5-year-old boy presented with mild, progressively worsening headaches on CT/MRI imaging, which revealed a solid mass in the left CPA. Radiologically, the lesion closely resembled a CPA meningioma. The patient underwent a left retrosigmoid suboccipital craniectomy, utilizing a modified park bench position and careful burrhole creation. Intraoperatively, the tumor exhibited well-defined margins, firm adherence to cranial nerves, and complex tissue characteristics. Postoperatively, histopathological analysis identified nodular medulloblastoma, WHO grade IV, with immunohistochemical markers confirming its subtype. Discussion This case highlights the critical role of surgical intervention in addressing rare tumors, emphasizing the need for multidisciplinary collaboration in both diagnosis and management to achieve a favorable outcome. Uncommon tumor locations, such as the CPA, require tailored approaches, and the utilization of advanced diagnostic techniques, including immunohistochemistry, aids in accurate subtype classification. Conclusion This case highlights the critical role of surgical intervention in addressing rare tumors, emphasizing the need for multidisciplinary collaboration in both diagnosis and management to achieve a favorable outcome.
Collapse
Affiliation(s)
| | - Manish Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Nepal
| | | | - Sandip Bohara
- Department of Neurosurgery, Tribhuvan University Teaching Hospital
| | - Digraj Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Nepal
| |
Collapse
|
41
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Price M, Ryan K, Shoaf ML, Neff C, Iorgulescu JB, Landi DB, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS, Ostrom QT. Childhood, adolescent, and adult primary brain and central nervous system tumor statistics for practicing healthcare providers in neuro-oncology, CBTRUS 2015-2019. Neurooncol Pract 2024; 11:5-25. [PMID: 38222052 PMCID: PMC10785588 DOI: 10.1093/nop/npad061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention (CDC) and National Cancer Institute (NCI), is the largest aggregation of histopathology-specific population-based data for primary brain and other central nervous system (CNS) in the US. CBTRUS publishes an annual statistical report which provides critical reference data for the broad neuro-oncology community. Here, we summarize the key findings from the 2022 CBTRUS annual statistical report for healthcare providers. Methods Incidence data were obtained from the CDC's National Program of Cancer Registries (NPCR) and NCI's Surveillance, Epidemiology, and End Results Program for 52 central cancer registries (CCRs). Survival data were obtained from 42 NPCR CCRs. All rates are per 100 000 and age-adjusted using the 2000 US standard population. Overall median survival was estimated using Kaplan-Meier models. Survival data for selected molecularly defined histopathologies are from the National Cancer Database. Mortality data are from the National Vital Statistics System. Results The average annual age-adjusted incidence rate of all primary brain and other CNS tumors was 24.25/100 000. Incidence was higher in females and non-Hispanics. The most commonly occurring malignant and predominately non-malignant tumors was glioblastoma (14% of all primary brain tumors) and meningioma (39% of all primary brain tumors), respectively. Mortality rates and overall median survival varied by age, sex, and histopathology. Conclusions This summary describes the most up-to-date population-based incidence, mortality, and survival, of primary brain and other CNS tumors in the US and aims to serve as a concise resource for neuro-oncology providers.
Collapse
Affiliation(s)
- Mackenzie Price
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
| | - Katherine Ryan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, USA
| | - Madison L Shoaf
- Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Corey Neff
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel B Landi
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Gino Cioffi
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, MD, USA
| | - Kristin A Waite
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, MD, USA
| | - Carol Kruchko
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
| | - Jill S Barnholtz-Sloan
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, MD, USA
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, MD, USA
| | - Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
43
|
Ghasemi DR, Okonechnikov K, Rademacher A, Tirier S, Maass KK, Schumacher H, Joshi P, Gold MP, Sundheimer J, Statz B, Rifaioglu AS, Bauer K, Schumacher S, Bortolomeazzi M, Giangaspero F, Ernst KJ, Clifford SC, Saez-Rodriguez J, Jones DTW, Kawauchi D, Fraenkel E, Mallm JP, Rippe K, Korshunov A, Pfister SM, Pajtler KW. Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage. Nat Commun 2024; 15:269. [PMID: 38191550 PMCID: PMC10774372 DOI: 10.1038/s41467-023-44117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.
Collapse
Affiliation(s)
- David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Resolve BioSciences GmbH, Monheim am Rhein, Germany
| | - Kendra K Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanna Schumacher
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Julia Sundheimer
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmet S Rifaioglu
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Department of Electrical and Electronics Engineering, İskenderun Technical University, Hatay, Turkey
| | - Katharina Bauer
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Kati J Ernst
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
44
|
Gold MP, Ong W, Masteller AM, Ghasemi DR, Galindo JA, Park NR, Huynh NC, Donde A, Pister V, Saurez RA, Vladoiu MC, Hwang GH, Eisemann T, Donovan LK, Walker AD, Benetatos J, Dufour C, Garzia L, Segal RA, Wechsler-Reya RJ, Mesirov JP, Korshunov A, Pajtler KW, Pomeroy SL, Ayrault O, Davidson SM, Cotter JA, Taylor MD, Fraenkel E. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15:270. [PMID: 38191555 PMCID: PMC10774283 DOI: 10.1038/s41467-023-44300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.
Collapse
Grants
- R35 NS122339 NINDS NIH HHS
- U01 CA253547 NCI NIH HHS
- U24 CA220341 NCI NIH HHS
- R01 NS089076 NINDS NIH HHS
- R01 CA255369 NCI NIH HHS
- P50 HD105351 NICHD NIH HHS
- R01 NS106155 NINDS NIH HHS
- R01 CA159859 NCI NIH HHS
- P30 CA014089 NCI NIH HHS
- U01 CA184898 NCI NIH HHS
- EIF | Stand Up To Cancer (SU2C)
- The Pediatric Brain Tumour Foundation, The Terry Fox Research Institute, The Canadian Institutes of Health Research, The Cure Search Foundation, Matthew Larson Foundation (IronMatt), b.r.a.i.n.child, Meagan’s Walk, SWIFTY Foundation, The Brain Tumour Charity, Genome Canada, Genome BC, Genome Quebec, the Ontario Research Fund, Worldwide Cancer Research, V-Foundation for Cancer Research, and the Ontario Institute for Cancer Research through funding provided by the Government of Ontario, Canadian Cancer Society Research Institute Impact grant, a Cancer Research UK Brain Tumour Award, and the Garron Family Chair in Childhood Cancer Research at the Hospital for Sick Children and the University of Toronto. We also thank Yoon-Jae Cho, John Michaels, Koei Chin, Joe Gray, Connie New, and Ali Abdullatif for their help with the manuscript. Additionally, we appreciate support from the USC Norris Comprehensive Cancer Center Translational Pathology Core (P30CA014089), the Pediatric Research Biorepository at CHLA, and the Histology Core at the Koch Institute at MIT.
Collapse
Affiliation(s)
- Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Winnie Ong
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Andrew M Masteller
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julie Anne Galindo
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Noel R Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Nhan C Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Veronika Pister
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Raul A Saurez
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Grace H Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tanja Eisemann
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura K Donovan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam D Walker
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Joseph Benetatos
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Christelle Dufour
- Department of Child and Adolescent Oncology, Gustave Roussy, Villejuif, France
- INSERM U981, Molecular Predictors and New Targets in Oncology, University Paris-Saclay, Villejuif, France
| | - Livia Garzia
- Cancer Research Program, McGill University, Montreal, QC, Canada
- MUHC Research Institute, McGill University, Montreal, QC, Canada
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jill P Mesirov
- Department of Medicine, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
46
|
Dias SF, Richards O, Elliot M, Chumas P. Pediatric-Like Brain Tumors in Adults. Adv Tech Stand Neurosurg 2024; 50:147-183. [PMID: 38592530 DOI: 10.1007/978-3-031-53578-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Pediatric brain tumors are different to those found in adults in pathological type, anatomical site, molecular signature, and probable tumor drivers. Although these tumors usually occur in childhood, they also rarely present in adult patients, either as a de novo diagnosis or as a delayed recurrence of a pediatric tumor in the setting of a patient that has transitioned into adult services.Due to the rarity of pediatric-like tumors in adults, the literature on these tumor types in adults is often limited to small case series, and treatment decisions are often based on the management plans taken from pediatric studies. However, the biology of these tumors is often different from the same tumors found in children. Likewise, adult patients are often unable to tolerate the side effects of the aggressive treatments used in children-for which there is little or no evidence of efficacy in adults. In this chapter, we review the literature and summarize the clinical, pathological, molecular profile, and response to treatment for the following pediatric tumor types-medulloblastoma, ependymoma, craniopharyngioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, germ cell tumors, choroid plexus tumors, midline glioma, and pleomorphic xanthoastrocytoma-with emphasis on the differences to the adult population.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pediatric Neurosurgery, University Children's Hospital of Zurich - Eleonor Foundation, Zurich, Switzerland
| | - Oliver Richards
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Martin Elliot
- Department of Paediatric Oncology and Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
47
|
Tam LT, Cole B, Stasi SM, Paulson VA, Wright JN, Hoeppner C, Holtzclaw S, Crotty EE, Ellenbogen RG, Lee A, Ermoian RP, Lockwood CM, Leary SES, Ronsley R. Somatic Versus Germline: A Case Series of Three Children With ATM-Mutated Medulloblastoma. JCO Precis Oncol 2024; 8:e2300333. [PMID: 38207225 DOI: 10.1200/po.23.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Somatic versus Germline-A Case Series of Three Children with ATM- mutated Medulloblastoma.
Collapse
Affiliation(s)
- Lydia T Tam
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Vera A Paulson
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Corrine Hoeppner
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Susan Holtzclaw
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Erin E Crotty
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Richard G Ellenbogen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Amy Lee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Christina M Lockwood
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Sarah E S Leary
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Rebecca Ronsley
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
48
|
Ruchiy Y, Tsea I, Preka E, Verhoeven BM, Olsen TK, Mei S, Sinha I, Blomgren K, Carlson LM, Dyberg C, Johnsen JI, Baryawno N. Genomic tumor evolution dictates human medulloblastoma progression. Neurooncol Adv 2024; 6:vdae172. [PMID: 39659836 PMCID: PMC11629688 DOI: 10.1093/noajnl/vdae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background Medulloblastoma (MB) is the most common high-grade pediatric brain tumor, comprised of 4 main molecular subgroups-sonic-hedgehog (SHH), Wnt, Group 3, and Group 4. Group 3 and Group 4 tumors are the least characterized MB subgroups, despite Group 3 having the worst prognosis (~50% survival rate), and Group 4 being the most prevalent. Such poor characterization can be attributed to high levels of inter- and intratumoral heterogeneity, making it difficult to identify common therapeutic targets. Methods In this study, we generated single-cell sequencing data from 14 MB patients spanning all subgroups that we complemented with publicly available single-cell data from Group 3 patients. We used a ligand-receptor analysis tool (CellChat), expression- and allele-based copy-number variation (CNV) detection methods, and RNA velocity analysis to characterize tumor cell-cell interactions, established a connection between CNVs and temporal tumor progression, and unraveled tumor evolution. Results We show that MB tumor cells follow a temporal trajectory from those with low CNV levels to those with high CNV levels, allowing us to identify early and late markers for SHH, Group 3, and Group 4 MBs. Our study also identifies SOX4 upregulation as a major event in later tumor clones for Group 3 and Group 4 MBs, suggesting it as a potential therapeutic target for both subgroups. Conclusion Taken together, our findings highlight MB's inherent tumor heterogeneity and offer promising insights into potential drivers of MB tumor evolution particularly in Group 3 and Group 4 MBs.
Collapse
Affiliation(s)
- Yana Ruchiy
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Tsea
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Efthalia Preka
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klas Blomgren
- Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lena-Maria Carlson
- Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Malawsky DS, Dismuke T, Liu H, Castellino E, Brenman J, Dasgupta B, Tikunov A, Gershon TR. Chronic AMPK inactivation slows SHH medulloblastoma progression by inhibiting mTORC1 signaling and depleting tumor stem cells. iScience 2023; 26:108443. [PMID: 38094249 PMCID: PMC10716552 DOI: 10.1016/j.isci.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/28/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
We show that inactivating AMPK in a genetic medulloblastoma model depletes tumor stem cells and slows progression. In medulloblastoma, the most common malignant pediatric brain tumor, drug-resistant stem cells co-exist with transit-amplifying cells and terminally differentiated neuronal progeny. Prior studies show that Hk2-dependent glycolysis promotes medulloblastoma progression by suppressing neural differentiation. To determine how the metabolic regulator AMPK affects medulloblastoma growth and differentiation, we inactivated AMPK genetically in medulloblastomas. We bred conditional Prkaa1 and Prkaa2 deletions into medulloblastoma-prone SmoM2 mice and compared SmoM2-driven medulloblastomas with intact or inactivated AMPK. AMPK-inactivation increased event-free survival (EFS) and altered cellular heterogeneity, increasing differentiation and decreasing tumor stem cell populations. Surprisingly, AMPK-inactivation decreased mTORC1 activity and decreased Hk2 expression. Hk2 deletion similarly depleted medulloblastoma stem cells, implicating reduced glycolysis in the AMPK-inactivated phenotype. Our results show that AMPK inactivation disproportionately impairs medulloblastoma stem cell populations typically refractory to conventional therapies.
Collapse
Affiliation(s)
- Daniel Shiloh Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ethan Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Brenman
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|