1
|
Wang J, Wang Y, Cai X, Xia W, Zhu J. A Review: Visuospatial Dysfunction in Patients with the Cerebral Small Vessel Disease. Neuroscience 2024; 552:47-53. [PMID: 38880241 DOI: 10.1016/j.neuroscience.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cerebral small vessel disease (CSVD) impairs visuospatial function, and this is one of the most obvious areas of cognitive impairment in CSVD. So, recognizing, monitoring, and treating visuospatial dysfunction are all important to the prognosis of CSVD. This review discussed the anatomical and pathological mechanisms, clinical recognition (scales, imaging, and biomarkers), and treatment of cognitive impairment especially visuospatial dysfunction in CSVD.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youmeng Wang
- Department of Neurology, Fuyang People's Hospital, Fuyang, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xia
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Aspberg S, Cheng D, von Heijne A, Gigante B, Singer DE. Brain MRI microbleeds and risk of intracranial hemorrhage in atrial fibrillation patients: A Swedish case-control study. J Stroke Cerebrovasc Dis 2024; 33:107629. [PMID: 38325675 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES Our goal was to quantify the independent association of brain microbleeds with future intracranial hemorrhage (ICrH). Microbleed findings on brain magnetic resonance imaging (MRI) may identify distinctive risk factors for ICrH which could inform the anticoagulant therapy decision for atrial fibrillation (AF) patients. Our study design includes patients with MRIs for numerous reasons, not limited to evaluation of stroke. MATERIALS AND METHODS The source population was all patients with AF from a nationwide Swedish health care register. Case patients had an ICrH between 2006 and 2013 and ≥1 brain MRI for an unrelated condition before the ICrH. Each case was matched to four controls who had a brain MRI without a subsequent ICrH. The MRIs were re-reviewed by neuroradiologists. Associations between MRI findings and subsequent ICrH were assessed using logistic regression, adjusting for comorbidities and antithrombotic medications. RESULTS A total of 78 cases and 312 matched controls were identified; 29 cases and 79 controls had MRI sequences suitable for analysis of microbleeds. Patients with ≥10 microbleeds had a markedly increased risk of ICrH (adjusted odds ratio 14.56; 95 % confidence interval: 2.86-74.16, p < 0.001). All patients with ≥10 microbleeds had microbleeds in the lobar region and ≥10 lobar microbleeds was associated with intracerebral hemorrhages, univariable OR 8.54 (2.01-36.33), p = 0.004. CONCLUSIONS Leveraging a nationwide database with brain imaging obtained prior to ICrH, we identified a strong association between ≥10 microbleeds on brain MRI and subsequent ICrH among AF patients. Lobar brain regions were involved whenever there were ≥10 microbleeds. Brain MRIs may help optimize the anticoagulation decision in selected AF patients.
Collapse
Affiliation(s)
- Sara Aspberg
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - David Cheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anders von Heijne
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bruna Gigante
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel E Singer
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
4
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
5
|
Nagaraja N, DeKosky S, Duara R, Kong L, Wang WE, Vaillancourt D, Albayram M. Imaging features of small vessel disease in cerebral amyloid angiopathy among patients with Alzheimer's disease. Neuroimage Clin 2023; 38:103437. [PMID: 37245492 PMCID: PMC10236212 DOI: 10.1016/j.nicl.2023.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease biomarkers including white matter hyperintensities (WMH), lacunes, and enlarged perivascular spaces (ePVS) are under investigation to identify those specific to cerebral amyloid angiopathy (CAA). In subjects with Alzheimer's disease (AD), we assessed characteristic features and amounts of WMH, lacunes, and ePVS in four CAA categories (no, mild, moderate and severe CAA) and correlated these with Clinical Dementia Rating sum of boxes (CDRsb) score, ApoE genotype, and neuropathological changes at autopsy. METHODS The study included patients with a clinical diagnosis of dementia due to AD and neuropathological confirmation of AD and CAA in the National Alzheimer's Coordinating Center (NACC) database. The WMH, lacunes, and ePVS were evaluated using semi-quantitative scales. Statistical analyses compared the WMH, lacunes, and ePVS values in the four CAA groups with vascular risk factors and AD severity treated as covariates, and to correlate the imaging features with CDRsb score, ApoE genotype, and neuropathological findings. RESULTS The study consisted of 232 patients, of which 222 patients had FLAIR data available and 105 patients had T2-MRI. Occipital predominant WMH were significantly associated with the presence of CAA (p = 0.007). Among the CAA groups, occipital predominant WMH was associated with severe CAA (β = 1.22, p = 0.0001) compared with no CAA. Occipital predominant WMH were not associated with the CDRsb score performed at baseline (p = 0.68) or at follow-up 2-4 years after the MRI (p = 0.92). There was no significant difference in high grade ePVS in the basal ganglia (p = 0.63) and centrum semiovale (p = 0.95) among the four CAA groups. The WMH and ePVS on imaging did not correlate with the number of ApoE ε4 alleles but the WMH (periventricular and deep) correlated with the presence of infarcts, lacunes and microinfarcts on neuropathology. CONCLUSION Among patients with AD, occipital predominant WMH is more likely to be found in patients with severe CAA than in those without CAA. The high-grade ePVS in centrum semiovale were common in all AD patients regardless of CAA severity.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Steven DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ranjan Duara
- Department of Neurology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Lan Kong
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mehmet Albayram
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Alban SL, Lynch KM, Ringman JM, Toga AW, Chui HC, Sepehrband F, Choupan J. The association between white matter hyperintensities and amyloid and tau deposition. Neuroimage Clin 2023; 38:103383. [PMID: 36965457 PMCID: PMC10060905 DOI: 10.1016/j.nicl.2023.103383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with β-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their β-amyloid and tau pathologies, then assessed the effects of β-amyloid and tau on WMH volume and number. We then determined regions in which β-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global β-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where β-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). β-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between β-amyloid and WMH burden emphasizes the relationship between β-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on β-amyloid's vascular effects and the implications of impaired brain clearance in AD.
Collapse
Affiliation(s)
- Sierra L Alban
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M Lynch
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., Scarsdale, NY, USA
| |
Collapse
|
7
|
Amiri S, Hassani-Abharian P, Vaseghi S, Kazemi R, Nasehi M. Effect of RehaCom cognitive rehabilitation software on working memory and processing speed in chronic ischemic stroke patients. Assist Technol 2023; 35:41-47. [PMID: 34033513 DOI: 10.1080/10400435.2021.1934608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stroke survivors need assistance to overcome cognitive impairments. Working memory (WM) and processing speed (PS) as two critical cognitive functions are disrupted by stroke. The goal of this study was to investigate the effect of RehaCom rehabilitation software on WM and PS in participants with chronic ischemic stroke with hemiplegia (right/left side). Participants were selected among stroke patients who were referred to our special rehabilitation clinic. Fifty participants were assigned to control (n = 25) and experimental (n = 25) groups. The results of the experimental group were compared with the control group before and after the treatment with RehaCom (ten 45-min sessions across five weeks, two sessions per week). The results showed a significant improvement in WM and PS in the experimental group in comparison with the control group after a 5-week training with RehaCom. In conclusion, our findings indicate that treatment with RehaCom software improves WM and PS in chronic ischemic stroke participants with hemiplegia. The exact mechanism of RehaCom is largely unknown and further studies are needed, but its effects on the function of brain regions involved in modulating cognitive functions such as the prefrontal cortex, cingulate cortex, and parietal cortex may be mechanisms of interest.
Collapse
Affiliation(s)
- Sanaz Amiri
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Peyman Hassani-Abharian
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Kazemi
- TABASOM Rehabilitation Center for Stroke Patients, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Lorenzini L, Ansems LT, Lopes Alves I, Ingala S, Vállez García D, Tomassen J, Sudre C, Salvadó G, Shekari M, Operto G, Brugulat-Serrat A, Sánchez-Benavides G, ten Kate M, Tijms B, Wink AM, Mutsaerts HJMM, den Braber A, Visser PJ, van Berckel BNM, Gispert JD, Barkhof F, Collij LE. Regional associations of white matter hyperintensities and early cortical amyloid pathology. Brain Commun 2022; 4:fcac150. [PMID: 35783557 PMCID: PMC9246276 DOI: 10.1093/braincomms/fcac150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176). Using PET imaging, cortical amyloid burden was assessed regionally within early accumulating regions (medial orbitofrontal, precuneus, and cuneus) and globally, using the Centiloid method. Regional WMH volume was computed using Bayesian Model Selection. Global associations between WMH, amyloid, and cardiovascular risk scores (Framingham and CAIDE) were assessed using linear models. Partial least square (PLS) regression was used to identify regional associations. Models were adjusted for age, sex, and APOE-e4 status. Individual PLS scores were then related to cognitive performance in 4 domains (attention, memory, executive functioning, and language). While no significant global association was found, the PLS model yielded two components of interest. In the first PLS component, a fronto-parietal WMH pattern was associated with medial orbitofrontal-precuneal amyloid, vascular risk, and age. Component 2 showed a posterior WMH pattern associated with precuneus-cuneus amyloid, less related to age or vascular risk. Component 1 was associated with lower performance in all cognitive domains, while component 2 only with worse memory. In a large pre-dementia population, we observed two distinct patterns of regional associations between WMH and amyloid burden, and demonstrated their joint influence on cognitive processes. These two components could reflect the existence of vascular-dependent and -independent manifestations of WMH-amyloid regional association that might be related to distinct primary pathophysiology.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Loes T Ansems
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Isadora Lopes Alves
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Silvia Ingala
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David Vállez García
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jori Tomassen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carole Sudre
- Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
- MRC Unit for Lifelong Health and Ageing - University CollegeLondon, UK
- School of Biomedical Engineering, King’s College LondonUK
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Atlantic Fellow for Equity in Brain Health at the University of California San Francisco, SanFrancisco, California, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mara ten Kate
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henk J M M Mutsaerts
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anouk den Braber
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department. of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bart N M van Berckel
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Lyduine E Collij
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Mahammedi A, Wang LL, Williamson BJ, Khatri P, Kissela B, Sawyer RP, Shatz R, Khandwala V, Vagal A. Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know. AJNR Am J Neuroradiol 2022; 43:650-660. [PMID: 34620594 PMCID: PMC9089248 DOI: 10.3174/ajnr.a7302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 11/07/2022]
Abstract
Small vessel disease, a disorder of cerebral microvessels, is an expanding epidemic and a common cause of stroke and dementia. Despite being almost ubiquitous in brain imaging, the clinicoradiologic association of small vessel disease is weak, and the underlying pathogenesis is poorly understood. The STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria have standardized the nomenclature. These include white matter hyperintensities of presumed vascular origin, recent small subcortical infarcts, lacunes of presumed vascular origin, prominent perivascular spaces, cerebral microbleeds, superficial siderosis, cortical microinfarcts, and brain atrophy. Recently, the rigid categories among cognitive impairment, vascular dementia, stroke, and small vessel disease have become outdated, with a greater emphasis on brain health. Conventional and advanced small vessel disease imaging markers allow a comprehensive assessment of global brain heath. In this review, we discuss the pathophysiology of small vessel disease neuroimaging nomenclature by means of the STRIVE criteria, clinical implications, the role of advanced imaging, and future directions.
Collapse
Affiliation(s)
- A Mahammedi
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - L L Wang
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - B J Williamson
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - P Khatri
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - B Kissela
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - R P Sawyer
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - R Shatz
- Neurology (P.K., B.K., R.P.S., R.S.) University of Cincinnati Medical Center, Cincinnati, Ohio
| | - V Khandwala
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| | - A Vagal
- From the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
| |
Collapse
|
10
|
Gireud-Goss M, Mack AF, McCullough LD, Urayama A. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist 2021; 27:668-684. [PMID: 33238806 PMCID: PMC9853919 DOI: 10.1177/1073858420954811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid β (Aβ) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aβ damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aβ peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aβ vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexis F. Mack
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Gyanwali B, Lui B, Tan CS, Chong EJY, Vrooman H, Chen C, Hilal S. Cerebral Microbleeds and White Matter Hyperintensities are Associated with Cognitive Decline in an Asian Memory Clinic Study. Curr Alzheimer Res 2021; 18:399-413. [PMID: 34420506 DOI: 10.2174/1567205018666210820125543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cerebral Small Vessel Disease (SVD); lacunes, Cerebral Microbleeds (CMBs), and White Matter Hyperintensities (WMH) have a vital role in cognitive impairment and dementia. SVD in lobar location is related to cerebral amyloid angiopathy, whereas SVD in a deep location with hypertensive arteriopathy. It remains unclear how different locations of SVD affect long-term cognitive decline. The present study aimed to analyse the association between different locations and severity of SVD with global and domain-specific cognitive decline over the follow-up interval of 3 years. METHODS We studied 428 participants who had performed MRI scans at baseline and at least 3 neuropsychological assessments. Locations of lacunes and CMBs were categorized into strictly lobar, strictly deep and mixed-location, WMH volume into anterior and posterior. The National Institute of Neurological Disorders and Stroke-Canadian Stroke Network Harmonization Neuropsychological Battery was used to assess cognitive function. To analyse the association between baseline location and severity of SVD with cognitive decline, linear regression models with generalized estimated equations were constructed to calculate the mean difference, 95% confidence interval and two-way interaction factor between time and SVD. RESULTS Increased numbers of baseline CMBs were associated with a decline in global cognition as well as a decline in executive function and memory domains. Location-specific analysis showed similar results with strictly lobar CMBs. There was no association with strictly deep and mixed-location CMBs with cognitive decline. Baseline WMH volume was associated with a decline in global cognition, executive function and memory. Similar results were obtained with anterior and posterior WMH volumes. Lacunes and their locations were not associated with cognitive decline. CONCLUSION Strictly lobar CMBs, as well as WMH volume in anterior and posterior regions, were associated with cognitive decline. Future research focuses are warranted to evaluate interventions that may prevent cognitive decline related to SVD.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System, 21 Lower Kent Ridge Rd, Singapore
| | - Benedict Lui
- Memory Aging & Cognition Centre, National University Health System, 21 Lower Kent Ridge Rd, Singapore
| | - Chuen S Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 21 Lower Kent Ridge Rd, Singapore
| | - Eddie J Y Chong
- Department of Psychological Medicine, National University Hospital, 21 Lower Kent Ridge Rd, Singapore
| | - Henri Vrooman
- Departments of Radiology & Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System, 21 Lower Kent Ridge Rd, Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System, 21 Lower Kent Ridge Rd, Singapore
| |
Collapse
|
12
|
Su Y, Fu J, Zhang Y, Xu J, Dong Q, Cheng X. Visuospatial dysfunction is associated with posterior distribution of white matter damage in non-demented cerebral amyloid angiopathy. Eur J Neurol 2021; 28:3113-3120. [PMID: 34157199 DOI: 10.1111/ene.14993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy (CAA) is a well-recognized contributor to cognitive decline in the elderly. The posterior cortical predilection of CAA pathology would cause visuospatial dysfunction, which is still underexplored. We aimed to investigate whether the visuospatial dysfunction in CAA is associated with the posterior distribution of small vessel disease (SVD) imaging markers. METHODS We recruited 60 non-demented CAA cases from a Chinese prospective cohort and 30 cases with non-CAA SVD as controls. We used the Visual Object and Space Perception (VOSP) battery to evaluate visuospatial abilities, and multivariable regression models to assess their associations with SVD imaging markers. RESULTS There was visuospatial dysfunction, especially visual object perception impairment, in CAA compared to controls (Z-score of VOSP: -0.11 ± 0.66 vs. 0.22 ± 0.54, p = 0.023). The VOSP score in CAA was independently related to the fronto-occipital gradient of white matter hyperintensity volumes (coefficient = 0.03, 95% confidence interval [CI] = 0.003-0.05, p = 0.030) and mean fractional anisotropy values on diffusion tensor imaging (coefficient = 4.72, 95% CI = 0.97-8.48, p = 0.015), but not the severity of global SVD imaging markers or the gradient of lobar cerebral microbleeds with adjustments for age and global cognition score. CONCLUSIONS This finding suggests that the damage of posterior white matter rather than global disease severity may be a major contributor to visuospatial dysfunction in CAA.
Collapse
Affiliation(s)
- Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanrong Zhang
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajie Xu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Novosadova OA, Semenova TN, Grigoryeva VN. [Cerebral amyloid angiopathy, comorbid atrial fibrillation]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:46-52. [PMID: 33908232 DOI: 10.17116/jnevro202112103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is caused by the deposition of β-amyloid in small vessels in the cerebral cortex and leptomeninges. Nowadays, CAA is recognized more often due to the development of neuroimaging technologies. The frequency of CAA increases in old age that explains its frequent association with cardiovascular diseases. Combination of CAA with atrial fibrillation (AF) causes particular difficulties in managing of the patients, since antithrombotic drugs prescribed to patients with AF mostly contraindicated in CAA because of increased risk of intracerebral hemorrhages. The article presents a case report of the patient with AF who was admitted to the stroke center with acute ischemic stroke. According to MRI, the focus of acute ischemia was small and localized in the cerebellum. This stroke was regarded as having an undetermined etiology according TOAST classification. Small-vessel occlusion subtype was not diagnosed because the TOAST criteria do not attribute an ischemic focus in the cerebellum to a lacunar stroke, while cardioembolic subtype was rejected due to a small (less than 1.5 cm in diameter) size of the focus. Probable CAA in the patient was diagnosed on the basis of the following MRI data: multiple cortical-subcortical micro-hemorrhages (T2*GRE); a single cortical focus with features of the hemorrhage at the stage of intracellular methemoglobin deposition (T1- weighted MR images); bilateral enlargement of perivascular spaces in semioval centers (FLAIR); a negative fronto-occipital gradient (T2-weighted MR images). A diagnosis of CAA was made in accordance with the 2010 Boston criteria and 2019 recommendations of the International CAA Association. The article discusses the hemorrhagic and non-hemorrhagic MRI features of CAA. Frequency of occurrence of cortical microinfarcts in CAA is discussed as well as their differences from small cardioembolic infarcts in AF. Algorithms for antithrombotic therapy for secondary prevention of ischemic stroke in patients with CAA and AF are considered.
Collapse
Affiliation(s)
- O A Novosadova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T N Semenova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - V N Grigoryeva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Inoue Y, Ando Y, Misumi Y, Ueda M. Current Management and Therapeutic Strategies for Cerebral Amyloid Angiopathy. Int J Mol Sci 2021; 22:ijms22083869. [PMID: 33918041 PMCID: PMC8068954 DOI: 10.3390/ijms22083869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by accumulation of amyloid β (Aβ) in walls of leptomeningeal vessels and cortical capillaries in the brain. The loss of integrity of these vessels caused by cerebrovascular Aβ deposits results in fragile vessels and lobar intracerebral hemorrhages. CAA also manifests with progressive cognitive impairment or transient focal neurological symptoms. Although development of therapeutics for CAA is urgently needed, the pathogenesis of CAA remains to be fully elucidated. In this review, we summarize the epidemiology, pathology, clinical and radiological features, and perspectives for future research directions in CAA therapeutics. Recent advances in mass spectrometric methodology combined with vascular isolation techniques have aided understanding of the cerebrovascular proteome. In this paper, we describe several potential key CAA-associated molecules that have been identified by proteomic analyses (apolipoprotein E, clusterin, SRPX1 (sushi repeat-containing protein X-linked 1), TIMP3 (tissue inhibitor of metalloproteinases 3), and HTRA1 (HtrA serine peptidase 1)), and their pivotal roles in Aβ cytotoxicity, Aβ fibril formation, and vessel wall remodeling. Understanding the interactions between cerebrovascular Aβ deposits and molecules that accumulate with Aβ may lead to discovery of effective CAA therapeutics and to the identification of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
- Correspondence: ; Tel.: +81-96-373-5893; Fax: +81-96-373-5895
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo 859-3298, Japan;
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| |
Collapse
|
15
|
Marazuela P, Bonaterra-Pastra A, Faura J, Penalba A, Pizarro J, Pancorbo O, Rodríguez-Luna D, Vert C, Rovira A, Pujadas F, Freijo MM, Tur S, Martínez-Zabaleta M, Cardona Portela P, Vera R, Lebrato-Hernández L, Arenillas JF, Pérez-Sánchez S, Montaner J, Delgado P, Hernández-Guillamon M. Circulating AQP4 Levels in Patients with Cerebral Amyloid Angiopathy-Associated Intracerebral Hemorrhage. J Clin Med 2021; 10:jcm10050989. [PMID: 33801197 PMCID: PMC7957864 DOI: 10.3390/jcm10050989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage (ICH) in elderly patients. Growing evidence suggests a potential role of aquaporin 4 (AQP4) in amyloid-beta-associated diseases, including CAA pathology. Our aim was to investigate the circulating levels of AQP4 in a cohort of patients who had suffered a lobar ICH with a clinical diagnosis of CAA. AQP4 levels were analyzed in the serum of 60 CAA-related ICH patients and 19 non-stroke subjects by enzyme-linked immunosorbent assay (ELISA). The CAA–ICH cohort was divided according to the time point of the functional outcome evaluation: mid-term (12 ± 18.6 months) and long-term (38.5 ± 32.9 months) after the last ICH. Although no differences were found in AQP4 serum levels between cases and controls, lower levels were found in CAA patients presenting specific hemorrhagic features such as ≥2 lobar ICHs and ≥5 lobar microbleeds detected by magnetic resonance imaging (MRI). In addition, CAA-related ICH patients who presented a long-term good functional outcome had higher circulating AQP4 levels than subjects with a poor outcome or controls. Our data suggest that AQP4 could potentially predict a long-term functional outcome and may play a protective role after a lobar ICH.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Júlia Faura
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (O.P.); (D.R.-L.)
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (O.P.); (D.R.-L.)
| | - Carla Vert
- Neuroradiology, Department of Radiology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (C.V.); (A.R.)
| | - Alex Rovira
- Neuroradiology, Department of Radiology, Vall d’Hebron Hospital, 08035 Barcelona, Spain; (C.V.); (A.R.)
| | - Francesc Pujadas
- Dementia Unit, Neurology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - M. Mar Freijo
- Neurovascular Group, Biocruces Health Research Institute, 48903 Barakaldo, Spain;
| | - Silvia Tur
- Neurology, Son Espases University Hospital, 07120 Balearic Islands, Spain;
| | | | - Pere Cardona Portela
- Department of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Rocío Vera
- Stroke Unit, Department of Neurology, Ramon y Cajal University Hospital, 28034 Madrid, Spain;
| | | | - Juan F. Arenillas
- Stroke Program, Department of Neurology, Hospital Clínico Universitario, 47003 Valladolid, Spain;
- Clinical Neurosciences Research Group, Department of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
- Department of Neurology, Virgen Macarena University Hospital, 41009 Sevilla, Spain;
- Stroke Research Program, Institute of Biomedicine of Sevilla, IBiS, Virgen del Rocío University Hospital, University of Sevilla, 41009 Sevilla, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.M.); (A.B.-P.); (J.F.); (A.P.); (J.P.); (J.M.); (P.D.)
- Correspondence:
| |
Collapse
|
16
|
Zhang SC, Jia JJ, Zhao HL, Zhou B, Wang W, Lu XH, Wang H, Wang ZF, Wu WP. Early MRI imaging and follow-up study in cerebral amyloid angiopathy. Open Med (Wars) 2021; 16:257-263. [PMID: 33623821 PMCID: PMC7885301 DOI: 10.1515/med-2021-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Aim To study the imaging features of leukoaraiosis (LA) and hemorrhage in cerebral amyloid angiopathy (CAA) patients. Methods The earliest MRI images of probable CAA patients and non-CAA patients were collected. The characteristics of LA in the two groups were analyzed. Cerebral micro bleeding (CMB), superficial siderosis (SS), and intracranial hemorrhage (ICH) were recorded in the follow-up study. The space relationship between CMB or SS and ICH was assessed. Results We found that 10/21 (47.6%) patients had occipital prominent LA and 14/21 (66.7%) patients had subcortical punctate LA before the ICH, which was higher than that of the ones in the control group (p = 0.015 and 0.038, respectively). The recurrence rate of ICH was 100% (3/3) in patients with diffuse SS and 36.4% (4/11) in patients without. The recurrence rate of ICH was 60% (3/5) in patients with multiple-lobe CMBs and 44.4% (4/9) in those without. The location of the ICH and CMB was inconsistent. ICH occurred in the ipsilateral cerebral hemisphere of SS in three patients with diffuse SS. Conclusion LA, diffuse SS, and multiple-lobe CMBs are important imaging characteristics of CAA, which may help make early diagnosis and predict the recurrence of ICH.
Collapse
Affiliation(s)
- Shan-Chun Zhang
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Jian-Jun Jia
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Heng-Li Zhao
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Bo Zhou
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Wei Wang
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Xiang-Hui Lu
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Hao Wang
- Geriatric Cardiological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Zhen-Fu Wang
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Wei-Ping Wu
- Geriatric Neurological Department of the Second Medical Centre and National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
17
|
Asymptomatic Striatocapsular slit-like Hemorrhage as a Severity Marker in Patients with Hypertensive Angiopathy. J Stroke Cerebrovasc Dis 2020; 29:105153. [PMID: 32912549 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Concomitant asymptomatic striatocapsular slit-like hemorrhage (SSH) is occasionally found in patients of spontaneous intracerebral hemorrhage (ICH), but was seldomly described in the literature. In this study, we described the clinico-radiological features of asymptomatic SSH in ICH patients with hypertensive microangiopathy. METHODS AND RESULTS 246 patients with strictly deep or mixed deep and lobar ICH/microbleeds were included. SSH was defined as hypointense lesions involving the lateral aspect of lentiform nucleus or external capsule in slit shape (>1.5 cm) on susceptibility-weighted imaging without history of associated symptoms. Demographics and neuroimaging markers were compared between patients with SSH and those without. Patients with SSH (n=24, 10%) and without SSH had comparable age (62.0 ± 12.6 vs. 62.3 ± 13.5, p = 0.912) and vascular risk factor profiles including the diagnosis of chronic hypertension, diabetes, and dyslipidemia (all p>0.05). SSH was associated with more common lobar microbleeds (79.2% vs 48.2%, p = 0.005), lacunes (75% vs. 41.4%, p = 0.002) and higher white matter hyperintensity (WMH) volumes (24.1 [10.4-46.3] vs. 13.9 [7.0-24.8] mL, p = 0.012) on MRI, as well as more frequent left ventricular hypertrophy (LVH) (50.0% vs. 20.5%, p = 0.004) and albuminuria (41.7% vs. 19.4%, p = 0.018). In multivariable analyses, SSH remains independently associated with LVH (p = 0.017) and albuminuria (p = 0.032) after adjustment for age, sex, microbleed, lacune and WMH volume. CONCLUSIONS Asymptomatic SSH is associated with more severe cerebral small vessel disease-related change on brain MRI, and hypertensive cardiac and renal injury, suggesting a more advanced stage of chronic hypertension.
Collapse
|
18
|
Dubost F, Bruijne MD, Nardin M, Dalca AV, Donahue KL, Giese AK, Etherton MR, Wu O, Groot MD, Niessen W, Vernooij M, Rost NS, Schirmer MD. Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation. Med Image Anal 2020; 63:101698. [PMID: 32339896 PMCID: PMC7275913 DOI: 10.1016/j.media.2020.101698] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment of registration quality in large clinical datasets is inefficient. In this work, we propose to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain. The method consists of automatically segmenting the ventricles of a given scan using a neural network, and comparing the segmentation to the atlas ventricles propagated to image space. We used the proposed method to improve clinical image registration to a general atlas by computing multiple registrations - one directly to the general atlas and others via different age-specific atlases - and then selecting the registration that yielded the highest ventricle overlap. Finally, as an example application of the complete pipeline, a voxelwise map of white matter hyperintensity burden was computed using only the scans with registration quality above a predefined threshold. Methods were evaluated in a single-site dataset of more than 1000 scans, as well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ventricle segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle overlap compared to a direct registration to the general atlas (Dice similarity coefficient increase up to 0.15). Experiments also showed that selecting scans with the registration quality assessment method could improve the quality of average maps of white matter hyperintensity burden, instead of using all scans for the computation of the white matter hyperintensity map. In this work, we demonstrated the utility of an automated tool for assessing image registration quality in clinical scans. This image quality assessment step could ultimately assist in the translation of automated neuroimaging pipelines to the clinic.
Collapse
Affiliation(s)
- Florian Dubost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
| | - Marleen de Bruijne
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Marco Nardin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Adrian V Dalca
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Kathleen L Donahue
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Anne-Katrin Giese
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Mark R Etherton
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Marius de Groot
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands
| | - Wiro Niessen
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Imaging Physics, Faculty of Applied Science, TU Delft, Delft, The Netherlands
| | - Meike Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Markus D Schirmer
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA; Department of Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Germany.
| |
Collapse
|
19
|
Xiong J, Zhou H, Lu D, Wang Z, Liu H, Sun Y, Xu J, Feng Y, Xing A. Levetiracetam Reduces Early Inflammatory Response After Experimental Intracerebral Hemorrhage by Regulating the Janus Kinase 2 (JAK2)-Signal Transducer and Activator of Transcription 3 (STAT3) Signaling Pathway. Med Sci Monit 2020; 26:e922741. [PMID: 32289810 PMCID: PMC7174898 DOI: 10.12659/msm.922741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Levetiracetam (LEV) is an antiepileptic drug that promotes recovery of neurological function by alleviating inflammatory reactions. However, it is not known whether it can improve secondary brain injury after intracerebral hemorrhage (ICH). The aim of this study was to determine whether LEV can reduce early inflammatory response after ICH in rats. Material/Methods An in vitro model of early inflammation was created by treating microglia cells with lipopolysaccharide (LPS). After exposure to various concentrations of LEV, the expression levels of NF-κB and STAT3 and inflammatory factors such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α in microglia were detected. In vivo, autologous blood was used to induce the rat ICH model. The effects of LEV on post-cerebral hemorrhagic inflammatory response were examined using neurobehavioral tests, FJC staining, brain water content testing, and analysis of protein expression levels of NF-κB, JAK2, STAT3, and inflammatory factors. Results LEV treatment significantly reduced the expression of inflammatory factors and protein expression levels of NF-κB and STAT3 in LPS-treated microglia cells (P<0.05). In male Sprague-Dawley (SD) rats, LEV treatment markedly decreased the volume of hematoma and the number of degenerative neurons (P<0.05). It also improved the neurological function and relieved brain edema. The protein expression levels of NF-κB, JAK2, and STAT3 were significantly lower in the ICH+LEV group than in the control group (P<0.05). Conclusions Our study suggests that treatment with LEV alleviates early inflammatory responses induced by ICH. Mechanistically, LEV inhibited the JAK2-STAT3 signaling pathway and reduced neuronal injury around the hematoma, and ameliorated brain edema, all of which promoted recovery of nerve function after hemorrhage.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Donglin Lu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zixuan Wang
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - HengJian Liu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yuqi Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jinxiang Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ang Xing
- Department of Geriatrics Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
20
|
Zhao C, Liang Y, Chen T, Zhong Y, Li X, Wei J, Li C, Zhang X. Prediction of cognitive performance in old age from spatial probability maps of white matter lesions. Aging (Albany NY) 2020; 12:4822-4835. [PMID: 32191226 PMCID: PMC7138592 DOI: 10.18632/aging.102901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
The purposes of this study were to explore the association between cognitive performance and white matter lesions (WMLs), and to investigate whether it is possible to predict cognitive impairment using spatial maps of WMLs. These WML maps were produced for 263 elders from the OASIS-3 dataset, and a relevance vector regression (RVR) model was applied to predict neuropsychological performance based on the maps. The association between the spatial distribution of WMLs and cognitive function was examined using diffusion tensor imaging data. WML burden significantly associated with increasing age (r=0.318, p<0.001) and cognitive decline. Eight of 15 neuropsychological measures could be accurately predicted, and the mini-mental state examination (MMSE) test achieved the highest predictive accuracy (CORR=0.28, p<0.003). WMLs located in bilateral tapetum, posterior corona radiata, and thalamic radiation contributed the most prediction power. Diffusion indexes in these regions associated significantly with cognitive performance (axial diffusivity>radial diffusivity>mean diffusivity>fractional anisotropy). These results show that the combination of the extent and location of WMLs exhibit great potential to serve as a generalizable marker of multidomain neurocognitive decline in the aging population. The results may also shed light on the mechanism underlying white matter changes during the progression of cognitive decline and aging.
Collapse
Affiliation(s)
- Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yihua Zhong
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xianglong Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Ii Y, Ishikawa H, Matsuyama H, Shindo A, Matsuura K, Yoshimaru K, Satoh M, Taniguchi A, Matsuda K, Umino M, Maeda M, Tomimoto H. Hypertensive Arteriopathy and Cerebral Amyloid Angiopathy in Patients with Cognitive Decline and Mixed Cerebral Microbleeds. J Alzheimers Dis 2020; 78:1765-1774. [PMID: 33185609 PMCID: PMC11062589 DOI: 10.3233/jad-200992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Hypertensive arteriopathy (HA) and cerebral amyloid angiopathy (CAA) may contribute to the development of mixed cerebral microbleeds (CMBs). Recently, the total small vessel disease (SVD) scores for HA and CAA were proposed, which are determined by a combination of MRI markers to reflect overall severity of these microangiopathies. OBJECTIVE We investigated whether or not total HA-SVD and CAA-SVD scores could be used to predict overlap of HA and CAA in patients with mixed CMBs. METHODS Fifty-three subjects with mixed CMBs were retrospectively analyzed. MRI markers (CMBs, lacunes, perivascular space, white matter hyperintensity [WMH] and cortical superficial siderosis [cSS]) were assessed. The HA-SVD score and CAA-SVD score were obtained for each subject. Anterior or posterior WMH was also assessed using the age-related white matter changes scale. RESULTS The two scores were positively correlated (ρ= 0.449, p < 0.001). The prevalence of lobar dominant CMB distribution (p < 0.001) and lacunes in the centrum semiovale (p < 0.001) and the severity of WMH in the parieto-occipital lobes (p = 0.004) were significantly higher in the high CAA-SVD score group. cSS was found in four patients with high CAA-SVD score who showed lobar-dominant CMB distribution and severe posterior WMH. CONCLUSION Mixed CMBs are mainly due to HA. Assessing both two scores may predict the overlap of HA and CAA in individuals with mixed CMBs. Patients with a high CAA-SVD score may have some degree of advanced CAA, especially when lobar predominant CMBs, severe posterior WMH, lobar lacunes, or cSS are observed.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kimiko Yoshimaru
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kana Matsuda
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
22
|
Leijenaar JF, Groot C, Sudre CH, Bergeron D, Leeuwis AE, Cardoso MJ, Carrasco FP, Laforce R, Barkhof F, van der Flier WM, Scheltens P, Prins ND, Ossenkoppele R. Comorbid amyloid-β pathology affects clinical and imaging features in VCD. Alzheimers Dement 2019; 16:354-364. [PMID: 31786129 DOI: 10.1016/j.jalz.2019.08.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, the clinical relevance of comorbid amyloid-β (Aβ) pathology in patients with vascular cognitive disorders (VCD) is largely unknown. METHODS We included 218 VCD patients with available cerebrospinal fluid Aβ42 levels. Patients were divided into Aβ+ mild-VCD (n = 84), Aβ- mild-VCD (n = 68), Aβ+ major-VCD (n = 31), and Aβ- major-VCD (n = 35). We measured depression with the Geriatric Depression Scale, cognition with a neuropsychological test battery and derived white matter hyperintensities (WMH) and gray matter atrophy from MRI. RESULTS Aβ- patients showed more depressive symptoms than Aβ+. In the major-VCD group, Aβ- patients performed worse on attention (P = .02) and executive functioning (P = .008) than Aβ+. We found no cognitive differences in patients with mild VCD. In the mild-VCD group, Aβ- patients had more WMH than Aβ+ patients, whereas conversely, in the major-VCD group, Aβ+ patients had more WMH. Atrophy patterns did not differ between Aβ+ and Aβ- VCD group. DISCUSSION Comorbid Aβ pathology affects the manifestation of VCD, but effects differ by severity of VCD.
Collapse
Affiliation(s)
- Jolien F Leijenaar
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Dementia Research Centre, Institute of Neurology University College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Bergeron
- Clinique Interdisciplinaire de Mémoire (CIME), CHU de Québec, Québec, Canada
| | - Anna E Leeuwis
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Dementia Research Centre, Institute of Neurology University College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ferran Prados Carrasco
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), CHU de Québec, Québec, Canada
| | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Niels D Prins
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Charidimou A, Frosch MP, Al-Shahi Salman R, Baron JC, Cordonnier C, Hernandez-Guillamon M, Linn J, Raposo N, Rodrigues M, Romero JR, Schneider JA, Schreiber S, Smith EE, van Buchem MA, Viswanathan A, Wollenweber FA, Werring DJ, Greenberg SM. Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. Int J Stroke 2019; 14:956-971. [PMID: 31514686 DOI: 10.1177/1747493019855888] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE The Boston criteria are used worldwide for the in vivo diagnosis of cerebral amyloid angiopathy and are the basis for clinical decision-making and research in the field. Given substantial advances in cerebral amyloid angiopathy's clinical aspects and MRI biomarkers, we designed a multicenter study within the International cerebral amyloid angiopathy Association aimed at further validating the diagnostic accuracy of the Boston and potentially improving and updating them. AIM We aim to derive and validate an updated "version 2.0" of the Boston criteria across the spectrum of cerebral amyloid angiopathy-related presentations and MRI biomarkers. SAMPLE SIZE ESTIMATES Participating centers with suitable available data (see Methods) were identified from existing collaborations and an open invitation to the International Cerebral Amyloid Angiopathy Association emailing list. Our study sample will include: (1) a derivation cohort - Massachusetts General Hospital (MGH), Boston cases from inception to 2012 (∼150 patients); (2) temporal external validation cohort - MGH, Boston cases from 2012 to 2018 (∼100 patients); and (3) geographical external validation cohort - non-Boston cases (∼85 patients). METHODS AND DESIGN Multicenter collaborative study. We will collect and analyze data from patients' age ≥ 50 with any potential sporadic cerebral amyloid angiopathy-related clinical presentations (spontaneous intracerebral hemorrhage, transient focal neurological episodes and cognitive impairment), available brain MRI ("index test"), and histopathologic assessment for cerebral amyloid angiopathy ("reference standard" for diagnosis). Trained raters will assess MRI for all prespecified hemorrhagic and non-hemorrhagic small vessel disease markers of interest, according to validated criteria and a prespecified protocol, masked to clinical and histopathologic features. Brain tissue samples will be rated for cerebral amyloid angiopathy, defined as Vonsattel grade ≥2 for whole brain autopsies and ≥1 for cortical biopsies or hematoma evacuation. Based on our estimated available sample size, we will undertake pre-specified cohort splitting as above. We will: (a) pre-specify variables and statistical cut-offs; (b) examine univariable and multivariable associations; and (c) then assess classification measures (sensitivity, specificity etc.) for each MRI biomarker individually, in relation to the cerebral amyloid angiopathy diagnosis reference standard on neuropathology in a derivation cohort. The MRI biomarkers strongly associated with cerebral amyloid angiopathy diagnosis will be selected for inclusion in provisional (probable and possible cerebral amyloid angiopathy) Boston criteria v2.0 and validated using appropriate metrics and models. STUDY OUTCOMES Boston criteria v2.0 for clinical cerebral amyloid angiopathy diagnosis. DISCUSSION This work aims to potentially update and improve the diagnostic test accuracy of the Boston criteria for cerebral amyloid angiopathy and to provide wider validation of the criteria in a large sample. We envision that this work will meet the needs of clinicians and investigators and help accelerate progress towards better treatment of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory of Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jean-Claude Baron
- Department of Neurology, Sainte-Anne Hospital, Université Paris Descartes, INSERM U894, Paris, France
| | - Charlotte Cordonnier
- Department of Neurology, INSERM U1171-Degenerative and Vascular Cognitive Disorders, CHU Lille, University of Lille, Lille, France
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus', Technische Universität Dresden, Dresden, SN, Germany
| | - Nicolas Raposo
- Department of Neurology, Toulouse University Medical Center, Toulouse, France
| | - Mark Rodrigues
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jose Rafael Romero
- Department of Neurology, Boston University School of Medicine, MA and the Framingham Heart Study, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research, Ludwig Maximilians University, Munich, Germany
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
24
|
Gyanwali B, Vrooman H, Venketasubramanian N, Wong TY, Cheng CY, Chen C, Hilal S. Cerebral Small Vessel Disease and Enlarged Perivascular Spaces-Data From Memory Clinic and Population-Based Settings. Front Neurol 2019; 10:669. [PMID: 31293506 PMCID: PMC6603207 DOI: 10.3389/fneur.2019.00669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Enlarged perivascular spaces (ePVS) are common finding on magnetic resonance imaging (MRI) in elderly. ePVS are thought to be associated with cerebral small vessel disease (SVD) such as white matter hyperintensities (WMH), lacunes, and cerebral microbleeds (CMBs). However, the different location of SVD and its relationship to ePVS distribution requires further investigation. Objective: To study the association between location and severity of SVD with ePVS from memory clinic and population-based settings. Methods: This study includes patients from an ongoing memory clinic based case-control study and participants from the population-based: Epidemiology of Dementia in Singapore study (EDIS). All participants underwent a comprehensive standardized evaluation including physical, medical and neuropsychological assessment and a brain MRI. CMBs and lacune location were categorized into strictly lobar, strictly deep and mixed, and ePVS location into centrum semiovale and basal ganglia. WMH volume was automatically segmented and was classified into anterior and posterior distribution. Negative binomial regression models were constructed to analyse associations between SVD and ePVS and the rate ratios (RR) and 95% confidence intervals (CI) were reported. Results: Of 375 patients (median age = 73 years) from memory clinic and 583 participants (median age = 70 years) from EDIS, the median total ePVS count was 17.0 and 7.0, respectively. Increased severity of SVD was not associated with total ePVS counts in both memory clinic and EDIS study. Analysis with the location of SVD and ePVS also showed similar results. However, in EDIS study, presence of ≥2 lacunes [RR = 1.61, 95% CI = 1.3, 2.30, p = 0.009], presence of ≥2 CMBs [RR = 1.40, 95% CI = 1.08, 1.83, p = 0.012], and higher volume of WMH [RR = 1.41, 95% CI = 1.10, 1.81, p = 0.006] were associated with basal ganglia ePVS independent of age, gender and vascular risk factors. Conclusion: In this study, we found that the ePVS were not associated with the location and severity of SVD in the memory-clinic patients. However, only severity of SVD was associated with basal ganglia ePVS in the population-based setting. Our findings will need to be studied further in different cohorts so as to understand the mechanism underlying different SVD types in subclinical and clinical phases as well as for predicting cognitive decline.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Tien Yin Wong
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
25
|
Chantran Y, Capron J, Alamowitch S, Aucouturier P. Anti-Aβ Antibodies and Cerebral Amyloid Angiopathy Complications. Front Immunol 2019; 10:1534. [PMID: 31333665 PMCID: PMC6620823 DOI: 10.3389/fimmu.2019.01534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) corresponds to the deposition of amyloid material in the cerebral vasculature, leading to structural modifications of blood vessel walls. The most frequent form of sporadic CAA involves fibrillar β-amyloid peptide (Aβ) deposits, mainly the 40 amino acid form (Aβ1-40), which are commonly found in the elderly with or without Alzheimer's disease. Sporadic CAA usually remains clinically silent. However, in some cases, acute complications either hemorrhagic or inflammatory can occur. Similar complications occurred after active or passive immunization against Aβ in experimental animal models exhibiting CAA, and in subjects with Alzheimer's disease during clinical trials. The triggering of these adverse events by active immunization and monoclonal antibody administration in CAA-bearing individuals suggests that analogous mechanisms could be involved during spontaneous CAA complications, drawing particular attention to the role of anti-Aβ antibodies. However, antibodies that react with several monomeric and aggregated forms of Aβ spontaneously occur in virtually all human individuals, hence being part of the "natural antibody" repertoire. Natural antibodies are usually described as having low-affinity and high cross-reactivity toward microbial components and autoantigens. Although frequently of the IgM class, they also belong to IgG and IgA isotypes. They likely display homeostatic functions and protective roles in aging. Until recently, the peculiar properties of these natural antibodies have hindered proper analysis of the Aβ-reactive antibody repertoire and the study of their implication in CAA complications. Herein, we review and comment the evidences of an auto-immune nature of spontaneous CAA complications, and discuss implications for forthcoming research and clinical practice.
Collapse
Affiliation(s)
- Yannick Chantran
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean Capron
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sonia Alamowitch
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Aucouturier
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
26
|
Chen SJ, Tsai HH, Tsai LK, Tang SC, Lee BC, Liu HM, Yen RF, Jeng JS. Advances in cerebral amyloid angiopathy imaging. Ther Adv Neurol Disord 2019; 12:1756286419844113. [PMID: 31105769 PMCID: PMC6501479 DOI: 10.1177/1756286419844113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease caused by β -amyloid (Aβ) deposition at the leptomeningeal vessel walls. It is a common cause of spontaneous intracerebral hemorrhage and a frequent comorbidity in Alzheimer’s disease. The high recurrent hemorrhage rate in CAA makes it very important to recognize this disease to avoid potential harmful medication. Imaging studies play an important role in diagnosis and research of CAA. Conventional computed tomography and magnetic resonance imaging (MRI) methods reveal anatomical alterations, and remains as the most reliable tool in identifying CAA according to modified Boston criteria. The vascular injuries of CAA result in both hemorrhagic and ischemic manifestations and related structural changes on MRI, including cerebral microbleeds, cortical superficial siderosis, white matter hyperintensity, MRI-visible perivascular spaces, and cortical microinfarcts. As imaging techniques advance, not only does the resolution of conventional imaging improve, but novel skills in functional and molecular imaging studies also enable in vivo analysis of vessel physiological changes and underlying pathology. These modern tools help in early detection of CAA and may potentially serve as sensitive outcome markers in future clinical trials. In this article, we reviewed past studies of CAA focusing on utilization of various conventional and novel imaging techniques in both research and clinical aspects.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, No. 87, Neijiang Street, Taipei, 10845, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bo-Chin Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Hon-Man Liu
- Department of Medical Imaging, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Schouten TM, de Vos F, van Rooden S, Bouts MJRJ, van Opstal AM, Feis RA, Terwindt GM, Wermer MJH, van Buchem MA, Greenberg SM, de Rooij M, Rombouts SARB, van der Grond J. Multiple Approaches to Diffusion Magnetic Resonance Imaging in Hereditary Cerebral Amyloid Angiopathy Mutation Carriers. J Am Heart Assoc 2019; 8:e011288. [PMID: 30717612 PMCID: PMC6405585 DOI: 10.1161/jaha.118.011288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Abstract
Background Cerebral amyloid angiopathy ( CAA ) is a major cause of lobar intracerebral hemorrhage in elderly adults; however, presymptomatic diagnosis of CAA is difficult. Hereditary cerebral hemorrhage with amyloidosis-Dutch type ( HCHWA -D) is a rare autosomal-dominant disease that leads to pathology similar to sporadic CAA . Presymptomatic HCHWA -D mutation carriers provide a unique opportunity to study CAA -related changes before any symptoms have occurred. In this study we investigated early CAA -related alterations in the white matter. Methods and Results We investigated diffusion magnetic resonance imaging ( dMRI ) data for 15 symptomatic and 11 presymptomatic HCHWA -D mutation carriers and 30 noncarrier control participants using 4 different approaches. We looked at (1) the relation between age and global dMRI measures for mutation carriers versus controls, (2) voxel-wise d MRI , (3) independent component-clustered dMRI measures, and (4) structural connectomics between presymptomatic or symptomatic carriers and controls. Fractional anisotropy decreased, and mean diffusivity and peak width of the skeletonized mean diffusivity increased significantly over age for mutation carriers compared with controls. In addition, voxel-wise and independent component-wise fractional anisotropy, and mean diffusivity, and structural connectomics were significantly different between HCHWA -D patients and control participants, mainly in the periventricular frontal and occipital regions and in the occipital lobe. We found no significant differences between presymptomatic carriers and control participants. Conclusions The d MRI technique is sensitive in detecting alterations in symptomatic HCHWA -d carriers but did not show alterations in presymptomatic carriers. This result indicates that d MRI may be less suitable for identifying early white matter changes in CAA .
Collapse
Affiliation(s)
- Tijn M. Schouten
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
| | - Frank de Vos
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
| | - Sanneke van Rooden
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Mark J. R. J. Bouts
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
| | - Anna M. van Opstal
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Rogier A. Feis
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Gisela M. Terwindt
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Mark A. van Buchem
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Mark de Rooij
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
| | - Serge A. R. B. Rombouts
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
- Institute of PsychologyLeiden UniversityLeidenthe Netherlands
| | | |
Collapse
|
28
|
Characteristics of Cerebral Microbleeds. Dement Neurocogn Disord 2018; 17:73-82. [PMID: 30906396 PMCID: PMC6428007 DOI: 10.12779/dnd.2018.17.3.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cerebral microbleeds (CMBs) are increasingly recognized neuroimaging findings, occurring with cerebrovascular disease, dementia, and aging. CMBs are associated with subsequent hemorrhagic and ischemic stroke, and also with an increased risk of cognitive deterioration and dementia. They occur in the setting of impaired small vessel integrity due to hypertension or cerebral amyloid angiopathy. This review summarizes the concepts, cause or risk factors, histopathological mechanisms, and clinical consequences of CMBs.
Collapse
|
29
|
Ogama N, Sakurai T, Saji N, Nakai T, Niida S, Toba K, Umegaki H, Kuzuya M. Frontal White Matter Hyperintensity Is Associated with Verbal Aggressiveness in Elderly Women with Alzheimer Disease and Amnestic Mild Cognitive Impairment. Dement Geriatr Cogn Dis Extra 2018; 8:138-150. [PMID: 29805380 PMCID: PMC5968270 DOI: 10.1159/000486826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background/Aims Behavioral and psychological symptoms of dementia (BPSD) are exhibited in most patients with Alzheimer disease (AD). Although white matter hyperintensity (WMH) is often observed with AD, the precise role of WMH in BPSD remains unclear. The current study aimed to identify the impact of regional WMH on specific features of BPSD in persons with mild to moderate AD and amnestic mild cognitive impairment (aMCI). Methods A sample of 256 female outpatients with AD (n = 217) and aMCI (n = 39) were recruited. We assessed BPSD using the Dementia Behavior Disturbance Scale. WMH and brain atrophy were evaluated using an automatic segmentation program. Regional WMH was evaluated as periventricular hyperintensity (PVH) and deep WMH in frontal, temporal, occipital, and parietal lobes. Results Whole-brain WMH was associated with verbal aggressiveness. In multivariate analysis, PVH in the frontal lobe was independently associated with verbal aggressiveness after adjustment for brain atrophy and clinical confounders. Conclusion The current results indicated that PVH in the frontal lobe was independently associated with verbal aggressiveness.
Collapse
Affiliation(s)
- Noriko Ogama
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Toshiharu Nakai
- NeuroImaging and Informatics, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Toba
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
White matter hyperintensity shape and location feature analysis on brain MRI; proof of principle study in patients with diabetes. Sci Rep 2018; 8:1893. [PMID: 29382936 PMCID: PMC5789823 DOI: 10.1038/s41598-018-20084-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cerebral small vessel disease is a heterogeneous disease in which various underlying etiologies can lead to different types of white matter hyperintensities (WMH). WMH shape features might aid in distinguishing these different types. In this proof of principle study in patients with type 2 diabetes mellitus (T2DM), we present a novel approach to assess WMH using shape features. Our algorithm determines WMH volume and different WMH shape and location features on 3T MRI scans. These features were compared between patients with T2DM (n = 60) and a matched control group (n = 54). Although a more traditional marker (WMH volume) was not significantly different between groups (natural log transformed Beta (95% CI): 0.07 (-0.11↔0.24)), patients with T2DM showed a larger number of non-punctuate WMH (median (10th-90th percentile), patients: 40 lesions per person (16-86); controls: 26 (5-58)) and a different shape (eccentricity) of punctuate deep WMH (Beta (95% CI): 0.40 (0.23↔0.58)) compared to controls. In conclusion, our algorithm identified WMH features that are not part of traditional WMH assessment, but showed to be distinguishing features between patients with T2DM and controls. Future studies could address these features to further unravel the etiology and functional impact of WMH.
Collapse
|
31
|
Hypercholesterolaemia and vascular dementia. Clin Sci (Lond) 2017; 131:1561-1578. [PMID: 28667059 DOI: 10.1042/cs20160382] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
Vascular dementia (VaD) is the second commonest cause of dementia. Stroke is the leading cause of disability in adults in developed countries, the second major cause of dementia and the third commonest cause of death. Traditional vascular risk factors-diabetes, hypercholesterolaemia, hypertension and smoking-are implicated as risk factors for VaD. The associations between cholesterol and small vessel disease (SVD), stroke, cognitive impairment and subsequent dementia are complex and as yet not fully understood. Similarly, the effects of lipids and lipid-lowering therapy on preventing or treating dementia remain unclear; the few trials that have assessed lipid-lowering therapy for preventing (two trials) or treating (four trials) dementia found no evidence to support the use of lipid-lowering therapy for these indications. It is appropriate to treat those patients with vascular risk factors that meet criteria for lipid-lowering therapy for the primary and secondary prevention of cardiovascular and cerebrovascular events, and in line with current guidelines. Managing the individual patient in a holistic manner according to his or her own vascular risk profile is recommended. Although the paucity of randomized controlled evidence makes for challenging clinical decision making, it provides multiple opportunities for on-going and future research, as discussed here.
Collapse
|
32
|
White Matter Injury and Recovery after Hypertensive Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138424. [PMID: 28680884 PMCID: PMC5478825 DOI: 10.1155/2017/6138424] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
Abstract
Hypertensive intracerebral hemorrhage (ICH) could very probably trigger white matter injury in patients. Through the continuous study of white matter injury after hypertensive ICH, we achieve a more profound understanding of the pathophysiological mechanism of its occurrence and development. At the same time, we found a series of drugs and treatment methods for the white matter repair. In the current reality, the research paradigm of white matter injury after hypertensive ICH is relatively obsolete or incomplete, and there are still lots of deficiencies in the research. In the face of the profound changes of stroke research perspective, we believe that the combination of the lenticulostriate artery, nerve nuclei of the hypothalamus-thalamus-basal ganglia, and the white matter fibers located within the capsula interna will be beneficial to the research of white matter injury and repair. This paper has classified and analyzed the study of white matter injury and repair after hypertensive ICH and also rethought the shortcomings of the current research. We hope that it could help researchers further explore and study white matter injury and repair after hypertensive ICH.
Collapse
|
33
|
Biffi A, Bailey D, Anderson CD, Ayres AM, Gurol EM, Greenberg SM, Rosand J, Viswanathan A. Risk Factors Associated With Early vs Delayed Dementia After Intracerebral Hemorrhage. JAMA Neurol 2017; 73:969-76. [PMID: 27295605 DOI: 10.1001/jamaneurol.2016.0955] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Patients who have experienced intracerebral hemorrhage (ICH) appear to develop cognitive impairment at high rates, both early after ICH and over the long term. OBJECTIVE To identify and compare risk factors for early and delayed dementia after ICH. DESIGN, SETTING, AND PARTICIPANTS A longitudinal study enrolled patients who had experienced ICH from January 1, 2006, to December 31, 2013. A total of 738 participants 18 years or older, without pre-ICH dementia, who presented to a tertiary care academic institution with primary ICH were included in the analyses of early post-ICH dementia (EPID). After accounting for incident dementia and mortality at 6 months, 435 participants were included in the analyses of delayed post-ICH dementia (DPID). EXPOSURES Intracerebral hemorrhage. MAIN OUTCOMES AND MEASURES Cognitive performance was captured using the modified Telephone Interview for Cognitive Status test. Outcomes included EPID, diagnosed within 6 months after ICH, and DPID, diagnosed beyond 6 months after ICH. RESULTS Among 738 patients who had experienced ICH (mean [SD] age, 74.3 [12.1] years; 384 men [52.0%]), 140 (19.0%) developed dementia within 6 months. A total of 435 patients without dementia at 6 months were followed up longitudinally (median follow-up, 47.4 months; interquartile range, 43.4-52.1 months), with an estimated yearly incidence of dementia of 5.8% (95% CI, 5.1%-7.0%). Larger hematoma size (hazard ratio [HR], 1.47 per 10-mL increase; 95% CI, 1.09-1.97; P < .001 for heterogeneity) and lobar location of ICH (HR, 2.04; 95% CI, 1.06-3.91; P = .02 for heterogeneity) were associated with EPID but not with DPID. Educational level (HR, 0.60; 95% CI, 0.40-0.89; P < .001 for heterogeneity), incident mood symptoms (HR, 1.29; 95% CI, 1.02-1.63; P = .01 for heterogeneity), and white matter disease as defined via computed tomography (HR, 1.70; 95% CI, 1.07-2.71; P = .04 for heterogeneity) were associated with DPID but not EPID. CONCLUSIONS AND RELEVANCE Incident dementia early after ICH is strongly associated with hematoma size and location. Delayed incident dementia is frequent among patients who have experienced ICH and is not prominently associated with acute characteristics of ICH. These findings suggest the existence of heterogeneous biological mechanisms accounting for early vs delayed cognitive decline among patients who have experienced ICH.
Collapse
Affiliation(s)
- Alessandro Biffi
- Center for Human Genetic Research, Massachusetts General Hospital, Boston2J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston3Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts4Division of St
| | - Destiny Bailey
- Center for Human Genetic Research, Massachusetts General Hospital, Boston2J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston
| | - Christopher D Anderson
- Center for Human Genetic Research, Massachusetts General Hospital, Boston2J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston3Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts6Division of Be
| | - Alison M Ayres
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston
| | - Edip M Gurol
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston6Division of Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Boston
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston6Division of Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Boston
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston2J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston3Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts6Division of Be
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston6Division of Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Boston
| |
Collapse
|
34
|
Kalheim LF, Bjørnerud A, Fladby T, Vegge K, Selnes P. White matter hyperintensity microstructure in amyloid dysmetabolism. J Cereb Blood Flow Metab 2017; 37:356-365. [PMID: 26792028 PMCID: PMC5363752 DOI: 10.1177/0271678x15627465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023]
Abstract
Accumulating evidence suggests associations between cerebrovascular disease (CVD) and Alzheimer's disease (AD). White matter hyperintensities of presumed vascular origin (WMHs) are increased in subjects with mild cognitive impairment (MCI) and AD, but the exact pathomechanistic link is unknown. The current study investigated effects of amyloid dysmetabolism on the microstructure of WMHs in subjects with MCI or subjective cognitive decline (N = 51), dichotomized according to pathological or normal levels of amyloid-β peptide (Aβ42) in cerebrospinal fluid (CSF). Thirty-one subjects with low CSF Aβ42 (Aβ+) and 20 subjects with normal CSF Aβ42 (Aβ-) were assessed with magnetic resonance diffusion tensor imaging (DTI), and fractional anisotropy (FA), radial diffusivity (DR), axial diffusivity (DA), and mean diffusivity (MD) were determined. There were no significant differences in WMH volume or distribution between the groups, and neither age nor WMH volume had significant impact on the DTI indices. Nevertheless, there were significantly higher DA, DR, and MD in WMHs in Aβ+ relative to Aβ-; however, no differences in FA were found. The present results suggest that amyloid accumulation is associated with impaired structural integrity (e.g. relating to more extensive demyelination and loss of axons) in WMHs putatively adding to effects of ischemia.
Collapse
Affiliation(s)
- Lisa F Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Kjetil Vegge
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
35
|
Kalheim LF, Selnes P, Bjørnerud A, Coello C, Vegge K, Fladby T. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities. Front Neurol 2016; 7:209. [PMID: 27917152 PMCID: PMC5116462 DOI: 10.3389/fneur.2016.00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and cause of dementia and is characterized by amyloid plaques and neurofibrillary tangles. AD has traditionally been considered to primarily affect gray matter, but multiple lines of evidence also indicate white matter (WM) pathology and associated small-vessel cerebrovascular disease. WM glucose delivery and metabolism may have implications for local tissue integrity, and [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) may be helpful to assess neuroglial and axonal function in WM. Hypothesizing that affection of oligodendroglia will be associated with loss of glucose uptake, we aimed to investigate glucose metabolism in magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) and normal-appearing WM in patients with and without evidence of amyloid plaques. Subjects with mild cognitive impairment or subjective cognitive decline were included and dichotomized according to pathological (Aβ+) or normal (Aβ−) concentrations of cerebrospinal fluid amyloid-β 1–42. A total of 50 subjects were included, of whom 30 subjects were classified as Aβ(+) and 20 subjects as Aβ(−). All subjects were assessed with MRI and FDG-PET. FDG-PET images were corrected for effects of partial voluming and normalized to cerebellar WM, before determining WMH FDG-uptake. Although there were no significant differences between the groups in terms of age, WMH volume, number of individual WMHs, or WMH distribution, we found significantly lower (p = 0.021) FDG-uptake in WMHs in Aβ(+) subjects (mean = 0.662, SD = 0.113) compared to Aβ(−) subjects (mean = 0.596, SD = 0.073). There were no significant group differences in the FDG-uptake in normal-appearing WM. Similar results were obtained without correction for effects of partial voluming. Our findings add to the evidence for a link between Aβ dysmetabolism and WM pathology in AD.
Collapse
Affiliation(s)
- Lisa Flem Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital , Lørenskog , Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital , Oslo , Norway
| | - Christopher Coello
- Preclinical PET/CT, Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Kjetil Vegge
- Department of Radiology, Akershus University Hospital , Lørenskog , Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Fennema-Notestine C, McEvoy LK, Notestine R, Panizzon MS, Yau WYW, Franz CE, Lyons MJ, Eyler LT, Neale MC, Xian H, McKenzie RE, Kremen WS. White matter disease in midlife is heritable, related to hypertension, and shares some genetic influence with systolic blood pressure. Neuroimage Clin 2016; 12:737-745. [PMID: 27790395 PMCID: PMC5071546 DOI: 10.1016/j.nicl.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
White matter disease in the brain increases with age and cardiovascular disease, emerging in midlife, and these associations may be influenced by both genetic and environmental factors. We examined the frequency, distribution, and heritability of abnormal white matter and its association with hypertension in 395 middle-aged male twins (61.9 ± 2.6 years) from the Vietnam Era Twin Study of Aging, 67% of whom were hypertensive. A multi-channel segmentation approach estimated abnormal regions within the white matter. Using multivariable regression models, we characterized the frequency distribution of abnormal white matter in midlife and investigated associations with hypertension and Apolipoprotein E-ε4 status and the impact of duration and control of hypertension. Then, using the classical twin design, we estimated abnormal white matter heritability and the extent of shared genetic overlap with blood pressure. Abnormal white matter was predominantly located in periventricular and deep parietal and frontal regions; associated with age (t = 1.9, p = 0.05) and hypertension (t = 2.9, p = 0.004), but not Apolipoprotein ε4 status; and was greater in those with uncontrolled hypertension relative to controlled (t = 3.0, p = 0.003) and normotensive (t = 4.0, p = 0.0001) groups, suggesting that abnormal white matter may reflect currently active cerebrovascular effects. Abnormal white matter was highly heritable (a2 = 0.81) and shared some genetic influences with systolic blood pressure (rA = 0.26), although there was evidence for distinct genetic contributions and unique environmental influences. Future longitudinal research will shed light on factors impacting white matter disease presentation, progression, and potential recovery.
Collapse
Key Words
- AWM, abnormal white matter
- ApoE, apolipoprotein E
- BMI, body mass index
- Blood pressure
- Brain
- CRP, C-Reactive protein
- DBP, diastolic blood pressure
- HDL, high-density lipoprotein
- HTN, hypertension
- Heritability
- Hypertension
- ICV, intracranial vault
- LDL, Low
- MRI
- SBP, systolic blood pressure
- White matter
Collapse
Affiliation(s)
- Christine Fennema-Notestine
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
- Department of Radiology at the University of California, San Diego, La Jolla, CA, USA
| | - Linda K. McEvoy
- Department of Radiology at the University of California, San Diego, La Jolla, CA, USA
| | - Randy Notestine
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
| | - Matthew S. Panizzon
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
| | | | - Carol E. Franz
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Lisa T. Eyler
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hong Xian
- Department of Biostatistics, St. Louis University and St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA
| | - Ruth E. McKenzie
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S. Kremen
- Department of Psychiatry at the University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
37
|
Charidimou A, Martinez-Ramirez S, Reijmer YD, Oliveira-Filho J, Lauer A, Roongpiboonsopit D, Frosch M, Vashkevich A, Ayres A, Rosand J, Gurol ME, Greenberg SM, Viswanathan A. Total Magnetic Resonance Imaging Burden of Small Vessel Disease in Cerebral Amyloid Angiopathy: An Imaging-Pathologic Study of Concept Validation. JAMA Neurol 2016; 73:994-1001. [PMID: 27366898 PMCID: PMC5283697 DOI: 10.1001/jamaneurol.2016.0832] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE Cerebral amyloid angiopathy (CAA) is characteristically associated with magnetic resonance imaging (MRI) biomarkers of small vessel brain injury, including strictly lobar cerebral microbleeds, cortical superficial siderosis, centrum semiovale perivascular spaces, and white matter hyperintensities. Although these neuroimaging markers reflect distinct pathophysiologic aspects in CAA, no studies to date have combined these structural imaging features to gauge total brain small vessel disease burden in CAA. OBJECTIVES To investigate whether a composite score can be developed to capture the total brain MRI burden of small vessel disease in CAA and to explore whether this score contributes independent and complementary information about CAA severity, defined as intracerebral hemorrhage during life or bleeding-related neuropathologic changes. DESIGN, SETTING, AND PARTICIPANTS This retrospective, cross-sectional study examined a single-center neuropathologic CAA cohort of eligible patients from the Massachusetts General Hospital from January 1, 1997, through December 31, 2012. Data analysis was performed from January 2, 2015, to January 9, 2016. Patients with pathologic evidence of CAA (ie, any presence of CAA from routinely collected brain biopsy specimen, biopsy specimen at hematoma evacuation, or autopsy) and available brain MRI sequences of adequate quality, including T2-weighted, T2*-weighted gradient-recalled echo, and/or susceptibility-weighted imaging and fluid-attenuated inversion recovery sequences, were considered for the study. MAIN OUTCOMES AND MEASURES Brain MRIs were rated for lobar cerebral microbleeds, cortical superficial siderosis, centrum semiovale perivascular spaces, and white matter hyperintensities. All 4 MRI lesions were incorporated into a prespecified ordinal total small vessel disease score, ranging from 0 to 6 points. Associations with severity of CAA-associated vasculopathic changes (fibrinoid necrosis and concentric splitting of the wall), clinical presentation, number of intracerebral hemorrhages, and other imaging markers not included in the score were explored using logistic and ordinal regression. RESULTS In total, 105 patients with pathologically defined CAA were included: 52 with autopsies, 22 with brain biopsy specimens, and 31 with pathologic samples from hematoma evacuations. The mean (range) age of the patients was 73 (71-74) years, and 55 (52.4%) were women. In multivariable ordinal regression analysis, severity of CAA-associated vasculopathic changes (odds ratio, 2.40; 95% CI, 1.06-5.45; P = .04) and CAA presentation with symptomatic intracerebral hemorrhage (odds ratio, 2.23; 95% CI, 1.07-4.64; P = .03) were independently associated with the total MRI small vessel disease score. The score was associated with small, acute, diffusion-weighted imaging lesions and posterior white matter hyperintensities in adjusted analyses. CONCLUSIONS AND RELEVANCE This study provides evidence of concept validity of a total MRI small vessel disease score in CAA. After further validation, this approach can be potentially used in prospective clinical studies.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Sergi Martinez-Ramirez
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Yael D. Reijmer
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jamary Oliveira-Filho
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Arne Lauer
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Duangnapa Roongpiboonsopit
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Matthew Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anastasia Vashkevich
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Alison Ayres
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan Rosand
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mahmut Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Charidimou A, Boulouis G, Haley K, Auriel E, van Etten ES, Fotiadis P, Reijmer Y, Ayres A, Vashkevich A, Dipucchio ZY, Schwab KM, Martinez-Ramirez S, Rosand J, Viswanathan A, Greenberg SM, Gurol ME. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016; 86:505-11. [PMID: 26747886 PMCID: PMC4753727 DOI: 10.1212/wnl.0000000000002362] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify different white matter hyperintensity (WMH) patterns between 2 hemorrhage-prone cerebral small vessel diseases (SVD): cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). METHODS Consecutive patients with SVD-related intracerebral hemorrhage (ICH) from a single-center prospective cohort were analyzed. Four predefined subcortical WMH patterns were compared between the CAA and HA groups. These WMH patterns were (1) multiple subcortical spots; (2) peri-basal ganglia (BG); (3) large posterior subcortical patches; and (4) anterior subcortical patches. Their associations with other imaging (cerebral microbleeds [CMBs], enlarged perivascular spaces [EPVS]) and clinical markers of SVD were investigated using multivariable logistic regression. RESULTS The cohort included 319 patients with CAA and 137 patients with HA. Multiple subcortical spots prevalence was higher in the CAA compared to the HA group (29.8% vs 16.8%; p = 0.004). Peri-BG WMH pattern was more common in the HA- vs the CAA-ICH group (19% vs 7.8%; p = 0.001). In multivariable logistic regression, presence of multiple subcortical spots was associated with lobar CMBs (odds ratio [OR] 1.23; 95% confidence interval [CI] 1.01-1.50, p = 0.039) and high degree of centrum semiovale EPVS (OR 2.43; 95% CI 1.56-3.80, p < 0.0001). By contrast, age (OR 1.05; 95% CI 1.02-1.09, p = 0.002), deep CMBs (OR 2.46; 95% CI 1.44-4.20, p = 0.001), total WMH volume (OR 1.02; 95% CI 1.01-1.04, p = 0.002), and high BG EPVS degree (OR 8.81; 95% CI 3.37-23.02, p < 0.0001) were predictors of peri-BG WMH pattern. CONCLUSION Different patterns of subcortical leukoaraiosis visually identified on MRI might provide insights into the dominant underlying microangiopathy type as well as mechanisms of tissue injury in patients with ICH.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Kellen Haley
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Eitan Auriel
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Ellis S van Etten
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Panagiotis Fotiadis
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Yael Reijmer
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Anastasia Vashkevich
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Zora Y Dipucchio
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Sergi Martinez-Ramirez
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (A.C., G.B., K.H., E.A., E.S.v.E., P.F., Y.R., A.A., A. Vashkevich, Z.Y.D., K.M.S., S.M.-R., J.R., A. Viswanathan, S.M.G., M.E.G.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA.
| |
Collapse
|
39
|
Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2016; 36:40-54. [PMID: 25944592 PMCID: PMC4758563 DOI: 10.1038/jcbfm.2015.88] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA.
Collapse
Affiliation(s)
- Yael D Reijmer
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne J van Veluw
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Yang Q, Yang Y, Li C, Li J, Liu X, Wang A, Zhao J, Wang M, Zeng X, Fan D. Quantitative assessment and correlation analysis of cerebral microbleed distribution and leukoaraiosis in stroke outpatients. Neurol Res 2015; 37:403-9. [DOI: 10.1179/1743132815y.0000000027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17:17-30. [PMID: 25692104 PMCID: PMC4325636 DOI: 10.5853/jos.2015.17.1.17] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis, treatment, risk factors, and future perspectives.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
42
|
Su CY, Wuang YP, Lin YH, Su JH. The role of processing speed in post-stroke cognitive dysfunction. Arch Clin Neuropsychol 2015; 30:148-60. [PMID: 25618135 DOI: 10.1093/arclin/acu057] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The association between speed of information processing and cognition has been extensively validated in normal aging and other neurocognitive disorders. Our aim was to determine whether such a relationship exists in stroke. Thirty patients and 30 age- and education-matched healthy individuals were administered a comprehensive battery of neuropsychological tests divided into the following six cognitive domains: processing speed (PS), verbal memory, visual memory, visuoperceptual function, language, and cognitive flexibility. The results demonstrate that stroke patients were characterized by cognitive deficits in almost all of these domains, but have the most pronounced deficits in PS. After adjusting for symbol digit modalities test score, all significant group differences in cognitive functioning disappeared. However, group differences remained significant after controlling for the influence of other cognitive factors. These findings suggest that decreased PS appears to underlie post-stroke cognitive dysfunction and may serve as a potential target for intervention.
Collapse
Affiliation(s)
- Chwen-Yng Su
- Department of Occupational Therapy, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yee-Pay Wuang
- Department of Occupational Therapy, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yueh-Hsien Lin
- Special Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Hsing Su
- Department of Rehabilitation Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Esiri M, Chance S, Joachim C, Warden D, Smallwood A, Sloan C, Christie S, Wilcock G, Smith AD. Cerebral amyloid angiopathy, subcortical white matter disease and dementia: literature review and study in OPTIMA. Brain Pathol 2015; 25:51-62. [PMID: 25521177 PMCID: PMC8028928 DOI: 10.1111/bpa.12221] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is of increasing clinical and research interest as the ability to detect it and its consequences by neuroimaging in living subjects has advanced. There is also increasing interest in understanding its possible role in the development of intracerebral hemorrhage, Alzheimer's disease (AD) and vascular dementia. In this article, the literature on this subject is reviewed and novel findings relating CAA to subcortical white matter damage in 224 subjects in the Oxford project to Investigate Memory and Ageing (OPTIMA) are reported. The relationship between CAA and subcortical tissue damage in the OPTIMA subjects was found to be critically dependent on ApoE genotype, there being a positive relationship between measures of CAA and subcortical small vessel disease in ApoEε4 carriers and a significant negative relationship in ApoEε2 carriers. These findings draw attention, as have many other studies, to the importance of ApoE genotype as a major risk factor not only for dementia but also for damage to blood vessels in the aging brain.
Collapse
Affiliation(s)
- Margaret Esiri
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Steven Chance
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Catharine Joachim
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Donald Warden
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - Carolyn Sloan
- Neuropathology DepartmentNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Sharon Christie
- Nuffield Department of Clinical NeurosciencesOPTIMAUniversity of OxfordOxfordUK
| | - Gordon Wilcock
- Nuffield Department of Clinical NeurosciencesOPTIMAUniversity of OxfordOxfordUK
| | | |
Collapse
|
44
|
Reijmer YD, Fotiadis P, Martinez-Ramirez S, Salat DH, Schultz A, Shoamanesh A, Ayres AM, Vashkevich A, Rosas D, Schwab K, Leemans A, Biessels GJ, Rosand J, Johnson KA, Viswanathan A, Gurol ME, Greenberg SM. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 2014; 138:179-88. [PMID: 25367025 DOI: 10.1093/brain/awu316] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = -0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression.
Collapse
Affiliation(s)
- Yael D Reijmer
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Panagiotis Fotiadis
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergi Martinez-Ramirez
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- 2 Athinoula A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron Schultz
- 2 Athinoula A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ashkan Shoamanesh
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison M Ayres
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Vashkevich
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana Rosas
- 3 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristin Schwab
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Leemans
- 4 Image Sciences Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Geert-Jan Biessels
- 5 Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jonathan Rosand
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- 3 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 6 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- 1 Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Wiegman AF, Meier IB, Schupf N, Manly JJ, Guzman VA, Narkhede A, Stern Y, Martinez-Ramirez S, Viswanathan A, Luchsinger JA, Greenberg SM, Mayeux R, Brickman AM. Cerebral microbleeds in a multiethnic elderly community: demographic and clinical correlates. J Neurol Sci 2014; 345:125-30. [PMID: 25091451 PMCID: PMC4177942 DOI: 10.1016/j.jns.2014.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Microbleeds, small perivascular collections of hemosiderin manifested radiologically as hypointensities on gradient-echo magnetic resonance imaging (MRI), are important markers of small vessel pathology. Despite their clinical relevance, little is known about their prevalence and demographic correlates, particularly among ethnically diverse older adults. We examined demographic and clinical correlates of regional microbleeds in a multi-ethnic cohort and examined categorization schemes of microbleed distribution and severity. METHODS Between 2005 and 2007, 769 individuals participated in a MRI study as part of the Washington Heights/Inwood Columbia Aging Project. Approximately four years later, 243 out of 339 participants (mean age=84.50) who returned for a repeat MRI had gradient-echo scans for microbleed assessment and comprised the sample. We examined the association of deep and lobar microbleeds with age, sex, education, vascular factors, cognitive status and markers of small vessel disease. RESULTS Sixty-seven of the 243 (27%) participants had at least one microbleed. Individuals with microbleeds were more likely to have a history of stroke than individuals without. When categorized as having either no microbleeds, microbleeds in deep regions only, in lobar regions only, and both deep and lobar microbleeds, hypertension, proportion of strokes, and white matter hyperintensity volume (WMH) increased monotonically across the four groups. The number of lobar microbleeds correlated with WMH volume and diastolic blood pressure. CONCLUSIONS Microbleeds in deep and lobar locations are associated with worse outcomes than microbleeds in either location alone, although the presence of lobar microbleeds appears to be more clinically relevant.
Collapse
Affiliation(s)
- Anne F Wiegman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Irene B Meier
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vanessa A Guzman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Atul Narkhede
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Anand Viswanathan
- Massachusetts General Hospital, Stroke Research Center, Boston, MA, USA
| | - José A Luchsinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Thanprasertsuk S, Martinez-Ramirez S, Pontes-Neto OM, Ni J, Ayres A, Reed A, Swords K, Gurol ME, Greenberg SM, Viswanathan A. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology 2014; 83:794-800. [PMID: 25063759 DOI: 10.1212/wnl.0000000000000732] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We sought to examine whether a posterior distribution of white matter hyperintensities (WMH) is an independent predictor of pathologically confirmed cerebral amyloid angiopathy (CAA) and whether it is associated with MRI markers of CAA, in patients without lobar intracerebral hemorrhage. METHODS We developed a quantitative method to measure anteroposterior (AP) distribution of WMH. A retrospective cohort of patients without intracerebral hemorrhage and with pathologic evaluation of CAA was examined to determine whether posterior WMH distribution was an independent predictor of CAA (n=59). The relationship of AP distributions of WMH to strictly lobar microbleeds (MBs) (n=259) and location of dilated perivascular spaces (DPVS) (n=85) was examined in a separate cohort of patients evaluated in a memory clinic. RESULTS A more posterior WMH distribution was found to be an independent predictor of pathologic evidence of CAA (p=0.001, odds ratio [95% confidence interval]=1.19 [1.07-1.32]), even in the subgroup without lobar MBs (p=0.016, odds ratio [95% confidence interval]=1.18 [1.03-1.36]). In the memory clinic cohort, strictly lobar MBs were independently associated with more posterior WMH distribution (p=0.009). AP distribution of WMH was also associated with location of DPVS (p=0.001), in that patients with predominant DPVS in the white matter over the basal ganglia harbored a more posterior WMH distribution. CONCLUSIONS Our results suggest that AP distribution of WMH may represent an additional marker of CAA, irrespective of the presence of lobar hemorrhages. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that there is a significant association between the AP distribution of WMH on MRI with the presence of pathologically confirmed CAA pathology.
Collapse
Affiliation(s)
- Sekh Thanprasertsuk
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Sergi Martinez-Ramirez
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Octavio Marques Pontes-Neto
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Jun Ni
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Alison Ayres
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Anne Reed
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Kyleen Swords
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - M Edip Gurol
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Steven M Greenberg
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Anand Viswanathan
- From the J. Philip Kistler Stroke Research Center (S.T., S.M.-R., O.M.P.-N., J.N., A.A., A.R., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Boston; Faculty of Medicine (S.T.), Chulalongkorn University, Bangkok, Thailand; and Escola de Postgrau (S.M.-R.), Universitat Autònoma de Barcelona, Edicifi U, Campus UAB, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
47
|
Rincon F, Wright CB. Current pathophysiological concepts in cerebral small vessel disease. Front Aging Neurosci 2014; 6:24. [PMID: 24715862 PMCID: PMC3970024 DOI: 10.3389/fnagi.2014.00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
The association between cerebral small vessel disease (SVD) - in the form of white matter lesions, infarctions, and hemorrhages - with vascular cognitive impairment (VCI), has mostly been deduced from observational studies. Pathological conditions affecting the small vessels of the brain and leading to SVD have suggested plausible molecular mechanisms involved in vascular damage and their impact on brain function. However, much still needs to be clarified in understanding the pathophysiology of VCI, the role of neurodegenerative processes such as Alzheimer's disease, and the impact of aging itself. In addition, both genetic predispositions and environmental exposures may potentiate the development of SVD and interact with normal aging to impact cognitive function and require further study. Advances in technology, in the analysis of genetic and epigenetic data, neuroimaging such as magnetic resonance imaging, and new biomarkers will help to clarify the complex factors leading to SVD and the expression of VCI.
Collapse
Affiliation(s)
- Fred Rincon
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - Clinton B Wright
- Department of Neurosurgery, Thomas Jefferson University Philadelphia, PA, USA ; Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami Miami, FL, USA ; Department of Epidemiology and Public Health, University of Miami Miami, FL, USA ; Neuroscience Program, University of Miami Miami, FL, USA
| |
Collapse
|
48
|
Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol 2014; 4:205. [PMID: 24432010 PMCID: PMC3881231 DOI: 10.3389/fneur.2013.00205] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Cerebral microbleeds (microbleeds) are small, punctuate hypointense lesions seen in T2* Gradient-Recall Echo (GRE) and Susceptibility-Weighted (SWI) Magnetic Resonance Imaging (MRI) sequences, corresponding to areas of hemosiderin breakdown products from prior microscopic hemorrhages. They occur in the setting of impaired small vessel integrity, commonly due to either hypertensive vasculopathy or cerebral amyloid angiopathy. Microbleeds are more prevalent in individuals with Alzheimer’s disease (AD) dementia and in those with both ischemic and hemorrhagic stroke. However they are also found in asymptomatic individuals, with increasing prevalence with age, particularly in carriers of the Apolipoprotein (APOE) ε4 allele. Other neuroimaging findings that have been linked with microbleeds include lacunar infarcts and white matter hyperintensities on MRI, and increased cerebral β-amyloid burden using 11C-PiB Positron Emission Tomography. The presence of microbleeds has been suggested to confer increased risk of incident intracerebral hemorrhage – particularly in the setting of anticoagulation – and of complications of immunotherapy for AD. Prospective data regarding the natural history and sequelae of microbleeds are currently limited, however there is a growing evidence base that will serve to inform clinical decision-making in the future.
Collapse
Affiliation(s)
- Paul A Yates
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Kathryn A Ellis
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Patricia M Desmond
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Department of Radiology, Royal Melbourne Hospital , Parkville, VIC , Australia
| | - Colin L Masters
- Department of Medicine, The University of Melbourne , Parkville, VIC , Australia ; Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC , Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
49
|
Schilling S, DeStefano AL, Sachdev PS, Choi SH, Mather KA, DeCarli CD, Wen W, Høgh P, Raz N, Au R, Beiser A, Wolf PA, Romero JR, Zhu YC, Lunetta KL, Farrer L, Dufouil C, Kuller LH, Mazoyer B, Seshadri S, Tzourio C, Debette S. APOE genotype and MRI markers of cerebrovascular disease: systematic review and meta-analysis. Neurology 2013; 81:292-300. [PMID: 23858411 DOI: 10.1212/wnl.0b013e31829bfda4] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We aimed to examine the association of APOE ε genotype with MRI markers of cerebrovascular disease (CVD): white matter hyperintensities, brain infarcts, and cerebral microbleeds. METHODS We performed a systematic review and meta-analysis of 42 cross-sectional or longitudinal studies identified in PubMed from 1966 to June 2012 (n = 29,965). This included unpublished data from 3 population-based studies: 3C-Dijon, Framingham Heart Study, and Sydney Memory and Ageing Study. When necessary, authors were contacted to provide effect estimates for the meta-analysis. RESULTS APOE ε4 carrier status and APOE ε44 genotype were associated with increasing white matter hyperintensity burden (sample size-weighted z score meta-analysis [meta]-p = 0.0034 and 0.0030) and presence of cerebral microbleeds (meta odds ratio [OR] = 1.24, 95% confidence interval [CI] [1.07, 1.43], p = 0.004, and 1.87 [1.26, 2.78], p = 0.002), especially lobar. APOE ε2 carrier status was associated with increasing white matter hyperintensity load (z score meta-p = 0.00053) and risk of brain infarct (meta OR = 1.41[1.09, 1.81], p = 0.008). CONCLUSIONS APOE ε4 and APOE ε2 were associated with increasing burden in MRI markers for both hemorrhagic and ischemic CVD. While the association of APOE ε4 with an increased burden of CVD could be partly contributing to the relationship between APOE ε4 and AD, APOE ε2 was associated with MRI markers of CVD in the opposite direction compared to AD.
Collapse
Affiliation(s)
- Sabrina Schilling
- Department of Epidemiology, Raymond Poincaré Hospital, University of Versailles St Quentin en Yvelines, Versailles, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, Auriel E, Halpin A, Quimby M, Gurol ME, Greenberg SM, Viswanathan A. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology 2013; 80:1551-6. [PMID: 23553482 DOI: 10.1212/wnl.0b013e31828f1876] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To investigate whether the topography of dilated perivascular spaces (DPVS) corresponds with markers of particular small-vessel diseases such as cerebral amyloid angiopathy and hypertensive vasculopathy. METHODS Patients were recruited from an ongoing single-center prospective longitudinal cohort study of patients evaluated in a memory clinic. All patients underwent structural, high-resolution MRI, and had a clinical assessment performed within 1 year of scan. DPVS were rated in basal ganglia (BG-DPVS) and white matter (WM-DPVS) on T1 sequences, using an established 4-point semiquantitative score. DPVS degree was classified as high (score > 2) or low (score ≤ 2). Independent risk factors for high degree of BG-DPVS and WM-DPVS were investigated. RESULTS Eighty-nine patients were included (mean age 72.7 ± 9.9 years, 57% female). High degree of WM-DPVS was more frequent than low degree in patients with presence of strictly lobar microbleeds (45.5% vs 28.4% of subjects). High BG-DPVS degree was associated with older age, hypertension, and higher white matter hyperintensity volumes. In multivariate analysis, increased lobar microbleed count was an independent predictor of high degree of WM-DPVS (odds ratio [OR] 1.53 [95% confidence interval (CI) 1.06-2.21], p = 0.02). By contrast, hypertension was an independent predictor of high degree of BG-DPVS (OR 9.4 [95% CI 1-85.2], p = 0.04). CONCLUSIONS The associations of WM-DPVS with lobar microbleeds and BG-DPVS with hypertension raise the possibility that the distribution of DPVS may indicate the presence of underlying small-vessel diseases such as cerebral amyloid angiopathy and hypertensive vasculopathy in patients with cognitive impairment.
Collapse
|