1
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Vieira da Silva Torchelsen FK, Fernandes Pedrosa TC, Rodrigues MP, de Aguiar AR, de Oliveira FM, Amarante GW, Sales-Junior PA, Branquinho RT, Gomes da Silva SP, Talvani A, Fonseca Murta SM, Martins FT, Braun RL, Teixeira RR, Furtado Mosqueira VC, Lana MD. Novel diamides inspired by protein kinase inhibitors as anti- Trypanosoma cruzi agents: in vitro and in vivo evaluations. Future Med Chem 2023; 15:1469-1489. [PMID: 37650735 DOI: 10.4155/fmc-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.
Collapse
Affiliation(s)
| | - Tamiles Caroline Fernandes Pedrosa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Alex Ramos de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | | | - Giovanni Wilson Amarante
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | - Renata Tupinambá Branquinho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Sirlaine Pio Gomes da Silva
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - André Talvani
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Rodrigo Ligabue Braun
- Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
3
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
4
|
Portes J, Barrias E, Travassos R, Attias M, de Souza W. Toxoplasma gondii Mechanisms of Entry Into Host Cells. Front Cell Infect Microbiol 2020; 10:294. [PMID: 32714877 PMCID: PMC7340009 DOI: 10.3389/fcimb.2020.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Juliana Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emile Barrias
- Laboratório de Metrologia Aplicada à Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, Brazil
| | - Renata Travassos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Barrias E, Reignault L, de Carvalho TM, de Souza W. Clathrin coated pit dependent pathway for Trypanosoma cruzi internalization into host cells. Acta Trop 2019; 199:105057. [PMID: 31202818 DOI: 10.1016/j.actatropica.2019.105057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
A number of intracellular pathogens are internalized by host cells via multiple endocytic pathways, including Trypanosoma cruzi, the etiological agent of Chagas disease. Clathrin-mediated endocytosis is the most characterized endocytic pathway in mammalian cells. Its machinery was described as being required in mammalian cells for the internalization of large particles, including pathogenic bacteria, fungi, and large virus. To investigate whether T. cruzi entry into host cells can also take advantage of the clathrin-coated vesicle-dependent process, we utilized well-known inhibitors of clathrin-coated vesicle formation (sucrose hypertonic medium, chlorpromazine hydrochloride and pitstop 2) and small interference RNA (siRNA). All treatments drastically reduced the internalization of infective trypomastigotes and amastigotes of T. cruzi by phagocytic (macrophages) and epithelial cells. Clathrin labeling, as observed by fluorescence and electron microscopy, was also observed around the parasites from the initial stages of infection until the complete formation of the parasitophorous vacuole. These unexpected observations suggest the participation of the clathrin pathway in the T. cruzi entry process.
Collapse
|
6
|
Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology 2019; 146:1743-1754. [PMID: 31603063 PMCID: PMC6939169 DOI: 10.1017/s0031182019001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.
Collapse
|
7
|
Nagajyothi JF, Weiss LM. Advances in understanding the role of adipose tissue and mitochondrial oxidative stress in Trypanosoma cruzi infection. F1000Res 2019; 8. [PMID: 31354939 PMCID: PMC6652099 DOI: 10.12688/f1000research.19190.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 01/25/2023] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes a latent infection that results in cardiomyopathy. Infection with this pathogen is a major socio-economic burden in areas of endemic infection throughout Latin America. The development of chagasic cardiomyopathy is dependent on the persistence of this parasite in host tissues. Pathogenesis of this cardiomyopathy is multifactorial and research indicates that it includes microvascular dysfunction, immune responses to host and parasite antigens, and various vasoactive and lipid mediators produced by both the host and parasite. It has been demonstrated that
T. cruzi persists in adipose tissue and uses fat as a nutritional niche in infected hosts. This chronic infection of adipose tissue plays an important role in the pathogenesis and persistence of this infection and involves mitochondrial stress responses as well as the production of various anti-inflammatory adipokines and pro-inflammatory cytokines by both white and brown adipose tissue. The changes in diet in endemic regions of infection have resulted in an epidemic of obesity that has significant implications for the pathogenesis of
T. cruzi infection and the development of chagasic cardiomyopathy in infected humans.
Collapse
Affiliation(s)
- Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, 225 Warren Street, Newark, NJ, 07103, USA
| | - Louis M Weiss
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, NY, 10461, USA
| |
Collapse
|
8
|
Hiller NDJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem 2018; 13:1395-1404. [PMID: 29856519 DOI: 10.1002/cmdc.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.
Collapse
Affiliation(s)
- Noemi de J Hiller
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Nayane A A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Robson X Faria
- Laboratory of Toxoplasmosis and other Protozoan Diseases, Oswaldo Cruz Institute (Fiocruz), Brasil
| | - André Luís A Souza
- Laboratory of Biochemistry of Peptides, Oswaldo Cruz Institute (Fiocruz), Brazil
| | - Jackson A L C Resende
- Laboratory of Solid-State Chemistry, Universidade Federal do Mato Grosso, Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Barra do Garças, MT, 78600-000, Brazil
| | - André Borges Farias
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Nelilma Correia Romeiro
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
9
|
de Araújo KCL, Teixeira TL, Machado FC, da Silva AA, Quintal APN, da Silva CV. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication. Acta Trop 2016; 162:167-170. [PMID: 27349187 DOI: 10.1016/j.actatropica.2016.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
Abstract
Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.
Collapse
|
10
|
de Carvalho TMU, Barrias ES, de Souza W. Macropinocytosis: a pathway to protozoan infection. Front Physiol 2015; 6:106. [PMID: 25914647 PMCID: PMC4391238 DOI: 10.3389/fphys.2015.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis.
Collapse
Affiliation(s)
- Tecia M U de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emile S Barrias
- Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
11
|
The involvement of FAK and Src in the invasion of cardiomyocytes by Trypanosoma cruzi. Exp Parasitol 2014; 139:49-57. [PMID: 24582948 DOI: 10.1016/j.exppara.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25μM PP1 (53% inhibition) and 40μM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.
Collapse
|
12
|
Rodrigues AA, Clemente TM, dos Santos MA, Machado FC, Gomes RGB, Moreira HHT, Cruz MC, Brígido PC, dos Santos PCF, Martins FA, Bahia D, Maricato JT, Janini LMR, Reboredo EH, Mortara RA, da Silva CV. A recombinant protein based on Trypanosoma cruzi P21 enhances phagocytosis. PLoS One 2012; 7:e51384. [PMID: 23251513 PMCID: PMC3519637 DOI: 10.1371/journal.pone.0051384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022] Open
Abstract
Background P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His6) on inflammatory macrophages during phagocytosis. Findings Our results showed that P21-His6 acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. Conclusions Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His6 represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.
Collapse
Affiliation(s)
- Adele A. Rodrigues
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tatiana M. Clemente
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Marlus A. dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Fabrício C. Machado
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rafael G. B. Gomes
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Mário C. Cruz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula C. Brígido
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paulo C. F. dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Flávia A. Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz M. R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eduardo H. Reboredo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Renato A. Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio V. da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
- * E-mail:
| |
Collapse
|
13
|
Maeda FY, Cortez C, Yoshida N. Cell signaling during Trypanosoma cruzi invasion. Front Immunol 2012; 3:361. [PMID: 23230440 PMCID: PMC3515895 DOI: 10.3389/fimmu.2012.00361] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT) generated in vitro and tissue culture-derived trypomastigotes (TCT), used as counterparts of insect-borne and bloodstream parasites, respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and protein kinase C (PKC) in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase, PI3K, phospholipase C, and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such as oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by transforming growth factor β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.
Collapse
Affiliation(s)
- Fernando Y Maeda
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Calvet CM, Melo TG, Garzoni LR, Oliveira FOR, Neto DTS, N S L M, Meirelles L, Pereira MCS. Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction. Front Immunol 2012; 3:327. [PMID: 23115558 PMCID: PMC3483718 DOI: 10.3389/fimmu.2012.00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/16/2012] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits multiple strategies to ensure its establishment and persistence in the host. Although this parasite has the ability to infect different organs, heart impairment is the most frequent clinical manifestation of the disease. Advances in knowledge of T. cruzi-cardiomyocyte interactions have contributed to a better understanding of the biological events involved in the pathogenesis of Chagas disease. This brief review focuses on the current understanding of molecules involved in T. cruzi-cardiomyocyte recognition, the mechanism of invasion, and on the effect of intracellular development of T. cruzi on the structural organization and molecular response of the target cell.
Collapse
Affiliation(s)
- Claudia M Calvet
- Laboratório de Ultra-estrutura Celular, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Barrias ES, Reignault LC, De Souza W, Carvalho TMU. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect 2012; 14:1340-51. [PMID: 23010292 DOI: 10.1016/j.micinf.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022]
Abstract
Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis.
Collapse
Affiliation(s)
- E S Barrias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - Av. Carlos Chagas Filho, 373, Bloco G - subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | | | | | | |
Collapse
|
16
|
Romano PS, Cueto JA, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 2012; 64:387-96. [PMID: 22454195 DOI: 10.1002/iub.1019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/10/2012] [Indexed: 01/12/2023]
Abstract
The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina.
| | | | | | | | | | | |
Collapse
|
17
|
Review on Trypanosoma cruzi: Host Cell Interaction. Int J Cell Biol 2010; 2010. [PMID: 20811486 PMCID: PMC2926652 DOI: 10.1155/2010/295394] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/11/2010] [Accepted: 06/04/2010] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, which affects a large number of individuals in Central and South America, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are metacyclic and bloodstream trypomastigote and amastigote. Metacyclic trypomastigotes are released with the feces of the insect while amastigotes and bloodstream trypomastigotes are released from the infected host cells of the vertebrate host after a complex intracellular life cycle. The recognition between parasite and mammalian host cell involves numerous molecules present in both cell types. Here, we present a brief review of the interaction between Trypanosoma cruzi and its host cells, mainly emphasizing the mechanisms and molecules that participate in the T. cruzi invasion process of the mammalian cells.
Collapse
|
18
|
Epting CL, Coates BM, Engman DM. Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 2010; 126:283-91. [PMID: 20599990 DOI: 10.1016/j.exppara.2010.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 12/28/2022]
Abstract
The protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular protozoan pathogen. Overlapping mechanisms ensure successful infection, yet the relationship between these cellular events and clinical disease remains obscure. This review explores the process of cell invasion from the perspective of cell surface interactions, intracellular signaling, modulation of the host cytoskeleton and endosomal compartment, and the intracellular innate immune response to infection.
Collapse
Affiliation(s)
- Conrad L Epting
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
19
|
Dynasore, a dynamin inhibitor, inhibits Trypanosoma cruzi entry into peritoneal macrophages. PLoS One 2010; 5:e7764. [PMID: 20098746 PMCID: PMC2808331 DOI: 10.1371/journal.pone.0007764] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/03/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process. METHODOLOGY/PRINCIPAL FINDINGS We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 microM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane. CONCLUSIONS/SIGNIFICANCE Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi.
Collapse
|
20
|
Petricevich VL, Reynaud E, Cruz AH, Possani LD. Macrophage activation, phagocytosis and intracellular calcium oscillations induced by scorpion toxins from Tityus serrulatus. Clin Exp Immunol 2009; 154:415-23. [PMID: 19037924 DOI: 10.1111/j.1365-2249.2008.03754.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The research described here is focused upon studying the activation of mice peritoneal macrophages when submitted to in vitro effects of Tityus serrulatus scorpion venom and its major toxic peptides. Several functional events were analysed, such as: cytotoxicity, spreading, extent of phagocytosis, vacuole formation and changes of internal calcium concentration. Among the main results observed, when macrophages are subjected to the effects of soluble venom of Tityus serrulatus scorpion venom, a partially purified fraction (FII) or a pure toxin (Ts1), are an increment in the percentage of phagocytosis and vacuole formation, a decrement of the spreading ability, accompanied by oscillations of internal calcium concentration. The net results demonstrate that scorpion venom or its major toxins are effective stimulators of macrophage activity; the effect of whole soluble venom or partially purified fractions is due to the toxic peptides, seen here clearly with Ts1. The possible involvement of Na+-channels in these events is discussed. A basic understanding of the underlying molecular mechanisms responsible for macrophage activation should serve as a foundation for novel drug development aimed at modulating macrophage activity.
Collapse
Affiliation(s)
- V L Petricevich
- Laboratorio de Toxicología, Facultad de Medicina de la Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
21
|
Yoshida N, Cortez M. Trypanosoma cruzi: parasite and host cell signaling during the invasion process. Subcell Biochem 2008; 47:82-91. [PMID: 18512343 DOI: 10.1007/978-0-387-78267-6_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mammalian cell invasion by Trypanosoma cruzi is a complex process in which various parasite and host cell components interact, triggering the activation of signaling cascades and Ca2+ mobilization in both cells. Using metacyclic trypomastigotes (MT) generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, respectively, the mechanisms of host cell invasion by T. cruzi have been partially elucidated. Distinct sets of molecules are engaged by MT and TCT to enter target cells. MT make use of surface glycoproteins with dual Ca2+ signaling activity, in a manner dependent of T. cruzi isolate. In highly infective MT, the binding of gp82 to its receptor triggers a signaling cascade involving protein tyrosine kinase, phospholipase C and production of inositol 1,4,5-triphosphate, whereas in poorly invasive MT, the mucin-like gp35/50 induces the activation of a signaling route in which adenylate cyclase, generation of cAMP and Ca2+ mobilization from acidocalcisomes are implicated. The host cell signaling pathways activated by MT remain to be determined. Differently from MT, the TCT surface molecules that bind to host cells as a prelude to invasion, such as the glycoproteins of gp85 family, appear to be devoid of signaling properties, but they may induce TCT enzymes, such as oligopeptidase B and cruzipain, to generate Ca2+ signaling factors of parasite or host cell origin. Host cell responses mediated by TGF-beta receptor or integrin family member may also be triggered by TCT. A more complete and detailed picture of T. cruzi invasion needs further investigations.
Collapse
Affiliation(s)
- Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu, 862, 04023-062 São Paulo, SP, Brasil.
| | | |
Collapse
|
22
|
Luther K, Rohde M, Sturm K, Kotz A, Heesemann J, Ebel F. Characterisation of the phagocytic uptake of Aspergillus fumigatus conidia by macrophages. Microbes Infect 2007; 10:175-84. [PMID: 18248765 DOI: 10.1016/j.micinf.2007.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/17/2022]
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen responsible for severe, life-threatening infections in immunocompromised patients. Airborne conidia are the infectious agent and can reach the lower parts of the respiratory system. In the lung, phagocytes represent the first line of defence. Resident macrophages are able to track down, engulf and kill the invading spores. Phagocytosis of the conidia is therefore a prerequisite for their efficient elimination. Using human and murine macrophages we analysed the phagocytic uptake of A. fumigatus conidia. We found that conidial phagocytosis is an actin-depending process that additionally requires myosin motor, phosphoinositide-3-phosphate kinase and tyrosine kinase activity. Both broad range tyrosine kinase inhibitors and inhibitors that specifically block src kinases had a strong impact on the conidial uptake. Immunofluorescence data demonstrate the recruitment of tyrosine-phosphorylated proteins to the vicinity of engulfed conidia. Uptake of the conidia was accompanied by a strong and local reorganisation of the actin cytoskeleton, whereas no prominent reorganisation was apparent for the microtubules. Both confocal immunofluorescence and electron microscopic data revealed the presence of large ruffle-like structures engaged in the uptake of conidia. This suggests that the internalisation of A. fumigatus spores can be mediated by a process resembling macropinocytosis, which is furthermore supported by the detection of intracellular conidia within spacious vacuoles. Taken together, our data provide new insights into the internalisation of A. fumigatus spores by macrophages, a key process in the early immune defence against an Aspergillus infection.
Collapse
Affiliation(s)
- Kathrin Luther
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Caldas LA, de Souza W, Attias M. Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Vet Parasitol 2007; 147:210-20. [PMID: 17560036 DOI: 10.1016/j.vetpar.2007.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 04/25/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Calcium plays crucial roles in important events of Toxoplasma gondii life cycle, including motility, invasion and egress from the host cell. Calcium ionophore has been used to artificially trigger release of the parasites from infected cells. In this report we describe that calcium ionophore A21387 induced T. gondii egress from LLC-MK2 cells at times as early as 2 h after entry. Addition of kinase inhibitors as staurosporine, wortmanine and genistein to the incubation medium significantly reduced ionophore-induced egress. The same occurred when the actin inhibitor cytochalasin D was used. Parasites egressed 2 h post-infection from ionophore-treated cultures were unable of establishing infection in a new cell. S-VHS recording of egressing parasites showed that they assume an hourglass shape as they cross the plasma membrane, similar to the moving junction constriction observed during active invasion, and extrudes the conoid, similarly to what is also observed during invasion. Transmission and high resolution scanning electron microscopy revealed that the egressing tachyzoites are free from host cell derived membranes. These include plasma membrane and parasitophorous vacuole membranes as well as associated endoplasmic reticulum membranes. Taken together, these results indicate that although invasion and egress may share similar signaling pathways, as indicated by the effect of kinase and actin inhibitors, the tachyzoites move freely in the cytosol, a phenomenon very distinctive from invasion and that deserves attention.
Collapse
Affiliation(s)
- Lucio Ayres Caldas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, bloco G. Cidade Universitária cep, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
24
|
Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N, Ferreira A, Morello A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:601-20. [PMID: 16626984 DOI: 10.1016/j.cbpa.2006.03.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 01/07/2023]
Abstract
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.
Collapse
Affiliation(s)
- Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, P.O. Box 70000, Santiago 7, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nogueira NFS, Gonzalez MS, Gomes JE, de Souza W, Garcia ES, Azambuja P, Nohara LL, Almeida IC, Zingales B, Colli W. Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 2007; 116:120-8. [PMID: 17306256 DOI: 10.1016/j.exppara.2006.12.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/01/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi epimastigotes adhere in vivo to the luminal surface of their triatomid vector digestive tract by molecular mechanisms, as yet, unknown. Here, we show that the administration of 0.5 microM epimastigote major surface glycoinositolphospholipids (GIPLs) to the infected bloodmeal inhibits up to 90% parasite infection in Rhodnius prolixus. The parasite behavior was investigated in vitro using fragments of the insect midgut. The addition of GIPLs in concentration as low as 50-100 nM impaired 95% the attachment of epimastigotes. Previous treatment of GIPLs with trifluoroacetic acid to remove the terminal beta-galactofuranosyl residues reversed 50% the epimastigote in vitro attachment. The binding sites of purified GIPLs on the luminal surface of the posterior midgut were exposed by immunofluorescence microscopy. These observations indicate that GIPLs are one of the components involved in the adhesion of T. cruzi to the luminal insect midgut surface and possibly one of the determinants of parasite infection in the insect vector.
Collapse
Affiliation(s)
- Nadir F S Nogueira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Braga MV, de Souza W. Effects of protein kinase and phosphatidylinositol-3 kinase inhibitors on growth and ultrastructure of Trypanosoma cruzi. FEMS Microbiol Lett 2006; 256:209-16. [PMID: 16499608 DOI: 10.1111/j.1574-6968.2006.00125.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increasing number of protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. Some PK inhibitors display antiproliferative effects on protozoa. We tested three PK inhibitors on the growth and ultrastructure of epimastigotes of Trypanosoma cruzi and the effect of these drugs on intracellular amastigotes. They were staurosporine (serine/threonine kinase inhibitor), genistein (tyrosine kinase inhibitor), and wortmannin (phosphatidylinositol 3' (PI3) kinase inhibitor). All drugs inhibited epimastigote growth at the concentrations tested. Wortmannin inhibited parasite growth at the lowest concentrations. However, staurosporine was the most effective after 24 h treatment and genistein caused the stronger inhibition during the whole treatment (60-70% inhibition). The IC50 were: staurosporine: 6.43+/-1.28 microM; genistein: 6.54+/-1.86 microM; and wortmannin: 0.056+/-0.014 microM. These PK inhibitors had strong ultrastructural effects on the epimastigotes: abnormal chromatin condensation of the nucleus; loose flagellar membrane with the formation of blebs; incomplete cell division; autophagosomes and myelin-like figures. These drugs did not interfere with the division of intracellular amastigotes or with its differentiation to trypomastigotes. However, as trypanosomes have kinomes that contain a large set of protein kinases and phosphatases, PKs should not be disregarded as an important target for chemotherapy of Chagas disease.
Collapse
Affiliation(s)
- Marina V Braga
- Departamento de Biologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Brazil
| | | |
Collapse
|
27
|
Sampaio SC, Santos MF, Costa EP, Rangel-Santos AC, Carneiro SM, Curi R, Cury Y. Crotoxin induces actin reorganization and inhibits tyrosine phosphorylation and activity of small GTPases in rat macrophages. Toxicon 2006; 47:909-19. [PMID: 16737726 DOI: 10.1016/j.toxicon.2006.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 01/12/2023]
Abstract
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom. Previous work of our group demonstrated that this toxin or its phospholipase A(2) subunit inhibits macrophage spreading and phagocytosis. The phagocytic activity of macrophages is controlled by the rearrangement of actin cytoskeleton and activity of the small Rho GTPases. The effect of crotoxin and its subunit on actin reorganization and tyrosine phosphorylation in rat peritoneal macrophages, during phagocytosis of opsonized zymosan, was presently investigated. The crude venom was used as positive control. In addition, the effect of crotoxin on the activity of Rho and Rac1 small GTPases was examined. Transmission electron studies showed that the venom or crotoxin decreased the extent of spread cells and increased microprojections often extended from macrophage surface. Immunocytochemical assays demosntrated that the venom or toxins increased F-actin content in the cytoplasm of these cells, but induced a marked decrease of phosphotyrosine. These effects were abolished by treatment with zileuton, a 5-lipoxygenase inhibitor. Furthermore, crotoxin decreased membrane-associated RhoA and Rac1 in translocation assays. The present results indicate that the crotalid venom and crotoxin are able to induce cytoskeleton rearrangement in macrophages. This effect is associated with inhibition of tyrosine phosphorylation and of the activity of proteins involved in intracellular signalling pathways important for the complete phagocytic activity of these cells.
Collapse
Affiliation(s)
- S C Sampaio
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT) and mammalian tissue culture trypomastigotes (TCT). During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.
Collapse
Affiliation(s)
- Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
29
|
O'Hara SP, Lin JJC. Accumulation of tropomyosin isoform 5 at the infection sites of host cells during Cryptosporidium invasion. Parasitol Res 2006; 99:45-54. [PMID: 16479376 DOI: 10.1007/s00436-005-0117-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 12/06/2005] [Indexed: 01/11/2023]
Abstract
The actin cytoskeleton of host cells has been implicated in Cryptosporidium invasion. However, the underlying mechanism of how actin filaments and associated proteins modulate this process remains unclear. In this study, we use in vitro cultured cell lines, human ileocecal adenocarcinoma HCT-8 and Chinese hamster ovary (CHO), and an in vivo mouse model to investigate the roles of tropomyosin isoforms in Cryptosporidium invasion. Using isoform-specific monoclonal antibodies, we found that the major human tropomyosin (hTM) isoforms expressed in HCT-8 cells are hTM4 and hTM5. HCT-8 cells also express hTM1 at low levels but not hTM2 and hTM3. During Cryptosporidium parvum infection, hTM5 colocalized to the infection sites with a novel parasite membrane protein, CP2. Neither hTM1 nor hTM4 accumulated at infection sites. Similarly, a high level of TM5 and varying amounts of TM4 accumulated at the C. parvum infection sites in CHO cells. CHO cells overexpressing hTM5 exhibit a significantly higher percent of mature meronts early in the infection process relative to CHO cells or CHO cells overexpressing a tropomyosin mutant, chimeric isoform hTM5/3. These results suggest that functional TM5 enhances Cryptosporidium invasion of host cells. In C. parvum-infected mice, accumulation and rearrangement of TM5 and TM4 were detected throughout the infected ileum. Similarly, in the Cryptosporidium muris-infected mice, TM5 accumulated in discrete regions of the epithelial cells of gastric glands and in the oocyst-laden stomach gland lumen. Cryptosporidium infection appears to rearrange and recruit host TM isoforms in both culture cells and in the mouse. Localized accumulation of tropomyosin at the infection sites may facilitate parasite invasion.
Collapse
Affiliation(s)
- Steven P O'Hara
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242-1324, USA
| | | |
Collapse
|
30
|
Melo TG, Almeida DS, de Meirelles MDNSL, Pereira MC. Trypanosoma cruzi infection disrupts vinculin costameres in cardiomyocytes. Eur J Cell Biol 2005; 83:531-40. [PMID: 15679099 DOI: 10.1078/0171-9335-00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chagas' disease cardiomyopathy is an important manifestation of Trypanosoma cruzi infection, leading to cardiac dysfunction and serious arrhythmias. We have here investigated by indirect immunofluorescence assay the distribution of vinculin, a focal adhesion protein with a major role in the transmission of contraction force, during the T. cruzi-cardiomyocyte infection in vitro and in vivo. No change in vinculin distribution was observed after 24 h of infection, where control and T. cruzi-infected cardiomyocytes displayed vinculin localized at costameres and intercalated discs. On the other hand, a clear disruption of vinculin costameric distribution was noted after 72 h of infection. A significant reduction in the levels of vinculin expression was observed at all times of infection. In murine experimental Chagas' disease, alteration in the vinculin distribution was also detected in the infected myocardium, with no costameric staining in infected myocytes and irregular alignment of intercalated discs in cardiac fibers. These data suggest that the disruption of costameric vinculin distribution and the enlargement of interstitial space due to inflammatory infiltration may contribute to the reduction of transmission of cardiac contraction force, leading to alterations in the heart function in Chagas' disease.
Collapse
Affiliation(s)
- Tatiana G Melo
- Departamento de Ultra-estrutura e Biologia Celular, Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
31
|
Dutra JMF, Bonilha VL, De Souza W, Carvalho TMU. Role of small GTPases in Trypanosoma cruzi invasion in MDCK cell lines. Parasitol Res 2005; 96:171-7. [PMID: 15864650 DOI: 10.1007/s00436-005-1333-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 01/31/2005] [Indexed: 11/27/2022]
Abstract
Trypanosoma cruzi can modulate a large number of host intracellular responses during its invasion. GTPases such as RhoA, Rac1 and Cdc42 are examples of molecules that could be activated at this moment and trigger changes in the pattern of F-actin cytoskeleton leading to the formation of structures like stress fibers, lamellipodium and fillopodium, respectively. Here we investigate the role of these GTPases in the cytoskeletal rearrangement of MDCK cell transfectants expressing variants of RhoA, Rac1 and Cdc42 during T. cruzi infection. The adhesion, internalization and the survival rate were determined. Rac1 mutants showed the higher adhesion and internalization indexes but the lower survival index after 48 h of infection. Confocal laser scanning microscopy showed changes in the pattern of F-actin distribution and reorganization at the site of trypomastigote invasion. These observations suggest that these GTPases act in the signaling mechanisms that affect the F-actin cytoskeleton during T. cruzi invasion.
Collapse
Affiliation(s)
- J M F Dutra
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho-CCS-UFRJ-Ilha do Fundão, 21940-900, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
32
|
de Souza W. Microscopy and cytochemistry of the biogenesis of the parasitophorous vacuole. Histochem Cell Biol 2005; 123:1-18. [PMID: 15685438 DOI: 10.1007/s00418-004-0746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Some parasitic protozoa are able to penetrate into host cells where they multiply. The process of penetration involves steps such as attachment to the host cell surface, internalization of the protozoan through an endocytic process with the formation of a parasitophorous vacuole (PV), and the subsequent interaction of the protozoan with the membrane lining the PV. This review analyzes the biogenesis of the PV from a morphological and cytochemical perspective. Special emphasis is given to (a) the localization of plasma membrane-associated enzymes such as Na(+)-K(+)-ATPase, Ca(2+)-ATPase, 5'-nucleotidase, and NAD(P)H-oxidase, (b) glycoconjugates, detected using labeled lectins, (c) anionic sites, detected using cationic particles, and (d) integral membrane proteins, using freeze-fracture replicas, and lipids during the formation of the PV containing Trypanosoma cruzi, Leishmania, Toxoplasma gondii, and Plasmodium.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, CCS-Bloco G, 21941-900, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Peluffo G, Piacenza L, Irigoín F, Alvarez MN, Radi R. L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol 2004; 20:363-9. [PMID: 15246319 DOI: 10.1016/j.pt.2004.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Trypanosoma cruzi invades a diversity of nucleated cells in the mammalian host. Macrophages are among the first cells to be parasitized and, after activation by inflammatory stimuli, they participate in the control of infection. However, some parasites manage to evade the immune response and establish a chronic infection in differentiated cells. L-arginine is located at the crossroads of divergent routes that produce metabolites, including nitric oxide and polyamines, which influence the outcome (i.e. resolution or progression) of infection. This article discusses the fate and actions of L-arginine-derived biomolecules formed both in the host and in the parasite during T. cruzi-host-cell interactions.
Collapse
Affiliation(s)
- Gonzalo Peluffo
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
34
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|
35
|
Asan E. Progress in focus: recent advances in histochemistry and cell biology. Histochem Cell Biol 2002; 118:507-25. [PMID: 12483316 DOI: 10.1007/s00418-002-0480-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2002] [Indexed: 10/25/2022]
Abstract
Advances in histochemical and cell biological techniques enable increasingly refined investigations into the cellular and subcellular distribution of specific molecules and into their role in dynamic processes; thus progress in these fields complements the growing knowledge in genomics and proteomics. The present review summarizes recent technical progress and novel applications.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070, Wuerzburg, Germany.
| |
Collapse
|