1
|
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025; 60:1217-1233.e7. [PMID: 39742660 PMCID: PMC12014375 DOI: 10.1016/j.devcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells. Additionally, PRR12 co-localizes with NIPBL to sites of DNA damage in a NIPBL and cohesin-dependent manner. We find that the requirement for PRR12 differs across cell lines, with human HeLa cells exhibiting reduced sensitivity to PRR12 loss compared with mouse NIH-3T3 cells, indicating context-specific roles. Together, our work identifies PRR12 as a regulator of cohesin and provides insight into how genome integrity is maintained across diverse cellular contexts.
Collapse
Affiliation(s)
| | - Eric M Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Jeon BC, Kim YJ, Park AK, Song MR, Na KM, Lee J, An D, Park Y, Hwang H, Kim TD, Lim J, Park SK. Dynamic O-GlcNAcylation governs long-range chromatin interactions in V(D)J recombination during early B-cell development. Cell Mol Immunol 2025; 22:68-82. [PMID: 39627609 PMCID: PMC11686140 DOI: 10.1038/s41423-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 01/01/2025] Open
Abstract
V(D)J recombination secures the production of functional immunoglobulin (Ig) genes and antibody diversity during the early stages of B-cell development through long-distance interactions mediated by cis-regulatory elements and trans-acting factors. O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins that regulates various protein functions, including DNA-binding affinity and protein-protein interactions. However, the effects of O-GlcNAcylation on proteins involved in V(D)J recombination remain largely unknown. To elucidate this relationship, we downregulated O-GlcNAcylation in a mouse model by administering an O-GlcNAc inhibitor or restricting the consumption of a regular diet. Interestingly, the inhibition of O-GlcNAcylation in mice severely impaired Ig heavy-chain (IgH) gene rearrangement. We identified several factors crucial for V(D)J recombination, including YY1, CTCF, SMC1, and SMC3, as direct targets of O-GlcNAc modification. Importantly, O-GlcNAcylation regulates the physical interaction between SMC1 and SMC3 and the DNA-binding patterns of YY1 at the IgH gene locus. Moreover, O-GlcNAc inhibition downregulated DDX5 protein expression, affecting the functional association of CTCF with its DNA-binding sites at the IgH locus. Our results showed that locus contraction and long-range interactions throughout the IgH locus are disrupted in a manner dependent on the cellular O-GlcNAc level. In this study, we established that V(D)J recombination relies on the O-GlcNAc status of stage-specific proteins during early B-cell development and identified O-GlcNAc-dependent mechanisms as new regulatory components for the development of a diverse antibody repertoire.
Collapse
Affiliation(s)
- Bong Chan Jeon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yu-Ji Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ae Kyung Park
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi-Ran Song
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki Myeong Na
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juwon Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Dasom An
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Yeseul Park
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Heeyoun Hwang
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Tae-Don Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Gemble S, Buhagiar-Labarchède G, Onclercq-Delic R, Jaulin C, Amor-Guéret M. Cytidine deaminase deficiency impairs sister chromatid disjunction by decreasing PARP-1 activity. Cell Cycle 2017; 16:1128-1135. [PMID: 28463527 DOI: 10.1080/15384101.2017.1317413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bloom Syndrome (BS) is a rare genetic disease characterized by high levels of chromosomal instability and an increase in cancer risk. Cytidine deaminase (CDA) expression is downregulated in BS cells, leading to an excess of cellular dC and dCTP that reduces basal PARP-1 activity, compromising optimal Chk1 activation and reducing the efficiency of downstream checkpoints. This process leads to the accumulation of unreplicated DNA during mitosis and, ultimately, ultrafine anaphase bridge (UFB) formation. BS cells also display incomplete sister chromatid disjunction when depleted of cohesin. Using a combination of fluorescence in situ hybridization and chromosome spreads, we investigated the possible role of CDA deficiency in the incomplete sister chromatid disjunction in cohesin-depleted BS cells. The decrease in basal PARP-1 activity in CDA-deficient cells compromised sister chromatid disjunction in cohesin-depleted cells, regardless of BLM expression status. The observed incomplete sister chromatid disjunction may be due to the accumulation of unreplicated DNA during mitosis in CDA-deficient cells, as reflected in the changes in centromeric DNA structure associated with the decrease in basal PARP-1 activity. Our findings reveal a new function of PARP-1 in sister chromatid disjunction during mitosis.
Collapse
Affiliation(s)
- Simon Gemble
- a Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche , Orsay , France.,b CNRS UMR 3348, Centre Universitaire , Orsay , France.,c Université Paris Sud , Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay , France
| | - Géraldine Buhagiar-Labarchède
- a Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche , Orsay , France.,b CNRS UMR 3348, Centre Universitaire , Orsay , France.,c Université Paris Sud , Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay , France
| | - Rosine Onclercq-Delic
- a Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche , Orsay , France.,b CNRS UMR 3348, Centre Universitaire , Orsay , France.,c Université Paris Sud , Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay , France
| | - Christian Jaulin
- d Institut de Génétique et Développement de Rennes, Equipe Epigénétique et Cancer, UMR 6290 CNRS, Université Rennes 1 , Rennes Cedex , France
| | - Mounira Amor-Guéret
- a Institut Curie, PSL Research University, UMR 3348, Unité Stress Génotoxiques et Cancer, Centre de Recherche , Orsay , France.,b CNRS UMR 3348, Centre Universitaire , Orsay , France.,c Université Paris Sud , Université Paris Saclay, UMR3348, Centre Universitaire d'Orsay , France
| |
Collapse
|
4
|
Rahayu R, Ohsaki E, Omori H, Ueda K. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes. Virology 2016; 496:51-58. [PMID: 27254595 DOI: 10.1016/j.virol.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 01/25/2023]
Abstract
In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy-electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division.
Collapse
Affiliation(s)
- Retno Rahayu
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
6
|
Sajesh BV, Lichtensztejn Z, McManus KJ. Sister chromatid cohesion defects are associated with chromosome instability in Hodgkin lymphoma cells. BMC Cancer 2013; 13:391. [PMID: 23962039 PMCID: PMC3751861 DOI: 10.1186/1471-2407-13-391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/19/2013] [Indexed: 12/25/2022] Open
Abstract
Background Chromosome instability manifests as an abnormal chromosome complement and is a pathogenic event in cancer. Although a correlation between abnormal chromosome numbers and cancer exist, the underlying mechanisms that cause chromosome instability are poorly understood. Recent data suggests that aberrant sister chromatid cohesion causes chromosome instability and thus contributes to the development of cancer. Cohesion normally functions by tethering nascently synthesized chromatids together to prevent premature segregation and thus chromosome instability. Although the prevalence of aberrant cohesion has been reported for some solid tumors, its prevalence within liquid tumors is unknown. Consequently, the current study was undertaken to evaluate aberrant cohesion within Hodgkin lymphoma, a lymphoid malignancy that frequently exhibits chromosome instability. Methods Using established cytogenetic techniques, the prevalence of chromosome instability and aberrant cohesion was examined within mitotic spreads generated from five commonly employed Hodgkin lymphoma cell lines (L-1236, KM-H2, L-428, L-540 and HDLM-2) and a lymphocyte control. Indirect immunofluorescence and Western blot analyses were performed to evaluate the localization and expression of six critical proteins involved in the regulation of sister chromatid cohesion. Results We first confirmed that all five Hodgkin lymphoma cell lines exhibited chromosome instability relative to the lymphocyte control. We then determined that each Hodgkin lymphoma cell line exhibited cohesion defects that were subsequently classified into mild, moderate or severe categories. Surprisingly, ~50% of the mitotic spreads generated from L-540 and HDLM-2 harbored cohesion defects. To gain mechanistic insight into the underlying cause of the aberrant cohesion we examined the localization and expression of six critical proteins involved in cohesion. Although all proteins produced the expected nuclear localization pattern, striking differences in RAD21 expression was observed: RAD21 expression was lowest in L-540 and highest within HDLM-2. Conclusion We conclude that aberrant cohesion is a common feature of all five Hodgkin lymphoma cell lines evaluated. We further conclude that aberrant RAD21 expression is a strong candidate to underlie aberrant cohesion, chromosome instability and contribute to the development of the disease. Our findings support a growing body of evidence suggesting that cohesion defects and aberrant RAD21 expression are pathogenic events that contribute to tumor development.
Collapse
Affiliation(s)
- Babu V Sajesh
- Manitoba Institute of Cell Biology and the Department of Biochemistry & Medical Genetics, University of Manitoba, ON6010 - 675 McDermot Avenue, Winnipeg, Manitoba MB R3E 0V9, Canada
| | | | | |
Collapse
|
7
|
Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013; 3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022]
Abstract
The gammaherpesviruses are unique for their capacity to establish a variety of gene expression programs during latent and lytic infection. This capacity enables the virus to control host-cell proliferation, prevent programmed cell death, elude immune cell detection, and ultimately adapt to a wide range of environmental and developmental changes in the host cell. This remarkable plasticity of gene expression results from the combined functionalities of viral and host factors that biochemically remodel and epigenetically modify the viral chromosome. These epigenetic modifications range from primary DNA methylations, to chromatin protein post-translational modifications, to higher-order chromosome conformations. In addition, gammaherpesviruses have acquired specialized tools to modulate the epigenetic processes that promote viral genome propagation and host-cell survival.
Collapse
|
8
|
Wassmann K. Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 2013; 12:1352-9. [PMID: 23574717 DOI: 10.4161/cc.24600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed--deprotected--for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection.
Collapse
|
9
|
|
10
|
Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 2012; 86:9454-64. [PMID: 22740398 PMCID: PMC3416178 DOI: 10.1128/jvi.00787-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Chromatin-organizing factors such as CTCF and cohesins have been implicated in the control of complex viral regulatory programs. We investigated the role of CTCF and cohesins in the control of the switch from latency to the lytic cycle for Kaposi's sarcoma-associated herpesvirus (KSHV). We found that cohesin subunits but not CTCF are required for the repression of KSHV immediate early gene transcription. Depletion of the cohesin subunits Rad21, SMC1, and SMC3 resulted in lytic cycle gene transcription and viral DNA replication. In contrast, depletion of CTCF failed to induce lytic transcription or DNA replication. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) revealed that cohesins and CTCF bound to several sites within the immediate early control region for ORF50 and to more distal 5' sites that also regulate the divergently transcribed ORF45-ORF46-ORF47 gene cluster. Rad21 depletion led to a robust increase in ORF45, ORF46, ORF47, and ORF50 transcripts, with similar kinetics to that observed with chemical induction by sodium butyrate. During latency, the chromatin between the ORF45 and ORF50 transcription start sites was enriched in histone H3K4me3, with elevated H3K9ac at the ORF45 promoter and elevated H3K27me3 at the ORF50 promoter. A paused form of RNA polymerase II (Pol II) was loosely associated with the ORF45 promoter region during latency but was converted to an active elongating form upon reactivation induced by Rad21 depletion. Butyrate treatment caused a rapid dissociation of cohesins and loss of CTCF binding at the immediate early gene locus, suggesting that cohesins may be a direct target of butyrate-mediated lytic induction. Our findings implicate cohesins as a major repressor of KSHV lytic gene activation and show that they function coordinately with CTCF to regulate the switch between latent and lytic gene activity.
Collapse
|
11
|
Nuclear import and export signals of human cohesins SA1/STAG1 and SA2/STAG2 expressed in Saccharomyces cerevisiae. PLoS One 2012; 7:e38740. [PMID: 22715410 PMCID: PMC3371031 DOI: 10.1371/journal.pone.0038740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 05/09/2012] [Indexed: 02/02/2023] Open
Abstract
Background Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown. Methodology/Principal Findings In silico analysis indicates numerous putative nuclear localization (NLS) and export (NES) signals in the SA proteins, suggesting the possibility of their nucleocytoplasmic shuttling. We studied the functionality of those putative signals by expressing fluorescently tagged SA1 and SA2 in the yeast Saccharomyces cerevisiae. Only the N-terminal NLS turned out to be functional in SA1. In contrast, the SA2 protein has at least two functional NLS and also two functional NES. Depending on the balance between these opposing signals, SA2 resides in the nucleus or is distributed throughout the cell. Validation of the above conclusions in HeLa cells confirmed that the same N-terminal NLS of SA1 is functional in those cells. In contrast, in SA2 the principal NLS functioning in HeLa cells is different from that identified in yeast and is localized to the C-terminus. Conclusions/Significance This is the first demonstration of the possibility of non-nuclear localization of an SA protein. The reported difference in the organization between the two SA homologues may also be relevant to their partially divergent functions. The mechanisms determining subcellular localization of cohesins are only partially conserved between yeast and human cells.
Collapse
|
12
|
Galehdari H, Monajemzadeh R, Nazem H, Mohamadian G, Pedram M. Identification of a novel de novo mutation in the NIPBL gene in an Iranian patient with Cornelia de Lange syndrome: A case report. J Med Case Rep 2011; 5:242. [PMID: 21707975 PMCID: PMC3138439 DOI: 10.1186/1752-1947-5-242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/27/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cornelia de Lange syndrome is characterized by dysmorphic facial features, hirsutism, severe growth and developmental delay. Germline mutations in the NIPBL gene with an autosomal dominant pattern and in the SMC1A gene with an X-linked pattern have been identified in Cornelia de Lange syndrome. CASE PRESENTATION A two-month-old Iranian boy who showed multiple congenital anomalies was referred to the genetic center of a welfare organization in southwest Iran. He was the second child of a non-consanguineous marriage, born after full term with normal delivery. His birth weight was 3110 g, his length was 46 cm and his head circumference was 30 cm. Both parents were clinically asymptomatic, with no positive history of any deformity in their respective families. CONCLUSIONS Sequencing of the NIPBL gene from our patient revealed a single-base deletion of thymidine in exon 10 (c.516delT). This mutation presumably results in premature termination at codon 526. We did not observe this mutation in the parents of our patient with Cornelia de Lange syndrome. The results presented here enlarge the spectrum of NIPBL gene mutations associated with Cornelia de Lange syndrome by identifying a novel de novo mutation in an Iranian patient with Cornelia de Lange syndrome and further support the hypothesis that NIPBL mutations are disease-causing mutations leading to Cornelia de Lange syndrome.
Collapse
Affiliation(s)
- Hamid Galehdari
- Genetics Department, Shahid Chamran University, Ahwaz, Iran.
| | | | | | | | | |
Collapse
|
13
|
Xiao T, Wallace J, Felsenfeld G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 2011; 31:2174-83. [PMID: 21444719 PMCID: PMC3133248 DOI: 10.1128/mcb.05093-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/19/2011] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that the protein CTCF, which plays an important role in insulation and in large-scale organization of chromatin within the eukaryotic nucleus, depends for both activities on recruitment of the cohesin complex. We show here that the interaction of CTCF with the cohesin complex involves direct contacts between the cohesin subunit SA2 and specific regions of the C-terminal tail of CTCF. All other cohesin components are recruited through their interaction with SA2. Expression in vivo of CTCF mutants lacking the C-terminal domain, or with mutations at sites within it required for SA2 binding, disrupts the normal expression profile of the imprinted genes IGF2-H19 and also results in a loss of insulation activity. Taken together, our results demonstrate that specific sites on the C terminus of CTCF are essential for cohesin binding and insulator function. The only direct interaction between CTCF and cohesin involves contact with SA2, which is external to the cohesin ring. This suggests that in recruiting cohesin to CTCF, SA2 could bind first and the ring could assemble subsequently.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Julie Wallace
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Sjögren C, Ström L. S-phase and DNA damage activated establishment of sister chromatid cohesion--importance for DNA repair. Exp Cell Res 2010; 316:1445-53. [PMID: 20043905 DOI: 10.1016/j.yexcr.2009.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 01/23/2023]
Abstract
By holding sister chromatids together from the moment of their formation until their separation at anaphase, the multi subunit protein complex Cohesin guarantees correct chromosome segregation. This S-phase established chromatid cohesion is also essential for repair of DNA double strand breaks (DSB) in postreplicative cells. In addition, Cohesin has to be recruited to a DSB, and new cohesion has to form in response to the damage for repair. When it became clear that cohesion is created de novo in response to DNA breaks, the term "damage induced cohesion" (DI-cohesion) was coined. It is now established that certain factors are needed for establishment of both S-phase and DI-cohesion, while others have been found to be unique for respective process. In addition, post-translational modifications of Cohesin components that are functionally important for cohesion formation, either during S-phase or in response to damage, have recently been identified. Here, we present and discuss the current models for establishment of S-phase and DI-cohesion in the context of their involvement in DSB repair.
Collapse
Affiliation(s)
- Camilla Sjögren
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
15
|
Wang LHC, Mayer B, Stemmann O, Nigg EA. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 2010; 123:806-13. [PMID: 20144989 DOI: 10.1242/jcs.058255] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sister chromatid cohesion is mediated by DNA catenation and proteinaceous cohesin complexes. The recent visualization of PICH (Plk1-interacting checkpoint helicase)-coated DNA threads in anaphase cells raises new questions as to the role of DNA catenation and its regulation in time and space. In the present study we show that persistent DNA catenation induced by inhibition of Topoisomerase-IIalpha can contribute to sister chromatid cohesion in the absence of cohesin complexes and that resolution of catenation is essential for abscission. Furthermore, we use an in vitro chromatid separation assay to investigate the temporal and functional relationship between cohesin removal and Topoisomerase-IIalpha-mediated decatenation. Our data suggest that centromere decatenation can occur only after separase activation and cohesin removal, providing a plausible explanation for the persistence of centromere threads after anaphase onset.
Collapse
Affiliation(s)
- Lily Hui-Ching Wang
- Department of Cell Biology, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
16
|
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 2009; 118:591-605. [PMID: 19533160 DOI: 10.1007/s00412-009-0220-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/22/2009] [Indexed: 12/19/2022]
Abstract
In contrast to yeast, plant interphase nuclei often display incomplete alignment (cohesion) along sister chromatid arms. Sister chromatid cohesion mediated by the multi-subunit cohesin complex is essential for correct chromosome segregation during nuclear divisions and for DNA recombination repair. The cohesin complex consists of the conserved proteins SMC1, SMC3, SCC3, and an alpha-kleisin subunit. Viable homozygous mutants could be selected for the Arabidopsis thaliana alpha-kleisins SYN1, SYN2, and SYN4, which can partially compensate each other. For the kleisin SYN3 and for the single-copy genes SMC1, SMC3, and SCC3, only heterozygous mutants were obtained that displayed between 77% and 97% of the wild-type transcript level. Compared to wild-type nuclei, sister chromatid alignment was significantly decreased along arms in 4C nuclei of the homozygous syn1 and syn4 and even of the heterozygous smc1, smc3, scc3, and syn3 mutants. Knocking out SYN1 and SYN4 additionally impaired sister centromere cohesion. Homozygous mutants of SWITCH1 (required for meiotic sister chromatid alignment) displayed sterility and decreased sister arm alignment. For the cohesin loading complex subunit SCC2, only heterozygous mutants affecting sister centromere alignment were obtained. Defects of the alpha-kleisin SYN4, which impair sister chromatid alignment in 4C differentiated nuclei, do apparently not disturb alignment during prometaphase nor cause aneuploidy in meristematic cells. The syn2, 3, 4 scc3 and swi1 mutants display a high frequency of anaphases with bridges (~10% to >20% compared to 2.6% in wild type). Our results suggest that (a) already a slight reduction of the average transcript level in heterozygous cohesin mutants may cause perturbation of cohesion, at least in some leaf cells at distinct loci; (b) the decreased sister chromatid alignment in cohesin mutants can obviously not fully be compensated by other cohesion mechanisms such as DNA concatenation; (c) some cohesin genes, in addition to cohesion, might have further essential functions (e.g., for genome stability, apparently by facilitating correct recombination repair of double-strand breaks).
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Landeira D, Bart JM, Van Tyne D, Navarro M. Cohesin regulates VSG monoallelic expression in trypanosomes. J Cell Biol 2009; 186:243-54. [PMID: 19635842 PMCID: PMC2717648 DOI: 10.1083/jcb.200902119] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/25/2009] [Indexed: 11/22/2022] Open
Abstract
Antigenic variation allows Trypanosoma brucei to evade the host immune response by switching the expression of 1 out of approximately 15 telomeric variant surface glycoprotein (VSG) expression sites (ESs). VSG ES transcription is mediated by RNA polymerase I in a discrete nuclear site named the ES body (ESB). However, nothing is known about how the monoallelic VSG ES transcriptional state is maintained over generations. In this study, we show that during S and G2 phases and early mitosis, the active VSG ES locus remains associated with the single ESB and exhibits a delay in the separation of sister chromatids relative to control loci. This delay is dependent on the cohesin complex, as partial knockdown of cohesin subunits resulted in premature separation of sister chromatids of the active VSG ES. Cohesin depletion also prompted transcriptional switching from the active to previously inactive VSG ESs. Thus, in addition to maintaining sister chromatid cohesion during mitosis, the cohesin complex plays an essential role in the correct epigenetic inheritance of the active transcriptional VSG ES state.
Collapse
Affiliation(s)
- David Landeira
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Granada, Spain
| | | | | | | |
Collapse
|
18
|
Kang H, Lieberman PM. Cell cycle control of Kaposi's sarcoma-associated herpesvirus latency transcription by CTCF-cohesin interactions. J Virol 2009; 83:6199-210. [PMID: 19369356 PMCID: PMC2687369 DOI: 10.1128/jvi.00052-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latency is characterized by the highly regulated transcription of a few viral genes essential for genome maintenance and host cell survival. A major latency control region has been identified upstream of the divergent promoters for the multicistronic transcripts encoding LANA (ORF73), vCyclin (ORF72), and vFLIP (ORF71) and for the complementary strand transcript encoding K14 and vGPCR (ORF74). Previous studies have shown that this major latency control region is occupied by the cellular chromatin boundary factor CTCF and chromosome structural maintenance proteins SMC1, SMC3, and RAD21, which comprise the cohesin complex. Deletion of the CTCF-cohesin binding site caused an inhibition of cell growth and viral genome instability. We now show that the KSHV genes regulated by CTCF-cohesin are under cell cycle control and that mutation of the CTCF binding sites abolished cell cycle-regulated transcription. Cohesin subunits assembled at the CTCF binding sites and bound CTCF proteins in a cell cycle-dependent manner. Subcellular distribution of CTCF and colocalization with cohesins also varied across the cell cycle. Ectopic expression of Rad21 repressed CTCF-regulated transcription of KSHV lytic genes, and a Rad21-CTCF chimeric protein converted CTCF into an efficient transcriptional repressor of KSHV genes normally activated in the G(2) phase. We conclude that cohesins interact with CTCF in mid-S phase and repress CTCF-regulated genes in a cell cycle-dependent manner. We propose that the CTCF-cohesin complex plays a critical role in regulating the cell cycle control of viral gene expression during latency and that failure to maintain cell cycle control of latent transcripts inhibits host cell proliferation and survival.
Collapse
Affiliation(s)
- Hyojeung Kang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
19
|
Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10:265-75. [PMID: 19305416 DOI: 10.1038/nrm2653] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.
Collapse
Affiliation(s)
- Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
20
|
Bowers SR, Mirabella F, Calero-Nieto FJ, Valeaux S, Hadjur S, Baxter EW, Merkenschlager M, Cockerill PN. A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes. Mol Cell Biol 2009; 29:1682-93. [PMID: 19158269 PMCID: PMC2655614 DOI: 10.1128/mcb.01411-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/05/2008] [Accepted: 01/09/2009] [Indexed: 01/07/2023] Open
Abstract
The human interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating-factor (GM-CSF, or CSF2) gene cluster arose by duplication of an ancestral gene. Although just 10 kb apart and responsive to the same signals, the IL-3 and GM-CSF genes are nevertheless regulated independently by separate, tissue-specific enhancers. To understand the differential regulation of the IL-3 and GM-CSF genes we have investigated a cluster of three ubiquitous DNase I-hypersensitive sites (DHSs) located between the two genes. We found that each site contains a conserved CTCF consensus sequence, binds CTCF, and recruits the cohesin subunit Rad21 in vivo. The positioning of these sites relative to the IL-3 and GM-CSF genes and their respective enhancers is conserved between human and mouse, suggesting a functional role in the organization of the locus. We found that these sites effectively block functional interactions between the GM-CSF enhancer and either the IL-3 or the GM-CSF promoter in reporter gene assays. These data argue that the regulation of the IL-3 and the GM-CSF promoters depends on the positions of their enhancers relative to the conserved CTCF/cohesin-binding sites. We suggest that one important role of these sites is to enable the independent regulation of the IL-3 and GM-CSF genes.
Collapse
Affiliation(s)
- Sarion R Bowers
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cornelia de Lange syndrome (CdLS) is genetically heterogeneous and is usually sporadic, occurring approximately once per 10,000 births. CdLS individuals display diverse and variable deficits in growth, mental development, limbs, and organs. In the past few years it has been shown that CdLS is caused by gene mutations affecting proteins involved in sister chromatid cohesion. Studies in model organisms, and more recently in human cells, have revealed, somewhat unexpectedly, that the developmental deficits in CdLS likely arise from changes in gene expression. The mechanisms by which cohesion factors regulate gene expression remain to be elucidated, but current data suggest that they likely regulate transcription in multiple ways.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
22
|
Pimenta-Marques A, Tostões R, Marty T, Barbosa V, Lehmann R, Martinho RG. Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Dev Biol 2008; 323:197-206. [PMID: 18801358 PMCID: PMC2605734 DOI: 10.1016/j.ydbio.2008.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 12/20/2022]
Abstract
During mitosis different types of cells can have differential requirements for chromosome segregation. We isolated two new alleles of the separation anxiety gene (san). san was previously described in both Drosophila and in humans to be required for centromeric sister chromatid cohesion (Hou et al., 2007; Williams et al., 2003). Our work confirms and expands the observation that san is required in vivo for normal mitosis of different types of somatic cells. In addition, we suggest that san is also important for the correct resolution of chromosomes, implying a more general function of this acetyltransferase. Surprisingly, during oogenesis we cannot detect mitotic defects in germ line cells mutant for san. We hypothesize the female germ line stem cells have differential requirements for mitotic sister chromatid cohesion.
Collapse
Affiliation(s)
- Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, n°6, 2781-901 Oeiras, Portugal
| | - Rui Tostões
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, n°6, 2781-901 Oeiras, Portugal
| | - Thomas Marty
- The Skirball Institute and Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Vítor Barbosa
- The Skirball Institute and Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Ruth Lehmann
- The Skirball Institute and Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Rui Gonçalo Martinho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, n°6, 2781-901 Oeiras, Portugal
| |
Collapse
|
23
|
Losada A. The regulation of sister chromatid cohesion. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:41-8. [PMID: 18474253 DOI: 10.1016/j.bbcan.2008.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/06/2008] [Accepted: 04/08/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is a major feature of the eukaryotic chromosome. It entails the formation of a physical linkage between the two copies of a chromosome that result from the duplication process. This linkage must be maintained until chromosome segregation takes place in order to ensure the accurate distribution of the genomic information. Cohesin, a multiprotein complex conserved from yeast to humans, is largely responsible for sister chromatid cohesion. Other cohesion factors regulate the interaction of cohesin with chromatin as well as the establishment and dissolution of cohesion. In addition, the presence of cohesin throughout the genome appears to influence processes other than chromosome segregation, such as transcription and DNA repair. In this review I summarize recent advances in our understanding of cohesin function and regulation in mitosis, and discuss the consequences of impairing the cohesion process at the level of the whole organism.
Collapse
Affiliation(s)
- Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|
24
|
Hallson G, Syrzycka M, Beck SA, Kennison JA, Dorsett D, Page SL, Hunter SM, Keall R, Warren WD, Brock HW, Sinclair DAR, Honda BM. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci U S A 2008; 105:12405-10. [PMID: 18713858 PMCID: PMC2527924 DOI: 10.1073/pnas.0801698105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/19/2022] Open
Abstract
The cohesin complex is a key player in regulating cell division. Cohesin proteins SMC1, SMC3, Rad21, and stromalin (SA), along with associated proteins Nipped-B, Pds5, and EcoI, maintain sister chromatid cohesion before segregation to daughter cells during anaphase. Recent chromatin immunoprecipitation (ChIP) data reveal extensive overlap of Nipped-B and cohesin components with RNA polymerase II binding at active genes in Drosophila. These and other data strongly suggest a role for cohesion in transcription; however, there is no clear evidence for any specific mechanisms by which cohesin and associated proteins regulate transcription. We report here a link between cohesin components and trithorax group (trxG) function, thus implicating these proteins in transcription activation and/or elongation. We show that the Drosophila Rad21 protein is encoded by verthandi (vtd), a member of the trxG gene family that is also involved in regulating the hedgehog (hh) gene. In addition, mutations in the associated protein Nipped-B show similar trxG activity i.e., like vtd, they act as dominant suppressors of Pc and hh(Mrt) without impairing cell division. Our results provide a framework to further investigate how cohesin and associated components might regulate transcription.
Collapse
Affiliation(s)
- Graham Hallson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Samantha A. Beck
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - James A. Kennison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2785
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, School of Medicine, St. Louis University, St. Louis, MO 63104; and
| | - Scott L. Page
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Sally M. Hunter
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Rebecca Keall
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - William D. Warren
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Donald A. R. Sinclair
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
25
|
Abstract
The cohesin complex is best known for its role in sister chromatid cohesion. Over the past few years, it has become apparent that cohesin also regulates gene expression, but the mechanisms by which it does so are unknown. Recently, three groups mapped numerous cohesin-binding sites in mammalian chromosomes and found substantial overlap with the CCCTC-binding factor (CTCF).1-3 CTCF is an insulator protein that blocks enhancer-promoter interactions, and the investigators found that cohesin also contributes to this activity. Thus, these studies demonstrate at least one mechanism by which cohesin can control gene expression.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | |
Collapse
|
26
|
Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 2008; 22:1894-905. [PMID: 18628396 PMCID: PMC2492736 DOI: 10.1101/gad.1683308] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/23/2022]
Abstract
To establish functional cohesion between replicated sister chromatids, cohesin is recruited to chromatin before S phase. Cohesin is loaded onto chromosomes in the G1 phase by the Scc2-Scc4 complex, but little is known about how Scc2-Scc4 itself is recruited to chromatin. Using Xenopus egg extracts as a vertebrate model system, we showed previously that the chromatin association of Scc2 and cohesin is dependent on the prior establishment of prereplication complexes (pre-RCs) at origins of replication. Here, we report that Scc2-Scc4 exists in a stable complex with the Cdc7-Drf1 protein kinase (DDK), which is known to bind pre-RCs and activate them for DNA replication. Immunodepletion of DDK from Xenopus egg extracts impairs chromatin association of Scc2-Scc4, a defect that is reversed by wild-type, but not catalytically inactive DDK. A complex of Scc4 and the N terminus of Scc2 is sufficient for chromatin loading of Scc2-Scc4, but not for cohesin recruitment. These results show that DDK is required to tether Scc2-Scc4 to pre-RCs, and they underscore the intimate link between early steps in DNA replication and cohesion.
Collapse
Affiliation(s)
- Tatsuro S. Takahashi
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Abhijit Basu
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Vladimir Bermudez
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jerard Hurwitz
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Johannes C. Walter
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 2008; 105:8309-14. [PMID: 18550811 PMCID: PMC2448833 DOI: 10.1073/pnas.0801273105] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Indexed: 12/24/2022] Open
Abstract
Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.
Collapse
Affiliation(s)
| | | | - Piri L. Welcsh
- Department of Medicine, Division of Medical Genetics, and
| | - Christine M. Disteche
- Department of Medicine, Division of Medical Genetics, and
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Galina N. Filippova
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | | | - Ruedi Aebersold
- Institute for Systems Biology, Seattle, WA 98103
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH), and Faculty of Science, University of Zürich, CH-8006 Zürich, Switzerland
| | | | - Anton Krumm
- *Department of Radiation Oncology
- **Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98195
| |
Collapse
|
28
|
Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM. The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 2008; 117:199-210. [PMID: 18075750 DOI: 10.1007/s00412-007-0139-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 11/29/2022]
Abstract
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h-HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h-HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.
Collapse
Affiliation(s)
- Birgit Koch
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Abstract
During cell division the cohesin complex mediates the pairing of sister chromatids. Emerging evidence shows that cohesin also has roles in interphase cells. New studies, including that of Gullerova and Proudfoot (2008) in this issue, reveal how cohesin is targeted to specific sites on chromosomes and implicate cohesin in the regulation of gene expression.
Collapse
Affiliation(s)
- Daniel Peric-Hupkes
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | |
Collapse
|
30
|
Liu J, Czajkowsky DM, Liang S, Shao Z. Cell cycle-dependent nucleosome occupancy at cohesin binding sites in yeast chromosomes. Genomics 2008; 91:274-80. [PMID: 18178375 PMCID: PMC2268989 DOI: 10.1016/j.ygeno.2007.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/08/2007] [Accepted: 11/14/2007] [Indexed: 01/23/2023]
Abstract
In the budding yeast, cohesin is loaded onto the chromosome during the late G1 phase, establishes sister chromatid cohesion concomitant with DNA replication, and dissociates by the telophase. Here, using oligonucleotide tiling arrays, we show that, at the anaphase, nearly all of the cohesin binding sites contain nucleosome-free regions. The majority of these sites remain nucleosome-free throughout the cell cycle, consistent with the suggestion of a DNA-binding anchoring protein present at these sites, although such a region could also serve as part of a marker for the binding of cohesin in the next cell cycle. However, a third of these sites are remodeled in the G1 phase, being reoccupied by nucleosomes by the G1/S boundary, though their subsequent removal in the S phase appears to be independent of DNA replication. Whether this difference is a result of other functions of cohesin or of the chromatin remains to be elucidated.
Collapse
Affiliation(s)
- Jie Liu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, P.O. Box 800736, Charlottesville, VA 22908
| | - Daniel M. Czajkowsky
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, P.O. Box 800736, Charlottesville, VA 22908
| | - Shoudan Liang
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Zhifeng Shao
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, P.O. Box 800736, Charlottesville, VA 22908
| |
Collapse
|
31
|
Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 2008; 27:654-66. [PMID: 18219272 PMCID: PMC2262040 DOI: 10.1038/emboj.2008.1] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/03/2008] [Indexed: 01/26/2023] Open
Abstract
Cohesins, which mediate sister chromatin cohesion, and CTCF, which functions at chromatin boundaries, play key roles in the structural and functional organization of chromosomes. We examined the binding of these two factors on the Kaposi's sarcoma-associated herpesvirus (KSHV) episome during latent infection and found a striking colocalization within the control region of the major latency transcript responsible for expressing LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71), and vmiRNAs. Deletion of the CTCF-binding site from the viral genome disrupted cohesin binding, and crippled colony formation in 293 cells. Clonal instability correlated with elevated expression of lytic cycle gene products, notably the neighbouring promoter for K14 and vGPCR (ORF74). siRNA depletion of RAD21 from latently infected cells caused an increase in K14 and ORF74, and lytic inducers caused a rapid dissociation of RAD21 from the viral genome. RAD21 and SMC1 also associate with the cellular CTCF sites at mammalian c-myc promoter and H19/Igf2 imprinting control region. We conclude that cohesin subunits associate with viral and cellular CTCF sites involved in complex gene regulation and chromatin organization.
Collapse
Affiliation(s)
- William Stedman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyojeung Kang
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shu Lin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Joseph L Kissil
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul M Lieberman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2008; 117:89-102. [PMID: 17965872 PMCID: PMC2258211 DOI: 10.1007/s00412-007-0129-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 01/13/2023]
Abstract
The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Yuri B. Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao-Yong Li
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tatyana G. Kahn
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Stewart MacArthur
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Justin C. Fay
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Michael B. Eisen
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Mark D. Biggin
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
33
|
Abstract
The cohesin protein complex holds sister chromatids together to ensure proper chromosome segregation at mitosis in dividing cells. New experiments by two laboratories (reviewed in this issue of Developmental Cell) using different techniques reveal that cohesin also plays critical roles in morphogenesis of nondividing neurons. Other recent studies argue that these roles involve regulation of gene transcription.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
34
|
Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51-66. [PMID: 17909832 PMCID: PMC2258212 DOI: 10.1007/s00412-007-0125-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/11/2023]
Abstract
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Hayley A. Webber
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Gabe Haller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | - Joel C. Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
35
|
Abstract
Cornelia de Lange syndrome (CdLS) is a dominant multisystem disorder caused by a disruption of cohesin function. The cohesin ring complex is composed of four protein subunits and more than 25 additional proteins involved in its regulation. The discovery that this complex also has a fundamental role in long-range regulation of transcription in Drosophila has shed light on the mechanism likely responsible for its role in development. In addition to the three cohesin proteins involved in CdLS, a second multisystem, recessively inherited, developmental disorder, Roberts-SC phocomelia, is caused by mutations in another regulator of the cohesin complex, ESCO2. Here we review the phenotypes of these disorders, collectively termed cohesinopathies, as well as the mechanism by which cohesin disruption likely causes these diseases.
Collapse
Affiliation(s)
- Jinglan Liu
- Division of Human Genetics, The Children’s Hospital of Philadelphia
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
36
|
Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S. Protein requirements for sister telomere association in human cells. EMBO J 2007; 26:4867-78. [PMID: 17962804 PMCID: PMC2099466 DOI: 10.1038/sj.emboj.7601903] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/04/2007] [Indexed: 02/04/2023] Open
Abstract
Previous studies in human cells indicate that sister telomeres have distinct requirements for their separation at mitosis. In cells depleted for tankyrase 1, a telomeric poly(ADP-ribose) polymerase, sister chromatid arms and centromeres separate normally, but telomeres remain associated and cells arrest in mitosis. Here, we use biochemical and genetic approaches to identify proteins that might mediate the persistent association at sister telomeres. We use immunoprecipitation analysis to show that the telomeric proteins, TRF1 (an acceptor of PARsylation by tankyrase 1) and TIN2 (a TRF1 binding partner) each bind to the SA1 ortholog of the cohesin Scc3 subunit. Sucrose gradient sedimentation shows that TRF1 cosediments with the SA1-cohesin complex. Depletion of the SA1 cohesin subunit or the telomeric proteins (TRF1 and TIN2) restores the normal resolution of sister telomeres in mitosis in tankyrase 1-depleted cells. Moreover, depletion of TRF1 and TIN2 or SA1 abrogates the requirement for tankyrase 1 in mitotic progression. Our studies indicate that sister telomere association in human cells is mediated by a novel association between a cohesin subunit and components of telomeric chromatin.
Collapse
Affiliation(s)
- Silvia Canudas
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Benjamin R Houghtaling
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Ju Youn Kim
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Jasmin N Dynek
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - William G Chang
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Susan Smith
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 2007; 117:123-35. [PMID: 17989990 PMCID: PMC2755729 DOI: 10.1007/s00412-007-0131-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
Abstract
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed.
Collapse
|
38
|
Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D, Prechtl S, Schulze V, Siemeister G, Wortmann L, Barr FA, Nigg EA. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007; 18:4024-36. [PMID: 17671160 PMCID: PMC1995727 DOI: 10.1091/mbc.e07-05-0517] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 02/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.
Collapse
Affiliation(s)
| | - Rüdiger Neef
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | - Uwe Eberspächer
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Knut Eis
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Manfred Husemann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Dominik Mumberg
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Stefan Prechtl
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Volker Schulze
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | | | - Lars Wortmann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Francis A. Barr
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | | |
Collapse
|