1
|
Thomas G, Rahman R. Evolution of Preclinical Models for Glioblastoma Modelling and Drug Screening. Curr Oncol Rep 2025; 27:601-624. [PMID: 40183896 DOI: 10.1007/s11912-025-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase wild-type glioblastoma is an extremely aggressive and fatal primary brain tumour, characterised by extensive heterogeneity and diffuse infiltration of brain parenchyma. Despite multimodal treatment and diverse research efforts to develop novel therapies, there has been limited success in improving patient outcomes. Constructing physiologically relevant preclinical models is essential to optimising drug screening processes and identifying more effective treatments. RECENT FINDINGS Traditional in-vitro models have provided critical insights into glioblastoma pathophysiology; however, they are limited in their ability to recapitulate the complex tumour microenvironment and its interactions with surrounding cells. In-vivo models offer a more physiologically relevant context, but often do not fully represent human pathology, are expensive, and time-consuming. These limitations have contributed to the low translational success of therapies from trials to clinic. Organoid and glioblastoma-on-a-chip technology represent significant advances in glioblastoma modelling and enable the replication of key features of the human tumour microenvironment, including its structural, mechanical, and biochemical properties. Organoids provide a 3D system that captures cellular heterogeneity and tumour architecture, while microfluidic chips offer dynamic systems capable of mimicking vascularisation and nutrient exchange. Together, these technologies hold tremendous potential for high throughput drug screening and personalised, precision medicine. This review explores the evolution of preclinical models in glioblastoma modelling and drug screening, emphasising the transition from traditional systems to more advanced organoid and microfluidic platforms. Furthermore, it aims to evaluate the advantages and limitations of both traditional and next-generation models, investigating their combined potential to address current challenges by integrating complementary aspects of specific models and techniques.
Collapse
Affiliation(s)
- Grace Thomas
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ruman Rahman
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Roncali L, Hindré F, Samarut E, Lacoeuille F, Rousseau A, Lemée JM, Garcion E, Chérel M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025; 15:4861-4889. [PMID: 40303349 PMCID: PMC12036880 DOI: 10.7150/thno.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive malignancy of the central nervous system. Despite two decades of intensive research since the establishment of the standard of care, emerging strategies have yet to produce consistent satisfactory outcomes. Because of its specific localisation and intricate characteristics, GB is a uniquely regulated solid tumour with a strong resistance to therapy. Advances in targeted radionuclide therapy (TRT), particularly with the introduction of a-emitting radionuclides, have unveiled potential avenues for the management of GB. Recent preclinical and clinical studies underscored promising advancements for targeted-α-therapy (TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing diverse radionuclides, vectors, target molecules, and administration modalities. This review seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. Here, the focus is made on the advancements and limitations of in vivo explorations, pilot studies, and clinical trials, to determine the best directions for future investigations. In doing so, we hope to identify existing challenges and draw insights that might pave the way towards a more effective therapeutic approach.
Collapse
Affiliation(s)
- Loris Roncali
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela; E-15782 Santiago de Compostela, Spain
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
| | - François Hindré
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PRIMEX (Experimental Imagery and Radiobiology Platform), University of Angers, SFR 4208; F-49000 Angers, France
| | - Edouard Samarut
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Department of Neurosurgery & Neurotraumatology, University Hospital of Nantes; F-44093 Nantes, France
| | - Franck Lacoeuille
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Nuclear Medicine, University Hospital of Angers; F-49000 Angers, France
| | - Audrey Rousseau
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Pathology, University Hospital of Angers; F-49000 Angers, France
| | - Jean-Michel Lemée
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Neurosurgery, University Hospital of Angers; F-49000 Angers, France
| | - Emmanuel Garcion
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PACEM (Platform of Cellular and Molecular Analysis), University of Angers, SFR 4208; F-49000 Angers, France
| | - Michel Chérel
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Institut de Cancérologie de l'Ouest, Department of Nuclear Medicine; F-44160 Saint-Herblain, France
| |
Collapse
|
3
|
Rastfeld F, Hoffmann M, Krüger S, Bohn P, Gribling-Burrer AS, Wagner L, Hersch N, Stegmayr C, Lövenich L, Gerlach S, Köninger D, Hoffmann C, Walter HL, Wiedermann D, Manoharan H, Fink GR, Merkel R, Bohlen H, Smyth RP, Rueger MA, Hoffmann B. Selectively expressed RNA molecules as a versatile tool for functionalized cell targeting. Nat Commun 2025; 16:420. [PMID: 39762287 PMCID: PMC11704337 DOI: 10.1038/s41467-024-55547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering. The specific combination of the molecular properties of antisense technology and mRNA therapy with functional RNA secondary structures allowed us to develop selectively expressed RNA molecules for medical applications. These seRNAs remain inactive in non-target cells and induce translation by partial degradation only in preselected cell types of interest. Cell specificity and type of functionalization are easily adaptable based on a modular system. In proof-of-concept studies we use seRNAs as platform technology for highly selective cell targeting. We effectively treat breast tumor cell clusters in mixed cell systems and shrink early U87 glioblastoma cell clusters in the brain of male mice without detectable side effects. Our data open up potential avenues for various therapeutic applications.
Collapse
Affiliation(s)
- Frederik Rastfeld
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Marco Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Sylvie Krüger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Laura Wagner
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine, INM-4: Medical Imaging Physics, Research Centre Juelich, Juelich, Germany
| | - Lukas Lövenich
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Sven Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Daniel Köninger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Christina Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Helene L Walter
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Dirk Wiedermann
- Max Planck Institute for Metabolism Research, Multimodal Imaging Group, Cologne, Germany
| | - Hajaani Manoharan
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | | | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Maria A Rueger
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany.
| |
Collapse
|
4
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Lam WW, Chudzik A, Lehman N, Łazorczyk A, Kozioł P, Niedziałek A, Gananathan A, Orzyłowska A, Rola R, Stanisz GJ. Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat. NMR IN BIOMEDICINE 2025; 38:e5282. [PMID: 39473129 PMCID: PMC11631369 DOI: 10.1002/nbm.5282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T1-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T1 and T2 maps were also acquired. The MT and WASSR Z-spectra and T1 map were fitted to a two-pool quantitative MT model to estimate the T2 of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M0, MT), and the magnetization exchange rate from the macromolecular pool to the free pool (RMT). The T1-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M0, MT and AREX maps with a B1 of 2 μT best matched the hyperintensity on the post-contrast T1-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M0, MT were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B1 = 2 μT at 3.6 ppm and relative macromolecular pool size (M0, MT) images over entire period of 3-13 days after cancer cell implantation.
Collapse
Affiliation(s)
- Wilfred W. Lam
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Agata Chudzik
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Natalia Lehman
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Artur Łazorczyk
- Department of RadiographyMedical University of LublinLublinPoland
| | - Paulina Kozioł
- Department of RadiographyMedical University of LublinLublinPoland
| | - Anna Niedziałek
- Department of RadiographyMedical University of LublinLublinPoland
| | - Athavan Gananathan
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Radosław Rola
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Greg J. Stanisz
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
6
|
Asghari M, Ivetich SD, Aslan MK, Aramesh M, Melkonyan O, Meng Y, Xu R, Colombo M, Weiss T, Balabanov S, Stavrakis S, deMello AJ. Real-time viscoelastic deformability cytometry: High-throughput mechanical phenotyping of liquid and solid biopsies. SCIENCE ADVANCES 2024; 10:eabj1133. [PMID: 39630916 PMCID: PMC11616701 DOI: 10.1126/sciadv.abj1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In principle, the measurement of mechanical property differences between cancer cells and their benign counterparts enables the detection, diagnosis, and classification of diseases. Despite the existence of various mechanophenotyping methods, the ability to perform high-throughput single-cell deformability measurements on liquid and/or solid tissue biopsies remains an unmet challenge within clinical settings. To address this issue, we present an ultrahigh-throughput viscoelastic microfluidic platform able to measure the mechanical properties of single cells at rates of up to 100,000 cells per second (and up to 10,000 cells per second in real time). To showcase the utility of the presented platform in clinical scenarios, we perform single-cell phenotyping of both liquid and solid tumor biopsies, cytoskeletal drug analysis, and identification of malignant lymphocytes in peripheral blood samples. Our viscoelastic microfluidic methodology offers opportunities for high-throughput, label-free single-cell analysis, with diverse applications in clinical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Mohammad Asghari
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Morteza Aramesh
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Oleksandr Melkonyan
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Rong Xu
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stefan Balabanov
- Clinic for Medical Oncology and Hematology, University Hospital Zürich, 8091 Zürich, Switzerland
- University Center for Laboratory Medicine and Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Andew J. deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Bastiancich C, Snacel-Fazy E, Fernandez S, Robert S, Stacchini R, Plantureux L, Boissonneau S, Testud B, Guillet B, Debarbieux F, Luche H, Figarella-Branger D, Estève MA, Tabouret E, Tchoghandjian A. Tailoring glioblastoma treatment based on longitudinal analysis of post-surgical tumor microenvironment. J Exp Clin Cancer Res 2024; 43:311. [PMID: 39605004 PMCID: PMC11603899 DOI: 10.1186/s13046-024-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM), an incurable primary brain tumor, typically requires surgical intervention followed by chemoradiation; however, recurrences remain fatal. Our previous work demonstrated that a nanomedicine hydrogel (GemC12-LNC) delays recurrence when administered post-surgery. However, tumor debulking also triggers time-dependent immune reactions that promote recurrence at the resection cavity borders. We hypothesized that combining the hydrogel with an immunomodulatory drug could enhance therapeutic outcomes. A thorough characterization of the post-surgical microenvironment (SMe) is crucial to guide combinatorial approaches.In this study, we performed cellular resolution imaging, flow cytometry and spatial hyperplexed immunofluorescence imaging to characterize the SMe in a syngeneic mouse model of tumor resection. Owing to our dynamic approach, we observed transient opening of the blood-brain barrier (BBB) during the first week after surgery. BBB permeability post-surgery was also confirmed in GBM patients. In our murine model, we also observed changes in immune cell morphology and spatial location post-surgery over time in resected animals as well as the accumulation of reactive microglia and anti-inflammatory macrophages in recurrences compared to unresected tumors since the first steps of recurrence growth. Therefore we investigated whether starting a systemic treatment with the SMAC mimetic small molecule (GDC-0152) directly after surgery would be beneficial for enhancing microglial anti-tumoral activity and decreasing the number of anti-inflammatory macrophages around the GemC12-LNC hydrogel-loaded tumor cavity. The immunomodulatory effects of this drug combination was firstly shown in patient-derived tumoroids. Its efficacy was confirmed in vivo by survival analysis and correlated with reversal of the immune profile as well as delayed tumor recurrence.This comprehensive study identified critical time frames and immune cellular targets within the SMe, aiding in the rational design of combination therapies to delay recurrence onset. Our findings suggest that post-surgical systemic injection of GDC-0152 in combination with GemC12-LNC local treatment is a promising and innovative approach for managing GBM recurrence, with potential for future translation to human patient.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France.
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, Brussels, 1200, Belgium.
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PETRA"TECH", Marseille, 13005, France.
| | - Emmanuel Snacel-Fazy
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | | | | | - Roberta Stacchini
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | - Léa Plantureux
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Sébastien Boissonneau
- Department of Neuro-Surgery, AP-HM, Hôpital Universitaire Timone, Marseille, 13005, France
- Department of Neuro-Surgery, Valenciennes Hospital, Valenciennes, 59300, France
| | - Benoit Testud
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- Aix Marseille Univ, APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, 13005, France
- Department of Neuroradiology, Aix Marseille Univ, APHM, Hôpital Universitaire Timone, Marseille, 13005, France
| | - Benjamin Guillet
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille Univ, APHM, Hôpital Timone, Pôle Pharmacie, Radiopharmacie, Marseille, 13005, France
| | - Franck Debarbieux
- Aix Marseille Univ, CNRS, CERIMED, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Institut Universitaire de France, Paris, 75005, France
| | - Hervé Luche
- Aix-Marseille Univ, CNRS, INSERM, CIPHE, Marseille, 13009, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
| | - Marie-Anne Estève
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
- Aix Marseille Univ, APHM, Hôpital Timone, Service Pharmacie, Marseille, 13005, France
| | - Emeline Tabouret
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France
- AP-HM, CHU Timone, Service de Neurooncologie, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PE"TRANSLA", Marseille, 13005, France
| | - Aurélie Tchoghandjian
- Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France.
- Aix-Marseille Univ, Réseau Préclinique Et Translationnel de Recherche en Neuro-Oncologie, Plateforme PETRA"TECH", Marseille, 13005, France.
| |
Collapse
|
8
|
Bova V, Mannino D, Salako AE, Esposito E, Filippone A, Scuderi SA. Casein Kinase 2 Inhibitor, CX-4945, Induces Apoptosis and Restores Blood-Brain Barrier Homeostasis in In Vitro and In Vivo Models of Glioblastoma. Cancers (Basel) 2024; 16:3936. [PMID: 39682125 DOI: 10.3390/cancers16233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Background: In oncology, casein kinase 2 (CK2), a serine/threonine kinase, has a dual action, regulating cellular processes and acting as an oncogenic promoter. Methods: This study examined the effect of CX-4945, a selective CK2 inhibitor, in a human U-87 glioblastoma (GBM) cell line, treated with CX-4945 (5, 10, and 15 μM) for 24 h. Similarly, the hCMEC/D3 cell line was used to mimic the blood-brain barrier (BBB), examining the ability of CX-4945 to restore BBB homeostasis, after stimulation with lipopolysaccharide (LPS) and then treated with CX-4945 (5, 10, and 15 μM). Results: We reported that CX-4945 reduced the proliferative activity and modulated the main pathways involved in tumor progression including apoptosis. Furthermore, in confirmation of the in vitro study, performing a xenograft model, we demonstrated that CX-4945 exerted promising antiproliferative effects, also restoring the tight junctions' expression. Conclusions: These new insights into the molecular signaling of CK2 in GBM and BBB demonstrate that CX-4945 could be a promising approach for future GBM therapy, not only in the tumor microenvironment but also at the BBB level.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Ayomide E Salako
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
- Department of Statistics, Computer Science, Applications (DiSIA), University of Florence, 50121 Firenze, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Sarah A Scuderi
- Department of Chemical, Biological, Pharmaceutical, Environmental Science, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Korimerla N, Meghdadi B, Haq I, Wilder-Romans K, Xu J, Becker N, Zhu Z, Kalev P, Qi N, Evans C, Kachman M, Zhao Z, Lin A, Scott AJ, O'Brien A, Kothari A, Sajjakulnukit P, Zhang L, Palavalasa S, Peterson ER, Hyer ML, Marjon K, Sleger T, Morgan MA, Lyssiotis CA, Stone EM, Ferris SP, Lawrence TS, Nagrath D, Zhou W, Wahl DR. Reciprocal links between methionine metabolism, DNA repair and therapy resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624542. [PMID: 39651281 PMCID: PMC11623687 DOI: 10.1101/2024.11.20.624542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
Collapse
|
10
|
Franco MS, Raulefs S, Schilling D, Combs SE, Schmid TE. Impact of Radiation on Invasion and Migration of Glioma In Vitro and In Vivo. Cancers (Basel) 2024; 16:3900. [PMID: 39682088 DOI: 10.3390/cancers16233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma (GBM) constitutes the most common primary brain tumor and it remains incurable despite therapeutic advances. The high infiltration/invasion potential of GBM cells is considered to be one of the reasons for the inevitable recurrence of the disease. Radiotherapy (RT) is part of the standard care for patients with GBM, and its benefits on overall survival are extensively reported. However, numerous preclinical studies show that X-ray irradiation can enhance the motility of GBM cells. In the present review, we bring together state-of-the-art research on the impact of radiation on GBM cell motility. The mechanisms through which irradiation impacts the brain tumor microenvironment and the tumor cells themselves, leading to more aggressive/invasive tumors, are described. Finally, we summarize potential pharmacological strategies to overcome this problem. Clinical data validating the occurrence of these processes are urgently needed as they could be of great value for patient outcomes. With this comprehensive review, we expect to highlight the need for methods which allow for monitoring the post-irradiation invasive behavior of GBM in patients.
Collapse
Affiliation(s)
- Marina Santiago Franco
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Susanne Raulefs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Daniela Schilling
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Stephanie E Combs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas E Schmid
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
11
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: Analysis using biopsy in combination with ultra-fast cyclic immunolabeling. Neoplasia 2024; 57:101051. [PMID: 39270598 PMCID: PMC11415813 DOI: 10.1016/j.neo.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands.
| |
Collapse
|
12
|
Yao L, Hatami M, Ma W, Skutella T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med 2024; 30:965-981. [PMID: 39013724 DOI: 10.1016/j.molmed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Glioma, the most common primary malignant tumor in the central nervous system (CNS), lacks effective treatments, and >60% of cases are glioblastoma (GBM), the most aggressive form. Despite advances in immunotherapy, GBM remains highly resistant. Approaches that target tumor antigens expedite the development of immunotherapies, including personalized tumor-specific vaccines, patient-specific target selection, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. Recent studies show promising results in treating GBM and lower-grade glioma (LGG), fostering hope for future immunotherapy. This review discusses tumor vaccines against glioma, preclinical models in immunological research, and the role of CD4+ T cells in vaccine-induced antitumor immunity. We also summarize clinical approaches, challenges, and future research for creating more effective vaccines.
Collapse
Affiliation(s)
- Longping Yao
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Kriuchkovskaia V, Eames EK, Riggins RB, Harley BA. Acquired Temozolomide Resistance Instructs Patterns of Glioblastoma Behavior in Gelatin Hydrogels. Adv Healthc Mater 2024; 13:e2400779. [PMID: 39030879 PMCID: PMC11518645 DOI: 10.1002/adhm.202400779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, a 3D engineered model of acquired TMZ resistance is reported using two isogenically matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. Response of TMZ-resistant versus TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform is benchmarked and drug response at physiologically relevant TMZ concentrations is further validated. The changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production are shown as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing the understanding of GBM progression and treatment response to guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Victoria Kriuchkovskaia
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Ela K. Eames
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, University Medical Center, Washington, DC, 20007
| | - Brendan A.C. Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
14
|
Canella A, Artomov M, Ukhatov A, Rajendran S, Perez P, Saini U, Hedberg J, Cassady K, Rajappa P. Primary murine high-grade glioma cells derived from RCAS/tv-a diffuse glioma model reprogram naive T cells into immunosuppressive regulatory T lymphocytes. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200861. [PMID: 39328291 PMCID: PMC11426037 DOI: 10.1016/j.omton.2024.200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants. Due to the outdated therapeutic protocols and lack of specific treatments, there is an urgent and rising need to improve our understanding of tumor biology and design more effective therapeutic strategies. In vitro models are essential for investigating glioma biology and testing novel therapeutic approaches. While using commercially available and patient-derived glioma cell lines for in vitro studies is common practice, they exhibit several limitations, including failing to maintain the genetic and phenotypic diversity of primary tumors, undergo genetic drift over time, and often lacking the invasive and stem-like characteristics of patient tumors. These limitations can lead to inconsistent and non-reproducible results, hampering translational research progress. In this study, we established a novel primary murine HGG cell line, isolated from an immunocompetent HGG-bearing RCAS/T-va mouse. We characterized the transcriptome and phenotype to ensure that this cell line resembles the nature of HGGs and retains the ability to reprogram primary murine T lymphocytes.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksandr Ukhatov
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Phillip Perez
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Uksha Saini
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jack Hedberg
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Kevin Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
15
|
Daviaud C, Lira MC, Vanpouille-Box C, De Martino M. Stereotactic injection of murine brain tumor cells for neuro-oncology studies. Methods Cell Biol 2024; 192:181-188. [PMID: 39863390 DOI: 10.1016/bs.mcb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research. This chapter presents a comprehensive protocol for stereotactic injection of murine GBM cells into immunocompetent mice to induce intracranial GBM. The protocol covers cell culture, anesthesia, surgical procedures, and post-operative care, allowing the reliable induction of orthotopic brain tumors. This method can be used to study anti-GBM therapies, including immunotherapies, and has the potential to accelerate the development of effective treatments.
Collapse
Affiliation(s)
- Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - María Cecilia Lira
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States.
| | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
16
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: analysis using biopsy in combination with ultra-fast cyclic immunolabeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599078. [PMID: 38948851 PMCID: PMC11212862 DOI: 10.1101/2024.06.15.599078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juhyun Oh
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
17
|
Ohki CMY, Benazzato C, van der Linden V, França JV, Toledo CM, Machado RRG, Araujo DB, Oliveira DBL, Neris RS, Assunção-Miranda I, de Oliveira Souza IN, Nogueira CO, Leite PEC, van der Linden H, Figueiredo CP, Durigon EL, Clarke JR, Russo FB, Beltrão-Braga PCB. Zika virus infection impairs synaptogenesis, induces neuroinflammation, and could be an environmental risk factor for autism spectrum disorder outcome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167097. [PMID: 38408544 DOI: 10.1016/j.bbadis.2024.167097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.
Collapse
Affiliation(s)
| | - Cecília Benazzato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julia V França
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen M Toledo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Romulo S Neris
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Clara O Nogueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Emilio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, Brazil
| | | | - Claudia P Figueiredo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
18
|
Alekseeva AI, Kudelkina VV, Khalansky AS, Sentyabreva AV, Miroshnichenko EA, Gulyaev MV, Rakitina KA, Kosyreva AM. Comparative Morphological and Molecular Genetic Characteristics of Cell and Tissue Strains of Experimental Rat Glioma 10-17-2 (Astrid-17). Bull Exp Biol Med 2024; 177:169-175. [PMID: 38960964 DOI: 10.1007/s10517-024-06150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 07/05/2024]
Abstract
In order to obtain models of gliomas of varying degrees of malignancy, we performed morphological and molecular genetic study of a tissue strain of glioma 10-17-2 (Astrid-17) obtained by intracranial passaging of tumor fragments of chemically induced rat brain tumor, and a cell strain isolated from it. More or less pronounced changes in the expression levels of Mki67, Trp53, Vegfa, and Gfap genes in the tissue and cell strain of glioma 10-17-2 (Astrid-17) compared with intact brain tissue were shown. The tissue model of glioma 10-17-2 (Astrid-17) according to the studied characteristics shows features of grade 3-4 astrocytoma and the cellular model - grade 2-3 astrocytoma.
Collapse
Affiliation(s)
- A I Alekseeva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia.
| | - V V Kudelkina
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A S Khalansky
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Sentyabreva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| | - E A Miroshnichenko
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - K A Rakitina
- Medical Institute, RUDN University, Moscow, Russia
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky Russian Research Center of Surgery, Moscow, Russia
- Medical Institute, RUDN University, Moscow, Russia
| |
Collapse
|
19
|
Tuysuz EC, Mourati E, Rosberg R, Moskal A, Gialeli C, Johansson E, Governa V, Belting M, Pietras A, Blom AM. Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas. J Exp Clin Cancer Res 2024; 43:98. [PMID: 38561856 PMCID: PMC10986120 DOI: 10.1186/s13046-024-03019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Eleni Mourati
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Aleksandra Moskal
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Cardiovascular Research Translational Studies, Lund University, Malmö, Sweden
| | - Elinn Johansson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden.
| |
Collapse
|
20
|
Yang Y, Teng H, Zhang Y, Wang F, Tang L, Zhang C, Hu Z, Chen Y, Ge Y, Wang Z, Yu Y. A glycosylation-related gene signature predicts prognosis, immune microenvironment infiltration, and drug sensitivity in glioma. Front Pharmacol 2024; 14:1259051. [PMID: 38293671 PMCID: PMC10824914 DOI: 10.3389/fphar.2023.1259051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Glioma represents the most common primary cancer of the central nervous system in adults. Glycosylation is a prevalent post-translational modification that occurs in eukaryotic cells, leading to a wide array of modifications on proteins. We obtained the clinical information, bulk RNA-seq data, and single-cell RNA sequencing (scRNA-seq) from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Gene Expression Omnibus (GEO), and Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. RNA sequencing data for normal brain tissues were accessed from the Genotype-Tissue Expression (GTEx) database. Then, the glycosylation genes that were differentially expressed were identified and further subjected to variable selection using a least absolute shrinkage and selection operator (LASSO)-regularized Cox model. We further conducted enrichment analysis, qPCR, nomogram, and single-cell transcriptome to detect the glycosylation signature. Drug sensitivity analysis was also conducted. A five-gene glycosylation signature (CHPF2, PYGL, GALNT13, EXT2, and COLGALT2) classified patients into low- or high-risk groups. Survival analysis, qPCR, ROC curves, and stratified analysis revealed worse outcomes in the high-risk group. Furthermore, GSEA and immune infiltration analysis indicated that the glycosylation signature has the potential to predict the immune response in glioma. In addition, four drugs (crizotinib, lapatinib, nilotinib, and topotecan) showed different responses between the two risk groups. Glioma cells had been classified into seven lines based on single-cell expression profiles. The five-gene glycosylation signature can accurately predict the prognosis of glioma and may offer additional guidance for immunotherapy.
Collapse
Affiliation(s)
- Yanbo Yang
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiying Teng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Fei Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Liyan Tang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyi Hu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuxuan Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Ge
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanbing Yu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Zoteva V, De Meulenaere V, De Boeck M, Vanhove C, Leybaert L, Raedt R, Pieters L, Vral A, Boterberg T, Deblaere K. An improved F98 glioblastoma rat model to evaluate novel treatment strategies incorporating the standard of care. PLoS One 2024; 19:e0296360. [PMID: 38165944 PMCID: PMC10760731 DOI: 10.1371/journal.pone.0296360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Glioblastoma (GB) is the most common and malignant primary brain tumor in adults with a median survival of 12-15 months. The F98 Fischer rat model is one of the most frequently used animal models for GB studies. However, suboptimal inoculation leads to extra-axial and extracranial tumor formations, affecting its translational value. We aim to improve the F98 rat model by incorporating MRI-guided (hypo)fractionated radiotherapy (3 x 9 Gy) and concomitant temozolomide chemotherapy, mimicking the current standard of care. To minimize undesired tumor growth, we reduced the number of inoculated cells (starting from 20 000 to 500 F98 cells), slowed the withdrawal of the syringe post-inoculation, and irradiated the inoculation track separately. Our results reveal that reducing the number of F98 GB cells correlates with a diminished risk of extra-axial and extracranial tumor growth. However, this introduces higher variability in days until GB confirmation and uniformity in GB growth. To strike a balance, the model inoculated with 5000 F98 cells displayed the best results and was chosen as the most favorable. In conclusion, our improved model offers enhanced translational potential, paving the way for more accurate and reliable assessments of novel adjuvant therapeutic approaches for GB.
Collapse
Affiliation(s)
| | | | | | | | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Kaminska P, Cyranowski S, Pilanc P, Malik AR. Syngeneic Mouse Model of Glioblastoma: Intracranial Implantation of GL261 Cells. Methods Mol Biol 2024; 2746:135-146. [PMID: 38070086 DOI: 10.1007/978-1-0716-3585-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent primary brain malignancy in adults. Current treatments provide limited benefit, and thus, the median overall survival of GBM patients is only 15 months. GBM progression is highly dependent on its ability to evade immune response, so understanding the mechanisms behind GBM-driven immunosuppression seems crucial for designing more efficient therapies. Animal models of GBM constitute a convenient tool in glioma research, and several different approaches have been already developed to model this disease in vivo, including genetic and xenograft models. Here, we describe a murine syngeneic model of glioma which recapitulates many of the key features of human disease, including complex tumor microenvironment. We present an optimized protocol for stereotactic intracranial implantation of GL261 cells into C57BL/6 mice which results in tumor growth in the striatum. This model has been widely used to get insight into glioma biology, as well as in the studies aiming at the development and validation of new therapeutic approaches.
Collapse
Affiliation(s)
- Paulina Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Cellular Neurobiology Research Group, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Pilanc
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna R Malik
- Cellular Neurobiology Research Group, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Pronin IN, Postnov AA, Lipengolts AA, Pavlova GV, Revishchin AV, Skribitsky VA, Finogenova YA, Smirnova AV, Shpakova KE, Grigorieva EY, Kozlova YA, Alekseeva AI. [A Novel Rat Glioblastoma 101/8 Model: A Comparative PET-CT Study with C6 Rat model]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:54-62. [PMID: 39670780 DOI: 10.17116/neiro20248806154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of new drugs in nuclear medicine for diagnosis or treatment (chemotherapy) of brain tumors, in particular gliomas, is inextricably linked with the use of tumor models in animals (usually rats). OBJECTIVE To compare the widely used glioma cell model C6 and the new experimental tissue model of glioblastoma 101.8. MATERIAL AND METHODS A comparison was made of the diagnostic and morphological characteristics of the presented glioma models in two groups of animals with intracranially implanted tissue strain of experimental glioblastoma 101.8 (n=4) and the C6 glioma cell line (n=4) throughout the tumor development cycle within the rat brain. To monitor the progress of tumor growth and development, each animal underwent repeated diagnostic studies using PET-CT with 18F-FDG and 18F-FET to assess the metabolic activity and volume of the tumor. Also MRI images were collected. After the end of data acquisition, a histological examination of the tumor was carried out. RESULTS The tissue model of glioblastoma 101.8 demonstrated rapid growth and pronounced accumulation of the tracers in all animals during the tumor observation cycle. Formation of intratumoral necrosis and signs of disruption of the blood-brain barrier (BBB) were detected. In PET-CT studies of animals with a transplanted C6 tumor, no visible necrosis in the tumor structure was observed. Tumor growth was less rapid than in the case of model 101.8. The obtained morphological characteristics of 101.8 tumors transplanted into the rat brain demonstrated similar properties observed in real clinical conditions in patients with glioblastoma of the brain (necrosis, neovascularization, multiple pseudopalisade structures). CONCLUSIONS Tumor model 101.8 can be recommended for scientific research as it most closely reproduces the diagnostic and morphological features of a human glioblastoma.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Center, Moscow, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - A A Lipengolts
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - V A Skribitsky
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Finogenova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Smirnova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - K E Shpakova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - E Yu Grigorieva
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Kozlova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Botkin Hospital, Moscow, Russia
| | - A I Alekseeva
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution «Petrovsky National Research Centre of Surgery», Moscow, Russia
| |
Collapse
|
24
|
Pasupuleti V, Vora L, Prasad R, Nandakumar DN, Khatri DK. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer 2024; 1879:189059. [PMID: 38109948 DOI: 10.1016/j.bbcan.2023.189059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Glioblastoma multiforme is a highly malignant brain tumor with significant intra- and intertumoral heterogeneity known for its aggressive nature and poor prognosis. The complex signaling cascade that regulates this heterogeneity makes targeted drug therapy ineffective. The development of an optimal preclinical model is crucial for the comprehension of molecular heterogeneity and enhancing therapeutic efficacy. The ideal model should establish a relationship between various oncogenes and their corresponding responses. This review presents an analysis of preclinical in vivo and in vitro models that have contributed to the advancement of knowledge in model development. The experimental designs utilized in vivo models consisting of both immunodeficient and immunocompetent mice induced with intracranial glioma. The transgenic model was generated using various techniques, like the viral vector delivery system, transposon system, Cre-LoxP model, and CRISPR-Cas9 approaches. The utilization of the patient-derived xenograft model in glioma research is valuable because it closely replicates the human glioma microenvironment, providing evidence of tumor heterogeneity. The utilization of in vitro techniques in the initial stages of research facilitated the comprehension of molecular interactions. However, these techniques are inadequate in reproducing the interactions between cells and extracellular matrix (ECM). As a result, bioengineered 3D-in vitro models, including spheroids, scaffolds, and brain organoids, were developed to cultivate glioma cells in a three-dimensional environment. These models have enabled researchers to understand the influence of ECM on the invasive nature of tumors. Collectively, these preclinical models effectively depict the molecular pathways and facilitate the evaluation of multiple molecules while tailoring drug therapy.
Collapse
Affiliation(s)
- Vasavi Pasupuleti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 12841, Republic of Korea
| | - D N Nandakumar
- Department of Neurochemistry National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
25
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
26
|
Hirst TC, Wilson E, Browne D, Sena ES. A machine learning-assisted systematic review of preclinical glioma modeling: Is practice changing with the times? Neurooncol Adv 2024; 6:vdae193. [PMID: 39734809 PMCID: PMC11680884 DOI: 10.1093/noajnl/vdae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Abstract
Background Despite improvements in our understanding of glioblastoma pathophysiology, there have been no major improvements in treatment in recent years. Animal models are a vital tool for investigating cancer biology and its treatment, but have known limitations. There have been advances in glioblastoma modeling techniques in this century although it is unclear to what extent they have been adopted. Methods We searched Pubmed and EMBASE using terms designed to identify all publications reporting an animal glioma experiment, using a machine learning algorithm to assist with screening. We reviewed the full text of a sample of 1000 articles and then used the findings to inform a screen of all included abstracts to appraise the modeling applications across the entire dataset. Results The search identified 26 201 publications of which 13 783 were included at screening. The automated screening had high sensitivity but limited specificity. We observed a dominance of traditional cell line paradigms and the emergence of advanced tumor model systems eclipsed by a large increase in the volume of cell line experiments. Few studies used more than 1 model in vivo and most publications did not verify critical genetic features. Conclusions Advanced models have clear advantages in terms of tumor and disease recapitulation and have largely not replaced traditional cell lines which have a number of critical deficiencies that limit their viability in modern animal research. The judicious use of advanced models or more relevant cell lines might improve the translational relevance of future animal glioblastoma experimentation.
Collapse
Affiliation(s)
- Theodore C Hirst
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK
- Patrick G Johnson Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Emma Wilson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Declan Browne
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK
| | - Emily S Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
28
|
Khatib TO, Amanso AM, Knippler CM, Pedro B, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. PLoS One 2023; 18:e0292554. [PMID: 37819930 PMCID: PMC10566726 DOI: 10.1371/journal.pone.0292554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O. Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| | - Angelica M. Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Christina M. Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Emily R. Summerbell
- Office of Intramural Training and Education, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Najdat M. Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, United States of America
| | - Jessica M. Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
29
|
Li X, Li Y, Li N, Shen L, Li Z. Integrative analyses reveal biological function and prognostic role of m7G methylation regulators in high-grade glioma. Aging (Albany NY) 2023; 15:8782-8799. [PMID: 37679037 PMCID: PMC10522370 DOI: 10.18632/aging.204999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Based on 29 m7G regulators, glioma patients were categorized into three groups using data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets. Distinct characteristics were observed in immune cell infiltration, functional enrichment, and clinical prognosis for every glioma subtype. Analyzing the differentially expressed genes (DEGs) confirmed the distinction among the three m7G clusters. A predictive tool for overall survival (OS) in high-grade glioma patients was developed and confirmed, consisting of 13 m7G regulators forming a prognostic signature. Elevated m7G levels were found to be associated with increased tumor mutation burden and immune activation, indicating a tumor microenvironment characterized by inflammation and a lower overall survival rate. In contrast, reduced m7G scores were linked to a deficiency in immune infiltration, a low burden of mutations, and a non-inflamed phenotype, suggesting a more positive clinical outlook. Additionally, the m7G risk scores were found to impact chemotherapy sensitivity. The m7G predictive pattern shows potential as a marker for the overall survival of patients with high-grade glioma. By significantly improving our comprehension of the functional role of m7G regulators in the advancement of glioma and their impact on clinical results, this study offers valuable perspectives for precision therapy in the management of high-grade glioma.
Collapse
Affiliation(s)
- Xiaoli Li
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Semyachkina-Glushkovskaya O, Sokolovski S, Fedosov I, Shirokov A, Navolokin N, Bucharskaya A, Blokhina I, Terskov A, Dubrovski A, Telnova V, Tzven A, Tzoy M, Evsukova A, Zhlatogosrkaya D, Adushkina V, Dmitrenko A, Manzhaeva M, Krupnova V, Noghero A, Bragin D, Bragina O, Borisova E, Kurths J, Rafailov E. Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. Int J Mol Sci 2023; 24:13696. [PMID: 37762000 PMCID: PMC10530910 DOI: 10.3390/ijms241813696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Sergey Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Alla Bucharskaya
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dubrovski
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Anna Tzven
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Daria Zhlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd. 72, 1784 Sofia, Bulgaria;
| | - Jürgen Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
31
|
Arutyunyan IV, Soboleva AG, Kovtunov EA, Kosyreva AM, Kudelkina VV, Alekseeva AI, Elchaninov AV, Jumaniyazova ED, Goldshtein DV, Bolshakova GB, Fatkhudinov TK. Gene Expression Profile of 3D Spheroids in Comparison with 2D Cell Cultures and Tissue Strains of Diffuse High-Grade Gliomas. Bull Exp Biol Med 2023; 175:576-584. [PMID: 37770789 DOI: 10.1007/s10517-023-05906-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 09/30/2023]
Abstract
The use of relevant, accessible, and easily reproducible preclinical models of diffuse gliomas is a prerequisite for the development of successful therapeutic approaches to their treatment. Here we studied the gene expression profile of 3D spheroids in a comparison with 2D cell cultures and tissue strains of diffuse high-grade gliomas. Using real time PCR, we evaluated the expression of Gfap, Cd44, Pten, S100b, Vegfa, Hif1a, Sox2, Melk, Gdnf, and Mgmt genes playing an important role in the progression of gliomas and regulating tumor cell proliferation, adhesion, invasion, plasticity, apoptosis, DNA repair, and recruitment of tumor-associated cells. Gene expression analysis showed that 3D spheroids are more similar to tumor tissue strains by the expression levels of Gfap, Cd44, and Pten, while the expression levels of Hif1a and Sox2 in 3D spheroids did not differ from those of 2D cell cultures, the expression levels S100b and Vegfa in 3D spheroids was higher than in other models, and the expression levels of Melk, Gdnf, and Mgmt genes changed diversely. Thus, 3D spheroid model more closely mimics the tumor tissue than 2D cell culture, but still is not the most relevant, probably due to too small size of spheroids, which does not allow reproducing hypoxia and apoptotic and necrotic processes in the tumor tissue.
Collapse
Affiliation(s)
- I V Arutyunyan
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia.
| | - A G Soboleva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E A Kovtunov
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - A M Kosyreva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Kudelkina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A I Alekseeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Elchaninov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E D Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - D V Goldshtein
- N. P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - G B Bolshakova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - T Kh Fatkhudinov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
32
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
33
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
34
|
Song QQ, Lin LP, Chen YL, Qian JC, Wei K, Su JW, Ding JH, Lu M, Liu Y, Tan RX, Hu G. Characterization of LTr1 derived from cruciferous vegetables as a novel anti-glioma agent via inhibiting TrkA/PI3K/AKT pathway. Acta Pharmacol Sin 2023; 44:1262-1276. [PMID: 36482085 PMCID: PMC10203337 DOI: 10.1038/s41401-022-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Malignant glioma is the most fatal, invasive brain cancer with limited treatment options. Our previous studies show that 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1), a major metabolite of indole-3-carbinol (I3C) derived from cruciferous vegetables, produces anti-tumour effect against various tumour cell lines. In this study we characterized LTr1 as a novel anti-glioma agent. Based on screening 134 natural compounds and comparing the candidates' efficacy and toxicity, LTr1 was selected as the lead compound. We showed that LTr1 potently inhibited the viability of human glioma cell lines (SHG-44, U87, and U251) with IC50 values of 1.97, 1.84, and 2.03 μM, respectively. Furthermore, administration of LTr1 (100,300 mg· kg-1 ·d-1, i.g. for 18 days) dose-dependently suppressed the tumour growth in a U87 xenograft nude mouse model. We demonstrated that LTr1 directly bound with TrkA to inhibit its kinase activity and the downstream PI3K/AKT pathway thus inducing significant S-phase cell cycle arrest and apoptosis in SHG-44 and U87 cells by activating the mitochondrial pathway and inducing the production of reactive oxygen species (ROS). Importantly, LTr1 could cross the blood-brain barrier to achieve the therapeutic concentration in the brain. Taken together, LTr1 is a safe and promising therapeutic agent against glioma through inhibiting TrkA/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qi-Qi Song
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Li Chen
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Cheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Wei
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Wei Su
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Yang Liu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ren-Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, 210023, China.
| | - Gang Hu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
35
|
Chin SM, Reina G, Chau NDQ, Chabrol T, Wion D, Bouamrani A, Gay E, Nishina Y, Bianco A, Berger F. Functional Graphene for Peritumoral Brain Microenvironment Modulation Therapy in Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208227. [PMID: 36732906 DOI: 10.1002/smll.202208227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Indexed: 05/04/2023]
Abstract
Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.
Collapse
Affiliation(s)
- Shan Min Chin
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Tanguy Chabrol
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Didier Wion
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Ali Bouamrani
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Emmanuel Gay
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - François Berger
- Emmanuel Gay, François Berger, INSERM UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| |
Collapse
|
36
|
Wei Y, Li G, Feng J, Wu F, Zhao Z, Bao Z, Zhang W, Su X, Li J, Qi X, Duan Z, Zhang Y, Vega SF, Jakola AS, Sun Y, Carén H, Jiang T, Fan X. Stalled oligodendrocyte differentiation in IDH-mutant gliomas. Genome Med 2023; 15:24. [PMID: 37055795 PMCID: PMC10103394 DOI: 10.1186/s13073-023-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jing Feng
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhaoshi Bao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiuyi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yunqiu Zhang
- Center of Growth Metabolism & Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, 41390, Sweden
| | - Yingyu Sun
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| |
Collapse
|
37
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Abedin MJ, Michelhaugh SK, Mittal S, Berdichevsky Y. 3D models of glioblastoma interaction with cortical cells. Front Bioeng Biotechnol 2023; 11:1150772. [PMID: 36970613 PMCID: PMC10033518 DOI: 10.3389/fbioe.2023.1150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Glioblastoma (GBM) invasiveness and ability to infiltrate deep into the brain tissue is a major reason for the poor patient prognosis for this type of brain cancer. Behavior of glioblastoma cells, including their motility, and expression of invasion-promoting genes such as matrix metalloprotease-2 (MMP2), are strongly influenced by normal cells found in the brain parenchyma. Cells such as neurons may also be influenced by the tumor, as many glioblastoma patients develop epilepsy. In vitro models of glioblastoma invasiveness are used to supplement animal models in a search for better treatments, and need to combine capability for high-throughput experiments with capturing bidirectional interactions between GBM and brain cells.Methods: In this work, two 3D in vitro models of GBM-cortical interactions were investigated. A matrix-free model was created by co-culturing GBM and cortical spheroids, and a matrix-based model was created by embedding cortical cells and a GBM spheroid in Matrigel.Results: Rapid GBM invasion occurred in the matrix-based model, and was enhanced by the presence of cortical cells. Little invasion occurred in the matrix-free model. In both types of models, presence of GBM cells resulted in a significant increase in paroxysmal neuronal activity.Discussion: Matrix-based model may be better suited for studying GBM invasion in an environment that includes cortical cells, while matrix-free model may be useful in investigation of tumor-associated epilepsy.
Collapse
Affiliation(s)
- Md Joynal Abedin
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
| | | | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
- Department of Electrical and Computer Engineering, Bethlehem, PA, United States
- *Correspondence: Yevgeny Berdichevsky,
| |
Collapse
|
39
|
Khatib TO, Amanso AM, Pedro B, Knippler CM, Summerbell ER, Zohbi NM, Konen JM, Mouw JK, Marcus AI. A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530493. [PMID: 36909653 PMCID: PMC10002729 DOI: 10.1101/2023.02.28.530493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
Collapse
Affiliation(s)
- Tala O Khatib
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Angelica M Amanso
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- These authors contributed equally
| | - Brian Pedro
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina M Knippler
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Emily R Summerbell
- Office of Intratumoral Training and Education, The National Institutes of Health, Bethesda, Maryland, USA
| | - Najdat M Zohbi
- Graduate Medical Education, Piedmont Macon Medical, Macon, Georgia, USA
| | - Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Janna K Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Poli A, Oudin A, Muller A, Salvato I, Scafidi A, Hunewald O, Domingues O, Nazarov PV, Puard V, Baus V, Azuaje F, Dittmar G, Zimmer J, Michel T, Michelucci A, Niclou SP, Ollert M. Allergic airway inflammation delays glioblastoma progression and reinvigorates systemic and local immunity in mice. Allergy 2023; 78:682-696. [PMID: 36210648 DOI: 10.1111/all.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection. METHODS An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets. RESULTS We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4+ T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity. CONCLUSION Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.
Collapse
Affiliation(s)
- Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Cancer Research, Luxembourg Institute of Health, Neuro-Immunology Group, Luxembourg, Luxembourg
| | - Anaïs Oudin
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnaud Muller
- Luxembourg Institute of Health, Bioinformatics Platform, Strassen, Luxembourg
| | - Ilaria Salvato
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Andrea Scafidi
- Department of Cancer Research, Luxembourg Institute of Health, Neuro-Immunology Group, Luxembourg, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Petr V Nazarov
- Luxembourg Institute of Health, Bioinformatics Platform, Strassen, Luxembourg
| | - Vincent Puard
- Institut Curie Centre de Recherche, PSL Research University, RPPA platform, Paris, France
| | - Virginie Baus
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Francisco Azuaje
- Luxembourg Institute of Health, Bioinformatics Platform, Strassen, Luxembourg
| | - Gunnar Dittmar
- Luxembourg Institute of Health, Bioinformatics Platform, Strassen, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Department of Cancer Research, Luxembourg Institute of Health, Neuro-Immunology Group, Luxembourg, Luxembourg
| | - Simone P Niclou
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Hua X, Zhang C, Ba Y, Zhao S, Fan K, Wang B. CircRNA circ_POSTN promotes the malignancy of glioma by regulating the miR-433-3p/SPARC axis. Metab Brain Dis 2023; 38:543-555. [PMID: 36454505 DOI: 10.1007/s11011-022-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Glioma is a common tumor in the brain. CircRNA hsa_circ_0030018, also termed as hsa_circPOSTN_001 (circ_POSTN), is reported to exert a promoting influence on the development of glioma. Our study intends to deeply explore its regulation mechanism of circ_POSTN. Expression of circ_POSTN, microRNA-433-3p (miR-433-3p) and Secreted protein acidic and rich in cysteine (SPARC) was detected by qRT-PCR or western blot assay. The function of circ_POSTN was analyzed by loss-of-function experiments. The targeting relationship between miR-433-3p and circ_POSTN or SPARC was predicted by bioinformatics analysis and validated by dual-luciferase reporter assay. Xenograft modeling was employed to validate the function of circ_POSTN in glioma in vivo. circ_POSTN and SPARC were upregulated while miR-433-3p was downregulated in glioma tissues and cells. Both circ_POSTN and SPARC knockdown inhibited clonogenicity, migration, and promoted apoptosis of glioma cells. Circ_POSTN sponged miR-433-3p to regulate SPARC expression. Gain of SPARC largely attenuated circ_POSTN knockdown or miR-433-3p overexpression-mediated effects on glioma cell clonogenicity, migration, and apoptosis. Furthermore, silencing of circ_POSTN decreased xenograft tumor growth in vivo. Inhibition of circ_POSTN repressed glioma development, at least in part, via regulating the miR-433-3p/SPARC axis, providing evidence for circ_POSTN as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiangting Hua
- The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei City, 230000, Anhui Province, China
| | - Chaoyong Zhang
- Taihe Hospital Affiliated to Wannan Medical College, 21 Jiankang Road, Chengguan Town, Taihe County, Fuyang, 236000, Anhui Province, China
| | - Yongfeng Ba
- Taihe Hospital Affiliated to Wannan Medical College, 21 Jiankang Road, Chengguan Town, Taihe County, Fuyang, 236000, Anhui Province, China
| | - Shiwei Zhao
- Taihe Hospital Affiliated to Wannan Medical College, 21 Jiankang Road, Chengguan Town, Taihe County, Fuyang, 236000, Anhui Province, China
| | - Kui Fan
- Taihe Hospital Affiliated to Wannan Medical College, 21 Jiankang Road, Chengguan Town, Taihe County, Fuyang, 236000, Anhui Province, China
| | - Bin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, 236000, China.
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei City, 230000, Anhui Province, China.
| |
Collapse
|
42
|
Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK. Preclinical Models of Low-Grade Gliomas. Cancers (Basel) 2023; 15:cancers15030596. [PMID: 36765553 PMCID: PMC9913857 DOI: 10.3390/cancers15030596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | | | - John F. de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| |
Collapse
|
43
|
Rani V, Prabhu A. In vitro blood brain barrier models: Molecular aspects and therapeutic strategies in glioma management. Curr Res Transl Med 2023; 71:103376. [PMID: 36580825 DOI: 10.1016/j.retram.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Glioma management is the most challenging task in clinical oncology due to numerous reasons. One of the major hurdles in glioma therapy is the presence of blood brain barrier which resists the entry of most of the drugs into the brain. However, in case of tumors, blood brain barrier integrity is compromised, which in turn can be advantageous in delivering the drugs, if the therapeutic module is strategically modified. For such improvised therapeutic strategy, it is necessary to understand the molecular composition and profiling of blood brain barrier and blood brain tumor barrier. This review mainly focuses on the composition, markers expressed on the blood brain barrier which will help the readers to understand its basic environment. It also gives a detailed account of the various in vitro models that are used to study the nature of the blood brain barrier and describes various strategies in improvising the drug delivery in glioma management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India.
| |
Collapse
|
44
|
Ghosh A, Chakraborty D, Mukerjee N, Baishya D, Chigurupati S, Felemban SG, Almahmoud SA, Almikhlafi MA, Sehgal A, Singh S, Sharma N, Aleya L, Behl T. Target-based virtual screening and molecular interaction studies for lead identification of natural olive compounds against glioblastoma multiforme. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6170-6191. [PMID: 35994146 DOI: 10.1007/s11356-022-22401-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma multiforme, a rare traumatic brain disorder, is at the research climax for its uncontrolled growth leading to a catastrophic outcome. Throwing light on the target-based virtual screening of drugs using natural phytocompounds is a striking cornerstone in glioblastoma-based drug discovery, accelerating with leaps and bounds. This project aims to develop promising lead compounds against glioblastoma brain cancer using OliveNet™, an open-source database. In this pursuit, our rationale for selecting molecules was based on their capability to pass through the blood-brain barrier. Out of 51 derivative molecules from flavonoids and polyphenols, 17 molecules were screened out bearing the best ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, alongside fulfilling our rationale of lead selection. Two polyphenols, 3,4,5-trimethoxybenzoic acid and 4-ethyl guaiacol, have binding affinity for the antioxidant flavonoid luteolin of -5.1 and -4.3 kcal/mol, respectively. According to docking studies, the residues ASN1960, ASN1966, ASN1960, PHE1984, TYR1896, VAL1911, and LYS1966 make both polar and nonpolar interactions with 3,4,5-trimethoxybenzoic acid and 4-ethylguanidine, respectively. LD50 values of toxicity screening using TOX Pro brought to limelight the excellent safety profile of polyphenols and flavonoids. Furthermore, studies using in silico cytotoxicity prediction and molecular modelling have decisively shown that these polyphenols are likely to be effective brain cancer inhibitors and promising future lead candidates against glioblastoma multiforme.
Collapse
Affiliation(s)
- Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Dipanwita Chakraborty
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, West Bengal, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madina, Kingdom of Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besancon, France
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
45
|
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol Adv 2023; 5:vdad009. [PMID: 36968288 PMCID: PMC10034917 DOI: 10.1093/noajnl/vdad009] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance. GBM cells interact with their microenvironment directly through cell-to-cell by interaction mediated by cell-surface molecules, or indirectly through apocrine or paracrine signaling via cytokines, growth factors, and extracellular vehicles. The recent discovery of neuron-glioma interfaces and neurotransmitter-based interactions has uncovered novel mechanisms that favor tumor cell survival and growth. Here, we review the known and emerging evidence related to the communication between GBM cells and various components of its TME, discuss models for studying the TME and outline current studies targeting components of the TME for therapeutic purposes.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiyong Liang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
46
|
Filippone A, Casili G, Scuderi SA, Mannino D, Lanza M, Campolo M, Paterniti I, Capra AP, Colarossi C, Bonasera A, Lombardo SP, Cuzzocrea S, Esposito E. Sodium Propionate Contributes to Tumor Cell Growth Inhibition through PPAR-γ Signaling. Cancers (Basel) 2022; 15:cancers15010217. [PMID: 36612214 PMCID: PMC9818202 DOI: 10.3390/cancers15010217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
New therapeutic approaches are needed to improve the outcome of patients with glioblastoma (GBM). Propionate, a short-chain fatty acid (SCFA), has a potent antiproliferative effect on various tumor cell types. Peroxisome proliferator-activated receptor (PPAR) ligands possess anticancer properties. We aimed to investigate the PPAR-γ/SCFAs interaction in in vitro and in vivo models of GBM. The U87 cell line was used in the in vitro study and was treated with sodium propionate (SP). U87 cells were silenced by using PPAR-γ siRNA or Ctr siRNA. In the in vivo study, BALB/c nude mice were inoculated in the right flank with 3 × 106 U-87 cells. SP (doses of 30 and 100 mg/kg) and GW9662 (1 mg/kg) were administered. In vitro exposure of GBM to SP resulted in prominent apoptosis activation while the autophagy pathway was promoted by SP treatments by influencing autophagy-related proteins. Knockdown of PPAR-γ sensitized GBM cells and blocked the SP effect. In vivo, SP was able to decrease tumor growth and to resolve GBM tissue features. SP promoted apoptosis and autophagy pathways and tumor cell proliferation leading to cell cycle arrest through a PPAR-γ-dependent mechanism suggesting that the PPAR-γ/SCFAs axis could be targeted for the management of GBM.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo, 7-95029 Catania, Italy
| | - Annalisa Bonasera
- Istituto Oncologico del Mediterraneo, Via Penninazzo, 7-95029 Catania, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
47
|
Ahmed M, Semreen AM, El-Huneidi W, Bustanji Y, Abu-Gharbieh E, Alqudah MAY, Alhusban A, Shara M, Abuhelwa AY, Soares NC, Semreen MH, Alzoubi KH. Preclinical and Clinical Applications of Metabolomics and Proteomics in Glioblastoma Research. Int J Mol Sci 2022; 24:ijms24010348. [PMID: 36613792 PMCID: PMC9820403 DOI: 10.3390/ijms24010348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GB) is a primary malignancy of the central nervous system that is classified by the WHO as a grade IV astrocytoma. Despite decades of research, several aspects about the biology of GB are still unclear. Its pathogenesis and resistance mechanisms are poorly understood, and methods to optimize patient diagnosis and prognosis remain a bottle neck owing to the heterogeneity of the malignancy. The field of omics has recently gained traction, as it can aid in understanding the dynamic spatiotemporal regulatory network of enzymes and metabolites that allows cancer cells to adjust to their surroundings to promote tumor development. In combination with other omics techniques, proteomic and metabolomic investigations, which are a potent means for examining a variety of metabolic enzymes as well as intermediate metabolites, might offer crucial information in this area. Therefore, this review intends to stress the major contribution these tools have made in GB clinical and preclinical research and highlights the crucial impacts made by the integrative "omics" approach in reducing some of the therapeutic challenges associated with GB research and treatment. Thus, our study can purvey the use of these powerful tools in research by serving as a hub that particularly summarizes studies employing metabolomics and proteomics in the realm of GB diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Alhusban
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| |
Collapse
|
48
|
Handoko H, Wahyudi ST, Setyawan AA, Kartono A. A dynamical model of combination therapy applied to glioma. J Biol Phys 2022; 48:439-459. [PMID: 36367670 PMCID: PMC9727046 DOI: 10.1007/s10867-022-09618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is a human brain tumor that is very difficult to treat at an advanced stage. Studies of glioma biomarkers have shown that some markers are released into the bloodstream, so data from these markers indicate a decrease in the concentration of blood glucose and serum glucose in patients with glioma; these suggest an association between glucose and glioma. This decrease mechanism in glucose concentration can be described by the coupled ordinary differential equations of the early-stage glioma growth and interactions between glioma cells, immune cells, and glucose concentration. In this paper, we propose developing a new mathematical model to explain how glioma cells evolve and survive combination therapy between chemotherapy and oncolytic virotherapy, as an alternative to glioma treatment. In this study, three therapies were applied for analysis, that is, (1) chemotherapy, (2) virotherapy, and (3) a combination of chemotherapy and virotherapy. Virotherapy uses specialist viruses that only attack tumor cells. Based on the simulation results of the therapy carried out, we conclude that combination therapy can reduce the glioma cells significantly compared to the other two therapies. The simulation results of this combination therapy can be an alternative to glioma therapy.
Collapse
Affiliation(s)
- Handoko Handoko
- Department of Physics, Faculty of Mathematical and Natural Science, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Dramaga IPB Campus, 16680, Bogor, Indonesia.
| | - Setyanto Tri Wahyudi
- Department of Physics, Faculty of Mathematical and Natural Science, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Dramaga IPB Campus, 16680, Bogor, Indonesia
| | - Ardian Arif Setyawan
- Department of Physics, Faculty of Mathematical and Natural Science, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Dramaga IPB Campus, 16680, Bogor, Indonesia
| | - Agus Kartono
- Department of Physics, Faculty of Mathematical and Natural Science, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Dramaga IPB Campus, 16680, Bogor, Indonesia.
| |
Collapse
|
49
|
Gong L, Yin Y, Chen C, Wan Q, Xia D, Wang M, Pu Z, Zhang B, Zou J. Characterization of EGFR-reprogrammable temozolomide-resistant cells in a model of glioblastoma. Cell Death Dis 2022; 8:438. [PMID: 36316307 PMCID: PMC9622861 DOI: 10.1038/s41420-022-01230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ) resistance is a major clinical challenge for glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) mediated DNA damage repair is a key mechanism for TMZ resistance. However, MGMT-null GBM patients remain resistant to TMZ, and the process for resistance evolution is largely unknown. Here, we developed an acquired TMZ resistant xenograft model using serial implantation of MGMT-hypermethylated U87 cells, allowing the extraction of stable, TMZ resistant (TMZ-R) tumors and primary cells. The derived tumors and cells exhibited stable multidrug resistance both in vitro and in vivo. Functional experiments, as well as single-cell RNA sequencing (scRNA-seq), indicated that TMZ treatment induced cellular heterogeneity including quiescent cancer stem cells (CSCs) in TMZ-R tumors. A subset of these were labeled by NES+/SOX2+/CADM1+ and demonstrated significant advantages for drug resistance. Further study revealed that Epidermal Growth Factor Receptor (EGFR) deficiency and diminished downstream signaling may confer this triple positive CSCs subgroup’s quiescent phenotypes and chemoresistance. Continuous EGF treatment improved the chemosensitivity of TMZ-R cells both in vitro and in vivo, mechanically reversing cell cycle arrest and reduced drug uptake. Further, EGF treatment of TMZ-R tumors favorably normalized the response to TMZ in combination therapy. Here, we characterize a unique subgroup of CSCs in MGMT-null experimental glioblastoma, identifying EGF + TMZ therapy as a potential strategy to overcome cellular quiescence and TMZ resistance, likely endowed by deficient EGFR signaling.
Collapse
Affiliation(s)
- Lingli Gong
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Ying Yin
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Cheng Chen
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Quan Wan
- grid.89957.3a0000 0000 9255 8984Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002 China
| | - Die Xia
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Mei Wang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Zhening Pu
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Bo Zhang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Jian Zou
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
50
|
CircRNAs in Tumor Radioresistance. Biomolecules 2022; 12:biom12111586. [DOI: 10.3390/biom12111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, non-coding RNAs, which are derived from host genes that are present in several species and can be involved in the progression of various diseases. circRNAs’ leading role is to act as RNA sponges. In recent years, the other roles of circRNAs have been discovered, such as regulating transcription and translation, regulating host genes, and even being translated into proteins. As some tumor cells are no longer radiosensitive, tumor radioresistance has since become a challenge in treating tumors. In recent years, circRNAs are differentially expressed in tumor cells and can be used as biological markers of tumors. In addition, circRNAs can regulate the radiosensitivity of tumors. Here, we list the mechanisms of circRNAs in glioma, nasopharyngeal carcinoma, and non-small cell lung cancer; further, these studies also provide new ideas for the purposes of eliminating radioresistance in tumors.
Collapse
|