1
|
Szegvari E, Holec SAM, Woerman AL. Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research. J Neurochem 2025; 169:e70021. [PMID: 40026260 PMCID: PMC11874209 DOI: 10.1111/jnc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Rodent models that accurately recapitulate key aspects of human disease have long been fundamental to the successful development of clinical interventions. This is greatly underscored in the neurodegenerative disease field, where preclinical testing of anti-prion therapeutics against rodent-adapted prions resulted in the development of small molecules effective against rodent-adapted prions but not against human prions. These findings provided critical lessons for ongoing efforts to develop treatments for patients with neurodegenerative diseases caused by misfolding and accumulation of the proteins tau and α-synuclein, or tauopathies and synucleinopathies, respectively. To avoid the potential pitfalls previously identified in the prion field, this review focuses on rodent models currently available to study tau and α-synuclein disease pathogenesis, emphasizing the strengths and limitations of each with the particular goal of better supporting preclinical research.
Collapse
Affiliation(s)
- Emma Szegvari
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Sara A. M. Holec
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Amanda L. Woerman
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Prymaczok NC, De Francesco PN, Mazzetti S, Humbert-Claude M, Tenenbaum L, Cappelletti G, Masliah E, Perello M, Riek R, Gerez JA. Cell-to-cell transmitted alpha-synuclein recapitulates experimental Parkinson's disease. NPJ Parkinsons Dis 2024; 10:10. [PMID: 38184623 PMCID: PMC10771530 DOI: 10.1038/s41531-023-00618-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Parkinson's disease is characterized by a progressive accumulation of alpha-Synuclein (αSyn) neuronal inclusions called Lewy bodies in the nervous system. Lewy bodies can arise from the cell-to-cell propagation of αSyn, which can occur via sequential steps of secretion and uptake. Here, by fusing a removable short signal peptide to the N-terminus of αSyn, we developed a novel mouse model with enhanced αSyn secretion and cell-to-cell transmission. Expression of the secreted αSyn in the mouse brain was under the control of a novel hybrid promoter in combination with adeno-associated virus serotype 9 (AAV9). This combination of promoter and viral vector induced a robust expression in neurons but not in the glia of injected mice. Biochemical characterization of the secreted αSyn revealed that, in cultured cells, this protein is released to the extracellular milieu via conventional secretion. The released αSyn is then internalized and processed by acceptor cells via the endosome-lysosome pathway indicating that the secreted αSyn is cell-to-cell transmitted. The secreted αSyn is aggregation-prone and amyloidogenic, and when expressed in the brain of wild-type non-transgenic mice, it induces a Parkinson's disease-like phenotype that includes a robust αSyn pathology in the substantia nigra, neuronal loss, neuroinflammation, and motor deficits, all the key features of experimental animal models of Parkinson's disease. In summary, a novel animal model of Parkinson's disease based on enhanced cell-to-cell transmission of αSyn was developed. The neuron-produced cell-to-cell transmitted αSyn triggers all phenotypic features of experimental Parkinson's disease in mice.
Collapse
Affiliation(s)
- Natalia Cecilia Prymaczok
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Pablo Nicolas De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (IMBICE), dependent of the Argentine Research Council (CONICET), Scientific Research Commission and University of La Plata Buenos Aires, La Plata, Argentina
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Marie Humbert-Claude
- Laboratory of Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging/NIH, 7201, Wisconsin Ave, Bethesda, MD, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (IMBICE), dependent of the Argentine Research Council (CONICET), Scientific Research Commission and University of La Plata Buenos Aires, La Plata, Argentina
| | - Roland Riek
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Juan Atilio Gerez
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Quintin S, Lloyd GM, Paterno G, Xia Y, Sorrentino Z, Bell BM, Gorion KM, Lee EB, Prokop S, Giasson BI. Cellular processing of α-synuclein fibrils results in distinct physiological C-terminal truncations with a major cleavage site at residue Glu 114. J Biol Chem 2023; 299:104912. [PMID: 37307916 PMCID: PMC10404685 DOI: 10.1016/j.jbc.2023.104912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zachary Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA; Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kimberly-Marie Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania (PENN) School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA; Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
5
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
6
|
Balzano T, Esteban-García N, Blesa J. Neuroinflammation, immune response and α-synuclein pathology: how animal models are helping us to connect dots. Expert Opin Drug Discov 2023; 18:13-23. [PMID: 36538833 DOI: 10.1080/17460441.2023.2160440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A key pathological event occurring in Parkinson's disease (PD) is the transneuronal spreading of alpha-synuclein (α-syn). Other hallmarks of PD include neurodegeneration, glial activation, and immune cell infiltration in susceptible brain regions. Although preclinical models can mimic most of the key characteristics of PD, it is crucial to know the biological bases of individual differences between them when choosing one over another, to ensure proper interpretation of the results and to positively influence the outcome of the experiments. AREAS COVERED This review provides an overview of current preclinical models actively used to study the interplay between α-syn pathology, neuroinflammation and immune response in PD but also to explore new potential preclinical models or emerging therapeutic strategies intended to fulfill the unmet medical needs in this disease. Lastly, this review also considers the current state of the ongoing clinical trials of new drugs designed to target these processes and delay the initiation or progression of the disease. EXPERT OPINION Anti-inflammatory and immunomodulatory agents have been demonstrated to be very promising candidates for reducing disease progression; however, more efforts are needed to reduce the enormous gap between these and dopaminergic drugs, which have dominated the therapeutic market for the last sixty years.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III; Madrid, Madrid, Spain
| |
Collapse
|
7
|
Arlinghaus R, Iba M, Masliah E, Cookson MR, Landeck N. Specific Detection of Physiological S129 Phosphorylated α-Synuclein in Tissue Using Proximity Ligation Assay. JOURNAL OF PARKINSON'S DISEASE 2023; 13:255-270. [PMID: 36847016 PMCID: PMC10041430 DOI: 10.3233/jpd-213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Synucleinopathies are a group of neurodegenerative disorders that are pathologically characterized by intracellular aggregates called Lewy bodies. Lewy bodies are primarily composed of α-synuclein (asyn) protein, which is mostly phosphorylated at serine 129 (pS129) when aggregated and therefore used as a marker for pathology. Currently commercial antibodies against pS129 asyn stain aggregates well but in healthy brains cross react with other proteins, thus making it difficult to specifically detect physiological pS129 asyn. OBJECTIVE To develop a staining procedure that detects endogenous and physiological relevant pS129 asyn with high specificity and low background. METHODS We used the fluorescent and brightfield in situ proximity ligation assay (PLA) to specifically detect pS129 asyn in cell culture, mouse, and human brain sections. RESULTS The pS129 asyn PLA specifically stained physiological and soluble pS129 asyn in cell culture, mouse brain sections, and human brain tissue without significant cross-reactivity or background signal. However, this technique was not successful in detecting Lewy bodies in human brain tissue. CONCLUSION We successfully developed a novel PLA method that can, in the future, be used on in vitro and in vivo samples as a tool to explore and better understand the cellular localization and function of pS129 asyn in health and disease.
Collapse
Affiliation(s)
- Ryan Arlinghaus
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD, USA
- Division of Neuroscience, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Natalie Landeck
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Holec SAM, Lee J, Oehler A, Batia L, Wiggins-Gamble A, Lau J, Ooi FK, Merz GE, Wang M, Mordes DA, Olson SH, Woerman AL. The E46K mutation modulates α-synuclein prion replication in transgenic mice. PLoS Pathog 2022; 18:e1010956. [PMID: 36454879 PMCID: PMC9714912 DOI: 10.1371/journal.ppat.1010956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In multiple system atrophy (MSA), the α-synuclein protein misfolds into a self-templating prion conformation that spreads throughout the brain, leading to progressive neurodegeneration. While the E46K mutation in α-synuclein causes familial Parkinson's disease (PD), we previously discovered that this mutation blocks in vitro propagation of MSA prions. Recent studies by others indicate that α-synuclein adopts a misfolded conformation in MSA in which a Greek key motif is stabilized by an intramolecular salt bridge between residues E46 and K80. Hypothesizing that the E46K mutation impedes salt bridge formation and, therefore, exerts a selective pressure that can modulate α-synuclein strain propagation, we asked whether three distinct α-synuclein prion strains could propagate in TgM47+/- mice, which express human α-synuclein with the E46K mutation. Following intracranial injection of these strains, TgM47+/- mice were resistant to MSA prion transmission, whereas recombinant E46K preformed fibrils (PFFs) transmitted neurological disease to mice and induced the formation of phosphorylated α-synuclein neuropathology. In contrast, heterotypic seeding following wild-type (WT) PFF-inoculation resulted in preclinical α-synuclein prion propagation. Moreover, when we inoculated TgM20+/- mice, which express WT human α-synuclein, with E46K PFFs, we observed delayed transmission kinetics with an incomplete attack rate. These findings suggest that the E46K mutation constrains the number of α-synuclein prion conformations that can propagate in TgM47+/- mice, expanding our understanding of the selective pressures that impact α-synuclein prion replication.
Collapse
Affiliation(s)
- Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jisoo Lee
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Lyn Batia
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Aryanna Wiggins-Gamble
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jeffrey Lau
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Felicia K. Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Gregory E. Merz
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Man Wang
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco; San Francisco, California, United States of America
| | - Steven H. Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
9
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Leupold L, Sigutova V, Gerasimova E, Regensburger M, Zundler S, Zunke F, Xiang W, Winner B, Prots I. The Quest for Anti-α-Synuclein Antibody Specificity-Lessons Learnt From Flow Cytometry Analysis. Front Neurol 2022; 13:869103. [PMID: 35911883 PMCID: PMC9334871 DOI: 10.3389/fneur.2022.869103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of alpha-synuclein (aSyn) is the hallmark of a group of neurodegenerative conditions termed synucleopathies. Physiological functions of aSyn, including those outside of the CNS, remain elusive. However, a reliable and reproducible evaluation of aSyn protein expression in different cell types and especially in low-expressing cells is impeded by the existence of a huge variety of poorly characterized anti-aSyn antibodies and a lack of a routinely used sensitive detection methods. Here, we developed a robust flow cytometry-based workflow for aSyn detection and antibody validation. We test our workflow using three commercially available antibodies (MJFR1, LB509, and 2A7) in a variety of human cell types, including induced pluripotent stem cells, T lymphocytes, and fibroblasts, and provide a cell- and antibody-specific map for aSyn expression. Strikingly, we demonstrate a previously unobserved unspecificity of the LB509 antibody, while the MJFR1 clone revealed specific aSyn binding however with low sensitivity. On the other hand, we identified an aSyn-specific antibody clone 2A7 with an optimal sensitivity for detecting aSyn in a range of cell types, including those with low aSyn expression. We further utilize our workflow to demonstrate the ability of the 2A7 antibody to distinguish between physiological differences in aSyn expression in neuronal and non-neuronal cells from the cortical organoids, and in neural progenitors and midbrain dopaminergic neurons from healthy controls and in patients with Parkinson's disease who have aSyn gene locus duplication. Our results provide a proof of principle for the use of high-throughput flow cytometry-based analysis of aSyn and highlight the necessity of rigorous aSyn antibody validation to facilitate the research of aSyn physiology and pathology.
Collapse
Affiliation(s)
- Lukas Leupold
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Translational Research Center (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Holec SAM, Liu SL, Woerman AL. Consequences of variability in α-synuclein fibril structure on strain biology. Acta Neuropathol 2022; 143:311-330. [PMID: 35122113 DOI: 10.1007/s00401-022-02403-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are a group of clinically and neuropathologically distinct protein misfolding diseases caused by unique α-synuclein conformations, or strains. While multiple atomic resolution cryo-electron microscopy structures of α-synuclein fibrils are now deposited in Protein Data Bank, significant gaps in the biological consequences arising from each conformation have yet to be unraveled. Mutations in the α-synuclein gene (SNCA), cofactors, and the solvation environment contribute to the formation and maintenance of each disease-causing strain. This review highlights the impact of each of these factors on α-synuclein misfolding and discusses the implications of the resulting structural variability on therapeutic development.
Collapse
Affiliation(s)
- Sara A M Holec
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L Liu
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
12
|
Lohmann S, Grigoletto J, Bernis ME, Pesch V, Ma L, Reithofer S, Tamgüney G. Ischemic stroke causes Parkinson's disease-like pathology and symptoms in transgenic mice overexpressing alpha-synuclein. Acta Neuropathol Commun 2022; 10:26. [PMID: 35209932 PMCID: PMC8867857 DOI: 10.1186/s40478-022-01327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The etiology of Parkinson's disease is poorly understood and is most commonly associated with advancing age, genetic predisposition, or environmental toxins. Epidemiological findings suggest that patients have a higher risk of developing Parkinson's disease after ischemic stroke, but this potential causality lacks mechanistic evidence. We investigated the long-term effects of ischemic stroke on pathogenesis in hemizygous TgM83 mice, which express human α-synuclein with the familial A53T mutation without developing any neuropathology or signs of neurologic disease for more than 600 days. We induced transient focal ischemia by middle cerebral artery occlusion in 2-month-old TgM83+/- mice and monitored their behavior and health status for up to 360 days post surgery. Groups of mice were sacrificed at 14, 30, 90, 180, and 360 days after surgery for neuropathological analysis of their brains. Motor deficits first appeared 6 months after focal ischemia and worsened until 12 months afterward. Immunohistochemical analysis revealed ischemia-induced neuronal loss in the infarct region and astrogliosis and microgliosis indicative of an inflammatory response, which was most pronounced at 14 days post surgery. Infarct volume and inflammation gradually decreased in size and severity until 180 days post surgery. Surprisingly, neuronal loss and inflammation were increased again by 360 days post surgery. These changes were accompanied by a continuous increase in α-synuclein aggregation, its neuronal deposition, and a late loss of dopaminergic neurons in the substantia nigra, which we detected at 360 days post surgery. Control animals that underwent sham surgery without middle cerebral artery occlusion showed no signs of disease or neuropathology. Our results establish a mechanistic link between ischemic stroke and Parkinson's disease and provide an animal model for studying possible interventions.
Collapse
Affiliation(s)
- Stephanie Lohmann
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Jessica Grigoletto
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Maria Eugenia Bernis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Verena Pesch
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Liang Ma
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Sara Reithofer
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Liu W, Zhang Q, Xing H, Gao G, Liu J, Huang Y, Yang H. Characterization of a Novel Monoclonal Antibody for Serine-129 Phosphorylated α-Synuclein: A Potential Application for Clinical and Basic Research. Front Neurol 2022; 13:821792. [PMID: 35250825 PMCID: PMC8893957 DOI: 10.3389/fneur.2022.821792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The Lewy bodies (LBs) are the pathological hallmark of Parkinson's disease (PD). More than 90% of α-synuclein (α-syn) within LBs is phosphorylated at the serine-129 residue [pSer129 α-syn (p-α-syn)]. Although various studies have revealed that this abnormally elevated p-α-syn acts as a pathological biomarker and is involved in the pathogenic process of PD, the exact pathophysiological mechanisms of p-α-syn are still not fully understood. Therefore, the development of specific and reliable tools for p-α-syn detection is important. In this study, we generated a novel p-α-syn mouse monoclonal antibody (C140S) using hybridoma technology. To further identify the characteristics of C140S, we performed several in vitro assays using recombinant proteins, along with ex vivo assays utilizing the brains of Thy1-SNCA transgenic (Tg) mice, the preformed fibril (PFF)-treated neurons, and the brain sections of patients with PD. Our C140S specifically recognized human and mouse p-α-syn proteins both in vitro and ex vivo, and similar to commercial p-α-syn antibodies, the C140S detected higher levels of p-α-syn in the midbrain of the Tg mice. Using immunogold electron microscopy, these p-α-syn particles were partly deposited in the cytoplasm and colocalized with the outer mitochondrial membrane. In addition, the C140S recognized p-α-syn pathologies in the PFF-treated neurons and the amygdala of patients with PD. Overall, the C140S antibody was a specific and potential research tool in the detection and mechanistic studies of pathogenic p-α-syn in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Weijin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Qidi Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Hao Xing
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
- *Correspondence: Hui Yang
| |
Collapse
|
14
|
Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy. Proc Natl Acad Sci U S A 2022; 119:2113489119. [PMID: 35115402 PMCID: PMC8833220 DOI: 10.1073/pnas.2113489119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are caused by α-synuclein prions that differ from each other and from those causing Parkinson’s disease (PD). DLB prions differ in their infectivity from those causing MSA or PD. The wild-type, normal version of the α-synuclein protein has the acidic amino acid glutamate (E) at residue 46, while in cases of inherited PD, it is mutated to the basic amino acid lysine (K). Using genetically engineered α-synuclein, we identified unique conditions for propagating MSA and DLB prions. Being able to distinguish among strains of naturally occurring α-synuclein prions may make it possible to develop strain-specific therapeutics for MSA, DLB, and PD. The α-synuclein protein can adopt several different conformations that cause neurodegeneration. Different α-synuclein conformers cause at least three distinct α-synucleinopathies: multiple system atrophy (MSA), dementia with Lewy bodies (DLB), and Parkinson’s disease (PD). In earlier studies, we transmitted MSA to transgenic (Tg) mice and cultured HEK cells both expressing mutant α-synuclein (A53T) but not to cells expressing α-synuclein (E46K). Now, we report that DLB is caused by a strain of α-synuclein prions that is distinct from MSA. Using cultured HEK cells expressing mutant α-synuclein (E46K), we found that DLB prions could be transmitted to these HEK cells. Our results argue that a third strain of α-synuclein prions likely causes PD, but further studies are needed to identify cells and/or Tg mice that express a mutant α-synuclein protein that is permissive for PD prion replication. Our findings suggest that other α-synuclein mutants should give further insights into α-synuclein prion replication, strain formation, and disease pathogenesis, all of which are likely required to discover effective drugs for the treatment of PD as well as the other α-synucleinopathies.
Collapse
|
15
|
Okuda S, Uemura N, Sawamura M, Taguchi T, Ikuno M, Uemura MT, Yamakado H, Takahashi R. Rapid Induction of Dopaminergic Neuron Loss Accompanied by Lewy Body-Like Inclusions in A53T BAC-SNCA Transgenic Mice. Neurotherapeutics 2022; 19:289-304. [PMID: 34935120 PMCID: PMC9130450 DOI: 10.1007/s13311-021-01169-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and intraneuronal α-synuclein (α-syn) inclusions. It is highly needed to establish a rodent model that recapitulates the clinicopathological features of PD within a short period to efficiently investigate the pathological mechanisms and test disease-modifying therapies. To this end, we analyzed three mouse lines, i.e., wild-type mice, wild-type human α-syn bacterial artificial chromosome (BAC) transgenic (BAC-SNCA Tg) mice, and A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice, receiving dorsal striatum injections of human and mouse α-syn preformed fibrils (hPFFs and mPFFs, respectively). mPFF injections induced more severe α-syn pathology in most brain regions, including the ipsilateral SNpc, than hPFF injections in all genotypes at 1-month post-injection. Although these Tg mouse lines expressed a comparable amount of α-syn in the brains, the mPFF-injected A53T BAC-SNCA Tg mice exhibited the most severe α-syn pathology as early as 0.5-month post-injection. The mPFF-injected A53T BAC-SNCA Tg mice showed a 38% reduction in tyrosine hydroxylase (TH)-positive neurons in the ipsilateral SNpc, apomorphine-induced rotational behavior, and motor dysfunction at 2 months post-injection. These data indicate that the extent of α-syn pathology induced by α-syn PFF injection depends on the types of α-syn PFFs and exogenously expressed α-syn in Tg mice. The mPFF-injected A53T BAC-SNCA Tg mice recapitulate the key features of PD more rapidly than previously reported mouse models, suggesting their usefulness for testing disease-modifying therapies as well as analyzing the pathological mechanisms.
Collapse
Affiliation(s)
- Shinya Okuda
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan.
- Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-2676, USA.
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Maiko T Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
- Department of Pathology and Laboratory Medicine, Institute On Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-2676, USA
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
16
|
Mehra S, Gadhe L, Bera R, Sawner AS, Maji SK. Structural and Functional Insights into α-Synuclein Fibril Polymorphism. Biomolecules 2021; 11:1419. [PMID: 34680054 PMCID: PMC8533119 DOI: 10.3390/biom11101419] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal accumulation of aggregated α-synuclein (α-Syn) is seen in a variety of neurodegenerative diseases, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), Parkinson's disease dementia (PDD), and even subsets of Alzheimer's disease (AD) showing Lewy-body-like pathology. These synucleinopathies exhibit differences in their clinical and pathological representations, reminiscent of prion disorders. Emerging evidence suggests that α-Syn self-assembles and polymerizes into conformationally diverse polymorphs in vitro and in vivo, similar to prions. These α-Syn polymorphs arising from the same precursor protein may exhibit strain-specific biochemical properties and the ability to induce distinct pathological phenotypes upon their inoculation in animal models. In this review, we discuss clinical and pathological variability in synucleinopathies and several aspects of α-Syn fibril polymorphism, including the existence of high-resolution molecular structures and brain-derived strains. The current review sheds light on the recent advances in delineating the structure-pathogenic relationship of α-Syn and how diverse α-Syn molecular polymorphs contribute to the existing clinical heterogeneity in synucleinopathies.
Collapse
Affiliation(s)
- Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| | | | | | | | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| |
Collapse
|
17
|
Dose-related biphasic effect of the Parkinson's disease neurotoxin MPTP, on the spread, accumulation, and toxicity of α-synuclein. Neurotoxicology 2021; 84:41-52. [PMID: 33549656 DOI: 10.1016/j.neuro.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, is characterized by the abnormal accumulation of intraneuronal inclusions enriched in aggregated α-synuclein (α-syn), known as Lewy bodies (LBs) and Lewy neurites (LNs), and significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the brain. Recent evidence suggests that the intrastriatal inoculation of α-syn preformed fibrils (PFF) in mice brain triggers endogenous α-syn in interconnected brain regions. 1-methyl, 4-phenyl, 1,2,3,6 tetrahydropyridine (MPTP), a mitochondrial neurotoxin, has been used previously to generate a PD mouse model. However, the common methods of MPTP exposure do not induce LB or α-syn aggregation in mice. In the present study, we evaluated the effect of different doses of MPTP (10 mg/kg.b.wt and/or 25 mg/kg.b.wt) on the spread, accumulation, and toxicity of endogenous α-syn in mice administered an intrastriatal injection of human α-syn PFF. METHODS We inoculated human WT α-syn PFF in mouse striatum. At 6 weeks post PFF injection, we challenged the animal with two different doses of MPTP (10 mg/kg.b.wt and 25 mg/kg.b.wt) once daily for five consecutive days. At 2 weeks from the start of the MPTP regimen, we collected the mice brain and performed immunohistochemical analysis, and Rotarod test to assess motor coordination and muscle strength before and after MPTP injection. RESULTS A single injection of human WT α-syn PFF in the mice striatum induced the propagation of α-syn, occurring as phosphorylated α-synuclein (pS129), towards the SNpc, within a very short time. Injection of a low dose of MPTP (10 mg/kg.b.wt) at 6 weeks post α-syn PFF inoculation further enhanced the spread, whereas a high dose of MPTP (25 mg/kg.b.wt.) reduced the spread. Majority of the accumulated α-syn were proteinase K resistant, as recognized using a conformation-specific α-syn antibody. Injection of α-syn PFF alone caused 12 % reduction in the number of tyrosine hydroxylase positive neurons while α-syn PFF + a low dose of MPTP caused 33 % reduction (loss), compared to the control mice injected with saline. This combination also reduced the motor coordination. Interestingly, a low dose of MPTP alone did not cause any significant reduction in the number of tyrosine hydroxylase positive neurons compared to saline treatment. Animals that received α-syn PFF and a high dose of MPTP showed massive activation of glial cells and decreased spread of α-syn, majority of which were detected in the nucleus. CONCLUSION Our results suggest that a combination of human WT α-syn PFF and a low dose of MPTP increases the pathological conversion and propagation of endogenous α-syn, and neurodegeneration, within a very short time. Our model can be used to study the mechanisms of α-syn propagation and screen for potential drugs against PD.
Collapse
|
18
|
Trejo-Lopez JA, Sorrentino ZA, Riffe CJ, Prokop S, Dickson DW, Yachnis AT, Giasson BI. Generation and Characterization of Novel Monoclonal Antibodies Targeting p62/sequestosome-1 Across Human Neurodegenerative Diseases. J Neuropathol Exp Neurol 2020; 79:407-418. [PMID: 32106300 DOI: 10.1093/jnen/nlaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Human neurodegenerative diseases can be characterized as disorders of protein aggregation. As a key player in cellular autophagy and the ubiquitin proteasome system, p62 may represent an effective immunohistochemical target, as well as mechanistic operator, across neurodegenerative proteinopathies. In this study, 2 novel mouse-derived monoclonal antibodies 5G3 and 2A5 raised against residues 360-380 of human p62/sequestosome-1 were characterized via immunohistochemical application upon human tissues derived from cases of C9orf72-expansion spectrum diseases, Alzheimer disease, progressive supranuclear palsy, Lewy body disease, and multiple system atrophy. 5G3 and 2A5 reliably highlighted neuronal dipeptide repeat, tau, and α-synuclein inclusions in a distribution similar to a polyclonal antibody to p62, phospho-tau antibodies 7F2 and AT8, and phospho-α-synuclein antibody 81A. However, antibodies 5G3 and 2A5 consistently stained less neuropil structures, such as tau neuropil threads and Lewy neurites, while 2A5 marked fewer glial inclusions in progressive supranuclear palsy. Both 5G3 and 2A5 revealed incidental astrocytic tau immunoreactivity in cases of Alzheimer disease and Lewy body disease with resolution superior to 7F2. Through their unique ability to highlight specific types of pathological deposits in neurodegenerative brain tissue, these novel monoclonal p62 antibodies may provide utility in both research and diagnostic efforts.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease
| | - Zachary A Sorrentino
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease.,McKnight Brain Institute.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience.,McKnight Brain Institute
| |
Collapse
|
19
|
Pantazopoulou M, Brembati V, Kanellidi A, Bousset L, Melki R, Stefanis L. Distinct alpha-Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH-SY5Y cells. J Neurochem 2020; 156:880-896. [PMID: 32869336 DOI: 10.1111/jnc.15174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
A major pathological feature of Parkinson's disease (PD) is the aberrant accumulation of misfolded assemblies of alpha-synuclein (α-Syn). Protein clearance appears as a regulator of the 'α-Syn burden' underlying PD pathogenesis. The picture emerging is that a combination of pathways with complementary roles, including the Proteasome System and the Autophagy-Lysosome Pathway, contributes to the intracellular degradation of α-Syn. This study addresses the mechanisms governing the degradation of α-Syn species seeded by exogenous fibrils in neuronally differentiated SH-SY5Y neuroblastoma cells with inducible expression of α-Syn. Using human α-Syn recombinant fibrils (pre-formed fibrils, PFFs), seeding and aggregation of endogenous Proteinase K (PK)-resistant α-Syn species occurs within a time frame of 6 days, and is still prominent after 12 days of PFF addition. Clearance of α-Syn assemblies in this inducible model was enhanced after switching off α-Syn expression with doxycycline. Lysosomal inhibition led to accumulation of SDS-soluble α-Syn aggregates 6 days after PFF-addition or when switching off α-Syn expression. Additionally, the autophagic enhancer, rapamycin, induced the clearance of α-Syn aggregates 13 days post-PFF addition, indicating that autophagy is the major pathway for aggregated α-Syn clearance. SDS-soluble phosphorylated α-Syn at S129 was only apparent at 7 days of incubation with a higher amount of PFFs. Proteasomal inhibition resulted in further accumulation of SDS-soluble phosphorylated α-Syn at S129, with limited PK resistance. Our data suggest that in this inducible model autophagy is mainly responsible for the degradation of fibrillar α-Syn, whereas the proteasome system is responsible, at least in part, for the selective clearance of phosphorylated α-Syn oligomers.
Collapse
Affiliation(s)
| | - Viviana Brembati
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Luc Bousset
- CEA and Laboratory of Neurodegenerative Diseases, Institut Francois Jacob (MIRCen), CNRS, Fontenay-Aux-Roses cedex, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, Institut Francois Jacob (MIRCen), CNRS, Fontenay-Aux-Roses cedex, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
20
|
Wang Q, Oyarzabal EA, Song S, Wilson B, Santos JH, Hong JS. Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain Behav Immun 2020; 87:359-368. [PMID: 31923552 PMCID: PMC7316605 DOI: 10.1016/j.bbi.2020.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) develops over decades through spatiotemporal stages that ascend from the brainstem to the forebrain. The mechanism behind this caudo-rostral neurodegeneration remains largely undefined. In unraveling this phenomenon, we recently developed a lipopolysaccharide (LPS)-elicited chronic neuroinflammatory mouse model that displays sequential losses of neurons in brainstem, substantia nigra, hippocampus and cortex. In this study, we aimed to investigate the mechanisms of caudo-rostral neurodegeneration and focused our efforts on the earliest neurodegeneration of vulnerable noradrenergic locus coeruleus (NE-LC) neurons in the brainstem. We found that compared with neurons in other brain regions, NE-LC neurons in untreated mice displayed high levels of mitochondrial oxidative stress that was severely exacerbated in the presence of LPS-elicited chronic neuroinflammation. In agreement, NE-LC neurons in LPS-treated mice displayed early reduction of complex IV expression and mitochondrial swelling and loss of cristae. Mechanistically, the activation of the superoxide-generating enzyme NADPH oxidase (NOX2) on NE-LC neurons was essential for their heightened vulnerability during chronic neuroinflammation. LPS induced early and high expressions of NOX2 in NE-LC neurons. Genetic or pharmacological inactivation of NOX2 markedly reduced mitochondrial oxidative stress and dysfunction in LPS-treated mice. Furthermore, inhibition of NOX2 significantly ameliorated LPS-induced NE-LC neurodegeneration. More importantly, post-treatment with NOX2 inhibitor diphenyleneiodonium when NE-LC neurodegeneration had already begun, still showed high efficacy in protecting NE-LC neurons from degeneration in LPS-treated mice. This study strongly supports that chronic neuroinflammation and NOX2 expression among vulnerable neuronal populations contribute to caudo-rostral degeneration in PD.
Collapse
Affiliation(s)
- Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| | - Esteban A. Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sheng Song
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Janine H. Santos
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Sorrentino ZA, Giasson BI. The emerging role of α-synuclein truncation in aggregation and disease. J Biol Chem 2020; 295:10224-10244. [PMID: 32424039 DOI: 10.1074/jbc.rev120.011743] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αsyn) is an abundant brain neuronal protein that can misfold and polymerize to form toxic fibrils coalescing into pathologic inclusions in neurodegenerative diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. These fibrils may induce further αsyn misfolding and propagation of pathologic fibrils in a prion-like process. It is unclear why αsyn initially misfolds, but a growing body of literature suggests a critical role of partial proteolytic processing resulting in various truncations of the highly charged and flexible carboxyl-terminal region. This review aims to 1) summarize recent evidence that disease-specific proteolytic truncations of αsyn occur in Parkinson's disease, Lewy body dementia, and multiple system atrophy and animal disease models; 2) provide mechanistic insights on how truncation of the amino and carboxyl regions of αsyn may modulate the propensity of αsyn to pathologically misfold; 3) compare experiments evaluating the prion-like properties of truncated forms of αsyn in various models with implications for disease progression; 4) assess uniquely toxic properties imparted to αsyn upon truncation; and 5) discuss pathways through which truncated αsyn forms and therapies targeted to interrupt them. Cumulatively, it is evident that truncation of αsyn, particularly carboxyl truncation that can be augmented by dysfunctional proteostasis, dramatically potentiates the propensity of αsyn to pathologically misfold into uniquely toxic fibrils with modulated prion-like seeding activity. Therapeutic strategies and experimental paradigms should operate under the assumption that truncation of αsyn is likely occurring in both initial and progressive disease stages, and preventing truncation may be an effective preventative strategy against pathologic inclusion formation.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Ding X, Zhou L, Jiang X, Liu H, Yao J, Zhang R, Liang D, Wang F, Ma M, Tang B, Wu E, Teng J, Wang X. Propagation of Pathological α-Synuclein from the Urogenital Tract to the Brain Initiates MSA-like Syndrome. iScience 2020; 23:101166. [PMID: 32470898 PMCID: PMC7260590 DOI: 10.1016/j.isci.2020.101166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/29/2019] [Accepted: 05/08/2020] [Indexed: 01/10/2023] Open
Abstract
The neuropathological feature of multiple system atrophy (MSA), a fatal adult-onset disorder without effective therapy, is the accumulation of pathological α-synuclein (α-Syn) in the central nervous system (CNS). Here we show that pathological α-Syn exists in nerve terminals in detrusor and external urethral sphincter (EUS) of patients with MSA. Furthermore, α-Syn-preformed fibrils (PFFs) injected in the EUS or detrusor in TgM83+/− mice initiated the transmission of pathological α-Syn from the urogenital tract to brain via micturition reflex pathways, and these mice developed widespread phosphorylated α-Syn inclusion pathology together with phenotypes. In addition, urinary dysfunction and denervation-reinnervation of external anal sphincter were detected earlier in the mouse models with α-Syn PFFs inoculation before the behavioral manifestations. These results suggest that pathological α-Syn spreading through the micturition reflex pathways retrogradely from the urogenital tract to CNS may lead to urinary dysfunction in patients with MSA, which is different from the etiology of idiopathic Parkinson disease. Pathological α-Syn exhibits in nerve terminals in DET and EUS of patients with MSA Propagation of pathological α-Syn from urinary tract to CNS causes MSA-like syndrome The mouse models show urinary dysfunction and abnormal EAS EMG before motor deficits Lower urinary tract injection of α-Syn PFFs induces autonomic and motor dysfunctions
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Lebo Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyi Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fengfei Wang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76508, USA; College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Mingming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76508, USA; College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
23
|
Cinar E, Yalcin-Cakmakli G, Saka E, Ulusoy A, Yuruker S, Elibol B, Tel BC. Modelling cognitive deficits in Parkinson's disease: Is CA2 a gateway for hippocampal synucleinopathy? Exp Neurol 2020; 330:113357. [PMID: 32437708 DOI: 10.1016/j.expneurol.2020.113357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive dysfunction is one of the most disabling non-motor symptoms of Parkinson's disease (PD), though its pathological correlates still remain elusive. Hippocampal Lewy pathology has recently been correlated by compelling evidence from post-mortem and imaging studies. Animal models recapitulating cognitive impairment in PD are essential to better understand the underlying pathophysiology. To investigate the hippocampal involvement in cognitive dysfunction of PD, we generated an experimental model by inducing midbrain and hippocampal α-synuclein pathology simultaneously. METHODS Rats were injected either with human α-synuclein or green fluorescent protein (GFP) expressing adeno-associated viral vectors (AAV), or saline bilaterally into substantia nigra (SN) and dentate gyrus (DG). A group of untreated animals were used as naïve controls. Cognitive and behavioral changes were evaluated with tests probing for spatial learning, short-term memory, anxiety and hedonistic behavior. Immunohistochemical staining, immunoblotting and stereological analysis were performed for pathological characterization. RESULTS Bilateral α-synuclein overexpression in SN and DG led to mild but significant motor impairment as well as dysfunctions in short-term memory and spatial learning. There was no hedonistic deficit, whereas a hypo-anxious state was induced. While stereological analysis revealed no significant neuronal loss in any sectors of cornu ammonis, there was considerable decrease (43%) in TH+-neurons in SN pars compacta supporting the well-known vulnerability of nigral dopaminergic neurons to α-synuclein mediated neurodegeneration. On the other hand, synaptophysin levels decreased in similar amounts both in striatum and hippocampus, suggesting comparable synaptic loss in target areas. Interestingly, phosphorylated-S129-α-synuclein staining revealed significant expression in CA2 characterized by more mature and dense cellular accumulations compared to CA1-CA3 sub-regions displaying more diffuse grain-like aggregates, suggesting preferential susceptibility of CA2 to produce α-synuclein induced pathology. CONCLUSION Bilateral α-synuclein overexpression in DG and SN reproduced partial motor and hippocampus related cognitive deficits. Using this model, we showed a predisposition of CA2 for pathological α-synuclein accumulation, which may provide further insights for future experimental and clinical studies.
Collapse
Affiliation(s)
- Elif Cinar
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | | | - Esen Saka
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Sinan Yuruker
- Usak University Faculty of Medicine, Department of Histology and Embryology, Usak, Turkey
| | - Bulent Elibol
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Banu C Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Choi YR, Kim JB, Kang SJ, Noh HR, Jou I, Joe EH, Park SM. The dual role of c-src in cell-to-cell transmission of α-synuclein. EMBO Rep 2020; 21:e48950. [PMID: 32372484 DOI: 10.15252/embr.201948950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons located in the substantia nigra pars compacta and the presence of proteinaceous inclusions called Lewy bodies and Lewy neurites in numerous brain regions. Increasing evidence indicates that Lewy pathology progressively involves additional regions of the nervous system as the disease advances, and the prion-like propagation of α-synuclein (α-syn) pathology promotes PD progression. Accordingly, the modulation of α-syn transmission may be important for the development of disease-modifying therapies in patients with PD. Here, we demonstrate that α-syn fibrils induce c-src activation in neurons, which depends on the FcγRIIb-SHP-1/-2-c-src pathway and enhances signals for the uptake of α-syn into neurons. Blockade of c-src activation inhibits the uptake of α-syn and the formation of Lewy body-like inclusions. Furthermore, the blockade of c-src activation also inhibits the release of α-syn via activation of autophagy. The brain-permeable c-src inhibitor, saracatinib, efficiently reduces α-syn propagation into neighboring regions in an in vivo model system. These results suggest a new therapeutic target against progressive PD.
Collapse
Affiliation(s)
- Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
25
|
Henderson MX, Sedor S, McGeary I, Cornblath EJ, Peng C, Riddle DM, Li HL, Zhang B, Brown HJ, Olufemi MF, Bassett DS, Trojanowski JQ, Lee VMY. Glucocerebrosidase Activity Modulates Neuronal Susceptibility to Pathological α-Synuclein Insult. Neuron 2019; 105:822-836.e7. [PMID: 31899072 DOI: 10.1016/j.neuron.2019.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the GBA1 gene are the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). GBA1 encodes the lysosomal lipid hydrolase glucocerebrosidase (GCase), and its activity has been linked to accumulation of α-synuclein. The current study systematically examines the relationship between GCase activity and both pathogenic and non-pathogenic forms of α-synuclein in primary hippocampal, cortical, and midbrain neuron and astrocyte cultures, as well as in transgenic mice and a non-transgenic mouse model of PD. We find that reduced GCase activity does not result in aggregation of α-synuclein. However, in the context of extant misfolded α-synuclein, GCase activity modulates neuronal susceptibility to pathology. Furthermore, this modulation does not depend on neuron type but rather is driven by the level of pathological α-synuclein seeds. This study has implications for understanding how GBA1 mutations influence PD pathogenesis and provides a platform for testing novel therapeutics.
Collapse
Affiliation(s)
- Michael X Henderson
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Samantha Sedor
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian McGeary
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eli J Cornblath
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chao Peng
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawn M Riddle
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard L Li
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Zhang
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J Brown
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Modupe F Olufemi
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson's Disease. Front Mol Neurosci 2019; 12:299. [PMID: 31866823 PMCID: PMC6906193 DOI: 10.3389/fnmol.2019.00299] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders with a global burden of approximately 6.1 million patients. Alpha-synuclein has been linked to both the sporadic and familial forms of the disease. Moreover, alpha-synuclein is present in Lewy-bodies, the neuropathological hallmark of PD, and the protein and its aggregation have been widely linked to neurotoxic pathways that ultimately lead to neurodegeneration. Such pathways include autophagy/lysosomal dysregulation, synaptic dysfunction, mitochondrial disruption, and endoplasmic reticulum (ER) and oxidative stress. Alpha-synuclein has not only been shown to alter cellular pathways but also to spread between cells, causing aggregation in host cells. Therapeutic approaches will need to address several, if not all, of these angles of alpha-synuclein toxicity. Here we review the current advances in therapeutic efforts for PD that aim to produce a disease-modifying therapy by targeting the spread, production, aggregation, and degradation of alpha-synuclein. These include: receptor blocking strategies whereby putative alpha-synuclein receptors could be blocked inhibiting alpha-synuclein spread, an alpha-synuclein reduction which will decrease the amount alpha-synuclein available for aggregation and pathway disruption, the use of small molecules in order to target alpha-synuclein aggregation, immunotherapy and the increase of alpha-synuclein degradation by increasing autophagy/lysosomal flux. The research discussed here may lead to a disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Department of Physiology, Oxford Parkinson's Disease Center, Anatomy and Genetics, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Oxford Parkinson's Disease Center, Anatomy and Genetics, Oxford, United Kingdom
| |
Collapse
|
27
|
Brás IC, Xylaki M, Outeiro TF. Mechanisms of alpha-synuclein toxicity: An update and outlook. PROGRESS IN BRAIN RESEARCH 2019; 252:91-129. [PMID: 32247376 DOI: 10.1016/bs.pbr.2019.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alpha-synuclein (aSyn) was identified as the main component of inclusions that define synucleinopathies more than 20 years ago. Since then, aSyn has been extensively studied in an attempt to unravel its roles in both physiology and pathology. Today, studying the mechanisms of aSyn toxicity remains in the limelight, leading to the identification of novel pathways involved in pathogenesis. In this chapter, we address the molecular mechanisms involved in synucleinopathies, from aSyn misfolding and aggregation to the various cellular effects and pathologies associated. In particular, we review our current understanding of the mechanisms involved in the spreading of aSyn between different cells, from the periphery to the brain, and back. Finally, we also review recent studies on the contribution of inflammation and the gut microbiota to pathology in synucleinopathies. Despite significant advances in our understanding of the molecular mechanisms involved, we still lack an integrated understanding of the pathways leading to neurodegeneration in PD and other synucleinopathies, compromising our ability to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
28
|
Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol 2019; 138:535-550. [PMID: 31254094 PMCID: PMC6778265 DOI: 10.1007/s00401-019-02040-w] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
Abstract
The conversion of endogenous alpha-synuclein (asyn) to pathological asyn-enriched aggregates is a hallmark of Parkinson’s disease (PD). These inclusions can be detected in the central and enteric nervous system (ENS). Moreover, gastrointestinal symptoms can appear up to 20 years before the diagnosis of PD. The dual-hit hypothesis posits that pathological asyn aggregation starts in the ENS, and retrogradely spreads to the brain. In this study, we tested this hypothesis by directly injecting preformed asyn fibrils into the duodenum wall of wild-type rats and transgenic rats with excess levels of human asyn. We provide a meticulous characterization of the bacterial artificial chromosome (BAC) transgenic rat model with respect to initial propagation of pathological asyn along the parasympathetic and sympathetic pathways to the brainstem, by performing immunohistochemistry at early time points post-injection. Induced pathology was observed in all key structures along the sympathetic and parasympathetic pathways (ENS, autonomic ganglia, intermediolateral nucleus of the spinal cord (IML), heart, dorsal motor nucleus of the vagus, and locus coeruleus (LC)) and persisted for at least 4 months post-injection. In contrast, asyn propagation was not detected in wild-type rats, nor in vehicle-injected BAC rats. The presence of pathology in the IML, LC, and heart indicate trans-synaptic spread of the pathology. Additionally, the observed asyn inclusions in the stomach and heart may indicate secondary anterograde propagation after initial retrograde spreading. In summary, trans-synaptic propagation of asyn in the BAC rat model is fully compatible with the “body-first hypothesis” of PD etiopathogenesis. To our knowledge, this is the first animal model evidence of asyn propagation to the heart, and the first indication of bidirectional asyn propagation via the vagus nerve, i.e., duodenum-to-brainstem-to-stomach. The BAC rat model could be very valuable for detailed mechanistic studies of the dual-hit hypothesis, and for studies of disease modifying therapies targeting early pathology in the gastrointestinal tract.
Collapse
|
29
|
Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Mov Disord 2019; 34:1440-1451. [PMID: 31251435 PMCID: PMC7079126 DOI: 10.1002/mds.27776] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Neuromelanin, a dark brown intracellular pigment, has long been associated with Parkinson's disease (PD). In PD, neuromelanin-containing neurons preferentially degenerate, tell-tale neuropathological inclusions form in close association with this pigment, and neuroinflammation is restricted to neuromelanin-containing areas. In humans, neuromelanin accumulates with age, which in turn is the main risk factor for PD. The potential contribution of neuromelanin to PD pathogenesis remains unknown because, in contrast to humans, common laboratory animals lack neuromelanin. The recent introduction of a rodent model exhibiting an age-dependent production of human-like neuromelanin has allowed, for the first time, for the consequences of progressive neuromelanin accumulation-up to levels reached in elderly human brains-to be assessed in vivo. In these animals, intracellular neuromelanin accumulation above a specific threshold compromises neuronal function and triggers a PD-like pathology. As neuromelanin levels reach this threshold in PD patients and presymptomatic PD patients, the modulation of neuromelanin accumulation could provide a therapeutic benefit for PD patients and delay brain aging. © 2019 The Author. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Miquel Vila
- Neurodegenerative Diseases Research GroupVall d'Hebron Research Institute–Center for Networked Biomedical Research on Neurodegenerative DiseasesBarcelonaSpain
- Department of Biochemistry and Molecular BiologyAutonomous University of BarcelonaBarcelonaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
30
|
Nicot S, Verchère J, Bélondrade M, Mayran C, Bétemps D, Bougard D, Baron T. Seeded propagation of α-synuclein aggregation in mouse brain using protein misfolding cyclic amplification. FASEB J 2019; 33:12073-12086. [PMID: 31370680 DOI: 10.1096/fj.201900354r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
α-Synuclein (α-syn) protein aggregation is associated with several neurodegenerative disorders collectively referred to as synucleinopathies, including Parkinson's disease. We used protein misfolding cyclic amplification (PMCA) to study α-syn aggregation in brain homogenates of wild-type or transgenic mice expressing normal (D line) or A53T mutant (M83 line) human α-syn. We found that sonication-incubation cycles of M83 mouse brain gradually produce large quantities of SDS-resistant α-syn aggregates, involving both human and mouse proteins. These PMCA products, containing partially proteinase K-resistant α-syn species, are competent to accelerate the onset of neurologic symptoms after intracerebral inoculation to young M83 mice and to seed aggregate formation of α-syn following PMCA, including in D and wild-type mouse brain substrates. PMCA seeding activity in the M83 diseased brain correlates positively with regions mostly targeted by the α-syn pathology in this model. Our data indicate that similar to prions, PMCA can reproduce some characteristics of α-syn aggregation and seeded propagation in vitro in a complex milieu. This opens new opportunities for the molecular study of synucleinopathies.-Nicot, S., Verchère, J., Bélondrade, M., Mayran, C., Bétemps, D., Bougard, D., Baron, T. Seeded propagation of α-synuclein aggregation in mouse brain using protein misfolding cyclic amplification.
Collapse
Affiliation(s)
- Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Jérémy Verchère
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| | - Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Dominique Bétemps
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Thierry Baron
- French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), University of Lyon, Lyon, France
| |
Collapse
|
31
|
Killinger BA, Kordower JH. Spreading of alpha-synuclein - relevant or epiphenomenon? J Neurochem 2019; 150:605-611. [PMID: 31152606 DOI: 10.1111/jnc.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
The intracellular accumulation of misfolded alpha-synuclein pathology, termed Lewy pathology, throughout the brain is a phenomenon central to Parkinson's disease pathogenesis. In recent years it has become apparent that Lewy pathology can spread from neuron-to-neuron and between interconnected brain regions. Understanding the phenomenon of Lewy pathology propagation holds great promise in its explanatory power to determine the etiology of Parkinson's disease and related synucleinopathies. However, it remains to be seen if the spread of Lewy pathology is critical for driving this disease. Here we discuss the spreading of Lewy pathology while highlighting some important concepts and experimental observations. We conclude that further studies are required to determine if, and how, the spreading behavior of Lewy pathology is involved in Parkinson's disease. "This article is part of the Special Issue Synuclein".
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
32
|
Dhillon JKS, Trejo-Lopez JA, Riffe C, McFarland NR, Hiser WM, Giasson BI, Yachnis AT. Dissecting α-synuclein inclusion pathology diversity in multiple system atrophy: implications for the prion-like transmission hypothesis. J Transl Med 2019; 99:982-992. [PMID: 30737468 PMCID: PMC7209695 DOI: 10.1038/s41374-019-0198-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of insoluble, aggregated α-synuclein (αS) pathological inclusions. Multiple system atrophy (MSA) presents with extensive oligodendroglial αS pathology and additional more limited neuronal inclusions while most of the other synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies (DLB), develop αS pathology primarily in neuronal cell populations. αS biochemical alterations specific to MSA have been described but thorough examination of these unique and disease-specific protein deposits is further warranted especially given recent findings implicating the prion-like nature of synucleinopathies perhaps with distinct strain-like properties. Taking advantage of an extensive panel of antibodies that target a wide range of epitopes within αS, we investigated the distinct properties of the various types of αS inclusion present in MSA brains with comparison to DLB. Brain biochemical fractionation followed by immunoblotting revealed that the immunoreactive profiles were significantly more consistent for DLB than for MSA. Furthermore, epitope-specific immunohistochemistry varied greatly between different types of MSA αS inclusions and even within different brain regions of individual MSA brains. These studies highlight the importance of using a battery of antibodies for adequate appreciation of the various pathology in this distinct synucleinopathy. In addition, it can be posited that if the spread of pathology in MSA undergoes prion-like mechanisms, "strains" of αS aggregated conformers must be inherently unstable and readily mutable, perhaps resulting in a more stochastic progression process.
Collapse
Affiliation(s)
- Jess-Karan S. Dhillon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Jorge A. Trejo-Lopez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Cara Riffe
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Nikolaus R. McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,Department of Neurology, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wesley M. Hiser
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.,Corresponding author: Benoit I. Giasson () or Anthony Yachnis ()
| | - Anthony T. Yachnis
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA.,Corresponding author: Benoit I. Giasson () or Anthony Yachnis ()
| |
Collapse
|
33
|
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 2019; 14:23. [PMID: 31186026 PMCID: PMC6558879 DOI: 10.1186/s13024-019-0320-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEε4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.
Collapse
Affiliation(s)
- Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden.
| |
Collapse
|
34
|
Gerez JA, Prymaczok NC, Rockenstein E, Herrmann US, Schwarz P, Adame A, Enchev RI, Courtheoux T, Boersema PJ, Riek R, Peter M, Aguzzi A, Masliah E, Picotti P. A cullin-RING ubiquitin ligase targets exogenous α-synuclein and inhibits Lewy body-like pathology. Sci Transl Med 2019; 11:eaau6722. [PMID: 31167929 PMCID: PMC10697662 DOI: 10.1126/scitranslmed.aau6722] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/16/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading. We found that stable αSyn fibrils substantially accumulate in different cell lines upon internalization, whereas αSyn monomers, oligomers, and dissociable fibrils do not. Our data indicate that the uptake-mediated accumulation of αSyn in a human-derived neuroblastoma cell line triggered an adaptive response that involved proteins linked to ubiquitin ligases of the S-phase kinase-associated protein 1 (SKP1), cullin-1 (Cul1), and F-box domain-containing protein (SCF) family. We found that SKP1, Cul1, and the F-box/LRR repeat protein 5 (FBXL5) colocalized and physically interacted with internalized αSyn in cultured cells. Moreover, the SCF containing the F-box protein FBXL5 (SCFFBXL5) catalyzed αSyn ubiquitination in reconstitution experiments in vitro using recombinant proteins and in cultured cells. In the human brain, SKP1 and Cul1 were recruited into Lewy bodies from brainstem and neocortex of patients with PD and related neurological disorders. In both transgenic and nontransgenic mice, intracerebral administration of exogenous αSyn fibrils triggered a Lewy body-like pathology, which was amplified by SKP1 or FBXL5 loss of function. Our data thus indicate that SCFFXBL5 regulates αSyn in vivo and that SCF ligases may constitute targets for the treatment of PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Juan A Gerez
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Natalia C Prymaczok
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Uli S Herrmann
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Thibault Courtheoux
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
35
|
Dhillon JKS, Trejo-Lopez JA, Riffe C, Levites Y, Sacino AN, Borchelt DR, Yachnis AY, Giasson BI. Comparative analyses of the in vivo induction and transmission of α-synuclein pathology in transgenic mice by MSA brain lysate and recombinant α-synuclein fibrils. Acta Neuropathol Commun 2019; 7:80. [PMID: 31109378 PMCID: PMC6526622 DOI: 10.1186/s40478-019-0733-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
α-synuclein (αS) is the major component of several types of brain pathological inclusions that define neurodegenerative diseases termed synucleinopathies. Central nervous system (CNS) inoculation studies using either in vitro polymerized αS fibrils or in vivo derived lysates containing αS aggregates to induce the progressive spread of αS inclusion pathology in animal disease models have supported the notion that αS mediated progressive neurodegeneration can occur by a prion-like mechanism. We have previously shown that neonatal brain inoculation with preformed αS fibrils in hemizygous M20+/− transgenic mice expressing wild type human αS and to a lesser extent in non-transgenic mice can result in a concentration-dependent progressive induction of CNS αS pathology. Recent studies using brain lysates from patients with multiple system atrophy (MSA), characterized by αS inclusion pathology in oligodendrocytes, indicate that these may be uniquely potent at inducing αS pathology with prion-like strain specificity. We demonstrate here that brain lysates from MSA patients, but not control individuals, can induce αS pathology following neonatal brain inoculation in transgenic mice expressing A53T human αS (M83 line), but not in transgenic expressing wild type human αS (M20 line) or non-transgenic mice within the timeframe of the study design. Further, we show that neuroanatomical and immunohistochemical properties of the pathology induced by MSA brain lysates is very similar to what is produced by the neonatal brain injection of preformed human αS fibrils in hemizygous M83+/− transgenic mice. Collectively, these findings reinforce the idea that the intrinsic traits of the M83 mouse model dominates over any putative prion-like strain properties of MSA αS seeds that can induce pathology.
Collapse
|
36
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
37
|
Mason DM, Wang Y, Bhatia TN, Miner KM, Trbojevic SA, Stolz JF, Luk KC, Leak RK. The center of olfactory bulb-seeded α-synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathol 2019; 29:741-770. [PMID: 30854742 DOI: 10.1111/bpa.12718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
At early disease stages, Lewy body disorders are characterized by limbic vs. brainstem α-synucleinopathy, but most preclinical studies have focused solely on the nigrostriatal pathway. Furthermore, male gender and advanced age are two major risk factors for this family of conditions, but their influence on the topographical extents of α-synucleinopathy and the degree of cell loss are uncertain. To fill these gaps, we infused α-synuclein fibrils in the olfactory bulb/anterior olfactory nucleus complex-one of the earliest and most frequently affected brain regions in Lewy body disorders-in 3-month-old female and male mice and in 11-month-old male mice. After 6 months, we observed that α-synucleinopathy did not expand significantly beyond the limbic connectome in the 9-month-old male and female mice or in the 17-month-old male mice. However, the 9-month-old male mice had developed greater α-synucleinopathy, smell impairment and cell loss than age-matched females. By 10.5 months post-infusion, fibril treatment hastened mortality in the 21.5-month-old males, but the inclusions remained centered in the limbic system in the survivors. Although fibril infusions reduced the number of cells expressing tyrosine hydroxylase in the substantia nigra of young males at 6 months post-infusion, this was not attributable to true cell death. Furthermore, mesencephalic α-synucleinopathy, if present, was centered in mesolimbic circuits (ventral tegmental area/accumbens) rather than within strict boundaries of the nigral pars compacta, which were defined here by tyrosine hydroxylase immunolabel. Nonprimate models cannot be expected to faithfully recapitulate human Lewy body disorders, but our murine model seems reasonably suited to (i) capture some aspects of Stage IIb of Lewy body disorders, which displays a heavier limbic than brainstem component compared to incipient Parkinson's disease; and (ii) leverage sex differences and the acceleration of mortality following induction of olfactory α-synucleinopathy.
Collapse
Affiliation(s)
- Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Yaqin Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara A Trbojevic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| |
Collapse
|
38
|
Taylor-Whiteley TR, Le Maitre CL, Duce JA, Dalton CF, Smith DP. Recapitulating Parkinson's disease pathology in a three-dimensional human neural cell culture model. Dis Model Mech 2019; 12:dmm038042. [PMID: 30926586 PMCID: PMC6505482 DOI: 10.1242/dmm.038042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Extensive loss of dopaminergic neurons and aggregation of the protein α-synuclein into ubiquitin-positive Lewy bodies represents a major neuropathological hallmark of Parkinson's disease (PD). At present, the generation of large nuclear-associated Lewy bodies from endogenous wild-type α-synuclein, translationally regulated under its own promoter in human cell culture models, requires costly and time-consuming protocols. Here, we demonstrate that fully differentiated human SH-SY5Y neuroblastoma cells grown in three-dimensional cell culture develop Lewy-body-like pathology upon exposure to exogenous α-synuclein species. In contrast to most cell- and rodent-based PD models, which exhibit multiple diffuse α-synuclein aggregates throughout the cytoplasm, a single large nuclear inclusion that is immunopositive for α-synuclein and ubiquitin is rapidly obtained in our model. This was achieved without the need for overexpression of α-synuclein or genetic modification of the cell line. However, phosphorylation of α-synuclein within these inclusions was not observed. The system described here provides an ideal tool to screen compounds to therapeutically intervene in Lewy body formation, and to investigate the mechanisms involved in disease progression in synucleinopathies.
Collapse
Affiliation(s)
- Teresa R Taylor-Whiteley
- Biomedical Sciences Research Centre, Department of Bioscience and Chemistry, Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, UK
| | - Christine L Le Maitre
- Biomedical Sciences Research Centre, Department of Bioscience and Chemistry, Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, UK
| | - James A Duce
- School of Biomedical Sciences, The Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Caroline F Dalton
- Biomedical Sciences Research Centre, Department of Bioscience and Chemistry, Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, UK
| | - David P Smith
- Biomedical Sciences Research Centre, Department of Bioscience and Chemistry, Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, UK
| |
Collapse
|
39
|
Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, Peyrin JM, Perrier AL. Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports 2019; 12:230-244. [PMID: 30639210 PMCID: PMC6372945 DOI: 10.1016/j.stemcr.2018.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
Reappraisal of neuropathological studies suggests that pathological hallmarks of Alzheimer’s disease and Parkinson’s disease (PD) spread progressively along predictable neuronal pathways in the human brain through unknown mechanisms. Although there is much evidence supporting the prion-like propagation and amplification of α-synuclein (α-Syn) in vitro and in rodent models, whether this scenario occurs in the human brain remains to be substantiated. Here we reconstructed in microfluidic devices corticocortical neuronal networks using human induced pluripotent stem cells derived from a healthy donor. We provide unique experimental evidence that different strains of human α-Syn disseminate in “wild-type” human neuronal networks in a prion-like manner. We show that two distinct α-Syn strains we named fibrils and ribbons are transported, traffic between neurons, and trigger to different extents, in a dose- and structure-dependent manner, the progressive accumulation of PD-like pathological hallmarks. We further demonstrate that seeded aggregation of endogenous soluble α-Syn affects synaptic integrity and mitochondria morphology. Different α-Syn strains propagate within WT human iPSC-derived cortical neuronal networks α-Syn strains differentially seed endogenous WT α-Syn forming LB/LN-like structures Phospho-α-Syn endogenous aggregates resist degradation and accumulate in cytoplasm Accumulation of phospho-α-Syn induces early neuronal dysfunctions
Collapse
Affiliation(s)
- Simona Gribaudo
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Philippe Tixador
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France
| | - Luc Bousset
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Patricia Lino
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Ronald Melki
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France.
| | - Jean-Michel Peyrin
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France.
| | - Anselme L Perrier
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France.
| |
Collapse
|
40
|
Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J, Xiong N, Wang T. New Perspectives on Roles of Alpha-Synuclein in Parkinson's Disease. Front Aging Neurosci 2018; 10:370. [PMID: 30524265 PMCID: PMC6261981 DOI: 10.3389/fnagi.2018.00370] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is one of the synucleinopathies spectrum of disorders typified by the presence of intraneuronal protein inclusions. It is primarily composed of misfolded and aggregated forms of alpha-synuclein (α-syn), the toxicity of which has been attributed to the transition from an α-helical conformation to a β-sheetrich structure that polymerizes to form toxic oligomers. This could spread and initiate the formation of “LB-like aggregates,” by transcellular mechanisms with seeding and subsequent permissive templating. This hypothesis postulates that α-syn is a prion-like pathological agent and responsible for the progression of Parkinson’s pathology. Moreover, the involvement of the inflammatory response in PD pathogenesis has been reported on the excessive microglial activation and production of pro-inflammatory cytokines. At last, we describe several treatment approaches that target the pathogenic α-syn protein, especially the oligomers, which are currently being tested in advanced animal experiments or are already in clinical trials. However, there are current challenges with therapies that target α-syn, for example, difficulties in identifying varying α-syn conformations within different individuals as well as both the cost and need of long-duration large trials.
Collapse
Affiliation(s)
- Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of Science and Technology of China, Hefei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Sorrentino ZA, Vijayaraghavan N, Gorion KM, Riffe CJ, Strang KH, Caldwell J, Giasson BI. Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. J Biol Chem 2018; 293:18914-18932. [PMID: 30327435 DOI: 10.1074/jbc.ra118.005603] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Niran Vijayaraghavan
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kimberly-Marie Gorion
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Cara J Riffe
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Kevin H Strang
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Jason Caldwell
- From the Department of Neuroscience.,the Center for Translational Research in Neurodegenerative Disease, and
| | - Benoit I Giasson
- From the Department of Neuroscience, .,the Center for Translational Research in Neurodegenerative Disease, and.,the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
42
|
Song S, Jiang L, Oyarzabal EA, Wilson B, Li Z, Shih YYI, Wang Q, Hong JS. Loss of Brain Norepinephrine Elicits Neuroinflammation-Mediated Oxidative Injury and Selective Caudo-Rostral Neurodegeneration. Mol Neurobiol 2018; 56:2653-2669. [PMID: 30051353 DOI: 10.1007/s12035-018-1235-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Environmental toxicant exposure has been strongly implicated in the pathogenesis of Parkinson's disease (PD). Clinical manifestations of non-motor and motor symptoms in PD stem from decades of progressive neurodegeneration selectively afflicting discrete neuronal populations along a caudo-rostral axis. However, recapitulating this spatiotemporal neurodegenerative pattern in rodents has been unsuccessful. The purpose of this study was to generate such animal PD models and delineate mechanism underlying the ascending neurodegeneration. Neuroinflammation, oxidative stress, and neuronal death in mice brains were measured at different times following a single systemic injection of lipopolysaccharide (LPS). We demonstrate that LPS produced an ascending neurodegeneration that temporally afflicted neurons initially in the locus coeruleus (LC), followed by substantia nigra, and lastly the primary motor cortex and hippocampus. To test the hypothesis that LPS-elicited early loss of noradrenergic LC neurons may underlie this ascending pattern, we used a neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete brain norepinephrine. DSP-4 injection resulted in a time-dependent ascending degenerative pattern similar to that generated by the LPS model. Mechanistic studies revealed that increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX2)-dependent superoxide/reactive oxygen species (ROS) production plays a key role in both LPS- and DSP-4-elicited neurotoxicity. We found that toxin-elicited chronic neuroinflammation, oxidative neuronal injuries, and neurodegeneration were greatly suppressed in mice deficient in NOX2 gene or treated with NOX2-specific inhibitor. Our studies document the first rodent PD model recapturing the ascending neurodegenerative pattern of PD patients and provide convincing evidence that the loss of brain norepinephrine is critical in initiating and maintaining chronic neuroinflammation and the discrete neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheng Song
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA
| | - Lulu Jiang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA.,Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Esteban A Oyarzabal
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belinda Wilson
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA
| | - Zibo Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qingshan Wang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA. .,Department of Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop F1-01Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
43
|
Rutherford NJ, Dhillon JKS, Riffe CJ, Howard JK, Brooks M, Giasson BI. Comparison of the in vivo induction and transmission of α-synuclein pathology by mutant α-synuclein fibril seeds in transgenic mice. Hum Mol Genet 2018; 26:4906-4915. [PMID: 29036344 DOI: 10.1093/hmg/ddx371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease (PD) is one of many neurodegenerative diseases termed synucleinopathies, neuropathologically defined by inclusions containing aggregated α-synuclein (αS). αS gene (SNCA) mutations can directly cause autosomal dominant PD. In vitro studies demonstrated that SNCA missense mutations may either enhance or diminish αS aggregation but cross-seeding of mutant and wild-type αS proteins appear to reduce aggregation efficiency. Here, we extended these studies by assessing the effects of seeded αS aggregation in αS transgenic mice through intracerebral or peripheral injection of various mutant αS fibrils. We observed modestly decreased time to paralysis in mice transgenic for human A53T αS (line M83) intramuscularly injected with H50Q, G51D or A53E αS fibrils relative to wild-type αS fibrils. Conversely, E46K αS fibril seeding was significantly delayed and less efficient in the same experimental paradigm. However, the amount and distribution of αS inclusions in the central nervous system were similar for all αS fibril muscle injected mice that developed paralysis. Mice transgenic for human αS (line M20) injected in the hippocampus with wild-type, H50Q, G51D or A53E αS fibrils displayed induction of αS inclusion pathology that increased and spread over time. By comparison, induction of αS aggregation following the intrahippocampal injection of E46K αS fibrils in M20 mice was much less efficient. These findings show that H50Q, G51D or A53E can efficiently cross-seed and induce αS pathology in vivo. In contrast, E46K αS fibrils are intrinsically inefficient at seeding αS inclusion pathology. Consistent with previous in vitro studies, E46K αS polymers are likely distinct aggregated conformers that may represent a unique prion-like strain of αS.
Collapse
Affiliation(s)
- Nicola J Rutherford
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Jess-Karan S Dhillon
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Jasie K Howard
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Mieu Brooks
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease
- Department of Neuroscience
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Peelaerts W, Bousset L, Baekelandt V, Melki R. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 2018; 373:195-212. [PMID: 29704213 DOI: 10.1007/s00441-018-2839-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
Abstract
Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.
Collapse
Affiliation(s)
- W Peelaerts
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - L Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.
| | - R Melki
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| |
Collapse
|
45
|
Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018; 373:161-173. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| |
Collapse
|
46
|
Nouraei N, Mason DM, Miner KM, Carcella MA, Bhatia TN, Dumm BK, Soni D, Johnson DA, Luk KC, Leak RK. Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Exp Neurol 2018; 299:172-196. [PMID: 29056362 PMCID: PMC5736319 DOI: 10.1016/j.expneurol.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Lewy body disorders are characterized by the emergence of α-synucleinopathy in many parts of the central and peripheral nervous systems, including in the telencephalon. Dense α-synuclein+ pathology appears in regio inferior of the hippocampus in both Parkinson's disease and dementia with Lewy bodies and may disturb cognitive function. The preformed α-synuclein fibril model of Parkinson's disease is growing in use, given its potential for seeding the self-propagating spread of α-synucleinopathy throughout the mammalian brain. Although it is often assumed that the spread occurs through neuroanatomical connections, this is generally not examined vis-à-vis the uptake and transport of tract-tracers infused at precisely the same stereotaxic coordinates. As the neuronal connections of the hippocampus are historically well defined, we examined the first-order spread of α-synucleinopathy three months following fibril infusions centered in the mouse regio inferior (CA2+CA3), and contrasted this to retrograde and anterograde transport of the established tract-tracers FluoroGold and biotinylated dextran amines (BDA). Massive hippocampal α-synucleinopathy was insufficient to elicit memory deficits or loss of cells and synaptic markers in this model of early disease processes. However, dense α-synuclein+ inclusions in the fascia dentata were negatively correlated with memory capacity. A modest compensatory increase in synaptophysin was evident in the stratum radiatum of cornu Ammonis in fibril-infused animals, and synaptophysin expression correlated inversely with memory function in fibril but not PBS-infused mice. No changes in synapsin I/II expression were observed. The spread of α-synucleinopathy was somewhat, but not entirely consistent with FluoroGold and BDA axonal transport, suggesting that variables other than innervation density also contribute to the materialization of α-synucleinopathy. For example, layer II entorhinal neurons of the perforant pathway exhibited somal α-synuclein+ inclusions as well as retrogradely labeled FluoroGold+ somata. However, some afferent brain regions displayed dense retrograde FluoroGold label and no α-synuclein+ inclusions (e.g. medial septum/diagonal band), supporting the selective vulnerability hypothesis. The pattern of inclusions on the contralateral side was consistent with specific spread through commissural connections (e.g. stratum pyramidale of CA3), but again, not all commissural projections exhibited α-synucleinopathy (e.g. hilar mossy cells). The topographical extent of inclusions is displayed here in high-resolution images that afford viewers a rich opportunity to dissect the potential spread of pathology through neural circuitry. Finally, the results of this expository study were leveraged to highlight the challenges and limitations of working with preformed α-synuclein fibrils.
Collapse
Affiliation(s)
- Negin Nouraei
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Michael A Carcella
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Benjamin K Dumm
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Dishaben Soni
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - David A Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kelvin C Luk
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19147, United States
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
47
|
Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 2018; 135:65-83. [PMID: 29209768 PMCID: PMC5756266 DOI: 10.1007/s00401-017-1792-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 12/18/2022]
Abstract
Parkinson’s disease is characterized by degeneration of substantia nigra dopamine neurons and by intraneuronal aggregates, primarily composed of misfolded α-synuclein. The α-synuclein aggregates in Parkinson’s patients are suggested to first appear in the olfactory bulb and enteric nerves and then propagate, following a stereotypic pattern, via neural pathways to numerous regions across the brain. We recently demonstrated that after injection of either mouse or human α-synuclein fibrils into the olfactory bulb of wild-type mice, α-synuclein fibrils recruited endogenous α-synuclein into pathological aggregates that spread transneuronally to over 40 other brain regions and subregions, over 12 months. We previously reported the progressive spreading of α-synuclein aggregates, between 1 and 12 months following α-synuclein fibril injections, and now report how far the pathology has spread 18- and 23-month post-injection in this model. Our data show that between 12 and 18 months, there is a further increase in the number of brain regions exhibiting pathology after human, and to a lesser extent mouse, α-synuclein fibril injections. At both 18 and 23 months after injection of mouse and human α-synuclein fibrils, we observed a reduction in the density of α-synuclein aggregates in some brain regions compared to others at 12 months. At 23 months, no additional brain regions exhibited α-synuclein aggregates compared to earlier time points. In addition, we also demonstrate that the induced α-synucleinopathy triggered a significant early neuron loss in the anterior olfactory nucleus. By contrast, there was no loss of mitral neurons in the olfactory bulb, even at 18 month post-injection. We speculate that the lack of continued progression of α-synuclein pathology is due to compromise of the neural circuitry, consequential to neuron loss and possibly to the activation of proteolytic mechanisms in resilient neurons of wild-type mice that counterbalances the spread and seeding by degrading pathogenic α-synuclein.
Collapse
|
48
|
Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson's disease behaving as they should? Behav Brain Res 2017; 352:133-141. [PMID: 29074404 DOI: 10.1016/j.bbr.2017.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
In recent years our understanding of Parkinson's disease has expanded both in terms of pathological hallmarks as well as relevant genetic influences. In parallel with the aetiological discoveries a multitude of PD animal models have been established. The vast majority of these are rodent models based on environmental, genetic and mechanistic insight. A major challenge in many of these models is their ability to only recapitulate some of the complex disease features seen in humans. Although symptom alleviation and clinical signs are of utmost importance in therapeutic research many of these models lack comprehensive behavioural testing. While non-motor symptoms become increasingly important as early diagnostic markers in PD, they are poorly characterized in rodents. In this review we look at well-established and more recent animal models of PD in terms of behavioural characterization and discuss how they can best contribute to progression in Parkinson's research.
Collapse
Affiliation(s)
- Siv Vingill
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
49
|
Rutherford NJ, Brooks M, Riffe CJ, Gorion KMM, Howard JK, Dhillon JKS, Giasson BI. Prion-like transmission of α-synuclein pathology in the context of an NFL null background. Neurosci Lett 2017; 661:114-120. [PMID: 28964772 DOI: 10.1016/j.neulet.2017.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023]
Abstract
Neurofilaments are a major component of the axonal cytoskeleton in neurons and have been implicated in a number of neurodegenerative diseases due to their presence within characteristic pathological inclusions. Their contributions to these diseases are not yet fully understood, but previous studies investigated the effects of ablating the obligate subunit of neurofilaments, low molecular mass neurofilament subunit (NFL), on disease phenotypes in transgenic mouse models of Alzheimer's disease and tauopathy. Here, we tested the effects of ablating NFL in α-synuclein M83 transgenic mice expressing the human pathogenic A53T mutation, by breeding them onto an NFL null background. The induction and spread of α-synuclein inclusion pathology was triggered by the injection of preformed α-synuclein fibrils into the gastrocnemius muscle or hippocampus in M83 versus M83/NFL null mice. We observed no difference in the post-injection time to motor-impairment and paralysis endpoint or amount and distribution of α-synuclein inclusion pathology in the muscle injected M83 and M83/NFL null mice. Hippocampal injected M83/NFL null mice displayed subtle region-specific differences in the amount of α-synuclein inclusions however, pathology was observed in the same regions as the M83 mice. Overall, we observed only minor differences in the induction and transmission of α-synuclein pathology in these induced models of synucleinopathy in the presence or absence of NFL. This suggests that NFL and neurofilaments do not play a major role in influencing the induction and transmission of α-synuclein aggregation.
Collapse
Affiliation(s)
- Nicola J Rutherford
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Mieu Brooks
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Kimberly-Marie M Gorion
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Jasie K Howard
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Jess-Karan S Dhillon
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
50
|
Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB, Moehle MS, Stoyka L, Anabtawi N, Krendelchtchikova V, Volpicelli-Daley LA, West A. α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiol Dis 2017; 105:84-98. [PMID: 28576704 DOI: 10.1016/j.nbd.2017.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 01/26/2023] Open
Abstract
Proteinaceous inclusions in neurons, composed primarily of α-synuclein, define the pathology in several neurodegenerative disorders. Neurons can internalize α-synuclein fibrils that can seed new inclusions from endogenously expressed α-synuclein. The factors contributing to the spread of pathology and subsequent neurodegeneration are not fully understood, and different compositions and concentrations of fibrils have been used in different hosts. Here, we systematically vary the concentration and length of well-characterized α-synuclein fibrils and determine their relative ability to induce inclusions and neurodegeneration in different hosts (primary neurons, C57BL/6J and C3H/HeJ mice, and Sprague Dawley rats). Using dynamic-light scattering profiles and other measurements to determine fibril length and concentration, we find that femptomolar concentrations of fibrils are sufficient to induce robust inclusions in primary neurons. However, a narrow and non-linear dynamic range characterizes fibril-mediated inclusion induction in axons and the soma. In mice, the C3H/HeJ strain is more sensitive to fibril exposures than C57BL/6J counterparts, with more inclusions and dopaminergic neurodegeneration. In rats, injection of fibrils into the substantia nigra pars compacta (SNpc) results in similar inclusion spread and dopaminergic neurodegeneration as injection of the fibrils into the dorsal striatum, with prominent inclusion spread to the amygdala and several other brain areas. Inclusion spread, particularly from the SNpc to the striatum, positively correlates with dopaminergic neurodegeneration. These results define biophysical characteristics of α-synuclein fibrils that induce inclusions and neurodegeneration both in vitro and in vivo, and suggest that inclusion spread in the brain may be promoted by a loss of neurons.
Collapse
Affiliation(s)
- Hisham Abdelmotilib
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler Maltbie
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vedad Delic
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xianzhen Hu
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle B Fraser
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark S Moehle
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsay Stoyka
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nadia Anabtawi
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentina Krendelchtchikova
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|