1
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024; 20:1155-1165. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Qu S, Huang Y, Zhang X, Tong X, Fang Y, Rao T, Liu K, Lin J, Lin Y, Zeng C, Zhang G, Jing X, Liao J, Kan Y. Tuina Promotes Repair of Chronic Cervical Muscle Injury by Regulating Satellite Cell Proliferation and Differentiation and Inhibiting Myocyte Apoptosis. J Pain Res 2024; 17:3419-3429. [PMID: 39464413 PMCID: PMC11512779 DOI: 10.2147/jpr.s475942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Chronic cervical muscle injury is the first common cause of the development of cervical spondylosis, and Tuina can effectively promote the repair of chronic cervical muscle injury and alleviate neck pain, but the mechanism behind its efficacy is still unknown. The proliferation and differentiation of muscle satellite cells and the apoptosis of cervical myocytes play important roles in the repair of chronic cervical muscle injuries; therefore, this study aimed to explore the potential mechanisms of Tuina to promote the repair of cervical muscle injuries in terms of the proliferation and differentiation of satellite cells and the apoptosis of myocytes. Patients and Methods Twenty-eight Wistar rats were randomly divided into control group, model group, Tuina group, and meloxicam group, with 7 rats in each group. Except for the control group, each group were establish a chronic cervical muscle injury model (CCMI). Meloxicam (0.79 mg/kg) was administered by gavage, and in the Tuina group, pressure was applied to the Fengchi acupoint on the affected side once a day. Morphological changes of cervical muscle tissues were detected by ultrasonic diagnostic instrument and HE staining, electrophysiological recordings of electromyographic changes, apoptosis rate was detected by TUNEL staining, and positive expression of Bax, Bcl-2, IGF-1, MyoD, and Pax-7 were detected by Immunohistochemistry and Western blot. Results In CCMI model rats, we observed that the cervical muscle fibers were disorganized, with irregular morphology, and the amplitude of electromyography was significantly weakened, while Tuina could significantly improve these symptoms and effectively promote the repair of chronic cervical muscle injury. Meanwhile, compared with the model group, Tuina could significantly increase the expression levels of IGF-1 (P<0.01) and MyoD (P<0.05) and decrease the expression level of Pax7 (P<0.05). In addition, we found that the number of apoptotic cells in cervical myocytes was reduced after Tuina intervention (P<0.05), and Tuina inhibited the expression of pro-apoptotic factor Bax (P<0.01) and promoted the expression of anti-apoptotic factor Bcl-2 (P<0.05). Conclusion Tuina can promote the proliferation and differentiation of satellite cells to repair chronic cervical muscle injury by regulating the expression of Pax7, MyoD, and IGF-1, as well as inhibiting the expression of Bax and promoting the expression of Bcl-2 to ameliorate the apoptosis of cervical myocytes in CCMI model rats.
Collapse
Affiliation(s)
- Jingyu Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Shenhua Qu
- Guangzhou Traditional Chinese Medicine Hospital, Guangzhou, 510000, People’s Republic of China
| | - Yuting Huang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xia Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xiubing Tong
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yanping Fang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Tianyu Rao
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Kezhi Liu
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Jia Lin
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yuye Lin
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Chufan Zeng
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Guojun Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Jun Liao
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yu Kan
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Wang S, Huang S, Xu X, Liu R. Effects of radial extracorporeal shock wave with different frequencies on acute skeletal muscle injury in rabbits. Sci Rep 2024; 14:21276. [PMID: 39261623 PMCID: PMC11391075 DOI: 10.1038/s41598-024-72371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
To study the efficacy and possible mechanisms of radial extracorporeal shock wave (rESW) with different frequencies for the treatment of acute skeletal muscle injury in rabbits, 48 rabbits of acute injured biceps femoris were randomly divided into 4 groups. Except for the control group, the other groups were treated by rESW with 5 Hz, 10 Hz and 15 Hz, respectively. The injury symptom index scores (ISISs) in the rESW group were significantly lower than those in the control group, with the lowest in the 10 Hz rESW group. Histomorphological features demonstrated a decrease in mononuclear cells and an increase in new myocytes across all groups, with the rESW group showing the most significant changes. The concentrations of PGE2 and IL-1β were significantly lower in all rESW groups by ELISA compared to the control group. Additionally, the 10 Hz group had lower concentrations than the 5 Hz and 15 Hz group. Compared with the control group, MyoD of the rESW groups was significantly increased, and the expression level of the 10 Hz group was higher than that of the other groups. In conclusion, rESW with 5 Hz, 10 Hz and 15 Hz take certain curative effects on acute biceps femoris injury in rabbits, and the 10 Hz rESW takes advantage over 5 Hz and 15 Hz rESW.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Shuting Huang
- Department of Anesthesiology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350014, Fujian, China
| | - Xueru Xu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Rongguo Liu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Shen J, Sun H, Zhou S, Wang L, Dong C, Ren K, Du Q, Cao J, Wang Y, Sun J. Development of a screening system of gene sets for estimating the time of early skeletal muscle injury based on second-generation sequencing technology. Int J Legal Med 2024; 138:1629-1644. [PMID: 38532207 DOI: 10.1007/s00414-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The present study is aimed to address the challenge of wound age estimation in forensic science by identifying reliable genetic markers using low-cost and high-precision second-generation sequencing technology. A total of 54 Sprague-Dawley rats were randomly assigned to a control group or injury groups, with injury groups being further divided into time points (4 h, 8 h, 12 h, 16 h, 20 h, 24 h, 28 h, and 32 h after injury, n = 6) to establish rat skeletal muscle contusion models. Gene expression data were obtained using second-generation sequencing technology, and differential gene expression analysis, weighted gene co-expression network analysis (WGCNA) and time-dependent expression trend analysis were performed. A total of six sets of biomarkers were obtained: differentially expressed genes at adjacent time points (127 genes), co-expressed genes most associated with wound age (213 genes), hub genes exhibiting time-dependent expression (264 genes), and sets of transcription factors (TF) corresponding to the above sets of genes (74, 87, and 99 genes, respectively). Then, random forest (RF), support vector machine (SVM) and multilayer perceptron (MLP), were constructed for wound age estimation from the above gene sets. The results estimated by transcription factors were all superior to the corresponding hub genes, with the transcription factor group of WGCNA performed the best, with average accuracy rates of 96% for three models' internal testing, and 91.7% for the highest external validation. This study demonstrates the advantages of the indicator screening system based on second-generation sequencing technology and transcription factor level for wound age estimation.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
- Institute of Forensic Science Public Security Department of Shanxi, Taiyuan, China
| | - Hao Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Shidong Zhou
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Liangliang Wang
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Chaoxiu Dong
- Institute of Forensic Science Public Security Department of Shanxi, Taiyuan, China
| | - Kang Ren
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yingyuan Wang
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China.
| | - Junhong Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China.
| |
Collapse
|
5
|
Li N, Liang XR, Bai X, Liang XH, Dang LH, Jin QQ, Cao J, Du QX, Sun JH. Novel ratio-expressions of genes enables estimation of wound age in contused skeletal muscle. Int J Legal Med 2024; 138:197-206. [PMID: 37804331 DOI: 10.1007/s00414-023-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xue Bai
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030604, Shanxi, China.
| |
Collapse
|
6
|
Siu WS, Ma H, Cheng W, Shum WT, Leung PC. Traditional Chinese Medicine for Topical Treatment of Skeletal Muscle Injury. Pharmaceuticals (Basel) 2023; 16:1144. [PMID: 37631059 PMCID: PMC10457816 DOI: 10.3390/ph16081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle injuries are common musculoskeletal problems, but the pharmaceutical agent for muscle repair and healing is insufficient. Traditional Chinese Medicine (TCM) frequently uses topical treatments to treat muscle injuries, although scientific evidence supporting their efficacy is scarce. In this study, an in vitro assay was used to test the cytotoxicity of a topical TCM formula containing Carthami Flos, Dipsaci Radix, and Rhei Rhizoma (CDR). Then, a muscle contusion rat model was developed to investigate the in vivo effect and basic mechanisms underlying CDR on muscle regeneration. The in vitro assay illustrated that CDR was non-cytotoxic to immortalized rat myoblast culture and increased cell viability. Histological results demonstrated that the CDR treatment facilitated muscle repair by increasing the number of new muscle fibers and promoting muscle integrity. The CDR treatment also upregulated the expression of Pax7, MyoD and myogenin, as evidenced by an immunohistochemical study. A gene expression analysis indicated that the CDR treatment accelerated the regeneration and remodeling phases during muscle repair. This study demonstrated that topical CDR treatment was effective at facilitating muscle injury repair.
Collapse
Affiliation(s)
- Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
7
|
Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation. Int J Legal Med 2023; 137:875-886. [PMID: 36797435 DOI: 10.1007/s00414-023-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.
Collapse
|
8
|
Miyazaki A, Kawashima M, Nagata I, Miyoshi M, Miyakawa M, Sugiyama M, Sakuraya T, Sonomura T, Arakawa T. Icing after skeletal muscle injury decreases M1 macrophage accumulation and TNF-α expression during the early phase of muscle regeneration in rats. Histochem Cell Biol 2023; 159:77-89. [PMID: 36114866 DOI: 10.1007/s00418-022-02143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Following skeletal muscle injury, both myogenic and immune cells interact closely during the regenerative process. Although icing is still a common acute treatment for sports-related skeletal muscle injuries, icing after muscle injury has been shown to disrupt macrophage accumulation and impair muscle regeneration in animal models. However, it remains unknown whether icing shortly after injury affects macrophage-related phenomena during the early stages of muscle regeneration. Therefore, we focused on the distribution of M1/M2 macrophages and cytokines expressed predominantly by macrophages during the early stages of muscle regeneration after muscle crush injury. Icing resulted in a decrease, not retardation, in the accumulation of M1 macrophages, but not M2 macrophages, in injured muscles. Consistent with the decrease in M1 macrophage accumulation, icing led to a reduction, instead of delay, in the level of tumor necrosis factor-α (TNF-α) expression. Additionally, at subsequent timepoints, icing decreased the number of myogenic precursor cells in the regenerating area and the size of centrally nucleated regenerating myofibers. Together, our findings suggest that icing after acute muscle damage by crushing disturbs muscle regeneration through hindering tM1 macrophage-related phenomena.
Collapse
Affiliation(s)
- Anna Miyazaki
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Masato Kawashima
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Health and Sports Science, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Itsuki Nagata
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Makoto Miyoshi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Motoi Miyakawa
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Megumi Sugiyama
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,General Tokyo Hospital, 3-15-2 Egota, Nakano-ku, Tokyo, 165-8906, Japan
| | - Tohma Sakuraya
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takahiro Sonomura
- Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takamitsu Arakawa
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
9
|
Hayashi K, Takeuchi Y, Shimizu S, Tanabe G, Churei H, Kobayashi H, Ueno T. Continuous Oral Administration of Sonicated P. gingivalis Delays Rat Skeletal Muscle Healing Post-Treadmill Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13046. [PMID: 36293631 PMCID: PMC9603158 DOI: 10.3390/ijerph192013046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A delay in muscle repair interferes with the effect of training or exercise; therefore, it is important to identify the factors that delay muscle repair. P. gingivalis, one of the most common periodontal disease pathogens, has the potential to inhibit muscle repair after training, as inferred from a previous study. To assess the expression of satellite cells in this in vivo study, we evaluated the relationship between P. gingivalis and muscle regeneration after training. METHODS A total of 20 male Wistar rats (eight weeks in age) were randomly divided into two groups: one orally administered sonicated P. gingivalis four times per week for six weeks (PG group) and one given no treatment (NT group). After four weeks of training using a treadmill, the gastrocnemius was evaluated using histology of the cross-sectional area (CSA) of myotubes and immunohistochemistry of the expression of skeletal muscle satellite cells. In addition, an endurance test was performed a day before euthanization. RESULTS The CSA and expression of Pax7+/MyoD- and Pax7+/MyoD+ cells were not significantly different between the groups. However, the expression of Pax7-/MyoD+ cells and running time until exhaustion were significantly lower in the PG group. CONCLUSIONS Infection with P. gingivalis likely interferes with muscle repair after training.
Collapse
Affiliation(s)
- Kairi Hayashi
- Department of Masticatory Function and Health Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Division of Sports Dentistry of Sports Science Organization, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shintaro Shimizu
- Department of Masticatory Function and Health Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Gen Tanabe
- Department of Oral Microbiology, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Hiroshi Churei
- Department of Masticatory Function and Health Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Division of Sports Dentistry of Sports Science Organization, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroaki Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Toshiaki Ueno
- Department of Sports Dentistry, Meikai University School of Dentistry, Saitama 350-0283, Japan
| |
Collapse
|
10
|
Electroacupuncture of Weizhong (BL-40) Acupoint Inspires Muscular Satellite Cell Regeneration and Promotes Muscle Repair Capacity after Back Muscle Injury in Sprague-Dawley Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2695679. [PMID: 35966754 PMCID: PMC9371836 DOI: 10.1155/2022/2695679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Background Back muscle injury is the most common illness involved in aged people. Muscular satellite cells, playing a key role in the muscle repairing process, are gradually losing their regenerative ability with aging, which attenuates the injured muscle repairing process. Electroacupuncture at Weizhong acupoint has been widely used in the treatment of young and aged patients with back muscle damage. Its efficacy has been proven by a randomized double-blind placebo clinical trial. However, the rehabilitation mechanisms are largely unknown. This study will explore the possible mechanisms associated with electroacupuncture at the Weizhong acupoint (BL 40) promoting muscle repairing ability. Method A total of 58 male and female Sprague-Dawley rats were divided into a younger group (4-month-old) and an aged group (16-month-old), younger and aged rats were further divided as a sham, injured, injured rats treated with electroacupuncture at Weizhong point or treated with Non-Weizhong point groups. The back muscle injury model was produced in rats as a previously described method with modification. Furthermore, Weizhong acupoints underwent electroacupuncture treatment with 15 V magnitude, 2 Hz/10 Hz frequency density, 1.0 mA current intensity, and 10 min each day for 10 consecutive days using HANS's electroacupuncture apparatus. After the last treatment, the paravertebral muscles and serum of all animals were undergone histological, immunohistochemistry, and flow cytometry analysis. Serum levels of Creatine Kinase (CK) and proinflammatory cytokine, interleukin 6 (IL-6), were measured separately by using ELISA kit. Results Electroacupuncture of Weizhong (BL 40) acupoints significantly attenuated back muscle damage in both young and aged rats, increasing PAX7 (a marker of muscle satellite cells) and MYOD (major marker of myoblasts) cells, simultaneously, reducing serum proinflammatory cytokines, IL-6, and downregulation of p38 MAPK signaling in aged muscular satellite cells. Conclusion Our studies suggest that electroacupuncture of Weizhong (BL 40) acupoints can restore aged back muscular satellite cells and their regeneration capacity. These suggested electroacupuncture may be a potential means of promoting rehabilitation for muscular injury in aged patients.
Collapse
|
11
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
12
|
Shen D, Sugiyama Y, Ishida K, Fuseya S, Ishida T, Kawamata M, Tanaka S. Subfascial infiltration of 0.5% ropivacaine, but not 0.25% ropivacaine, exacerbates damage and inflammation in surgically incised abdominal muscles of rats. Sci Rep 2022; 12:9409. [PMID: 35672375 PMCID: PMC9174254 DOI: 10.1038/s41598-022-13628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
Ropivacaine-induced myotoxicity in surgically incised muscles has not been fully investigated. We evaluated the effects of infiltration anesthesia with ropivacaine on damage, inflammation and regeneration in the incised muscles of rats undergoing laparotomy. Ropivacaine or saline was infiltrated below the muscle fascia over the incised muscles. Pain-related behaviors and histological muscle damage were assessed. Macrophage infiltration at days 2 and 5 and proliferation of satellite cells at day 5 were detected by CD68 and MyoD immunostaining, respectively. Pain-related behaviors were inhibited by 0.25% and 0.5% of ropivacaine for 2 h after surgery. Single infiltration of 0.5% ropivacaine did not induce injury in intact muscles without incision, but single and repeated infiltration of 0.5% ropivacaine significantly augmented laparotomy-induced muscle injury and increased the numbers of CD68-positve macrophages and MyoD-positive cells compared to those in rats with infiltration of saline or 0.25% ropivacaine. In contrast, there were no significant differences in them between rats with saline infusion and rats with 0.25% ropivacaine infiltration. In conclusion, single or repeated subfascial infiltration of 0.25% ropivacaine can be used without exacerbating the damage and inflammation in surgically incised muscles, but the use of 0.5% ropivacaine may be a concern because of potentially increased muscle damage.
Collapse
Affiliation(s)
- Dandan Shen
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Yuki Sugiyama
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Kumiko Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Fuseya
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Mikito Kawamata
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
13
|
Ren K, Wang L, Wang Y, An G, Du Q, Cao J, Jin Q, Yun K, Guo Z, Wang Y, Liang Q, Sun J. Wound age estimation based on next-generation sequencing: Fitting the optimal index system using machine learning. Forensic Sci Int Genet 2022; 59:102722. [DOI: 10.1016/j.fsigen.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
14
|
Khalikov AA, Kuznetsov KO, Kanzafarova GA, Iskuzhina LR, Khalikova LV. [Current views on methods of determining the age of injuries in the practice of the forensic expert]. Sud Med Ekspert 2022; 65:57-61. [PMID: 35142474 DOI: 10.17116/sudmed20226501157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review objective is to summarize the current data on new methods development for detection and determination of the age of injuries (AI) and to analyze the prospects of their use in the practice of forensic medical experts. The injury healing processes in various human body tissues are described in detail, and data on biomarkers of healing and their role are provided. Three main diagnostic methods for AI were analyzed: immunohistochemical, molecular biological study, and biophysical objectivization. Their advantages and disadvantages, as well as ways of further improvement of these methods, are considered.
Collapse
|
15
|
De Simone S, Giacani E, Bosco MA, Vittorio S, Ferrara M, Bertozzi G, Cipolloni L, La Russa R. The Role of miRNAs as New Molecular Biomarkers for Dating the Age of Wound Production: A Systematic Review. Front Med (Lausanne) 2022; 8:803067. [PMID: 35096893 PMCID: PMC8795691 DOI: 10.3389/fmed.2021.803067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The timing of wounds production is a significant issue in forensic pathology. Although various methods have been evaluated, obtaining an accurate dating of lesions is still a challenge. The pathologist uses many parameters to value wound age, such as histological and immunohistochemical. In recent years, there have been many studies regarding the use of miRNAs in wound-age estimation; indeed, miRNAs have multiple potential uses in forensic pathology. SCOPE This review aims to verify the efficacy and feasibility of miRNAs as a tool for determining the timing of lesions. MATERIALS AND METHODS The authors conducted the systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed was used as a search engine to find articles published between January, 1st 2016 and October, 1st 2021, to evaluate the current state of the art regarding wound-age estimation. RESULTS A total of 256 articles were collected; after screening according to PRISMA guidelines, the systematic review included 8 articles. The studies included in this review were all Original articles evaluating the use of biomarkers for wound-age determination. DISCUSSION AND CONCLUSION The literature review showed that analysis of miRNA is an innovative field of study with significant potentiality in forensic pathology. There are few studies, and almost all of them are at an early stage. The challenge is to understand how to standardize the samples' selection to obtain reliable experimental data. This observation represents a necessary prerequisite to planning further clinical trials.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Elena Giacani
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Simona Vittorio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ferrara
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Xu QY, Zhang QB, Zhou Y, Liu AY, Wang F. Preventive effect and possible mechanisms of ultrashort wave diathermy on myogenic contracture in a rabbit model. Sci Prog 2021; 104:368504211054992. [PMID: 34825614 PMCID: PMC10450593 DOI: 10.1177/00368504211054992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to determine the preventive effect of ultrashort wave diathermy on immobilization-induced myogenic contracture and to explore its underlying mechanisms. Forty-two rabbits were randomly assigned into control (Group C), immobilization (Group I, which was further divided into one week, Group I-1; two weeks, Group I-2; and four weeks, Group I-4, subgroups by the length of immobilization) and ultrashort wave prevention (Group U, which was further divided into one week, Group U-1; two weeks, Group U-2; and four weeks, Group U-4, by time of treatment) groups. Intervention effects were assessed by evaluating rectus femoris cross-sectional area (CSA), knee range of motion, and the protein levels for myogenic differentiation (MyoD) and muscle atrophy F-box (MAFbx-1) in the rectus femoris. Compared with those of Group C, in Groups I and U, total contracture, myogenic contracture, MyoD and MAFbx-1 levels were significantly elevated, and CSA was significantly smaller (p < 0.05). Compared with those of Group I at each time point, MyoD levels were significantly elevated, MAFbx-1 levels were significantly lower, CSA was significantly larger, and myogenic contracture was significantly alleviated in Group U (p < 0.05). In the early stages of contracture, ultrashort wave diathermy reduces muscle atrophy and delays the process of myogenic contracture during joint immobilization; the mechanism of this may be explained as increased expression of MyoD triggered by suppression of the MAFbx-1-mediated ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Qi-Yu Xu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Rehabilitation Medicine, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - A-Ying Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feng Wang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Zhao N, Liu B, Liu SW, Zhang W, Li HN, Pang G, Luo XF, Wang JG. The Combination of Electroacupuncture and Massage Therapy Alleviates Myofibroblast Transdifferentiation and Extracellular Matrix Production in Blunt Trauma-Induced Skeletal Muscle Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5543468. [PMID: 34306140 PMCID: PMC8282377 DOI: 10.1155/2021/5543468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Complementary therapies, such as acupuncture and massage, had been previously reported to have therapeutic effects on skeletal muscle contusions. However, the recovery mechanisms on skeletal muscles after blunt trauma via the combination of electroacupuncture (EA) and massage therapy remain unclear. In the present study, a rat model of the skeletal muscle fibrosis following blunt trauma to rat skeletal muscle was established, and the potential molecular mechanisms of EA + massage therapy on the skeletal muscle fibrosis were investigated. The results suggested that EA + massage therapy could significantly decrease inflammatory cells infiltration and collagenous fiber content and ameliorate the disarrangement of sarcomeres within myofibrils compared to the model group. Further analysis revealed that EA + massage therapy could reduce the degree of fibrosis and increase the degree of myofibroblast apoptosis by downregulating the mRNA and protein expression of transforming growth factor- (TGF-) β1 and connective tissue growth factor (CTGF). Furthermore, the fibrosis of injured skeletal muscle was inhibited after treatment through the normalization of balance between matrix metalloproteinase- (MMP-) 1 and tissue inhibitor of matrix metalloproteinase (TIMP). These findings suggested that the combination of electroacupuncture and massage therapy could alleviate the fibrotic process by regulating TGF β1-CTGF-induced myofibroblast transdifferentiation and MMP-1/TIMP-1 balance for extracellular matrix production.
Collapse
Affiliation(s)
- Na Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Bo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Si-Wen Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Wei Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Hua-Nan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Geng Pang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiong-Fei Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jin-Gui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
18
|
Wang M, Song W, Jin C, Huang K, Yu Q, Qi J, Zhang Q, He Y. Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes schlegelii. Int J Mol Sci 2021; 22:ijms22073769. [PMID: 33916485 PMCID: PMC8038590 DOI: 10.3390/ijms22073769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin–eosin (H–E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0–16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Chaofan Jin
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Qianwen Yu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence:
| |
Collapse
|
19
|
Barlow J, Sfyri PP, Mitchell R, Verpoorten S, Scully D, Andreou C, Papadopoulos P, Patel K, Matsakas A. Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia. Exp Physiol 2021; 106:700-713. [PMID: 33450106 DOI: 10.1113/ep088937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of obesity-independent hyperlipidaemia on skeletal muscle stem cell function of ApoE-deficient (ApoE-/- ) mice? What is the main finding and its importance? Compromised muscle stem cell function accounts for the impaired muscle regeneration in hyperlipidaemic ApoE-/- mice. Importantly, impaired muscle regeneration is normalised by administration of platelet releasate. ABSTRACT Muscle satellite cells are important stem cells for skeletal muscle regeneration and repair after injury. ApoE-deficient mice, an established mouse model of hyperlipidaemia and atherosclerosis, show evidence of oxidative stress-induced lesions and fat infiltration in skeletal muscle followed by impaired repair after injury. However, the mechanisms underpinning attenuated muscle regeneration remain to be fully defined. Key to addressing the latter is to understand the properties of muscle stem cells from ApoE-deficient mice and their myogenic potential. Muscle stem cells from ApoE-deficient mice were cultured both ex vivo (on single fibres) and in vitro (primary myoblasts) and their myogenic capacity was determined. Skeletal muscle regeneration was studied on days 5 and 10 after cardiotoxin injury. ApoE-deficient muscle stem cells showed delayed activation and differentiation on single muscle fibres ex vivo. Impaired proliferation and differentiation profiles were also evident on isolated primary muscle stem cells in culture. ApoE-deficient mice displayed impaired skeletal muscle regeneration after acute injury in vivo. Administration of platelet releasate in ApoE-deficient mice reversed the deficits of muscle regeneration after acute injury to wild-type levels. These findings indicate that muscle stem cell myogenic potential is perturbed in skeletal muscle of a mouse model of hyperlipidaemia. We propose that platelet releasate could be a therapeutic intervention for conditions with associated myopathy such as peripheral arterial disease.
Collapse
Affiliation(s)
- Joseph Barlow
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Rob Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - David Scully
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Charalampos Andreou
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Petros Papadopoulos
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| |
Collapse
|
20
|
Wang L, Wang Y, Xiang Y, Ma J, Zhang H, Dai J, Hou Y, Yang Y, Ma J, Li H. An In Vitro Study on Extracellular Vesicles From Adipose-Derived Mesenchymal Stem Cells in Protecting Stress Urinary Incontinence Through MicroRNA-93/F3 Axis. Front Endocrinol (Lausanne) 2021; 12:693977. [PMID: 34484115 PMCID: PMC8415505 DOI: 10.3389/fendo.2021.693977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Since the potential roles of extracellular vesicles secreted by adipose-derived mesenchymal stem cells (ADSCs) are not well understood in collagen metabolism, the purpose of this research was to evaluate the effects of ADSCs-extracellular vesicles in stress urinary incontinence and the regulatory mechanism of delivered microRNA-93 (miR-93). ADSCs were isolated and cultured, and ADSCs-extracellular vesicles were extracted and identified. Stress urinary incontinence primary fibroblasts or satellite cells were treated with ADSCs-extracellular vesicles to detect the expression of Elastin, Collagen I, and Collagen III in fibroblasts and Pax7 and MyoD in satellite cells. After transfecting ADSCs with miR-93 mimics or inhibitors, extracellular vesicles were isolated and treated with stress urinary incontinence primary fibroblasts or satellite cells to observe cell function changes. The online prediction and luciferase activity assay confirmed the targeting relationship between miR-93 and coagulation factor III (F3). The rescue experiment verified the role of ADSCs-extracellular vesicles carrying miR-93 in stress urinary incontinence primary fibroblasts and satellite cells by targeting F3. ADSCs-extracellular vesicles treatment upregulated expression of Elastin, Collagen I, and Collagen III in stress urinary incontinence primary fibroblasts and expression of Pax7 and MyoD in stress urinary incontinence primary satellite cells. miR-93 expression was increased in stress urinary incontinence primary fibroblasts or satellite cells treated with ADSCs-extracellular vesicles. Extracellular vesicles secreted by ADSCs could deliver miR-93 to fibroblasts and then negatively regulate F3 expression; ADSCs-extracellular vesicles could reverse the effect of F3 on extracellular matrix remodeling in stress urinary incontinence fibroblasts. miR-93 expression was also increased in stress urinary incontinence primary satellite cells treated by ADSCs-extracellular vesicles. Extracellular vesicles secreted by ADSCs were delivered to satellite cells through miR-93, which directly targets F3 expression and upregulates Pax7 and MyoD expression in satellite cells. Our study indicates that miR-93 delivered by ADSCs-extracellular vesicles could regulate extracellular matrix remodeling of stress urinary incontinence fibroblasts and promote activation of stress urinary incontinence satellite cells through targeting F3.
Collapse
|
21
|
Fleming JW, Capel AJ, Rimington RP, Wheeler P, Leonard AN, Bishop NC, Davies OG, Lewis MP. Bioengineered human skeletal muscle capable of functional regeneration. BMC Biol 2020; 18:145. [PMID: 33081771 PMCID: PMC7576716 DOI: 10.1186/s12915-020-00884-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Skeletal muscle (SkM) regenerates following injury, replacing damaged tissue with high fidelity. However, in serious injuries, non-regenerative defects leave patients with loss of function, increased re-injury risk and often chronic pain. Progress in treating these non-regenerative defects has been slow, with advances only occurring where a comprehensive understanding of regeneration has been gained. Tissue engineering has allowed the development of bioengineered models of SkM which regenerate following injury to support research in regenerative physiology. To date, however, no studies have utilised human myogenic precursor cells (hMPCs) to closely mimic functional human regenerative physiology. RESULTS Here we address some of the difficulties associated with cell number and hMPC mitogenicity using magnetic association cell sorting (MACS), for the marker CD56, and media supplementation with fibroblast growth factor 2 (FGF-2) and B-27 supplement. Cell sorting allowed extended expansion of myogenic cells and supplementation was shown to improve myogenesis within engineered tissues and force generation at maturity. In addition, these engineered human SkM regenerated following barium chloride (BaCl2) injury. Following injury, reductions in function (87.5%) and myotube number (33.3%) were observed, followed by a proliferative phase with increased MyoD+ cells and a subsequent recovery of function and myotube number. An expansion of the Pax7+ cell population was observed across recovery suggesting an ability to generate Pax7+ cells within the tissue, similar to the self-renewal of satellite cells seen in vivo. CONCLUSIONS This work outlines an engineered human SkM capable of functional regeneration following injury, built upon an open source system adding to the pre-clinical testing toolbox to improve the understanding of basic regenerative physiology.
Collapse
Affiliation(s)
- J W Fleming
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - A J Capel
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - R P Rimington
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - P Wheeler
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - A N Leonard
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - N C Bishop
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - O G Davies
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - M P Lewis
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
22
|
Pan T, Tong X, Ye L, Ji M, Jiao J. EFFECTS OF CONTUSION AND EXHAUSTIVE EXERCISE ON MG53, PTRF IN SKELETAL MUSCLE OF RATS. REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192506197718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objectives To study the effects of contusion and exhaustive exercise on gene expression of MG53, PTRF, Pax7 and β-catenin in skeletal muscle of rats, and reveal the repair mechanism of skeletal muscle injury. Methods Forty-two male Wistar rats were randomly divided into 7 groups, with 6 rats in each group. All groups were euthanized at different time points after exhaustive exercise and contusion, respectively, while the control group was euthanized in resting state. The right gastrocnemius muscles were measured for mRNAs of MG53, PTRF, Pax7 and β-catenin by real time PCR. Results MG53 mRNA and PTRF mRNA of skeletal muscle in groups immediately after exhaustive exercise and after contusion increased significantly (p<0.05), while the two indices decreased constantly at 24 and 48 hours after injury with a similar change trend. Compared with the control group, Pax7 mRNA of skeletal muscle as a marker showed no significant difference in exhaustive exercise groups, but decreased at 48 hours after contusion (p<0.05). β-catenin mRNA of skeletal muscle down-regulated significantly over 24 hours after injury, then activated with an increased value at 48 hours after contusion (p<0.05). As a whole, the variations in the above indices in the contusion groups covered a wider range than in the exhaustive exercise groups. Conclusion The cytomembrane repair mechanism of MG53 and PTRF began immediately after the end of exhaustive exercise and contusion. Activation of Pax7 as the satellite cell marker took longer, and Wnt/β-catenin pathway showed first a decrease and then an increase resulting from the time-dependent gene expression during the repair of skeletal muscle injury. Level of evidence III, Therapeutic studies investigating the results of treatment.
Collapse
Affiliation(s)
| | | | - Leilei Ye
- Nanjing Institute of Physical Education and Sports, China
| | | | | |
Collapse
|
23
|
Yan M, Wang R, Liu S, Chen Y, Lin P, Li T, Wang Y. The Mechanism of Electroacupuncture at Zusanli Promotes Macrophage Polarization during the Fibrotic Process in Contused Skeletal Muscle. Eur Surg Res 2019; 60:196-207. [PMID: 31694021 DOI: 10.1159/000503130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/04/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Currently, many clinical experiments are being conducted to study the effect of acupuncture on skeletal muscle contusions, and its therapeutic effect has been confirmed to some extent. However, the mechanism of recovery by electroacupuncture (EA) in skeletal muscles after blunt trauma remains unknown. OBJECTIVE To determine whether EA at Zusanli can contribute to the regeneration of contused skeletal muscle and the molecular mechanism involved. METHODS Masson's trichrome staining and hematoxylin and eosin staining were used to measure the area of fibrotic tissue and determine the number of centrally nucleated muscle fibers respectively. The different immune phenotypes of macrophages were determined by flow cytometry. Then, ELISA was used to analyze the levels of interleukin-4 (IL-4), IL-6, interferon-α (IFN-α) and interferon-γ (IFN-γ) in the injured tissue. Finally, the expression of MyoD in the tissue was detected by quantitative real-time polymerase chain reaction. RESULTS EA at Zusanli helped regenerate contused skeletal muscle by alleviating fibrosis and increasing the size of the regenerating myofibres in the injured skeletal muscle. EA at Zusanli increased the number of M2 macrophages and decreased the number of M1 macrophages in contused skeletal muscle. EA at Zusanli decreased the level of cytokine IFN-γ and increased the levels of IL-4, interleukin-13 (IL-13), and IFN-α, which promoted macrophage polarization during the fibrosis recovery process in the contused skeletal muscle. EA at Zusanli could increase the expression of MyoD in tissues. CONCLUSIONS EA at Zusanli promoted macrophage polarization during the fibrotic process in contused skeletal muscle by decreasing cytokine IFN-γ and increasing IL-4, IL-13, and IFN-α, which contributed to the regeneration of the contused skeletal muscle.
Collapse
Affiliation(s)
- Mingyang Yan
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Rongguo Wang
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shouyao Liu
- Department of Traditional Chinese Medical Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ying Chen
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Peng Lin
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Tengqi Li
- Department of Graduate School, Peking University of Health Science Center, Beijing, China
| | - Yunting Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China,
| |
Collapse
|
24
|
Wu R, Huang C, Wu Q, Jia X, Liu M, Xue Z, Qiu Y, Niu X, Wang Y. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res Ther 2019; 10:80. [PMID: 30849996 PMCID: PMC6408860 DOI: 10.1186/s13287-019-1182-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies revealed that urine-derived stem cells (USCs) could promote myogenesis after the impairment of the sphincter muscles. However, the effects of exosomes secreted by USCs (USCs-Exo) were not elucidated. Exosomes are nanosized membrane vesicles secreted by the cells. They have been proved to be effective in protecting against tissue injury and therapeutic in tissue repair. USCs are ideal sources of exosomes because of the noninvasive obtaining method and self-renewal abilitiy. This study aimed to show the therapeutic effects of USCs-Exo on improving stress urinary incontinence (SUI). Methods Rat SUI models were established in this study using vaginal balloon inflation, and urodynamic and histological examination were carried out after exosome application. The proliferation and differentiation of muscle satellite cells (SCs) were evaluated using EdU, Cell Counting Kit 8, immunofluorescence staining, and Western blot analysis. mRNAs and proteins related to the activation of SCs were detected by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Results After exosome injection, the urodynamic parameters significantly improved and the injured muscle tissue recovered well. The activation, proliferation, and differentiation of SCs were promoted. The phosphorylation of extracellular-regulated protein kinases (ERK) was enhanced. When ERK was inhibited, the promoting effect of USCs-Exo treatment disappeared. Conclusion The findings of this study elucidated the functional roles of USCs-Exo in satellite cell ERK phosphorylation and identified a novel agent for skeletal muscle regeneration, providing a basis for further exploring a cell-free correction for SUI. Electronic supplementary material The online version of this article (10.1186/s13287-019-1182-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Chengsheng Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Xiang Jia
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zhuowei Xue
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yu Qiu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
25
|
Temporal expression of wound healing-related genes inform wound age estimation in rats after a skeletal muscle contusion: a multivariate statistical model analysis. Int J Legal Med 2019; 134:273-282. [PMID: 30631906 DOI: 10.1007/s00414-018-01990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Although many time-dependent parameters involved in wound healing have been exhaustively investigated, establishing an objective and reliable means for estimating wound age remains a challenge. In this study, 78 Sprague-Dawley rats were divided randomly into a control group and contusion groups at 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h post-injury (n = 6 per group). The expression of 35 wound healing-related genes was explored in contused skeletal muscle by real-time polymerase chain reaction. Differences between the groups were assessed by partial least squares discriminant analysis (PLS-DA). The results show that the samples were classified into three groups by wound age (4-12, 16-24, and 28-48 h). A Fisher discriminant analysis model of 14 selected genes was constructed, and 94.9% cross-validated grouped cases were correctly classified. A PLS regression analysis using 14 genes showed reasonable internal predictive validity, with a root mean squared error of cross-validation of approximately 8 h. To examine whether the prediction models were capable of analyzing new (ungrouped) cases, an external validation was carried out using the expression data from an additional 30 rats. Approximately 76.7% of ungrouped cases were correctly classified, which was a lower proportion than that for cross-validation. Similarly, the prediction results of the PLS model showed lower relatively external predictive validity (root mean squared error of prediction = 11 h) than internal predictive validity. Although the prediction results were less accurate than expected, the gene expression modeling and multivariate analyses showed great potential for estimating injury time. These multivariate methods may be valuable when devising future wound time estimation strategies.
Collapse
|
26
|
He JT, Huang HY, Qu D, Xue Y, Zhang KK, Xie XL, Wang Q. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions. Forensic Sci Med Pathol 2018; 14:174-179. [PMID: 29607464 DOI: 10.1007/s12024-018-9969-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Detection of the vitality of wounds is one of the most important issues in forensic practice. This study investigated mRNA and protein levels of CXCL1 and CXCR2 in skin wounds in mice and humans. Western blot analysis of CXCL1 and CXCR2 protein levels showed no difference between wounded and intact skin. However, mRNA levels demonstrated higher expression of CXCL1 and CXCR2 in contused mouse and human skin, compared with intact skin. At postmortem there were no remarkable changes in CXCL1 and CXCR2 mRNA levels in contused mouse skin. Increased mRNA expression was observed in contused mouse skin up to 96 h and 72 h after death for CXCL1 and CXCR2 respectively. In human samples of wounded skin, increased CXCL1 mRNA levels were detected up to 48 h after autopsy in all 5 cases, while increased CXCR2 mRNA levels were observed 48 h after autopsy in 4 of 5 cases. These findings suggest that the levels of CXCL1 and CXCR2 mRNA present in contused skin can be used as potential markers for a vital reaction in forensic practice.
Collapse
Affiliation(s)
- Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Hong-Yan Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Gaballah MH, Horita T, Takamiya M, Yokoji K, Fukuta M, Kato H, Aoki Y. Time-Dependent Changes in Local and Serum Levels of Inflammatory Cytokines as Markers for Incised Wound Aging of Skeletal Muscles. TOHOKU J EXP MED 2018; 245:29-35. [DOI: 10.1620/tjem.245.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammed Hassan Gaballah
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
- Egyptian Forensic Medicine Authority, Ministry of Justice
| | - Tetsuya Horita
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
| | | | - Keisuke Yokoji
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Mamiko Fukuta
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Hideaki Kato
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Yasuhiro Aoki
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
29
|
Xu J, Zhao R, Xue Y, Xiao H, Sheng Y, Zhao D, He J, Huang H, Wang Q, Wang H. RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study. Forensic Sci Res 2017; 3:153-160. [PMID: 30483664 PMCID: PMC6197083 DOI: 10.1080/20961790.2017.1349639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 01/25/2023] Open
Abstract
Detection of the vitality of wounds is essential in forensic practice. The present study used Illumina RNA-seq technology to determine gene expression profiles in contused mouse skin. In obtained high quality sequencing reads, the reads were mapped onto a reference transcriptome (Mus_musculus.GRCm38.83). The results revealed that there were 659 up-regulated and 996 down-regulated differentially expressed genes (DEGs) in contused mouse skin. The DEGs were further analyzed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. Genes from different functional categories and signalling pathways were enriched, including the immune system process, immune response, defense response, cytokine-cytokine receptor interaction, complement and coagulation cascades and chemokine signalling pathway. Expression patterns of 11 DEGs were verified by RT-qPCR in mice skins. In addition, alterations of five DEGs were also analyzed in postmortem human wound samples. The results were in concordance with the results of RNA-seq. These findings suggest that RNA-seq is a powerful tool to reveal DEGs as potential markers for vital reaction in terms of forensic practices.
Collapse
Affiliation(s)
- Jingtao Xu
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Huanqin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanliang Sheng
- Department of Forensic Medicine, School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Dong Zhao
- CollaborativeInnovation Center of Judicial Civilization, China and Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Jietao He
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Hongyan Huang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Kawai M, Ohmori YK, Nishino M, Yoshida M, Tabata K, Hirota DS, Ryu-Mon A, Yamamoto H, Sonobe J, Kataoka YH, Shiotsu N, Ikegame M, Maruyama H, Yamamoto T, Bessho K, Ohura K. Determination of cell fate in skeletal muscle following BMP gene transfer by in vivo electroporation. Eur J Histochem 2017; 61:2772. [PMID: 28735515 PMCID: PMC5641669 DOI: 10.4081/ejh.2017.2772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
We previously developed a novel method for gene transfer, which combined a non-viral gene expression vector with transcutaneous in vivo electroporation. We applied this method to transfer the bone morphogenetic protein (BMP) gene and induce ectopic bone formation in rat skeletal muscles. At present, it remains unclear which types of cells can differentiate into osteogenic cells after BMP gene transfer by in vivo electroporation. Two types of stem cells in skeletal muscle can differentiate into osteogenic cells: muscle-derived stem cells, and bone marrow-derived stem cells in the blood. In the present study, we transferred the BMP gene into rat skeletal muscles. We then stained tissues for several muscle-derived stem cell markers (e.g., Pax7, M-cadherin), muscle regeneration-related markers (e.g., Myod1, myogenin), and an inflammatory cell marker (CD68) to follow cell differentiation over time. Our results indicate that, in the absence of BMP, the cell population undergoes muscle regeneration, whereas in its presence, it can differentiate into osteogenic cells. Commitment towards either muscle regeneration or induction of ectopic bone formation appears to occur five to seven days after BMP gene transfer.
Collapse
|
31
|
Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med 2017; 131:691-698. [PMID: 28078446 DOI: 10.1007/s00414-016-1529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Abstract
With the prevalence of diabetes, it is becoming important to analyze the diabetic wound age in forensic practice. The present study investigated the time-dependent expression of receptor for advanced glycation end products (RAGE) during diabetic wound healing in mice and its applicability to wound age determination by immunohistochemistry, double immunofluorescence, and Western blotting. After an incision was created in genetically diabetic db/db mice and control mice, mice were killed at posttraumatic intervals ranging from 6 h to 14 days, followed by the sampling of wound margin. Compared with control mice, diabetic mice showed the delayed wound healing. In control and diabetic wound specimens, RAGE immunoreactivity was observed in a small number of polymorphonuclear cells (PMNs), a number of macrophages, and fibroblasts. Morphometrically, the positive ratios of RAGE in macrophages or fibroblasts considerably increased in diabetic wounds during late repair, which exceeded 60% at 7 and 10 days post-injury. There were no control wound specimens to show a ratio of >60% in macrophages or fibroblasts. By Western blotting analysis, the ratios of RAGE to GAPDH were >1.4 in all diabetic wound samples from 7 to 10 days post-injury, which were >1.8 at 10 days after injury. By comparison, no control wound specimens indicated a ratio of >1.4. In conclusion, the expression of RAGE is upregulated and temporally distributed in macrophages and fibroblasts during diabetic wound healing, which might be closely involved in prolonged inflammation and deficient healing. Moreover, RAGE is promising as a useful marker for diabetic wound age determination.
Collapse
|
32
|
Kasukonis B, Kim J, Brown L, Jones J, Ahmadi S, Washington T, Wolchok J. Codelivery of Infusion Decellularized Skeletal Muscle with Minced Muscle Autografts Improved Recovery from Volumetric Muscle Loss Injury in a Rat Model. Tissue Eng Part A 2016; 22:1151-1163. [PMID: 27570911 DOI: 10.1089/ten.tea.2016.0134] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle is capable of robust self-repair following mild trauma, yet in cases of traumatic volumetric muscle loss (VML), where more than 20% of a muscle's mass is lost, this capacity is overwhelmed. Current autogenic whole muscle transfer techniques are imperfect, which has motivated the exploration of implantable scaffolding strategies. In this study, the use of an allogeneic decellularized skeletal muscle (DSM) scaffold with and without the addition of minced muscle (MM) autograft tissue was explored as a repair strategy using a lower-limb VML injury model (n = 8/sample group). We found that the repair of VML injuries using DSM + MM scaffolds significantly increased recovery of peak contractile force (81 ± 3% of normal contralateral muscle) compared to unrepaired VML controls (62 ± 4%). Similar significant improvements were measured for restoration of muscle mass (88 ± 3%) in response to DSM + MM repair compared to unrepaired VML controls (79 ± 3%). Histological findings revealed a marked decrease in collagen dense repair tissue formation both at and away from the implant site for DSM + MM repaired muscles. The addition of MM to DSM significantly increased MyoD expression, compared to isolated DSM treatment (21-fold increase) and unrepaired VML (37-fold) controls. These findings support the further exploration of both DSM and MM as promising strategies for the repair of VML injury.
Collapse
Affiliation(s)
- Benjamin Kasukonis
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - John Kim
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - Lemuel Brown
- 2 Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas , Fayetteville, Arkansas
| | - Jake Jones
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - Shahryar Ahmadi
- 3 Department of Orthopedics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Tyrone Washington
- 2 Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas , Fayetteville, Arkansas
| | - Jeffrey Wolchok
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| |
Collapse
|