1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Sasai T, Nakashima R, Handa T, Yamano Y, Kondo Y, Matsuda S, Kotani T, Tomioka H, Tachikawa R, Tomii K, Tanizawa K, Nohda Y, Kogame T, Shirakashi M, Hiwa R, Tsuji H, Akizuki S, Yoshifuji H, Mimori T, Kabashima K, Morinobu A. Anti-interferon gamma-inducible protein 16 antibodies: Identification of a novel autoantigen in idiopathic interstitial pneumonia and its clinical characteristics based on a multicenter cohort study. Clin Immunol 2024; 268:110372. [PMID: 39357632 DOI: 10.1016/j.clim.2024.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Autoantibodies are detected in idiopathic interstitial pneumonias (IIPs) without a clear connective tissue disease diagnosis, and their clinical significance is unclear. This study aimed to identify a novel autoantibody in IIPs. We screened 295 IIP patients using a 35S-methionine labeled protein immunoprecipitation assay. Candidate autoantigens were identified via protein array and confirmed by immunoprecipitation. Six sera from 295 IIP patients immunoprecipitated common tetrameric proteins (100 kDa). The protein array identified interferon gamma-inducible protein 16 (IFI16) as the candidate autoantigen. Patients with anti-IFI16 antibodies received immunosuppressants less frequently. Five-year survival rates were 50 %, 69 %, and 63 % (P = 0.60), and acute exacerbation-free rates were 50 %, 96 %, and 84 % (P = 0.15) for patients with anti-IFI16, anti-aminoacyl tRNA antibodies, and others. Anti-IFI16 is a novel autoantibody in IIPs. Patients with this antibody often receive less immunosuppressive therapy and could have a poor prognosis. Further research is needed to refine patient stratification and management.
Collapse
Affiliation(s)
- Tsuneo Sasai
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Clinical Immunology, Tosei General Hospital, Aichi, Japan
| | - Yasuhiro Kondo
- Department of Respiratory Medicine and Clinical Immunology, Tosei General Hospital, Aichi, Japan
| | - Shogo Matsuda
- Department of Internal Medicine IV, Division of Rheumatology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takuya Kotani
- Department of Internal Medicine IV, Division of Rheumatology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hiromi Tomioka
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe, Japan
| | - Ryo Tachikawa
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kiminobu Tanizawa
- Respiratory Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasuhiro Nohda
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
4
|
Azumi Y, Koma YI, Tsukamoto S, Kitamura Y, Ishihara N, Yamanaka K, Nakanishi T, Miyako S, Urakami S, Tanigawa K, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. IFI16 Induced by Direct Interaction between Esophageal Squamous Cell Carcinomas and Macrophages Promotes Tumor Progression via Secretion of IL-1α. Cells 2023; 12:2603. [PMID: 37998338 PMCID: PMC10670642 DOI: 10.3390/cells12222603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the major components of the tumor microenvironment, contribute to the progression of esophageal squamous cell carcinoma (ESCC). We previously established a direct co-culture system of human ESCC cells and macrophages and reported the promotion of malignant phenotypes, such as survival, growth, and migration, in ESCC cells. These findings suggested that direct interactions between cancer cells and macrophages contribute to the malignancy of ESCC, but its underlying mechanisms remain unclear. In this study, we compared the expression levels of the interferon-induced genes between mono- and co-cultured ESCC cells using a cDNA microarray and found that interferon-inducible protein 16 (IFI16) was most significantly upregulated in co-cultured ESCC cells. IFI16 knockdown suppressed malignant phenotypes and also decreased the secretion of interleukin-1α (IL-1α) from ESCC cells. Additionally, recombinant IL-1α enhanced malignant phenotypes of ESCC cells through the Erk and NF-κB signaling. Immunohistochemistry revealed that high IFI16 expression in human ESCC tissues tended to be associated with disease-free survival and was significantly associated with tumor depth, lymph node metastasis, and macrophage infiltration. The results of this study reveal that IFI16 is involved in ESCC progression via IL-1α and imply the potential of IFI16 as a novel prognostic factor for ESCC.
Collapse
Affiliation(s)
- Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yu Kitamura
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| |
Collapse
|
5
|
Wang X, Fu S, Yu J, Ma F, Zhang L, Wang J, Wang L, Tan Y, Yi H, Wu H, Xu Z. Renal interferon-inducible protein 16 expression is associated with disease activity and prognosis in lupus nephritis. Arthritis Res Ther 2023; 25:112. [PMID: 37393341 PMCID: PMC10314472 DOI: 10.1186/s13075-023-03094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE). However, the current management of LN remains unsatisfactory due to sneaky symptoms during early stages and lack of reliable predictors of disease progression. METHODS Bioinformatics and machine learning algorithms were initially used to explore the potential biomarkers for LN development. Identified biomarker expression was evaluated by immunohistochemistry (IHC) and multiplex immunofluorescence (IF) in 104 LN patients, 12 diabetic kidney disease (DKD) patients, 12 minimal change disease (MCD) patients, 12 IgA nephropathy (IgAN) patients and 14 normal controls (NC). The association of biomarker expression with clinicopathologic indices and prognosis was analyzed. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were utilized to explore potential mechanisms. RESULTS Interferon-inducible protein 16 (IFI16) was identified as a potential biomarker for LN. IFI16 was highly expressed in the kidneys of LN patients compared to those with MCD, DKD, IgAN or NC. IFI16 co-localized with certain renal and inflammatory cells. Glomerular IFI16 expression was correlated with pathological activity indices of LN, while tubulointerstitial IFI16 expression was correlated with pathological chronicity indices. Renal IFI16 expression was positively associated with systemic lupus erythematosus disease activity index (SLEDAI) and serum creatinine while negatively related to baseline eGFR and serum complement C3. Additionally, higher IFI16 expression was closely related to poorer prognosis of LN patients. GSEA and GSVA suggested that IFI16 expression was involved in adaptive immune-related processes of LN. CONCLUSION Renal IFI16 expression is a potential biomarker for disease activity and clinical prognosis in LN patients. Renal IFI16 levels may be used to shed light on predicting the renal response and develop precise therapy for LN.
Collapse
Affiliation(s)
- Xueyao Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lihong Zhang
- Department of Pathology, Basic Medical College of Jilin University, Changchun, China
| | - Jiahui Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Luyu Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Tan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Meshko B, Volatier TLA, Hadrian K, Deng S, Hou Y, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander B, Cursiefen C, Notara M. ABCB5+ Limbal Epithelial Stem Cells Inhibit Developmental but Promote Inflammatory (Lymph) Angiogenesis While Preventing Corneal Inflammation. Cells 2023; 12:1731. [PMID: 37443766 PMCID: PMC10341195 DOI: 10.3390/cells12131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The limbus, the vascularized junction between the cornea and conjunctiva, is thought to function as a barrier against corneal neovascularization. However, the exact mechanisms regulating this remain unknown. In this study, the limbal epithelial stem cell (LESC) marker ABCB5 was used to investigate the role of LESCs in corneal neovascularization. In an ABCB5KO model, a mild but significant increase of limbal lymphatic and blood vascular network complexity was observed in developing mice (4 weeks) but not in adult mice. Conversely, when using a cornea suture model, the WT animals exhibited a mild but significant increase in the number of lymphatic vessel sprouts compared to the ABCB5KO, suggesting a contextual anti-lymphangiogenic effect of ABCB5 on the limbal vasculature during development, but a pro-lymphangiogenic effect under inflammatory challenge in adulthood. In addition, conditioned media from ABCB5-positive cultured human limbal epithelial cells (ABCB5+) stimulated human blood and lymphatic endothelial cell proliferation and migration. Finally, a proteomic analysis demonstrated ABCB5+ cells have a pro(lymph)angiogenic as well as an anti-inflammatory profile. These data suggest a novel dual, context-dependent role of ABCB5+ LESCs, inhibiting developmental but promoting inflammatory (lymph)angiogenesis in adulthood and exerting anti-inflammatory effects. These findings are of high clinical relevance in relation to LESC therapy against blindness.
Collapse
Affiliation(s)
- Berbang Meshko
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
| | - Thomas L. A. Volatier
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
| | - Shuya Deng
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
| | - Mark Andreas Kluth
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Christoph Ganss
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Bruce Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA;
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
- Institute for Genome Stability in Ageing and Disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, 50937 Cologne, Germany; (B.M.); (T.L.A.V.); (Y.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Institute for Genome Stability in Ageing and Disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
7
|
Borucka J, Sterzyńska K, Kaźmierczak D, Świerczewska M, Nowacka M, Wojtowicz K, Klejewski A, Nowicki M, Zabel M, Ramlau R, Januchowski R. The significance of interferon gamma inducible protein 16 (IFI16) expression in drug resistant ovarian cancer cell lines. Biomed Pharmacother 2022; 150:113036. [PMID: 35489285 DOI: 10.1016/j.biopha.2022.113036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence. METHODS Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1). IFI16 mRNA level, protein level in the nuclear and cytoplasmic fraction (Western blot analysis), the protein expression in cancer cells and nuclei (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were performed in this study. RESULTS We observed upregulation of IFI16 expression in drug resistant cell lines with dominant cytoplasmic localization in DOX-resistant cell lines and nuclear one in the PAC-resistant cell line. The most abundantly overexpressed isoforms of IFI16 were IFI16A and IFI16C. Finally, an analysis of a histological type of ovarian cancer (immunohistochemistry) showed expression in serous ovarian cancer. CONCLUSIONS Expression of IFI16 in drug-resistant cell lines suggests its role in drug resistance development in ovarian cancer. Expression in serous ovarian cancer suggests its role in the pathogenesis of this histological type.
Collapse
Affiliation(s)
- Justyna Borucka
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland; Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland.
| |
Collapse
|
8
|
Wang S, Bai J. Functions and roles of IFIX, a member of the human HIN-200 family, in human diseases. Mol Cell Biochem 2022; 477:771-780. [PMID: 35039991 DOI: 10.1007/s11010-021-04297-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
Pyrin and hematopoietic expression, interferon-inducible nature, and nuclear localization (HIN) domain family member 1 (PYHIN1), also known as IFIX, belongs to the family of pyrin proteins. This family includes structurally and functionally related mouse (e.g., p202, p203, and p204 proteins) and human (e.g., the interferon-inducible protein 16, absent in melanoma 2 protein, myeloid cell nuclear differentiation antigen, and pyrin and HIN domain family 1 or IFIX) proteins. The IFIX protein belongs to the HIN-200 family of interferon-inducible proteins that have a 200-amino acid signature motif at their C-termini. The increased expression of pyrin proteins in most cell types inhibits cell cycle control and modulates cell survival. Consistent with this role for pyrin proteins, IFIX is a potential antiviral DNA sensor that is essential for immune responses, the detection of viral DNA in the nucleus and cytoplasm, and the binding of foreign DNA via its HIN domain in a sequence non-specific manner. By promoting the ubiquitination and subsequent degradation of MDM2, IFIX acts as a tumor suppressor, thereby leading to p53/TP53 stabilization, HDAC1 regulation via the ubiquitin-proteasome pathway, and tumor-cell-specific silencing of the maspin gene. These data demonstrate that the potential molecular mechanism(s) underlying the action of the IFIX protein might be associated with the development of human diseases, such as viral infections, malignant tumors, and autoimmune diseases. This review summarizes the current insights into IFIX functions and how its regulation affects the outcomes of various human diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Jie Bai
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, People's Republic of China.
| |
Collapse
|
9
|
Zou Y, Zhang J, Zhang L, Yan X. Interferon-induced protein 16 expression in colorectal cancer and its correlation with proliferation and immune signature markers. Oncol Lett 2021; 22:687. [PMID: 34434286 PMCID: PMC8335744 DOI: 10.3892/ol.2021.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon-induced protein 16 (IFI16) is important for innate immune recognition of foreign/damaged DNA. Abnormal IFI16 expression is closely related to the occurrence of multiple malignant tumours, but its expression pattern in colorectal cancer (CRC) remains unclear. The present study aimed to investigated IFI16 expression and association with cell proliferation in CRC tissues and adjacent normal tissues. A multiplex immunofluorescence panel of antibodies against IFI16, Ki-67 and phosphorylated (p)-ERK1/2 was applied to assess a tissue microarray (TMA). The TMA included 77 CRC samples and 74 normal adjacent tissue samples which were collected from The First People's Hospital of Yunnan Province (Kunming, China) (3 paracancerous tissues were lost because of repeated cutting). Immunohistochemistry was used to detect CD8+ tumour-infiltrating lymphocyte (TIL) abundance and programmed death-ligand 1 (PD-L1) expression in cancer tissues. The present study demonstrated that IFI16 localized to the nucleus of CRC cells. Although IFI16 was weakly expressed in normal mucosal epithelial cells, absent to strong expression was detectable in different patients with CRC. Typically, IFI16 was not co-localized with Ki-67 within CRC cells. The multiplex immunofluorescence data demonstrated that the proportion of IFI16-/Ki-67+ cells from CRC tissues was 57.13%; however, that of IFI16+/Ki-67+ cells was 1.50%. The IFI16-/Ki-67+ phenotype was significantly positively associated with the tumor-node-metastasis stage and was marginally significantly correlated with lymph node metastasis. p-ERK1/2 protein was primarily localized to the cytoplasm and cell membrane of CRC cells and sometimes to the nucleus. Although, IFI16 demonstrated a strong correlation with p-ERK1/2, IFI16 did not co-localize with p-ERK1/2 and the proportion of IFI16 and p-ERK1/2 double-negative CRC cells was 84.95%. IFI16 expression displayed no significant association with CD8+ TILs or PD-L1. However, a strong positive correlation between CD8+ TILs and PD-L1 was observed. High CD8+ TIL infiltration in CRC tissue was associated with lower lymph node metastasis and tumor-node-metastasis stage. In summary, the results of the present study provided a novel insight for the role of IFI16 in CRC occurrence via the regulation of cancer cell proliferation.
Collapse
Affiliation(s)
- Yunlian Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinping Zhang
- Institute of Medical Sciences, Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Lichen Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xinmin Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
Naruse T, Ohta K, Kato H, Ishida Y, Shigeishi H, Sakuma M, Fukui A, Nakagawa T, Tobiume K, Nishi H, Takechi M. Immune response to cytosolic DNA via intercellular receptor modulation in oral keratinocytes and fibroblasts. Oral Dis 2020; 28:150-163. [PMID: 33200485 DOI: 10.1111/odi.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Double-strand (ds) DNA-enveloped viruses can cause oral infection. Our aim is to investigate whether oral mucosal cells participate in immune response against cytosolic dsDNA invasion. METHODS We examined the response to transfected herpes simplex virus (HSV) dsDNA via intracellular receptors in oral keratinocytes (RT7) and fibroblasts (GT1), and the effect of TNF-α on those responses. RESULTS Transfected dsDNA increased CXCL10 expression via NF-κB activation in both cell types, while those responses were inhibited by knockdown of RIG-I, an RNA sensor. Although IFI16, a DNA sensor, was expressed in the nuclei of both types, its knockdown decreased transfected dsDNA-induced CXCL10 expression in GT1 but not RT7 cells. IFI16 in GT1 cells was translocated into cytoplasm from nuclei, which was attributed to immune response to cytosolic dsDNA. TNF-α enhanced transfected dsDNA-induced CXCL10, and knockdown of IFI16 decreased TNF-α and dsDNA-driven CXCL10 expression in both RT7 and GT1 cells. Finally, the combination of TNF-α and transfected dsDNA resulted in translocation of IFI16 from nuclei to cytoplasm in RT7 cells. CONCLUSION RIG-I and IFI16 in oral mucosal cells may play important roles in host immune response against DNA viral infection, while TNF-α contributes to development of an antiviral system via those intracellular receptors.
Collapse
Affiliation(s)
- Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Ishida
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideo Shigeishi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiko Fukui
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Tobiume
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromi Nishi
- Department General Dentistry, Hiroshima University Hospital, Hiroshima, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
12
|
McMahan ZH, Shah AA, Vaidya D, Wigley FM, Rosen A, Casciola-Rosen L. Anti-Interferon-Inducible Protein 16 Antibodies Associate With Digital Gangrene in Patients With Scleroderma. Arthritis Rheumatol 2017; 68:1262-71. [PMID: 26714268 DOI: 10.1002/art.39558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/15/2015] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the association between anti-interferon-inducible protein 16 (anti-IFI-16) antibodies and clinical features of scleroderma. METHODS Sera from a discovery sample of 94 patients with scleroderma and 47 healthy controls were assayed for anti-IFI-16 antibodies by enzyme-linked immunosorbent assay, and associations were examined using regression analyses. Since anti-IFI-16 autoantibodies were found to be strongly associated with digital gangrene in the discovery sample, a subsequent case-control study (with subjects matched 1:1 on disease duration) was designed for further exploration. Cases were patients with scleroderma and digital gangrene, while controls were patients with scleroderma and Raynaud's phenomenon alone (n = 39 matched pairs). Nonparametric, unadjusted matched pairs analysis as well as univariate and multivariable conditional logistic regression analyses were performed. RESULTS In the discovery sample, anti-IFI-16 antibodies were more prevalent in patients with scleroderma than in healthy controls (18% versus 2%; P = 0.01). Patients with anti-IFI-16 antibodies, compared to anti-IFI-16 antibody-negative patients, were more likely to have limited scleroderma (77% versus 46%; P = 0.03), a longer disease duration (median 15.2 years [interquartile range 10.6-18.3] versus 6.0 years [interquartile range 3.4-13.8]; P < 0.01), digital gangrene (24% versus 4%; P = 0.02), and a low diffusing capacity for carbon monoxide (DLco) (P < 0.01). In the case-control study, 35 (45%) of 78 patients were anti-IFI-16 antibody positive. Anti-IFI-16 antibody levels were significantly higher in cases with digital gangrene than in matched controls (P = 0.02). In analyses adjusted for age, cutaneous scleroderma subtype, smoking, and DLco, high anti-IFI-16 antibody levels were associated with the presence of digital gangrene (adjusted odds ratio 2.3, 95% confidence interval 1.0-5.6, P = 0.05). The odds of having digital gangrene increased with higher anti-IFI-16 antibody titers, in a dose-dependent manner. CONCLUSION Anti-IFI-16 antibodies are associated with digital gangrene in patients with scleroderma. Longitudinal prospective studies exploring anti-IFI-16 antibodies as a disease biomarker, and biologic studies investigating the pathogenicity of these antibodies, are warranted.
Collapse
Affiliation(s)
| | - Ami A Shah
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dhananjay Vaidya
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Antony Rosen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
13
|
Piccaluga PP, Agostinelli C, Righi S, Ciccone M, Re MC, Musumeci G, Diani E, Signoretto C, Bon I, Piccin O, Cuneo A, Tripodo C, Ponti C, Zipeto D, Landolfo S, Gibellini D. IFI16 reduced expression is correlated with unfavorable outcome in chronic lymphocytic leukemia. APMIS 2017; 125:511-522. [PMID: 28517553 DOI: 10.1111/apm.12692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Its clinical course is typically indolent; however, based on a series of pathobiological, clinical, genetic, and phenotypic parameters, patient survival varies from less than 5 to more than 20 years. In this paper, we show for the first time that the expression of the interferon-inducible DNA sensor IFI16, a member of the PYHIN protein family involved in proliferation inhibition and apoptosis regulation, is associated with the clinical outcome in CLL. We studied 99 CLLs cases by immunohistochemistry and 10 CLLs cases by gene expression profiling. We found quite variable degrees of IFI16 expression among CLLs cases. Noteworthy, we observed that a reduced IFI16 expression was associated with a very poor survival, but only in cases with ZAP70/CD38 expression. Furthermore, we found that IFI16 expression was associated with a specific gene expression signature. As IFI16 can be easily detected by immunohistochemistry or flow cytometry, it may become a part of phenotypic screening in CLL patients if its prognostic role is confirmed in independent series.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Section of Genomics and Personalized Medicine, Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simona Righi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Ciccone
- Department of Biomedical Sciences, Hematology Section, S. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostic, and Specialty Medicine, Microbiology Unit, University of Bologna, Bologna, Italy
| | - Giuseppina Musumeci
- Department of Experimental, Diagnostic, and Specialty Medicine, Microbiology Unit, University of Bologna, Bologna, Italy
| | - Erica Diani
- Department of Diagnostic and Public Health, Unit of Microbiology, University of Verona, Verona, Italy
| | - Caterina Signoretto
- Department of Diagnostic and Public Health, Unit of Microbiology, University of Verona, Verona, Italy
| | - Isabella Bon
- Department of Experimental, Diagnostic, and Specialty Medicine, Microbiology Unit, University of Bologna, Bologna, Italy
| | - Ottavio Piccin
- Department of Experimental, Diagnostic, and Specialty Medicine, Otolaryngology Unit, University of Bologna, Bologna, Italy
| | - Antonio Cuneo
- Department of Biomedical Sciences, Hematology Section, S. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Claudio Tripodo
- Section of Genomics and Personalized Medicine, Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Cristina Ponti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Unit of Microbiology, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
15
|
Landolfo S, De Andrea M, Dell’Oste V, Gugliesi F. Intrinsic host restriction factors of human cytomegalovirus replication and mechanisms of viral escape. World J Virol 2016; 5:87-96. [PMID: 27563536 PMCID: PMC4981826 DOI: 10.5501/wjv.v5.i3.87] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
Before a pathogen even enters a cell, intrinsic immune defenses are active. This first-line defense is mediated by a variety of constitutively expressed cell proteins collectively termed “restriction factors” (RFs), and they form a vital element of the immune response to virus infections. Over time, however, viruses have evolved in a variety ways so that they are able to overcome these RF defenses via mechanisms that are specific for each virus. This review provides a summary of the universal characteristics of RFs, and goes on to focus on the strategies employed by some of the most important RFs in their attempt to control human cytomegalovirus (HCMV) infection. This is followed by a discussion of the counter-restriction mechanisms evolved by viruses to circumvent the host cell’s intrinsic immune defenses. RFs include nuclear proteins IFN-γ inducible protein 16 (IFI16) (a Pyrin/HIN domain protein), Sp100, promyelocytic leukemia, and hDaxx; the latter three being the keys elements of nuclear domain 10 (ND10). IFI16 inhibits the synthesis of virus DNA by down-regulating UL54 transcription - a gene encoding a CMV DNA polymerase; in response, the virus antagonizes IFI16 via a process involving viral proteins UL97 and pp65 (pUL83), which results in the mislocalizing of IFI16 into the cytoplasm. In contrast, viral regulatory proteins, including pp71 and IE1, seek to modify or disrupt the ND10 proteins and thus block or reverse their inhibitory effects upon virus replication. All in all, detailed knowledge of these HCMV counter-restriction mechanisms will be fundamental for the future development of new strategies for combating HCMV infection and for identifying novel therapeutic agents.
Collapse
|
16
|
Molecular characterization of woodchuck IFI16 and AIM2 and their expression in woodchucks infected with woodchuck hepatitis virus (WHV). Sci Rep 2016; 6:28776. [PMID: 27354260 PMCID: PMC4926060 DOI: 10.1038/srep28776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
IFI16 and AIM2 are important DNA sensors in antiviral immunity. To characterize these two molecules in a woodchuck model, which is widely used to study hepatitis B virus (HBV) infection, we cloned and analyzed the complete coding sequences (CDSs) of woodchuck IFI16 and AIM2, and found that AIM2 was highly conserved in mammals, whereas the degree of sequence identity between woodchuck IFI16 and its mammalian orthologues was low. IFI16 and IFN-β were upregulated following VACV ds 70 mer transfection, while AIM2 and IL-1β were upregulated following poly (dA:dT) transfection, both in vitro and in vivo; IFI16-targeted siRNA decreased the transcription of IFI16 and IFN-β stimulated by VACV ds 70 mer, and AIM2 siRNA interference downregulated AIM2 and IL-1β transcripts stimulated by poly (dA:dT), in vitro, suggesting that woodchuck IFI16 and AIM2 may play pivotal roles in the DNA-mediated induction of IFN-β and IL-1β, respectively. IFI16 and AIM2 transcripts were upregulated in the liver and spleen following acute WHV infection, while IFI16 was downregulated in the liver following chronic infection, implying that IFI16 and AIM2 may be involved in WHV infection. These data provide the basis for the study of IFI16- and AIM2-mediated innate immunity using the woodchuck model.
Collapse
|
17
|
Abstract
OBJECTIVES Preeclampsia is a serious pregnancy-specific hypertensive syndrome that is characterized by widespread maternal endothelial dysfunction. Previous studies have shown that increased levels of circulating cell-free fetal DNA in women with preeclampsia correspond to the degree of disease severity; however, it is unknown whether this DNA is a key signal that contributes to the development of preeclampsia. The detection of DNA is critical to appropriate innate immune responses. The interferon-inducible protein 16 (IFI16) - a member of the HIN-200 family - is an innate immune receptor for intracellular DNA, which is implicated in the control of cell growth, apoptosis, angiogenesis, and immunomodulation; however, its role in preeclampsia remains unresolved. Here, we tested the hypothesis that this DNA can activate IFI16 in the placentas of women with preeclampsia and is sufficient to induce soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) production. METHODS We characterized IFI16 in severe preeclamptic placentas and assessed whether DNA increased the release of sFlt-1 and sEng from trophoblast cells and placental explants. Furthermore, we determined whether IFI16 was involved in DNA-induced sFlt-1 and sEng production. RESULTS Placental immunoreactivity and protein levels of IFI16 were significantly increased in women with preeclampsia compared to matched control women. Treatment of human trophoblasts with the IFI16 agonist poly(dA:dT) significantly increased IFI16 levels. Furthermore, poly(dA:dT) induced sFlt-1 and sEng production by human trophoblasts in an IFI16-dependent manner. CONCLUSIONS We conclude that trophoblast cells respond to cell-free fetal DNA through the IFI16 receptor, resulting in the production of the preeclampsia-related antiangiogenic factors sFlt-1 and sEng.
Collapse
|
18
|
Abstract
Pattern recognition receptors, including members of the NLR and PYHIN families, are essential for recognition of both pathogen- and host-derived danger signals. A number of molecules in these families are capable of forming multiprotein complexes termed inflammasomes that result in the activation of caspase-1. In addition to NLRP1, NLRP3, NLRC4, and AIM2, which form well-described inflammasome complexes, IFI16, NLRP6, NLRP7, NLRP12, and NLRC5 have also been proposed to form inflammasomes under specific conditions. The structure and function of these atypical inflammasomes will be highlighted here.
Collapse
Affiliation(s)
- Ann M Janowski
- Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Fayyaz S Sutterwala
- Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Inflammation Program, Department of Internal Medicine, University of Iowa Carver College of Medicine, 2501 Crosspark Road, D156 MTF, Iowa City, IA, 52241, USA.
- Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
19
|
Piccaluga PP, Agostinelli C, Fuligni F, Righi S, Tripodo C, Re MC, Clò A, Miserocchi A, Morini S, Gariglio M, Ferri GG, Rinaldi-Ceroni A, Piccin O, De Andrea M, Pileri SA, Landolfo S, Gibellini D. IFI16 Expression Is Related to Selected Transcription Factors during B-Cell Differentiation. J Immunol Res 2015; 2015:747645. [PMID: 26185770 PMCID: PMC4491573 DOI: 10.1155/2015/747645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023] Open
Abstract
The interferon-inducible DNA sensor IFI16 is involved in the modulation of cellular survival, proliferation, and differentiation. In the hematopoietic system, IFI16 is consistently expressed in the CD34+ stem cells and in peripheral blood lymphocytes; however, little is known regarding its regulation during maturation of B- and T-cells. We explored the role of IFI16 in normal B-cell subsets by analysing its expression and relationship with the major transcription factors involved in germinal center (GC) development and plasma-cell (PC) maturation. IFI16 mRNA was differentially expressed in B-cell subsets with significant decrease in IFI16 mRNA in GC and PCs with respect to naïve and memory subsets. IFI16 mRNA expression is inversely correlated with a few master regulators of B-cell differentiation such as BCL6, XBP1, POU2AF1, and BLIMP1. In contrast, IFI16 expression positively correlated with STAT3, REL, SPIB, RELA, RELB, IRF4, STAT5B, and STAT5A. ARACNE algorithm indicated a direct regulation of IFI16 by BCL6, STAT5B, and RELB, whereas the relationship between IFI16 and the other factors is modulated by intermediate factors. In addition, analysis of the CD40 signaling pathway showed that IFI16 gene expression directly correlated with NF-κB activation, indicating that IFI16 could be considered an upstream modulator of NF-κB in human B-cells.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Hematopathology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Hematopathology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Hematopathology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Simona Righi
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Hematopathology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Claudio Tripodo
- Department of Human Pathology, University of Palermo, 90127 Palermo, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Microbiology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Alberto Clò
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Microbiology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Anna Miserocchi
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Microbiology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Silvia Morini
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Microbiology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Marisa Gariglio
- Department of Clinical and Experimental Medicine, Medical School of Novara, 28100 Novara, Italy
| | - Gian Gaetano Ferri
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Otolaryngology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Alberto Rinaldi-Ceroni
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Otolaryngology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Ottavio Piccin
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Otolaryngology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Marco De Andrea
- Department of Public Health and Microbiology, University of Turin, 10126 Turin, Italy
| | - Stefano A. Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School Unit of Hematopathology, S. Orsola Malpighi Hospital, 40138 Bologna, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, 10126 Turin, Italy
| | - Davide Gibellini
- Department of Pathology and Diagnostic, University of Verona, 35124 Verona, Italy
| |
Collapse
|
20
|
Nissen SK, Højen JF, Andersen KLD, Kofod-Olsen E, Berg RK, Paludan SR, Østergaard L, Jakobsen MR, Tolstrup M, Mogensen TH. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol 2014; 177:295-309. [PMID: 24593816 DOI: 10.1111/cei.12317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2014] [Indexed: 02/03/2023] Open
Abstract
The innate immune system has been recognized to play a role in the pathogenesis of HIV infection, both by stimulating protective activities and through a contribution to chronic immune activation, the development of immunodeficiency and progression to AIDS. A role for DNA sensors in HIV recognition has been suggested recently, and the aim of the present study was to describe the influence of HIV infection on expression and function of intracellular DNA sensing. Here we demonstrate impaired expression of interferon-stimulated genes in responses to DNA in peripheral blood monuclear cells from HIV-positive individuals, irrespective of whether patients receive anti-retroviral treatment. Furthermore, we show that expression levels of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic guanosine monophosphate-adenosine monophosphate synthase were increased in treatment-naive patients, and for IFI16 expression was correlated with high viral load and low CD4 cell count. Finally, our data demonstrate a correlation between IFI16 and CD38 expression, a marker of immune activation, in CD4(+) central and effector memory T cells, which may indicate that IFI16-mediated DNA sensing and signalling contributes to chronic immune activation. Altogether, the present study demonstrates abnormal expression and function of cytosolic DNA sensors in HIV patients, which may have implications for control of opportunistic infections, chronic immune activation and T cell death.
Collapse
Affiliation(s)
- S K Nissen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Landolfo S, Andrea MD, Gariglio M. Restriction factors against human CMV. Future Virol 2014. [DOI: 10.2217/fvl.14.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular proteins called 'restriction factors' (RFs) form an important component of the innate immune response to viral replication. However, viruses have learned how to antagonize RFs through mechanisms that are specific for each virus. Here, we summarize the general hallmarks of RFs before going on to discuss the specific strategies recruited by some key RFs that strive to hold human CMV (HCMV) infection back, as well as the counter-restriction mechanisms employed by the virus to overcome this innate defense. Such RFs include the cellular constituents of nuclear domain 10 (ND10), and IFI16, a nuclear member of the PYHIN protein family. Viral regulatory proteins, such as IE1 or pp71, try to oppose the ND10-induced blockade of virus replication by either modifying or disrupting this RF. IFI16, on the other hand, inhibits virus DNA synthesis by downregulating the transcription of viral gene UL54; the intruding virus attempts to antagonize IFI16 by mislocalizing it from the nucleus to the cytoplasm via the action of viral protein UL97. Finally, we consider how Viperin, a RF initially thought to inhibit HCMV maturation late during infection, has actually been demonstrated to enhance virus maturation by increasing lipid metabolism and enhancing virus envelopment.
Collapse
Affiliation(s)
- Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| |
Collapse
|
22
|
Shi X, Liu J, Liu Q, Li M. IFI16 mis-localization can be a contributing factor to hepatocellular carcinoma progression. Med Hypotheses 2014; 82:398-400. [PMID: 24491427 DOI: 10.1016/j.mehy.2014.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/06/2014] [Accepted: 01/18/2014] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly deadly cancer, with usually drug resistance. However the mechanisms responsible for this phenomenon are poorly understood. Interferon-γ inducible protein 16 (IFI16), a multifunctional protein, has roles in anti-proliferation, autophagy, cell senescence, anti-inflammation, and DNA sensor to trigger innate immunity. IFI16 physiologically absents in adult healthy hepatocyte, but exists in liver cancer cells. Interestingly, increasing evidences suggest that dysregulation or/and loss of IFI16 function have a critical role in drug resistance and tumor progression. Furthermore, interaction with DNA or other protein depends on IFI16 localization. In our study, to our knowledge, we first showed that IFI16 is a chromatin-binding protein in four HCC cell lines with different TP53 genotype, but not in fetal liver cell line, L02 cells. However, the function of IFI16 subcellular localization has not been determined in HCC. Therefore, we present our study and theoretical basis and presume that chromatin-bounding localization of IFI16 is associated with HCC progression. If we are able to acetylate or/and delete NLS of IFI16 with activated-p53 restoration, we may offer an alternative for HCC therapy.
Collapse
Affiliation(s)
- Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei 050200, China; Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingli Liu
- Department of Repairing and Servicing Technology of Medical Equipment, Bethune Medical Non-commissioned Officer Academy of PLA, Shijiazhuang, Hebei 050081, China
| | - Qiujun Liu
- Department of Biochemistry, Luzhou Medical College, Luzhou 646000, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Berg RK, Rahbek SH, Kofod-Olsen E, Holm CK, Melchjorsen J, Jensen DG, Hansen AL, Jørgensen LB, Ostergaard L, Tolstrup M, Larsen CS, Paludan SR, Jakobsen MR, Mogensen TH. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS One 2014; 9:e84513. [PMID: 24404168 PMCID: PMC3880311 DOI: 10.1371/journal.pone.0084513] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/15/2013] [Indexed: 01/20/2023] Open
Abstract
HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN)-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.
Collapse
Affiliation(s)
- Randi K Berg
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Stine H Rahbek
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Aarhus Research Center for Innate Immunology, Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark ; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Aarhus Research Center for Innate Immunology, Aarhus, Denmark
| | - Jesper Melchjorsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - David G Jensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | | | - Lars Ostergaard
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Aarhus Research Center for Innate Immunology, Aarhus, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark ; Aarhus Research Center for Innate Immunology, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark ; Aarhus Research Center for Innate Immunology, Aarhus, Denmark
| |
Collapse
|
24
|
Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol 2013; 35:1727-38. [PMID: 24163107 DOI: 10.1007/s13277-013-1321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, México,
| | | | | |
Collapse
|
25
|
Bryant-Hudson K, Conrady CD, Carr DJJ. Type I interferon and lymphangiogenesis in the HSV-1 infected cornea - are they beneficial to the host? Prog Retin Eye Res 2013; 36:281-91. [PMID: 23876483 DOI: 10.1016/j.preteyeres.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that can result in significant human morbidity. Within the cornea, it was thought the initial recognition of the pathogen was through Toll-like receptors expressed on/in resident cells that then elicit pro-inflammatory cytokine production, activation of anti-viral pathways, and recruitment of leukocytes. However, our lab has uncovered a novel, TLR-independent innate sensor that supersedes TLR induction of anti-viral pathways following HSV-1 infection. In addition, we have also found HSV-1 induces the genesis of lymphatic vessels into the cornea proper by a mechanism independent of TLRs and unique in the field of neovascularization. This review will focus on these two innate immune events during acute HSV-1 infection of the cornea.
Collapse
Affiliation(s)
- Katie Bryant-Hudson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
26
|
HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res 2013; 305:723-32. [PMID: 23764897 DOI: 10.1007/s00403-013-1375-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 02/04/2023]
Abstract
Human papillomaviruses (HPV) are double-stranded DNA viruses, which selectively infect keratinocytes in stratified epithelia. After an initial infection, many patients clear HPV. In some patients, however, HPV persist, and dysfunctional innate immune responses to HPV infection could be involved in the ineffective clearing of these viruses. In this study, the mechanisms of HPV-induced immune responses in keratinocytes were investigated. Binding of viral DNA leads to AIM2 inflammasome activation and IL-1β release, while IFI16 activation results in IFN-β release. Using immunohistochemistry, AIM2 and IFI16-two recently identified sensors for cytosolic DNA-were also detected in HPV positive skin lesions. CISH stainings further confirmed the presence of cytosolic HPV16 DNA in biopsy samples. Moreover, active IL-1β and cleaved caspase-1 were detected in HPV infected skin, suggesting inflammasome activation by viral DNA. In subsequent functional studies, HPV16 DNA triggered IL-1β and IL-18 release via the AIM2 inflammasome in normal human keratinocytes. Although HPV DNA did not induce IFN-β in keratinocytes, IFN-β secretion was observed when AIM2 was blocked. Meanwhile, blocking of IFI16 increased HPV16 DNA-induced IL-1β, but not IL-18, secretion. These findings suggest crosstalk between IFI16 and AIM2 in the immune response to HPV DNA. In sum, novel aspects concerning HPV-induced innate immune responses were identified. Eventually, understanding the mechanisms of HPV-induced inflammasome activation could lead to the development of novel strategies for the prevention and treatment of HPV infections.
Collapse
|
27
|
The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol 2012; 12:140. [PMID: 22871040 PMCID: PMC3458909 DOI: 10.1186/1471-2148-12-140] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023] Open
Abstract
Background Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses. Results No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns. Conclusions The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.
Collapse
|
28
|
Abstract
Toll-like receptors (TLRs) are innate sentinels required for clearance of bacterial and fungal infections of the cornea, but their role in viral immunity is currently unknown. We report that TLR signaling is expendable in herpes simplex virus (HSV)-1 containment as depicted by plaque assays of knockout mice (MyD88(-/-), Trif(-/-) and MyD88(-/-) Trif(-/-) double knockout) resembling wild-type controls. To identify the key sentinel in viral recognition of the cornea, in vivo knockdown of the DNA sensor IFI-16/p204 in the corneal epithelium was performed and resulted in a loss of IFN-regulatory factor-3 (IRF-3) nuclear translocation, interferon-α production, and viral containment. The sensor seems to have a similar function in other HSV clinically relevant sites such as the vaginal mucosa in which a loss of p204/IFI-16 results in significantly more HSV-2 shedding. Thus, we have identified an IRF-3-dependent, IRF-7- and TLR-independent innate sensor responsible for HSV containment at the site of acute infection.
Collapse
|
29
|
Gugliesi F, Dell'Oste V, De Andrea M, Baggetta R, Mondini M, Zannetti C, Bussolati B, Camussi G, Gariglio M, Landolfo S. Tumor-Derived Endothelial Cells Evade Apoptotic Activity of the Interferon-Inducible IFI16 Gene. J Interferon Cytokine Res 2011; 31:609-18. [DOI: 10.1089/jir.2011.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Marco De Andrea
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Rossella Baggetta
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| | - Michele Mondini
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Claudia Zannetti
- Infection and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Benedetta Bussolati
- Department of Internal Medicine, Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Turin, Italy
| | - Gianni Camussi
- Department of Internal Medicine, Center for Experimental Research and Medical Studies, San Giovanni Battista Hospital, Turin, Italy
| | - Marisa Gariglio
- Department of Clinical and Experimental Medicine, Medical School, University of Eastern Piedmont “A. Avogadro,” Novara, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, Medical School, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Liao JC, Lam R, Brazda V, Duan S, Ravichandran M, Ma J, Xiao T, Tempel W, Zuo X, Wang YX, Chirgadze NY, Arrowsmith CH. Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure 2011; 19:418-29. [PMID: 21397192 PMCID: PMC3760383 DOI: 10.1016/j.str.2010.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 02/09/2023]
Abstract
IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 Å resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.
Collapse
Affiliation(s)
- Jack C.C. Liao
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Robert Lam
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Vaclav Brazda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Shili Duan
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mani Ravichandran
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Justin Ma
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ting Xiao
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Xiaobing Zuo
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein–Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Nickolay Y. Chirgadze
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L5, Canada
| |
Collapse
|
31
|
Frawley R, White K, Brown R, Musgrove D, Walker N, Germolec D. Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:371-6. [PMID: 21041162 PMCID: PMC3060001 DOI: 10.1289/ehp.1002358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Dysregulation of positive and negative selection, antigen presentation, or apoptosis in the thymus can lead to immunosuppression or autoimmunity. Diethylstilbestrol (DES), dexamethasone (DEX), cyclophosphamide (CPS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are immunosuppressive chemicals that induce similar immunotoxic effects in the thymus, however, the mechanism of toxicity is purported to be different for each compound. OBJECTIVES We hypothesized that genomic analysis of thymus after chemical-induced atrophy would yield transcriptional profiles that suggest pathways of toxicity associated with reduced function. METHODS Female B6C3F1 mice were exposed to these immunosuppressive agents and changes in gene expression and immune cell subpopulations were evaluated. RESULTS All four chemicals induced thymic atrophy and changes in both the relative proportion and absolute number of CD3(+), CD4(+)/CD8(-), CD4(-)/CD8(+), and CD4(+)/CD8(+) thymocytes. The most significant impact of exposure to DEX, DES, and CPS was modulation of gene expression in the T-cell receptor (TCR) complex and TCR and CD28 signaling pathways; this could represent a common mechanism of action and play a pivotal role in lineage commitment and development of T cells. Up-regulation of genes associated with the antigen presentation and dendritic cell maturation pathways was the most distinctive effect of TCDD exposure. These elements, which were also up-regulated by DEX and DES, contribute to positive and negative selection. CONCLUSIONS Genomic analysis revealed gene expression changes in several pathways that are commonly associated with xenobiotic-induced immune system perturbations, particularly those that contribute to the development and maturation of thymic T cells.
Collapse
Affiliation(s)
- Rachel Frawley
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Gariglio M, Mondini M, De Andrea M, Landolfo S. The multifaceted interferon-inducible p200 family proteins: from cell biology to human pathology. J Interferon Cytokine Res 2011; 31:159-72. [PMID: 21198352 DOI: 10.1089/jir.2010.0106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interferon-inducible p200 family proteins consist of a group of homologous human and mouse proteins that have an N-terminal Pyrin domain and 1 or 2 partially conserved 200 amino acid long C-terminal domains (designated the HIN domain or p200 X domain). These proteins display multifaceted activity due to their ability to bind to various target proteins (eg, transcription factors, signaling proteins, and tumor suppressor proteins) and modulate different cell functions. In addition to a role in interferon biology, increasing evidence supports a role for these proteins as regulators of various cell functions, including proliferation, differentiation, apoptosis, senescence, inflammasome assembly, and control of organ transplants. As a consequence, alterations in their expression and function may be of relevance in the pathogenesis of human diseases, such as systemic autoimmune syndromes, tumors, and degenerative diseases. This review summarizes the literature describing these data, highlights some of the important findings derived from recent studies, and speculates about future perspectives.
Collapse
Affiliation(s)
- Marisa Gariglio
- Department of Clinical and Experimental Medicine, Medical School of Novara, Novara, Italy
| | | | | | | |
Collapse
|
33
|
Costa S, Mondini M, Caneparo V, Afeltra A, Airo P, Bellisai F, Faggioli P, Gerli R, Lotzniker M, Meroni PL, Morozzi G, Radice A, Riccieri V, Scarsi M, Sebastiani GD, Sinico RA, Tincani A, Gariglio M, Landolfo S. Detection of anti-IFI16 antibodies by ELISA: clinical and serological associations in systemic sclerosis. Rheumatology (Oxford) 2010; 50:674-81. [DOI: 10.1093/rheumatology/keq372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Gugliesi F, De Andrea M, Mondini M, Cappello P, Giovarelli M, Shoenfeld Y, Meroni P, Gariglio M, Landolfo S. The proapoptotic activity of the Interferon-inducible gene IFI16 provides new insights into its etiopathogenetic role in autoimmunity. J Autoimmun 2010; 35:114-23. [DOI: 10.1016/j.jaut.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 12/22/2022]
|
35
|
Mondini M, Costa S, Sponza S, Gugliesi F, Gariglio M, Landolfo S. The interferon-inducible HIN-200 gene family in apoptosis and inflammation: implication for autoimmunity. Autoimmunity 2010; 43:226-31. [PMID: 20187706 DOI: 10.3109/08916930903510922] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Ifi-200/HIN-200 gene family encodes highly homologous human (IFI16, myeloid cell nuclear differentiation antigen, absent in melanoma 2, and IFIX) and murine proteins (Ifi202a, Ifi202b, Ifi203, Ifi204, Ifi205, and Ifi206), which are induced by type I and II interferons (IFN). These proteins have been described as regulators of cell proliferation and differentiation and, more recently, several reports have suggested their involvement in both apoptotic and inflammatory processes. The relevance of HIN-200 proteins in human disease is beginning to be clarified, and emerging experimental data indicate their role in autoimmunity. Autoimmune disorders are sustained by perpetual activation of inflammatory process and a link between autoimmunity and apoptosis has been clearly established. Moreover, the interferon system is now considered as a key player in autoimmune disorders such as systemic lupus erythemathosus, systemic sclerosis, and Sjögren's syndrome, and it is therefore conceivable to hypothesize that HIN-200 may be among the pivotal mediators of IFN activity in autoimmune disease. In particular, the participation of HIN-200 proteins in apoptosis and inflammation could support their potential role in autoimmunity.
Collapse
|
36
|
The interferon-inducible gene IFI16 secretome of endothelial cells drives the early steps of the inflammatory response. Eur J Immunol 2010; 40:2182-9. [DOI: 10.1002/eji.200939995] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Yu F, Hao X, Zhao H, Ge C, Yao M, Yang S, Li J. Delta-like 1 contributes to cell growth by increasing the interferon-inducible protein 16 expression in hepatocellular carcinoma. Liver Int 2010; 30:703-14. [PMID: 20214740 DOI: 10.1111/j.1478-3231.2010.02214.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Delta-like 1 (DLK1), a fetal liver stem cell marker, is strongly expressed in human and rodent fetal liver, but not in adult liver. Notably, dysregulation of DLK1 was found in some human hepatocellular carcinomas (HCC). However, the effect of DLK1 on HCC cell growth and its underlying mechanism are still largely unknown. AIMS To (i) assess the expression of DLK1 in human HCC and adjacent liver tissues and human HCC cell lines; (ii) evaluate the effect of DLK1 on SMMC-7721, Huh7 HCC cell growth in vitro and in vivo; and (iii) explore the potential mechanism of DLK1 that regulates HCC cell growth. METHODS The expression of DLK1 mRNA and protein were detected using reverse transcriptase-polymerase chain reaction and immunohistochemistry respectively. The effect of DLK1 on the proliferation of SMMC-7721 and Huh7 cells was evaluated by colony formation and tumour xenograft assay. The differential expression profiles of DLK1-overexpressing SMMC-7721 cells and control cells were compared using HG-U133 Plus 2 Genechip. The cell cycle distribution of DLK1 forced expressing cells was comparatively analysed. RESULTS Upregulation of DLK1 was observed in 41 of 57 (71.9%) human HCC samples. Ectopic expression of DLK1 promoted cell proliferation, colony formation and tumorigenicity in SMMC-7721 and Huh7 cells. DLK1 upregulated the expression of interferon-inducible protein 16 (IFI16) and its promoter transcriptional activity, decreased p21waf1/cip1 and induced cell cycle acceleration. However, silencing of IFI16 using small interfering RNA abrogated DLK1-induced proliferation in these cells. CONCLUSIONS IFI16 may be an essential downstream target of DLK1 in HCC cells and required for DLK1-induced cell proliferation.
Collapse
Affiliation(s)
- Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Clarke CJP, Hii LL, Bolden JE, Johnstone RW. Inducible activation of IFI 16 results in suppression of telomerase activity, growth suppression and induction of cellular senescence. J Cell Biochem 2010; 109:103-12. [PMID: 19885868 DOI: 10.1002/jcb.22386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of the human HIN-200 family member IFI 16 has been reported to suppress cell growth and contribute to the onset of cellular senescence. However the molecular events involved in this process have not been fully characterised. We fused IFI 16 to the estrogen receptor ligand-binding domain to establish an inducible model for studying the molecular events that cause these phenomena. In cells induced to express the ER-IFI 16 within the nucleus there was a decrease in cellular proliferation and concomitant growth arrest in the G1 phase of the cell cycle. Unlike previous reports, this did not appear to involve the p53-p21(WAF1/CIP1)-cdk2-pRb pathway. Following nuclear expression of ER-IFI 16 we noted senescence-like morphological changes and expression of senescence-associated beta-galactosidase in growth arrested cells. Importantly, we also found a marked reduction in telomerase activity in arrested cells compared to controls. Moreover, IFI 16 and hTERT co-localised within the nucleus and these two proteins physically interacted in vivo and in vitro. Together, these data suggest that IFI 16 may act as an endogenous regulator of telomerase activity and, through its interaction with hTERT, contributes to the inhibition of proliferation and induces a senescence-like state.
Collapse
Affiliation(s)
- Christopher J P Clarke
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | | | | |
Collapse
|
39
|
In vivo growth inhibition of head and neck squamous cell carcinoma by the Interferon-inducible gene IFI16. Cancer Lett 2010; 287:33-43. [DOI: 10.1016/j.canlet.2009.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 05/14/2009] [Accepted: 05/29/2009] [Indexed: 12/30/2022]
|
40
|
Borgogna C, Toniutto P, Smirne C, Azzimonti B, Rittà M, Avellini C, Fabris C, Landolfo S, Gariglio M, Pirisi M. Expression of the interferon-inducible proteins MxA and IFI16 in liver allografts. Histopathology 2009; 54:837-46. [PMID: 19635103 DOI: 10.1111/j.1365-2559.2009.03311.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS To test the hypothesis that the activation of the interferon (IFN) system pathways might link hepatitis C virus (HCV) recurrence in the liver allograft with acute cellular rejection. METHODS AND RESULTS In this retrospective study, allograft biopsy specimens from 28 adult patients (14 HCV+ and 14 HCV-) who had undergone their first liver transplantation were analysed. Eleven biopsy specimens showed acute cellular rejection (Banff rejection activity index score > or =3). Specimens were immunostained for two IFN-inducible proteins, MxA and IFI16, and for CD45. The predominant MxA reactivity pattern was hepatocytic, whereas IFI16 was expressed in both the hepatocellular and inflammatory compartments. Moderate to strong MxA expression in hepatocytes was associated positively with rejection score (P < 0.01), donor's age < or =45 years (P < 0.05) and aspartate aminotransferase levels >40 U/l on the day of biopsy (P < 0.05), and inversely with infiltration of portal triads by IFI16+/CD45+ cells (P < 0.005) and time to progression beyond Ishak stage 2 of recurrent hepatitis C (P < 0.01). On multivariate analysis, MxA expression in hepatocytes was independently associated with allograft rejection and donor's age. CONCLUSIONS Acute allograft rejection and recurrence of HCV infection in the liver allograft appear to intersect in the IFN system pathways.
Collapse
Affiliation(s)
- Cinzia Borgogna
- DPMSC, Medical Liver Transplantation Unit, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 2009; 18:1066-72. [DOI: 10.1177/0961203309106699] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HIN200 is a human IFN-inducible gene and homologous to murine IFI202 gene, which was identified as a candidate gene for SLE susceptibility in lupus mouse model. We determined these gene expressions in leukocytes from 20 SLE patients and 10 healthy controls and in renal biopsies from 29 SLE patients and 15 kidney donors using sensitive real-time reverse transcriptase–polymerase chain reaction (RT-PCR). The expressions of MNDA, IFIX, IFI16 and AIM2 genes significantly increased in leukocytes but not in kidney biopsies from SLE patients as compared to the control individuals, with P = 0.0003, P = 0.0056, P = 0.0002 and P < 0.0001, respectively. We also assessed the expression profiles of IFIX and IFI16 isoforms using semi-quantitative RT-PCR. We found up-regulation of B isoform (short product) of IFI16 in SLE patients. In addition, the expression levels were analyzed in correlation with disease activity and clinical characteristics. Interestingly, higher expression of MNDA was observed in patients who were positive for anti-dsDNA antibodies than in patients who were negative ( P = 0.0276). In conclusion, it is suggested that the HIN200 genes have a role in SLE pathogenesis. Our study also observed a possible important role of a specific short isoform of IFI16 as well as a link between MNDA and anti-dsDNA antibody production.
Collapse
|
42
|
Role of the interferon-inducible IFI16 gene in the induction of ICAM-1 by TNF-alpha. Cell Immunol 2009; 257:55-60. [PMID: 19338980 DOI: 10.1016/j.cellimm.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 11/23/2022]
Abstract
The Interferon-inducible gene IFI16, a member of the HIN200 family, is activated by oxidative stress and cell density, in addition to Interferons, and it is implicated in the regulation of endothelial cell proliferation and vessel formation in vitro. We have previously shown that IFI16 is required for proinflammatory gene stimulation by IFN-gamma through the NF-kappaB complex. To examine whether IFI16 induction might be extended to other proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha, we used the strategy of the RNA interference to knock down IFI16 expression, and analyze the capability of TNF-alpha to stimulate intercellular adhesion molecule-1 (ICAM-1 or CD54) expression in the absence of functional IFI16. Our studies demonstrate that IFI16 mediates ICAM-1 stimulation by TNF-alpha through the NF-kappaB pathway, thus reinforcing the role of the IFI16 molecule in the inflammation process.
Collapse
|
43
|
Ludlow LE, Purton LE, Klarmann K, Gough DJ, Hii LL, Trapani JA, Keller JR, Clarke CJ, Johnstone RW. The Role of p202 in Regulating Hematopoietic Cell Proliferation and Differentiation. J Interferon Cytokine Res 2008; 28:5-11. [DOI: 10.1089/jir.2007.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Louise E. Ludlow
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: Department of Medicine and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, and Department of Medicine, Evanston Northwestern Healthcare, Evanston, IL, 60208
| | - Louise E. Purton
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Current address: Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114
| | - Kim Klarmann
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Daniel J. Gough
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: New York University School of Medicine, New York, NY 10016
| | - Linda L. Hii
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Joseph A. Trapani
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Jonathan R. Keller
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Christopher J.P. Clarke
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Ricky W. Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
44
|
Mondini M, Vidali M, Airò P, De Andrea M, Riboldi P, Meroni PL, Gariglio M, Landolfo S. Role of the Interferon-Inducible Gene IFI16 in the Etiopathogenesis of Systemic Autoimmune Disorders. Ann N Y Acad Sci 2007; 1110:47-56. [PMID: 17911419 DOI: 10.1196/annals.1423.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interferons (IFNs) are now known to exert a multitude of immunological functions on both the innate and adaptive immunity. Given their pleiotropic effects on the immune system, it is conceivable that excess type I IFN or aberrant regulation of its signaling could contribute to autoimmunity. Several lines of evidence link IFNs to autoimmune disorders, in particular to systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). Expression of a spectrum of genes that constitutes an "IFN signature" is the most significant observation indicating that IFNs may be dominant among the pathogenic mediators involved in some autoimmune diseases. A family of IFN-inducible genes, designated HIN-200 in the human and IFI-200 in the murine species, encodes evolutionary related human (IFI16, MNDA, AIM2, IFIX) and murine proteins (Ifi202 a, Ifi202b, Ifi203, Ifi204, Ifi205/D3). Physiological IFI16 expression was found in cells of the immune system, in endothelial cells, and in stratified squamous epithelia, such as skin. The presence of anti-IFI16 antibodies was reported in SLE and primary/secondary Sjögren's syndrome. More recently, we reported that anti-IFI16 autoantibodies differentiate limited cutaneous systemic sclerosis (lcSSc) from diffuse systemic sclerosis (dcSSc). Molecular studies performed in primary endothelial cells overexpressing IFI16 demonstrated that it may be involved in the early steps of inflammation by modulating endothelial cell function, such as expression of adhesion molecules and chemokine production, cell growth, and apoptosis. Moreover, here we report that IFI16 expression is induced by proinflammatory cytokines. In this article the role of the IFI16 protein and its corresponding autoantibodies in the etiopathogenesis of systemic autoimmune diseases, in which chronic inflammation is involved, are discussed.
Collapse
Affiliation(s)
- Michele Mondini
- Department of Public Health and Microbiology, Medical School, University of Turin, V. Santena 9, 10126, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Caposio P, Gugliesi F, Zannetti C, Sponza S, Mondini M, Medico E, Hiscott J, Young HA, Gribaudo G, Gariglio M, Landolfo S. A novel role of the interferon-inducible protein IFI16 as inducer of proinflammatory molecules in endothelial cells. J Biol Chem 2007; 282:33515-33529. [PMID: 17699163 DOI: 10.1074/jbc.m701846200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human IFI16 gene is an interferon-inducible gene implicated in the regulation of endothelial cell proliferation and tube morphogenesis. Immunohistochemical analysis has demonstrated that this gene is highly expressed in endothelial cells in addition to hematopoietic tissues. In this study, gene array analysis of human umbilical vein endothelial cells overexpressing IFI16 revealed an increased expression of genes involved in immunomodulation, cell growth, and apoptosis. Consistent with these observations, IFI16 triggered expression of adhesion molecules such as ICAM-1 and E-selectin or chemokines such as interleukin-8 or MCP-1. Treatment of cells with short hairpin RNA targeting IFI16 significantly inhibited ICAM-1 induction by interferon (IFN)-gamma demonstrating that IFI16 is required for proinflammatory gene stimulation. Moreover, functional analysis of the ICAM-1 promoter by deletion- or site-specific mutation demonstrated that NF-kappaB is the main mediator of IFI16-driven gene induction. NF-kappaB activation appears to be triggered by IFI16 through a novel mechanism involving suppression of IkappaBalpha mRNA and protein expression. Support for this finding comes from the observation that IFI16 targeting with specific short hairpin RNA down-regulates NF-kappaB binding activity to its cognate DNA and inhibits ICAM-1 expression induced by IFN-gamma. Using transient transfection and luciferase assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrate indeed that activation of the NF-kappaB response is mediated by IFI16-induced block of Sp1-like factor recruitment to the promoter of the IkappaBalpha gene, encoding the main NF-kappaB inhibitor. Activation of NF-kappaB accompanied by induction of proinflammatory molecules was also observed when IkappaBalpha expression was down-regulated by specific small interfering RNA, resulting in an outcome similar to that observed with IFI16 overexpression. Taken together, these data implicate IFI16 as a novel regulator of endothelial proinflammatory activity and provide new insights into the physiological functions of the IFN-inducible gene IFI16.
Collapse
Affiliation(s)
- Patrizia Caposio
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy
| | - Francesca Gugliesi
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy
| | - Claudia Zannetti
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy
| | - Simone Sponza
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy
| | - Michele Mondini
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy; Department of Clinical and Experimental Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Enzo Medico
- Institute for Cancer Research and Treatment, University of Turin, Turin 10126, Italy
| | - John Hiscott
- Lady Davis Institute, McGill University, Montreal H3T 1E2, Canada
| | - Howard A Young
- Laboratory of Experimental Immunology, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Giorgio Gribaudo
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy
| | - Marisa Gariglio
- Department of Clinical and Experimental Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Turin, 10126, Italy.
| |
Collapse
|
46
|
Ding Y, Lee JF, Lu H, Lee MH, Yan DH. Interferon-inducible protein IFIXalpha1 functions as a negative regulator of HDM2. Mol Cell Biol 2006; 26:1979-96. [PMID: 16479015 PMCID: PMC1430239 DOI: 10.1128/mcb.26.5.1979-1996.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 200-amino-acid repeat (HIN-200) gene family with the hematopoietic interferon (IFN)-inducible nuclear protein encodes highly homologous proteins involved in cell growth, differentiation, autoimmunity, and tumor suppression. IFIX is the newest member of the human HIN-200 family and is often downregulated in breast tumors and breast cancer cell lines. The expression of the longest isoform of IFIX gene products, IFIXalpha1, is associated with growth inhibition, suppression of transformation, and tumorigenesis. However, the mechanism underlying the tumor suppression activity of IFIXalpha1 is not well understood. Here, we show that IFIXalpha1 downregulates HDM2, a principal negative regulator of p53, at the posttranslational level. IFIXalpha1 destabilizes HDM2 protein and promotes its ubiquitination. The E3 ligase activity of HDM2 appears to be required for this IFIXalpha1 effect. Importantly, HDM2 downregulation is required for the IFIXalpha1-mediated increase of p53 protein levels, transcriptional activity, and nuclear localization, suggesting that IFIXalpha1 positively regulates p53 by acting as a negative regulator of HDM2. We found that IFIXalpha1 interacts with HDM2. Interestingly, the signature motif of the HIN-200 gene family, i.e., the 200-amino-acid HIN domain of IFIXalpha1, is sufficient not only for binding HDM2 but also for downregulating it, leading to p53 activation. Finally, we show that IFIX mediates HDM2 downregulation in an IFN-inducible system. Together, these results suggest that IFIXalpha1 functions as a tumor suppressor by repressing HDM2 function.
Collapse
Affiliation(s)
- Yi Ding
- Department of Molecular and Cellular Oncology, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Azzimonti B, Pagano M, Mondini M, De Andrea M, Valente G, Monga G, Tommasino M, Aluffi P, Landolfo S, Gariglio M. Altered patterns of the interferon-inducible gene IFI16 expression in head and neck squamous cell carcinoma: immunohistochemical study including correlation with retinoblastoma protein, human papillomavirus infection and proliferation index. Histopathology 2005; 45:560-72. [PMID: 15569046 DOI: 10.1111/j.1365-2559.2004.02000.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate whether the expression of interferon (IFN)-inducible gene IFI16 is inversely related to proliferative activity in vivo, we compared immunohistochemical reactivity of IFI16 in a series of head and neck squamous cell carcinomas (HNSCCs) with their proliferation index and the cell cycle regulator pRb. As human papillomavirus (HPV) infection is manifested by changes in the function or expression level of host genes such as IFN-inducible genes, we also investigated the presence of HPV DNA to determine whether head and neck cancers associated with HPV DNA can be distinguished from tumours that are presumably transformed by other mechanisms. METHODS Thirty-six HNSCCs were evaluated for IFI16, pRb and Ki67 expression by immunohistochemistry. The presence of HPV was also detected by polymerase chain reaction. Nine tumours were located in the oropharynx (tonsillar area) and 27 in the larynx. RESULTS HPV DNA was found in 14 of 25 (56%) laryngeal SCCs and in five of nine (56%) tonsillar SCC specimens examined; 17 out of the 19 HPV-DNA-positive cases showed high-grade IFI16 expression. Overall, proliferative activity was significantly related to tumour differentiation and histological grading. IFI16 protein expression was significantly inversely correlated with Ki67 (P = 0.039). Low-proliferating tumours positive for IFI16 staining showed a marked expression of pRb and a better prognosis than those whose tumours had low IFI16, pRb levels and a high proliferation index. CONCLUSIONS To our knowledge, this is the first expression analysis of the IFN-inducible IFI16 gene in HNSCC. Low-proliferating tumours positive for IFI16 staining showed a marked expression of pRb and a better prognosis than those whose tumours had low IFI16, pRb levels and a high proliferation index.
Collapse
Affiliation(s)
- B Azzimonti
- Department of Medical Sciences, Medical School, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gugliesi F, Mondini M, Ravera R, Robotti A, de Andrea M, Gribaudo G, Gariglio M, Landolfo S. Up-regulation of the interferon-inducible IFI16 gene by oxidative stress triggers p53 transcriptional activity in endothelial cells. J Leukoc Biol 2005; 77:820-9. [PMID: 15728246 DOI: 10.1189/jlb.0904507] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), induces injury of endothelium in a variety of pathophysiological conditions, such as inflammation, aging, and cancer. In our study, we characterized the signaling pathway linking oxidative stress induced by sublethal concentrations of H2O2 to p53 in primary human endothelial cells through the interferon (IFN)-inducible gene IFI16. Induction of IFI16 by H2O2 was concentration- and time-dependent (maximum at 50 microM, 6 h after treatment) and down-regulated by pretreatment with N-acetyl-L-cysteine, which acts as an antioxidant. This pathway is a general response to ROS and not specific to H2O2 treatment, as two other ROS-generating compounds, i.e., S-nitroso-N-acetylpenicillamine and tert-butyl hydroperoxide, were equally capable to induce IFI16. Moreover, IFI16 up-regulation is a result of protein accumulation, as expression of corresponding mRNA, assessed by real-time polymerase chain reaction, was not affected. To investigate the mechanism of IFI16 accumulation, cells were incubated for 6 h in the presence of H2O2 or IFN-beta, and then cycloheximide was added to inhibit further protein synthesis. The half-life of IFI16 protein was found to be significantly increased in H2O2-treated cells compared with IFN-beta-treated cells (t1/2 = 120 min vs. > 30 min in H2O2- vs. IFN-beta-treated cells, respectively). An increase of IFI16 was accompanied by interaction with p53 phosphorylated at its N terminus, as shown by immunoprecipitation experiments. Moreover, binding to IFI16 resulted in its transcriptional activation as shown by an increase in the activity of a reporter gene driven by p53-responsive sequences derived from the p21(WAF1) promoter, along with an increase in the p21 mRNA and protein levels. Altogether, these results demonstrate a novel role of IFI16 in the signal transduction pathway that leads to p53 activation by oxidative stress in endothelial cells.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Microbiology, University of Turin, Via Santena 9, 10126-Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ding Y, Wang L, Su LK, Frey JA, Shao R, Hunt KK, Yan DH. Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer. Oncogene 2004; 23:4556-66. [PMID: 15122330 DOI: 10.1038/sj.onc.1207592] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We identified IFIX as a new member of the hematopoietic interferon (IFN)-inducible nuclear protein with the 200-amino-acid repeat (HIN-200) family. Six different alternatively spliced forms of mRNA are transcribed from the IFIX gene, which are predicted to encode six different isoforms of IFIX proteins (IFIXalpha1, alpha2, beta1, beta2, gamma1, and gamma2). The IFIX proteins are primarily localized in the nucleus. They share a common N-terminal region that contains a predicted pyrin domain and a putative nuclear localization signal. Unlike IFIXalpha and IFIXbeta, IFIXgamma isoforms do not have the 200-amino-acid signature motif. Interestingly, the expression of IFIX was reduced in most human breast tumors and breast cancer cell lines. Expression of IFIXalpha1, the longest isoform of IFIX, in human breast cancer cell lines reduced their anchorage-dependent and -independent growth in vitro and tumorigenicity in nude mice. Moreover, a liposome-mediated IFIXalpha1 gene transfer suppressed the growth of already-formed tumors in a breast cancer xenograft model. IFIXalpha1 appears to suppress the growth of breast cancer cells in a pRB- and p53-independent manner by increasing the expression of the cyclin-dependent kinase inhibitor p21(CIP1), which leads to the reduction of the kinase activity of both Cdk2 and p34(Cdc2). Together, our results show that IFIXalpha1 possesses a tumor-suppressor activity and suggest IFIXalpha1 may be used as a therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Yi Ding
- 1Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Fujiuchi N, Aglipay JA, Ohtsuka T, Maehara N, Sahin F, Su GH, Lee SW, Ouchi T. Requirement of IFI16 for the Maximal Activation of p53 Induced by Ionizing Radiation. J Biol Chem 2004; 279:20339-44. [PMID: 14990579 DOI: 10.1074/jbc.m400344200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IFI16 is a member of the PYRIN superfamily that has been implicated in BRCA1-mediated apoptosis and inflammation signaling pathways. Here we report that most breast cancer cell lines examined expressed decreased mRNA and protein levels of IFI16, although IFI16 is expressed in human primary normal mammary epithelial cells. Significantly, immunohistochemical analysis of tissues from 25 breast cancer patients demonstrated that carcinoma cells showed negative or weaker staining of IFI16 compared with positive nuclear staining in normal mammary duct epithelium. si-RNA-mediated reduction of IFI16 resulted in perturbation of p53 activation when treated with ionizing radiation (IR). Expression of IFI16 enhanced p53 transcriptional activity in cells exposed to IR. Adenovirus expression of IFI16 in IFI16-deficient MCF7 induced apoptosis, which was enhanced by radiomimetic neocarcinostatin treatment. Tetracycline-regulated IFI16 also induced apoptosis when coexpressed with p53 in p53-deficient EJ cells subjected to IR, suggesting that IFI16 is involved in p53-mediated transmission of apoptosis signaling. Consistent with these results, expression of IFI16 enhanced activation of the known p53 target genes, including p21, Hdm2, and bax in MCF7 cells. These results suggest that loss of IFI16 results in deregulation of p53-mediated apoptosis, leading to cancer development.
Collapse
Affiliation(s)
- Nobuko Fujiuchi
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|