1
|
Apaydin Yildirim B, Dogan T, Aktas Senocak E, Yildirim S, Kordali S, Yildirim F. Punica granatum L. peel extract protects diabetic nephropathy by activating the Nrf-2/HO-1 pathway. Acta Diabetol 2025; 62:469-480. [PMID: 39259236 DOI: 10.1007/s00592-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Diabetes raises cardiovascular morbidity and mortality worldwide and causes retinopathy, neuropathy, and nephropathy. Punica granatum L. (Pomegranate) is a fruit that has been used for its medicinal properties in various cultures. This article aims to investigate the antioxidant, anti-inflammatory, anti-apoptotic activity of Punica granatum L. peel ethanol extract (PGE) and its efficacy on NF-κB and Nrf-2/HO-1 signaling pathways in kidney tissue of rats with streptozotocin-induced diabetes. Single dose STZ 60 mg/kg/i.p. rats were given to induce diabetes and blood glucose measurements were taken 7 days later. PGE 10 mg/kg/p.o. administered to the treatment groups for 20 days. Blood, kidney, and pancreas samples taken from anesthetized rats were analyzed biochemically and histopathologically. It was observed that STZ increased the levels of urea, uric acid and creatine in the blood, while PGE significantly decreased these parameters. The diabetic group had higher MDA and lower renal tissue GSH level, CAT, GPx, and SOD activity than the control group. STZ also enhanced inflammation, apoptosis, Bax, Caspase-3, and NF-κB expression, and decreased Bcl-2, HO-1, and Nrf-2 expression. Experimental results showed that PGE has the potential to alleviate the harmful effects on the kidney and pancreas by altering the mentioned parameters in diabetic rats.
Collapse
Affiliation(s)
- Betul Apaydin Yildirim
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Esra Aktas Senocak
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Türkiye.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Saban Kordali
- Department of Plant Protection, Faculty of Agriculture, Mugla Sitki Kocaman University, Fethiye, Mugla, Türkiye
| | - Fatih Yildirim
- Department of Animal Science, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Poursamimi J. A Review of the Prospective Effects of Methadone on Peripheral Neuropathic Pain in Diabetic Patients. ScientificWorldJournal 2025; 2025:8483881. [PMID: 40225355 PMCID: PMC11986196 DOI: 10.1155/tswj/8483881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 04/15/2025] Open
Abstract
Peripheral neuropathic pain (PNP) is a significant complication for diabetic patients, often linked to poor glycemic control and elevated levels of glycosylated hemoglobin (HbA1c). High serum levels of cytokines, such as interleukin (IL)-6, and an increase in T-lymphocytes are crucial factors in developing neuropathic complications. Research suggests that substances like opiates and methadone can provide pain relief for these patients. This literature review is aimed at exploring the advantages and disadvantages of prescribing methadone to individuals with diabetes. We conducted a search of several databases, including PubMed, Google Scholar, Medline, Embase, Web of Science, and Scopus. We used keywords such as "diabetes," "neuropathic pain," "methadone," "opioids," "inflammation," and "neuroimmunomodulation." Ultimately, we identified 19 articles suitable for a more detailed examination. Studies have revealed that the visual analog scale (VAS) index and serum glucose levels decreased in patients who had taken low-dose methadone. Additionally, the production of N-chlorotaurine, a crucial component for innate immunity, was increased in these individuals. Methadone, in a dose-dependent manner, is accountable for increasing serum levels of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-2 (IL-2) and a high number of monocyte CD14+. In conclusion, there were several advantages to taking methadone in a dose-dependent manner, compared to opioids.
Collapse
Affiliation(s)
- Javad Poursamimi
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
3
|
Lee HL, Kim JM, Go MJ, Lee HS, Kim JH, Kim IY, Seong GS, Heo HJ. Fermented Protaetia brevitarsis Larvae Alleviates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in C57BL/6 Mice via Regulation of Lipid Accumulation and Inflammation. J Microbiol Biotechnol 2025; 35:e2409025. [PMID: 39947694 PMCID: PMC11876019 DOI: 10.4014/jmb.2409.09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/06/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatitis, is the most frequently encountered complication of type 2 diabetes mellitus (T2DM). Due to its hepatoprotective, anti-obesity, antioxidant, and anti-inflammatory effects, Protaetia brevitarsis (P. brevitarsis) larvae have been used as traditional medicine to treat liver diseases since ancient times. Therefore, this study was conducted to confirm the positive effect of fermented P. brevitarsis larvae (FPB) on NAFLD. The results showed that high-fat diet (HFD)-induced dysglycemia was improved by treatment with FPB as determined by testing for fasting blood glucose and oral glucose tolerance. The weight of liver and white adipose tissue and the levels of serum lipid, hepatotoxicity, and nephrotoxicity indicators were reduced by FPB. In addition, oxidative stress and mitochondrial dysfunction caused by HFD were improved by FPB. In a similar manner, HFD-induced hepatic steatosis was prevented by FPB through regulation of the AMP-activated protein kinase pathway and serum lipid profile. HFD-induced hepatitis and apoptosis were ameliorated by FPB via the nuclear factor-kappa B pathway and the B-cell lymphoma 2 protein family. In conclusion, this study suggests the potential for application of FPB as a prophylactic agent for treatment of NAFLD through suppression of lipid accumulation and inflammation in the liver.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - In Young Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Geum-Su Seong
- Korea Food Research Institute (KFRI), Wanju Zipcode, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Khan M, Khan S, Ahmad S, Alshammary FL, Mahmood T, Khan MS, Rahim M. Designed and synthesized novel tripeptides targeting diabetes and its related pathologies. Eur J Med Chem 2025; 283:117134. [PMID: 39642692 DOI: 10.1016/j.ejmech.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
In diabetes and its associated pathologies, glycation, α-amylase, and α-glucosidase play crucial roles. This study introduces a novel tripeptide, RWW, designed to target glycation and key enzymes in diabetes management. Using in silico methods, RWW was optimized to interact with the glycation-prone Human serum albumin (HSA) sites, as well as inhibit α-amylase and α-glucosidase. Molecular docking and dynamics confirmed its stability. In-vitro assays confirmed RWW's potent inhibition of glycation (84.00 %) and enzyme activities, while in-vivo experiments demonstrated its hypoglycemic and lipid-lowering effects in diabetic mice. Histopathological analysis of kidney tissues further highlighted its protective impact. RWW represents a promising anti-diabetic candidate with dual therapeutic functions.
Collapse
Affiliation(s)
- Mahvish Khan
- Department of Biology, College of Science, Ha'il University, Ha'il, 2440, Saudi Arabia.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia.
| | - Saheem Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Ha'il, Ha'il, 55473, Saudi Arabia.
| | - Freah L Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, Ha'il, 55473, Saudi Arabia.
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| | - Moniba Rahim
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
5
|
Aghaei M, Bahreiny SS, Zayeri ZD, Davari N, Abolhasani MM, Saki N. Evaluation of Complete Blood Count Parameters in Patients With Diabetes Mellitus: A Systematic Review. Health Sci Rep 2025; 8:e70488. [PMID: 39995796 PMCID: PMC11847716 DOI: 10.1002/hsr2.70488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Background and Aims Several studies were performed to evaluate the relationship between CBC and patients with diabetes mellitus (DM). In this review, we discussed the prognostic value of CBC parameters in DM patients. Methods English literature was searched and retrieved from the Google Scholar search engine and PubMed database (1980-2024). "Diabetes mellitus," "Blood cell count," "Mean platelet volume," "Leukocytes," and "Inflammation" were used as keywords. Results DM increases vascular inflammation and oxidative stress, while vascular inflammation affects erythropoiesis and red blood cell deformation, thus increasing red cell distribution width (RDW). Mean platelet volume (MPV) is another useful prognostic biomarker for DM patients. Additionally, elevated neutrophil-lymphocyte ratio (NLR) levels are associated with poor glycemic control in T2DM patients, so it can be used as a screening tool in diabetic follow-up. Conclusion RDW can be used as a valuable independent biomarker to assess the prognosis of patients with DM. MPV can also be used as a noninvasive, widely available, and low-cost marker as a key factor as well as a Prognostic/diagnostic biomarker that could be used for DM patients. Total white blood cell count, NLR, Mean platelet volume lymphocyte ratio (MPVLR), and monocyte to high-density lipoprotein ratio (MHR) are valuable biomarkers in predicting DM.
Collapse
Affiliation(s)
- Mojtaba Aghaei
- Department of Medical Laboratory Science, School of Allied MedicineAhvaz Jundishapur University of Medical ScienceAhvazIran
- Health Research Institute, Thalassemia & Hemoglobinopathy Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Seyed Sobhan Bahreiny
- Department of Physiology, School of MedicineTehran University of Medical SciencesTehranIran
| | - Zeynab Deris Zayeri
- Golestan Hospital Clinical Research Development UnitAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nader Davari
- Health Research Institute, Thalassemia & Hemoglobinopathy Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | | - Najmaldin Saki
- Department of Medical Laboratory Science, School of Allied MedicineAhvaz Jundishapur University of Medical ScienceAhvazIran
- Health Research Institute, Thalassemia & Hemoglobinopathy Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
6
|
Yao Y, Yang B, Shi J. TiO x(OH) 4-2x Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy. J Am Chem Soc 2025; 147:3885-3895. [PMID: 39813109 DOI: 10.1021/jacs.4c18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment. A two-dimensional TiOx(OH)4-2x nanosheet platform has been constructed with efficient ROS-scavenging activity, which can catalyze antioxidation reaction through redox cycling between TiIV/TiIII accompanied by inner-sphere two-electron transfer. Cellular experiments demonstrate that the TiOx(OH)4-2x nanosheet can not only protect cardiomyocytes from oxidative damage induced by a high glucose environment but also alleviate inflammation to further protect cardiomyocytes from inflammatory injury. The in vivo animal model confirms that the nanosheet alleviates myocardial oxidative injury and recovers cardiac function. Such a nanocatalytic antioxidation strategy is expected to provide a feasible approach for treating DCM and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yufan Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
7
|
Zhou M, He PF, Zhang K, Deng LJ, Wang N, Wang G, Yang GY, Ju S. Association between oxidative balance scores and peripheral artery disease in US adults: a cross-sectional study. Front Nutr 2025; 11:1497784. [PMID: 39897536 PMCID: PMC11782040 DOI: 10.3389/fnut.2024.1497784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Background The Oxidative Balance Score (OBS) quantifies the overall oxidative stress burden, with higher scores indicating greater antioxidant (relative to prooxidant) activity. This study aimed to examine the association between peripheral arterial disease (PAD) and OBS. Methods and materials Data from the National Health and Nutrition Examination Survey (NHANES, 1999-2004) were analyzed for participants with ankle-brachial index (ABI) measurements. The total Oxidative Balance Score (OBS) comprised a lifestyle OBS (four lifestyle categories) and a dietary OBS (16 dietary factors). Logistic regression analyses evaluated associations between PAD and total OBS, lifestyle OBS, and dietary OBS. Restricted cubic spline (RCS) analyses assessed dose-response relationships between ABI, PAD, and OBS. Mediation analyses investigated the roles of glucolipid metabolism and renal function in the OBS-PAD association. Sensitivity and stratification analyses were conducted to ensure robustness. Results This study included 2,437 eligible adult participants. Logistic regression analysis, adjusted for multiple potential confounders, revealed negative associations between lifestyle OBS (OR = 0.88; 95% CI: 0.79, 1.00), total OBS (OR = 0.97; 95% CI: 0.94, 0.99), and the likelihood of PAD (all p < 0.05). Restricted cubic spline (RCS) analysis demonstrated a linear relationship between total OBS and PAD, with the likelihood of PAD decreasing as total OBS increased p for nonlinearity = 0.736. Dietary OBS, lifestyle OBS, and total OBS all showed positive linear correlations with ABI levels (all p < 0.05). Mediation analysis indicated that fasting plasma glucose (FPG) and creatinine (CREA) mediated 5.9 and 0.8% of the association between total OBS and PAD, respectively (all p < 0.05). Sensitivity analyses confirmed the negative association between total OBS and PAD p < 0.05, supporting the stability of the results. Stratified analyses highlighted the significant influence of Age, particularly in the younger population aged 20-44 years, a group warranting greater attention. Conclusion Our study demonstrated that higher total OBS is associated with a lower likelihood of PAD. Adopting an antioxidant-rich diet alongside a healthy lifestyle may help mitigate PAD risk. Additionally, modulating FPG and CREA levels could offer potential value in addressing the link between low OBS and PAD.
Collapse
Affiliation(s)
- Min Zhou
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Fei He
- Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing, China
| | - Keren Zhang
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
| | - Li-Juan Deng
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
| | - Ning Wang
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
| | - Gang Wang
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
| | | | - Shang Ju
- Department of Peripheral Vascular Surgery, Dongzhimen Hospital, Beijing, China
| |
Collapse
|
8
|
Cinakova A, Vavrincova-Yaghi D, Krenek P, Klimas J, Kralova E. Combination of dapagliflozin and pioglitazone lacks superiority against monotherapy in streptozotocin-induced nephropathy. Sci Rep 2025; 15:1464. [PMID: 39789116 PMCID: PMC11718164 DOI: 10.1038/s41598-024-84487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model. Diabetes was induced in Wistar rats using streptozotocin (55 mg/kg, i.p.). The rats received daily chow containing dapagliflozin (10 mg/kg), pioglitazone (12 mg/kg) or their combination. Six weeks after STZ administration, histological and molecular analyses were performed in excised kidneys. STZ-induced DN was demonstrated by the propagation of apoptotic (Bax, p53, Casp3) and oxidative reactions (Gp91phox, MnSOD) and disrupted nitric oxide signalling (eNOS, Hsp90, Cav1). Kidney damage molecule expression (Kim1, Nphs1) revealed a deceleration of kidney damage by pioglitazone and dapagliflozine monotherapies. The monotherapy also reduced apoptosis, oxidative stress, and partially restored NO signalling. The combined therapy ameliorated glomerulosclerosis but in other measured parameters, it reached the effect of the monotherapies except for Hsp90 expression modulation. Both dapagliflozin and pioglitazone exert protective character in kidneys when used in monotherapy. The combined therapy does not exhibit an expected additive effect within modulating oxidative stress, NO signalling or apoptosis.
Collapse
Affiliation(s)
- Aneta Cinakova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Diana Vavrincova-Yaghi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Peter Krenek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Jan Klimas
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Eva Kralova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
| |
Collapse
|
9
|
Di Santo R, Niccolini B, Rizzi A, Bertini L, Marafon DP, Vaccaro M, Cristallo F, Rosa E, Tartaglione L, Leo L, De Spirito M, Ciasca G, Pitocco D. Sensing Biomechanical Alterations in Red Blood Cells of Type 1 Diabetes Patients: Potential Markers for Microvascular Complications. BIOSENSORS 2024; 14:587. [PMID: 39727851 PMCID: PMC11674557 DOI: 10.3390/bios14120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs). We conducted a case-control study involving 38 T1DM subjects recruited from the Diabetes Care Unit at Fondazione Policlinico Gemelli Hospital, comprising 22 without MCs (control group) and 16 with MCs (pathological group). Atomic Force Microscopy was employed to assess RBC biomechanical properties in a liquid environment. We observed significant RBC stiffening in individuals with MCs, particularly during large indentations that mimic microcirculatory deformations. Univariate analysis unveiled significant differences in RBC stiffness (median difference 0.0006 N/m, p = 0.012) and RBC counts (median difference -0.39 × 1012/L, p = 0.009) between the MC and control groups. Bivariate logistic regression further demonstrated that combining these parameters could effectively discriminate between MC and non-MC conditions, achieving an AUC of 0.82 (95% CI: 0.67-0.97). These findings reveal the potential of RBC biomechanical properties as diagnostic and monitoring tools in diabetes research. Exploring RBC mechanical alterations may lead to the development of novel biomarkers, which, in combination with clinical markers, could facilitate the early diagnosis of diabetes-related complications.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Rizzi
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy; (A.R.); (D.P.)
| | - Laura Bertini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Denise Pires Marafon
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Federica Cristallo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy; (A.R.); (D.P.)
| | - Enrico Rosa
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Linda Tartaglione
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy; (A.R.); (D.P.)
| | - Laura Leo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy; (A.R.); (D.P.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Dario Pitocco
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy; (A.R.); (D.P.)
| |
Collapse
|
10
|
Liu L, Zhang F, Jamali M, Guimarães NS, Radkhah N, Jamilian P, Wang Q. The role of vitamin D in diabetic foot ulcer; an umbrella review of meta-analyses. Front Nutr 2024; 11:1454779. [PMID: 39444578 PMCID: PMC11497990 DOI: 10.3389/fnut.2024.1454779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background Complications related to diabetic foot ulcers (DFU) due to diabetes are increasing. One of the factors influencing the management and treatment of complications related to DFU is the vitamin D serum levels of patients. Therefore, we sought to comprehensively review meta-analyses from randomized controlled trials and observational studies examining the link between serum vitamin D levels and DFU outcomes in diabetic patients. Methods We searched PubMed, Scopus, and ISI Web of Science until September 2024 and extracted the required data from related articles according to Inclusion criteria. The certainty of the evidence and the quality of conduct of the published meta-analyses were rated using the ASMTAR 2 tools, respectively. Result A total of 8 meta-analyses studies that met inclusion criteria were included. Based on the obtained results, it has been noted that individuals with DFU exhibit serum vitamin D levels significantly lower, ranging from -7.14 (5.44, 8.83) to -0.93 (95% CI: 0.17, 1.68) ng/ml, compared to those with diabetes but without DFU. Furthermore, individuals exhibiting severe vitamin D deficiency are found to be at least 1.82 times more susceptible to developing DFU. Conversely, administering varying doses of vitamin D supplementation has been shown to positively affect the size and number of ulcers in DFU patients. Conclusion This study suggests a potential link between lower levels of vitamin D in the blood and the risk of DFU, hinting at the benefits of vitamin D supplementation in improving outcomes associated with DFU. However, caution is warranted due to the potential bias present in the included studies.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fan Zhang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mehrdad Jamali
- Student Research Committee, Tabriz University Medical Sciences, Tabriz, Iran
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Radkhah
- Student Research Committee, Tabriz University Medical Sciences, Tabriz, Iran
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parmida Jamilian
- School of Pharmacy and Bioengineering, Keele University, Keele, United Kingdom
| | - Qian Wang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Hu J, Zheng L, Fan X, Lang H, Xie H, Lin N. Ameliorative effects of Penthorum chinense Pursh on insulin resistance and oxidative stress in diabetic obesity db/db mice. PLoS One 2024; 19:e0311502. [PMID: 39374222 PMCID: PMC11458015 DOI: 10.1371/journal.pone.0311502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Penthorum chinense Pursh (PCP), a medicinal and edible plant, has been reported to protect against liver damage by suppressing oxidative stress. Type 2 diabetes mellitus (T2DM) is associated with liver dysfunction and oxidative stress. In the present study, we aim to investigate the hypoglycemic effect of PCP on db/db mice and further explore the underlying mechanisms. METHODS Thirty-two db/db mice were randomized into four groups, including a diabetic model control group (MC) and three diabetic groups treated with low (LPCP, 300 mg/kg/d), medium (MPLP, 600 mg/kg/d), and high doses of PCP (HPCP, 1200 mg/kg/d), and the normal control group (NC) of eight db/m mice were included. Mice in the NC and MC groups received the ultrapure water. After four weeks of intervention, parameters of fasting blood glucose (FBG), insulin resistance (IR), blood lipid levels, hepatic oxidative stress, and enzymes related to hepatic glucose metabolism were compared in the groups. RESULTS PCP administration significantly reduced FBG and IR in diabetic db/db mice, and improved hepatic glucose metabolism by increasing glucose transporter 2 (GLUT2) and glucokinase (GCK) protein expression. Meanwhile, PCP supplementation ameliorated hepatic oxidative stress by decreasing malonaldehyde content and increasing the activities of superoxide dismutase and glutathione peroxidase in db/db mice. Furthermore, PCP treatment reduced obesity and food intake in db/db mice, and improved dyslipidemia demonstrated by increasing high-density lipoprotein cholesterol (HDL-C) while decreasing total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (HDL-C). All doses of PCP treatment decreased the values of LDL-C/HDL-C in a dose-response relationship. CONCLUSION PCP significantly alleviated hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity, inhibited hepatic oxidative stress, and enhanced hepatic glucose transport in T2DM mice. Based on the above findings, the hypoglycemic effect of PCP may be attributed to the activation of the GLUT2/GCK expression in the liver and the reduction of hepatic oxidative stress.
Collapse
Affiliation(s)
- Jilei Hu
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, P. R. China
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Leyu Zheng
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
- Wanzhou District Market Supervision Administration, Chongqing, P. R. China
| | - Xi Fan
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Hongmei Lang
- General Medicine, Chengdu Second People’s Hospital, Chengdu, P. R. China
| | - Huibo Xie
- School of Public Health, Southwest Medical University, Luzhou, P. R. China
| | - Ning Lin
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, P. R. China
| |
Collapse
|
12
|
Oidor-Chan VH, Arellano-Mauricio AB, Del Valle-Mondragón L, Ibarra-Lara L, Ponce-Sánchez C, Rodríguez-Maldonado E, Mendoza-Espinoza JA, Cruz-Sosa F, Guarner-Lans V, Patlán M, Díaz de León-Sánchez F, Castrejón-Téllez V. Chemical analysis of freeze-dried seeds of Stenocereus stellatus (white tunillo) components and evaluation of their effect on prediabetes reversion in an experimental model in female Wistar rats. Food Funct 2024; 15:9235-9253. [PMID: 39162034 DOI: 10.1039/d4fo01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Prediabetes is defined as a state of moderate hyperglycemia. Here, we used freeze-dried seeds of Stenocereus stellatus (white tunillo) as a possible therapeutic strategy for the treatment of prediabetes. In the aqueous extract of freeze-dried seeds of white tunillo, polyphenols were identified using the Folin-Ciocalteu technique, separated by UPLC and analyzed by infrared spectrophotometry. Five well-defined peaks with good resolution were observed in the chromatogram of the aqueous extract obtained by UPLC. Two of these peaks corresponded to polyphenols with similarity to quercetin and rutin. The subchronic oral administration of freeze-dried seeds of white tunillo for 14 days in a prediabetes model in female Wistar rats reversed hyperglycemia and glucose intolerance. Treatment with the freeze-dried seeds reversed the decrease in the hepatic expression of Akt, eNOS, and p-eNOSSer1177 but did not reverse the decrease in MnSOD, catalase, and GPx1. No changes in the expression of GPx4 and p-AktSer473 were observed in the pathological state or with the treatment but there was an increase in the expression and activity of eNOS. The bioactive compounds present in the freeze-dried seeds of Stenocereus stellatus could provide guidelines for studying the mechanisms of action through which they reverse signs of prediabetes.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | | | | | - Luz Ibarra-Lara
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Claudia Ponce-Sánchez
- Experimental Biology Program, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | | | - Francisco Cruz-Sosa
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| | - M Patlán
- Subdirection of Basic and Technological Research, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P. 09310, Ciudad de México, Mexico.
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Wang L, Zheng L, Jiang H, Jiang T. A Nomogram for Predicting Infertility Risk in Patients With Varicocele Using Inflammatory Markers. Am J Mens Health 2024; 18:15579883241284975. [PMID: 39364924 PMCID: PMC11483678 DOI: 10.1177/15579883241284975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
The purpose of this study was to develop a nomogram using hemogram inflammatory markers to predict the risk of infertility in patients with varicocele (VC). Patients with VC from March 2022 to June 2024 were retrospectively investigated. We divided the patients into two groups based on their fertility status. A total of 162 patients were enrolled: 81 in the infertile group and 81 in the fertile group. Statistical differences were observed between the two groups in lymphocyte, monocyte, erythrocyte, red cell distribution width (RDW), mean erythrocyte volume (MCV), mean platelet volume (MPV), platelet distribution width (PDW), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), MPV/platelet ratio (MPVPR), and systemic inflammation response index (SIRI) (p < .05). The 162 patients were divided into a modeling cohort and a validation cohort in a 7:3 ratio. A predictive nomogram was constructed based on independent influencing factors identified through univariate and multivariate logistic regression analyses. Receiver operating characteristic curve analysis, calibration curve, and decision curve analysis were used to assess the model's performance. Multivariate logistic regression analysis indicated that erythrocyte count, PDW, NLR, and SIRI were independent influencing factors. The area under the curve for the nomogram predicting the risk of infertility in patients with VC was 0.869 in the validation cohort. The nomogram demonstrated good predictive performance. In this study, we developed an effective predictive nomogram for assessing the risk of infertility in VC patients using inflammatory markers. However, further external validation is crucial.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
- Institution of Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lei Zheng
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
- Institution of Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hui Jiang
- Peking University First Hospital, Beijing, China
| | - Tao Jiang
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
- Institution of Sexual Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Zhu H, Yu J, Copeland L, Wang S. Simple Method for Preparing Starch Inclusion Complexes with Enhanced Amylolysis Resistance and Antioxidant Properties. Biomacromolecules 2024; 25:5281-5287. [PMID: 38967045 DOI: 10.1021/acs.biomac.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Slow-digesting starch with bioactive functionality has been attracting much interest with the increasing incidence of type-2 diabetes and other diet-related illnesses. The present study demonstrates a simple method for preparing a starch inclusion complex with reduced enzymic digestion and enhanced antioxidant activities using debranched pea starch (PS) and 10-gingerol (10G). Enzymically debranched starch complexed more 10G and formed more structurally ordered starch-10G complexes compared to PS that had not been debranched. Debranching for 6 h resulted in starch with better complexing ability for 10G than starches debranched for longer times. The debranched starch-10G complexes had higher antioxidant activities and a much slower in vitro enzymic digestion profile (rate and hydrolysis extent) than the 10G complex prepared with starch that was not debranched. Our study demonstrates that debranched pea starch-10G complexes with slow-digesting and antioxidant properties are likely to be of interest for developing ingredients for healthier food choices.
Collapse
Affiliation(s)
- Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
15
|
He F, Liu J, Huang Y, Chen L, Rizi EP, Zhang K, Ke L, Loh TP, Niu M, Peng WK. Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus. NPJ Sci Food 2024; 8:41. [PMID: 38937488 PMCID: PMC11211471 DOI: 10.1038/s41538-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.
Collapse
Affiliation(s)
- Fangzhou He
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Junshi Liu
- Dongguan Institute of Technology, Dongguan, China
| | | | - Lan Chen
- BioSyM, SMART Centre, Singapore, Singapore
| | | | - Ke Zhang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Lijing Ke
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Tze Ping Loh
- National University of Health System, Singapore, Singapore
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Dongguan, China.
- BioSyM, SMART Centre, Singapore, Singapore.
| |
Collapse
|
16
|
Beck NS, Seo Y, Park T, Jun SS, Im JI, Hong SY. Oxidative stress in patients with coronavirus disease and end-stage renal disease: a pilot study. BMC Nephrol 2024; 25:155. [PMID: 38702607 PMCID: PMC11069245 DOI: 10.1186/s12882-024-03584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Oxidative stress, an imbalance between reactive oxygen species production and antioxidant capacity, increases in patients with coronavirus disease (COVID-19) or renal impairment. We investigated whether combined COVID-19 and end-stage renal disease (ESRD) would increase oxidative stress levels compared to each disease alone. METHODS Oxidative stress was compared among three groups. Two groups comprised patients with COVID-19 referred to the hospital with or without renal impairment (COVID-ESRD group [n = 18]; COVID group [n = 17]). The third group (ESRD group [n = 18]) comprised patients without COVID-19 on maintenance hemodialysis at a hospital. RESULTS The total oxidative stress in the COVID-ESRD group was lower than in the COVID group (p = 0.047). The total antioxidant status was higher in the COVID-ESRD group than in the ESRD (p < 0.001) and COVID (p < 0.001) groups after controlling for covariates. The oxidative stress index was lower in the COVID-ESRD group than in the ESRD (p = 0.001) and COVID (p < 0.001) groups. However, the three oxidative parameters did not differ significantly between the COVID and COVID-ESRD groups. CONCLUSIONS The role of reactive oxygen species in the pathophysiology of COVID-19 among patients withESRD appears to be non-critical. Therefore, the provision of supplemental antioxidants may not confer a therapeutic advantage, particularly in cases of mild COVID-19 in ESRD patients receiving hemodialysis. Nonetheless, this area merits further research.
Collapse
Affiliation(s)
- Nam-Seon Beck
- Department of Pediatrics, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Yeonju Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Sang-Sin Jun
- Department of Neurology, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Joung-Il Im
- Department of Orthopedic Surgery, Chung-Ang Jeil Hospital, Chungbuk, South Korea
| | - Sae-Yong Hong
- Department of Nephrology, Chung-Ang Jeil Hospital, Chungbuk, South Korea.
| |
Collapse
|
17
|
Yan H, Zhou Q, Wang Y, Tu Y, Zhao Y, Yu J, Chen K, Hu Y, Zhou Q, Zhang W, Zheng C. Associations between cardiometabolic indices and the risk of diabetic kidney disease in patients with type 2 diabetes. Cardiovasc Diabetol 2024; 23:142. [PMID: 38664793 PMCID: PMC11046854 DOI: 10.1186/s12933-024-02228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study was designed to assess the associations between emerging cardiometabolic indices-the atherogenic index of plasma (AIP), the stress hyperglycemia ratio (SHR), the triglyceride-glucose (TyG) index, and the homeostasis model assessment of insulin resistance (HOMA-IR)-and the incidence of diabetic kidney disease (DKD) in type 2 diabetes (T2D) patients. METHODS We consecutively enrolled 4351 T2D patients. The AIP, SHR, TyG index, and HOMA-IR were calculated from baseline parameters. DKD was defined as a urine albumin/creatinine ratio > 30 mg/g or an eGFR < 60 mL/min per 1.73 m. All participants were categorized into tertiles based on the cardiometabolic indices. Multivariate logistic regression models, restricted cubic splines, and receiver operating characteristic (ROC) curves were used for analysis. RESULTS A total of 1371 (31.5%) patients were diagnosed with DKD. A restricted cubic spline showed a J-shaped association of the AIP and TyG index with DKD, a log-shaped association between HOMA-IR and DKD, and a U-shaped association between the SHR and DKD incidence. Multivariate logistic regression revealed that individuals in the highest tertile of the four cardiometabolic indices had a significantly greater risk of DKD than did those in the lowest tertile (AIP: OR = 1.08, 95% CI = 1.02-1.14, P = 0.005; SHR: OR = 1.42, 95% CI = 1.12-1.81, P = 0.004; TyG index: OR = 1.86, 95% CI = 1.42-2.45, P < 0.001; HOMA-IR: OR = 2.24, 95% CI = 1.52-3.30, P < 0.001). The receiver operating characteristic curves showed that the HOMA-IR score was better than other indices at predicting the risk of DKD, with an optimal cutoff of 3.532. CONCLUSIONS Elevated AIP, SHR, TyG index and HOMA-IR are associated with a greater risk of DKD in patients with T2D. Among these indices, the HOMA-IR score demonstrated the strongest association with and predictive value for DKD incidence.
Collapse
Affiliation(s)
- Han Yan
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qing Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yaqiong Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yifan Tu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuxin Zhao
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Yu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Kuangyang Chen
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wen Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
18
|
Lee SH, Kim JR, Shin JK, Lee JS, Kim YM, Kwak JH, Kim HS. Dendropanoxide Attenuates High Glucose-induced Oxidative Damage in NRK-52E Cells via AKT/mTOR Signaling Pathway. PLANTA MEDICA 2024; 90:256-266. [PMID: 38040033 DOI: 10.1055/a-2220-9301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.
Collapse
Affiliation(s)
- Song Hee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Ju Ri Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Kyunggi-Do, Suwon, Republic of Korea
| |
Collapse
|
19
|
Alhomaid AM, Moin Ahmed M. Prevalence of Non-diabetic Hyperglycemia in Young Adults and Its Impact on Periodontal Health. Cureus 2024; 16:e53847. [PMID: 38465110 PMCID: PMC10924652 DOI: 10.7759/cureus.53847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Background Non-diabetic hyperglycemia is a transitional phase of hyperglycemia that poses a hidden risk for the development of diabetes mellitus and related complications, including periodontal destruction. The current study sought to determine the prevalence of non-diabetic hyperglycemia in young adults and any possible links to periodontal health. Methods A total of 400 participants in this cross-sectional study were evaluated for non-diabetic hyperglycemia between the ages of 18 and 35 years. Group I consisted of non-diabetic hyperglycemic participants. Group II comprised an equal number of matched, healthy subjects. The groups' hyperglycemic and clinical periodontal characteristics were contrasted. Using a one-sample t-test and logistic regression analysis, the acquired data were subjected to statistical analysis. Results The prevalence of non-diabetic hyperglycemia was 19%, with men (13%) having a higher prevalence than women (6%). The mean fasting plasma glucose and hemoglobin A1c (HbA1c) levels were 114.47 ± 6.40 mg/dL and 6.10 ± 0.21%, respectively, for group I, and 85.72 ± 7.24 mg/dL and 4.38 ± 0.70% for group II. When compared to healthy controls, all periodontal parameters, including plaque index, gingival index, bleeding on probing, probing depth, and clinical attachment loss, were significantly higher in group I non-diabetic hyperglycemic patients. The regression analysis revealed statistically significant links between hyperglycemic and periodontal parameters. Conclusion The prevalence of non-diabetic hyperglycemia among young adults is a serious concern similar to that of older adults with the risk for periodontal diseases. Non-diabetic hyperglycemic considerations in young adults should be emphasized in dental and medical clinics to reduce the risk of developing diabetes mellitus and to avoid irreversible periodontal tissue damage.
Collapse
Affiliation(s)
| | - Muzammil Moin Ahmed
- Dental and Oral Health, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, SAU
| |
Collapse
|
20
|
Liu X, Zhu Y, Seamans M, Nianogo R, Janzen C, Fei Z, Chen L. Gestational diabetes mellitus and risk of neurodevelopmental disorders in young offspring: does the risk differ by race and ethnicity? Am J Obstet Gynecol MFM 2024; 6:101217. [PMID: 37940104 DOI: 10.1016/j.ajogmf.2023.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Previous studies examined the associations of gestational diabetes mellitus with autism spectrum disorder and attention deficit hyperactivity disorder. However, the associations between gestational diabetes mellitus and other neurodevelopmental disorders, such as the common speech/language disorder and developmental coordination disorder, are rarely studied, and whether the associations vary by race/ethnicity remains unknown. OBJECTIVE This study aimed to examine the associations of gestational diabetes mellitus with individual neurodevelopmental disorders in young offspring, and to investigate whether the associations vary by race/ethnicity. STUDY DESIGN This retrospective cohort study (Glucose in Relation to Women and Babies' Health [GrownB]) included 14,480 mother-offspring pairs in a large medical center in the United States from March 1, 2013 to August 31, 2021. We ascertained gestational diabetes mellitus using the validated ICD (International Classification of Diseases) codes (ICD-9: 648.8x; ICD-10: O24.4x), and identified neurodevelopmental disorders (speech/language disorder, developmental coordination disorder, autism spectrum disorder, and other neurodevelopmental disorders [attention deficit hyperactivity disorder, behavioral disorder, intellectual disability, and learning difficulty]) and their combinations using validated algorithms. We compared the hazard of neurodevelopmental disorders during the entire follow-up period between offspring born to mothers with and without gestational diabetes mellitus using multivariable Cox regression models. RESULTS Among all mothers, 19.9% were Asian, 21.8% were Hispanic, 41.0% were non-Hispanic White, and 17.3% were of other/unknown race/ethnicity. During the median follow-up of 3.5 years (range, 1.0-6.3 years) after birth, 8.7% of offspring developed at least 1 neurodevelopmental disorder. Gestational diabetes mellitus was associated with a higher risk of speech/language disorder (adjusted hazard ratio, 1.59 [95% confidence interval, 1.07-2.35]), developmental coordination disorder (2.36 [1.37-4.04]), autism spectrum disorder (3.16 [1.36-7.37]), other neurodevelopmental disorders (3.12 [1.51-6.47]), any neurodevelopmental disorder (1.86 [1.36-2.53]), the combination of speech/language disorder and autism spectrum disorder (3.79 [1.35-10.61]), and the combination of speech/language disorder and developmental coordination disorder (4.22 [1.69-10.51]) among offspring born to non-Hispanic White mothers. No associations between gestational diabetes mellitus and any neurodevelopmental disorders or their combinations were observed among offspring born to mothers of other racial/ethnic groups. CONCLUSION We observed an elevated risk of neurodevelopmental disorders among young offspring born to non-Hispanic White mothers with gestational diabetes mellitus, but not among other racial/ethnic groups.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA (Drs Liu, Seamans, Nianogo, and Chen)
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA. (Dr Zhu); Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA (Dr Zhu)
| | - Marissa Seamans
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA (Drs Liu, Seamans, Nianogo, and Chen)
| | - Roch Nianogo
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA (Drs Liu, Seamans, Nianogo, and Chen); California Center for Population Research, University of California Los Angeles, Los Angeles, CA (Dr Nianogo)
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA (Dr Janzen)
| | - Zhe Fei
- Department of Statistics, University of California Riverside, Riverside, CA (Dr Fei)
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA (Drs Liu, Seamans, Nianogo, and Chen).
| |
Collapse
|
21
|
Chowdhury B, Sahoo BM, Jena AP, Hiramani K, Behera A, Acharya B. NOX-2 Inhibitors may be Potential Drug Candidates for the Management of COVID-19 Complications. Curr Drug Res Rev 2024; 16:128-133. [PMID: 37415374 DOI: 10.2174/2589977515666230706114812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
COVID-19 is an RNA virus that attacks the targeting organs, which express angiotensin- converting enzyme-2 (ACE-2), such as the lungs, heart, renal system, and gastrointestinal tract. The virus that enters the cell by endocytosis triggers ROS production within the confines of endosomes via a NOX-2 containing NADPH-oxidase. Various isoforms of NADPH oxidase are expressed in airways and alveolar epithelial cells, endothelial and vascular smooth muscle cells, and inflammatory cells, such as alveolar macrophages, monocytes, neutrophils, and Tlymphocytes. The key NOX isoform expressed in macrophages and neutrophils is the NOX-2 oxidase, whereas, in airways and alveolar epithelial cells, it appears to be NOX-1 and NOX-2. The respiratory RNA viruses induce NOX-2-mediated ROS production in the endosomes of alveolar macrophages. The mitochondrial and NADPH oxidase (NOX) generated ROS can enhance TGF-β signaling to promote fibrosis of the lungs. The endothelium-derived ROS and platelet-derived ROS, due to activation of the NADPH-oxidase enzyme, play a crucial role in platelet activation. It has been observed that NOX-2 is generally activated in COVID-19 patients. The post-COVID complications like pulmonary fibrosis and platelet aggregation may be due to the activation of NOX-2. NOX-2 inhibitors may be a useful drug candidate to prevent COVID-19 complications like pulmonary fibrosis and platelet aggregation.
Collapse
Affiliation(s)
- Bimalendu Chowdhury
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Akankshya Priyadarsani Jena
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Korikana Hiramani
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Amulyaratna Behera
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Biswajeet Acharya
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
22
|
Golyako IA, Kuzmin VS, Gorbacheva LR. The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats. BIOMEDITSINSKAIA KHIMIIA 2023; 69:394-402. [PMID: 38153054 DOI: 10.18097/pbmc20236906394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Hyperglycemia is one of the main damaging factors of diabetes mellitus (DM). The severity of this disease is most clearly manifested under conditions of the inflammatory process. In this work, we have studied the activation features of rat peritoneal macrophages (MPs) under conditions of high glucose concentration in vitro. Comparison of the independent and combined effects of streptozotocin-induced DM and hyperglycemia on proliferation and accumulation of nitrites in the MPs culture medium revealed similarity of their effects. Elevated glucose levels and, to a lesser extent, DM decreased basal proliferation and NO production by MPs in vitro. The use of the protein kinase C (PKC) activator, phorbol ester (PMA), abolished the proinflammatory effect of thrombin on PMs. This suggests the involvement of PKC in the effects of the protease. At the same time, the effect of thrombin on the level of nitrites in the culture medium demonstrates a pronounced dose-dependence, which was not recognized during evaluation of proliferation. Proinflammatory activation of MPs is potentiated by hyperglycemia, one of the main pathological factors of diabetes. Despite the fact that high concentrations of glucose have a significant effect on proliferation and NO production, no statistically significant differences were found between the responses of MPs obtained from healthy animals and from animals with streptozotocin-induced DM. This ratio was observed for all parameters studied in the work, during analysis of cell proliferation and measurement of nitrites in the culture medium. Thus, the results obtained indicate the leading role of elevated glucose levels in the regulation of MPs activation, which is comparable to the effect of DM and even "masks" it.
Collapse
Affiliation(s)
| | - V S Kuzmin
- Academician E.I. Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - L R Gorbacheva
- Moscow State University, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
23
|
Vedika R, Sharma P, Reddy A. Signature precursor and mature microRNAs in cervical ripening during gestational diabetes mellitus lead to pre-term labor and other impediments in future. J Diabetes Metab Disord 2023; 22:945-965. [PMID: 37975145 PMCID: PMC10638342 DOI: 10.1007/s40200-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/29/2023] [Indexed: 11/19/2023]
Abstract
Gestational diabetes mellitus (GDM) is a pathological condition in which the placenta releases a hormone called human placental lactogen that prevents maternal insulin uptake. GDM is characterised by varying degrees of carbohydrate intolerance and is first identified during pregnancy. Around 5-17% of pregnancies are GDM pregnancies. Older or obese women have a higher risk of developing GDM during gestation. Hyperglycemia is a classic manifestation of GDM and leads to alterations in eNOS and iNOS expression and subsequently causes ROS and RNS overproduction. ROS and RNS play an important role in maintaining normal physiology, when present in low concentrations. Increased concentrations of ROS is harmful and can cause cellular and tissue damage. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant molecules that manifests due to hyperglycemia. miRNAs are short, non-coding RNAs that play a critical role in regulating gene expression. Studies have shown that the placenta expresses more than 500 miRNAs, which play a crucial role in trophoblast division, movement, and apoptosis. Latest research has revealed that hyperglycemic conditions and increased oxidative stress, characteristic of GDM, can lead to the dysregulation of miRNAs. The placenta also releases miRNAs into the maternal circulation. The secreted miRNAs are encapsulated in exosomes or vesicles. These exosomes interact with tissues and organs at distant sites, releasing their cargo intracellularly. This crosstalk between hyperglycemia, ROS and miRNA expression in GDM has detrimental effects on both foetal and maternal health. One of the complications of GDM is preterm labour. GDM induced iNOS expression has been implicated in cervical ripening, which in turn causes preterm birth. This article focuses on the speculations of oxidative and nitrative stress markers that lead to detrimental effects in GDM. We have also envisaged the role of non-coding miRNA interactions in regulating gene expression for oxidative damage. Graphical Abstract Holistic view of miRNA in GDM. I)(A) Placenta as a metabolic organ that provides the foetus with nutrients, oxygen and hormones to maintain pregnancy. Human placental lactogen (hPL) is one such hormone that is released into maternal circulation. hPL is known to induce insulin resistance. (B) ß-cell dysfunction leads to reduced glucose sensing and insulin production. Insulin resistance, a characteristic of GDM, exacerbates insulin ß cell dysfunction leading to maternal hyperglycemia. Hyperglycemia leads to increased ROS and RNS production through several mechanisms. Consequently, GDM is characterised by increased oxidative and nitrative stress.II)Exposure to maternal hyperglycemia causes increased ROS and RNS production in trophoblast cells. Oxidative stress caused by hyperglycemia may lead to eNOS uncoupling, causing eNOS to behave as a superoxide producing enzyme. iNOS expression in trophoblast cells leads to increased NO production. iNOS-derived NO reacts with ROS to produce RNS, thereby increasing nitrosative stress. Expression of antioxidant defences are reduced. Hyperglycemia and oxidative stress may alter the expression of some miRNAs. Some miRNAs are upregulated while others are downregulated. Some miRNAs are secreted into maternal circulation in the form of exosomes. Oxidative stress markers, nitrative stress markers and circulating miRNAs are found to be increased in maternal circulation.
Collapse
Affiliation(s)
- R. Vedika
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Priyanshy Sharma
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Amala Reddy
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
- Department of Biotechnology, SRMIST, Kattankulathur, Kancheepuram 603203 India
| |
Collapse
|
24
|
David L, Morosan V, Moldovan B, Filip GA, Baldea I. Goji-Berry-Mediated Green Synthesis of Gold Nanoparticles and Their Promising Effect on Reducing Oxidative Stress and Inflammation in Experimental Hyperglycemia. Antioxidants (Basel) 2023; 12:1489. [PMID: 37627484 PMCID: PMC10451488 DOI: 10.3390/antiox12081489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
The present report focuses on a rapid and convenient method applicable in the green synthesis of gold nanoparticles (AuNPs) using goji berry (Lycium barbarum-LB) extracts rich in antioxidant compounds, as well as on the structural analysis and evaluation of the induced antioxidant protection and anti-inflammatory effects of the synthesized gold nanoparticles upon endothelial cells (HUVECs) exposed to hyperglycemia. The synthesized AuNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM), whereas the presence of bioactive compounds from the L. barbarum fruit extract on the surface of the nanoparticles was confirmed using Fourier transform infrared spectroscopy (FTIR). The antioxidant activity of the biosynthesized gold nanoparticles was evaluated on the HUVEC cell line. The results reveal that AuNPs with a predominantly spherical shape and an average size of 30 nm were obtained. The UV-Vis spectrum showed a characteristic absorption band at λmax = 536 nm of AuNPs. FTIR analysis revealed the presence of phenolic acids, flavonoids and carotenoids acting as capping and stabilizing agents of AuNPs. Both the L. barbarum extract and AuNPs were well tolerated by HUVECs, increased the antioxidant defense and decreased the production of inflammatory cytokines induced via hyperglycemia-mediated oxidative damage.
Collapse
Affiliation(s)
- Luminita David
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Valentina Morosan
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (G.A.F.); (I.B.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (G.A.F.); (I.B.)
| |
Collapse
|
25
|
Shinjo T, Onizuka S, Zaitsu Y, Ishikado A, Park K, Li Q, Yokomizo H, Zeze T, Sato K, St-Louis R, Fu J, I-Hsien W, Mizutani K, Hasturk H, Van Dyke TE, Nishimura F, King GL. Dysregulation of CXCL1 Expression and Neutrophil Recruitment in Insulin Resistance and Diabetes-Related Periodontitis in Male Mice. Diabetes 2023; 72:986-998. [PMID: 37058471 PMCID: PMC10281234 DOI: 10.2337/db22-1014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Insulin resistance and hyperglycemia are risk factors for periodontitis and poor wound healing in diabetes, which have been associated with selective loss of insulin activation of the PI3K/Akt pathway in the gingiva. This study showed that insulin resistance in the mouse gingiva due to selective deletion of smooth muscle and fibroblast insulin receptor (SMIRKO mice) or systemic metabolic changes induced by a high-fat diet (HFD) in HFD-fed mice exacerbated periodontitis-induced alveolar bone loss, preceded by delayed neutrophil and monocyte recruitment and impaired bacterial clearance compared with their respective controls. The immunocytokines, CXCL1, CXCL2, MCP-1, TNFα, IL-1β, and IL-17A, exhibited delayed maximal expression in the gingiva of male SMIRKO and HFD-fed mice compared with controls. Targeted overexpression of CXCL1 in the gingiva by adenovirus normalized neutrophil and monocyte recruitment and prevented bone loss in both mouse models of insulin resistance. Mechanistically, insulin enhanced bacterial lipopolysaccharide-induced CXCL1 production in mouse and human gingival fibroblasts (GFs), via Akt pathway and NF-κB activation, which were reduced in GFs from SMIRKO and HFD-fed mice. These results provided the first report that insulin signaling can enhance endotoxin-induced CXCL1 expression to modulate neutrophil recruitment, suggesting CXCL1 as a new therapeutic direction for periodontitis or wound healing in diabetes. ARTICLE HIGHLIGHTS The mechanism for the increased risks for periodontitis in the gingival tissues due to insulin resistance and diabetes is unclear. We investigated how insulin action in gingival fibroblasts modulates the progression of periodontitis in resistance and diabetes. Insulin upregulated the lipopolysaccharide-induced neutrophil chemoattractant, CXCL1, production in gingival fibroblasts via insulin receptors and Akt activation. Enhancing CXCL1 expression in the gingiva normalized diabetes and insulin resistance-induced delays in neutrophils recruitment and periodontitis. Targeting dysregulation of CXCL1 in fibroblasts is potentially therapeutic for periodontitis and may also improve wound healing in insulin resistance and diabetes.
Collapse
Affiliation(s)
- Takanori Shinjo
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Satoru Onizuka
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yumi Zaitsu
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Atsushi Ishikado
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kyoungmin Park
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Qian Li
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Hisashi Yokomizo
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Tatsuro Zeze
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kohei Sato
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ronald St-Louis
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jialin Fu
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Wu I-Hsien
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hatice Hasturk
- Department of Applied Oral Science, The Forsyth Institute, Cambridge, MA
| | - Thomas E. Van Dyke
- Department of Applied Oral Science, The Forsyth Institute, Cambridge, MA
| | - Fusanori Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Rizwan H, Satapathy SS, Si S, Kumar S, Kumari G, Pal A. Effect of Au@SiO 2 core shell nanoparticles on HG-induced oxidative stress triggered apoptosis in keratinocytes. Life Sci 2023; 328:121893. [PMID: 37392778 DOI: 10.1016/j.lfs.2023.121893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Growing evidences suggest that excess generation of highly reactive free oxygen/nitrogen radicals (ROS/RNS) are largely due to hyperglycemia causes oxidative stress. Further, excess accumulation of ROS/RNS in cellular compartments aggravates the development and progression of diabetes and its associated complications. Impaired wound healing in diabetic condition is a known vital complication all around the world. Thus, an antioxidant agent having the potential for hindering the oxidative/nitrosative stress triggered diabetic skin complication is required. The present investigation was carried out to understand the impact of silica coated gold nanoparticle (Au@SiO2 NPs) on high glucose (HG)-induced keratinocyte complications. We demonstrated that HG environment enhanced the ROS and RNS accumulations and reduced in cellular antioxidant capacities in keratinocte cells, however, Au@SiO2 NPs treatment restored the HG effect. Furthermore, excess production of ROS/RNS was associated with mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential (ΔΨm), and increased in mitochondrial mass, which was restored by Au@SiO2 NPs treatment in keratinocyte cells. In addition, HG-induced excess production of ROS/RNA caused an increased in the biomolecules damage including lipid peroxidation (LPO), and protein carbonylation (PC), 8-oxoguanine DNA glycosylase-1 (OGG1) expression and increased 8-hydroxydeoxyguanosine (8-OHdG) accumulations in DNA, leading to activation of ERK1/2MAPK, AKT and tuberin pathway, inflammatory reaction, and finally apoptotic cell death. In conclusion, our findings showed that Au@SiO2 NPs treatment improved the HG-induced keratinocytes injury by suppressing the oxidative/nitrosative stress, elevating the antioxidant defence system, thereby inhibiting the inflammatory mediators and apoptosis, which may be a therapeutic cure for the diabetic keratinocyte problems.
Collapse
Affiliation(s)
- Huma Rizwan
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Smith Sagar Satapathy
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Satyabrata Si
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Sonu Kumar
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Golden Kumari
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Arttatrana Pal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| |
Collapse
|
27
|
Cho IR, Han KD, Lee SH, Choi YH, Chung KH, Choi JH, Park N, Lee MW, Paik WH, Ryu JK, Kim YT. Association between glycemic status and the risk of acute pancreatitis: a nationwide population-based study. Diabetol Metab Syndr 2023; 15:104. [PMID: 37208706 DOI: 10.1186/s13098-023-01086-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Although diabetes is reportedly associated with the occurrence of acute pancreatitis (AP), the risk of AP according to the duration and severity of diabetes is not yet clear. We aimed to investigate the risk of AP based on glycemic status and the presence of comorbidities using a nationwide population-based study. METHODS We enrolled 3,912,496 adults who underwent health examinations under the National Health Insurance Service in 2009. All participants were categorized by glycemic status as normoglycemic, impaired fasting glucose (IFG), or diabetes. Baseline characteristics and the presence of comorbidities at the time of health check-up were investigated, and the occurrence of AP was followed up until 31 December 2018. We estimated the adjusted hazard ratios (aHRs) for AP occurrence according to the glycemic status, duration of diabetes (new-onset, duration < 5 years, or ≥ 5 years), type and number of anti-diabetic medications, and presence of comorbidities. RESULTS During the observation period of 32,116,716.93 person-years, 8,933 cases of AP occurred. Compared with normoglycemia, the aHRs (95% confidence interval) were 1.153 (1.097-1.212) in IFG, 1.389 (1.260-1.531) in new-onset diabetes, 1.634 (1.496-1.785) in known diabetes < 5 years, and 1.656 (1.513-1.813) in patients with known diabetes aged ≥ 5 years. The presence of comorbidities associated with diabetes severity had a synergistic effect on the relationship between diabetes and AP occurrence. CONCLUSION As glycemic status worsens, the risk of AP increases, and there is a synergistic effect when comorbidities coexist. To reduce the risk of AP, active control of factors that can cause AP should be considered in patients with long-standing diabetes and comorbidities.
Collapse
Affiliation(s)
- In Rae Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kwang Hyun Chung
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jin Ho Choi
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Namyoung Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Min Woo Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Nyakundi BB, Yang J. Uses of Papaya Leaf and Seaweed Supplementations for Controlling Glucose Homeostasis in Diabetes. Int J Mol Sci 2023; 24:ijms24076846. [PMID: 37047820 PMCID: PMC10095424 DOI: 10.3390/ijms24076846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Studies from laboratory animal models and complementary medical practices have implied that nutrients from special plants or herbs contain antidiabetic, antioxidant, anti-obese, anti-hypertensive, and anti-inflammatory properties. Seaweed and tropical papaya, which are widely available in Asian and Pacific countries, have been used as home remedies for centuries. The bioactive extracts from these plants contain vitamins A, C, B and E complexes, as well as polysaccharides, phenolic compounds, essential fatty acids, flavonoids, saponins, fucoidan, and phlorotannin. In this review, the authors examine the pathogenesis of diabetes characterized by hyperglycemia due to the dysregulation of glucose homeostasis, antidiabetic/antihyperglycemic seaweed or/and papaya derived bioactive phytochemicals and their proposed mechanisms of action in the management of Type 2 Diabetes Mellitus (T2DM). The authors also propose combining papaya and seaweed to enhance their antidiabetic effects, leveraging the advantages of herb-to-herb combination. Papaya and seaweed have demonstrated antidiabetic effects through in vitro assays, cellular models, and animal studies despite the limited clinical trials. Nutraceuticals with antidiabetic effects, such as secondary metabolites isolated from seaweed and papaya, could be combined for a synergistic effect on T2DM management. However, the application of these compounds in their purified or mixed forms require further scientific studies to evaluate their efficacy against diabetes-related complications, such as hyperlipidemia, elevated free radicals, pro-inflammatory molecules, insulin insensitivity, and the degeneration of pancreatic beta cells.
Collapse
Affiliation(s)
- Benard B. Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
30
|
Waiz M, Alvi SS, Khan MS. Association of circulatory PCSK-9 with biomarkers of redox imbalance and inflammatory cascades in the prognosis of diabetes and associated complications: a pilot study in the Indian population. Free Radic Res 2023; 57:294-307. [PMID: 37459623 DOI: 10.1080/10715762.2023.2237180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
AbstractsBesides the profound role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in LDL-C regulation, its association with other metabolic complications cannot be disregarded. The co-existence of redox imbalance and inflammatory cascades has greatly reflected the etiology of hyperglycemia. Therefore, we studied the association of PCSK-9 with inflammation and oxidative stress biomarkers to predict its role in the prognosis of diabetes and its associated complications in the Indian population. This pilot study examined a total of n = 187 subjects: healthy controls (HC; n = 50), diabetic without complication (T2DM; n = 49), diabetic nephropathy (T2DM-N; n = 43), and diabetic dyslipidemic (T2DM-DL; n = 45) subjects. The relationship between circulatory PCSK-9 levels and inflammation and redox imbalance biomarkers has been explored. The significant positive association of elevated PCSK-9 level with the inflammatory (i.e. IL-1β, IL-6, TNF-α, and CRP) and oxidative stress marker (i.e. XOD, CD, LOOH, and MDA) was observed in T2DM-N and T2DM-DL subjects. Whereas single regression analysis depicted that PCSK-9 was inversely associated with the FRAP and PON-1 in T2DM-N and T2DM-DL subjects. Furthermore, no significant correlation was detected in both T2DM and HC subjects. We found a significant relationship between these prognostic biomarkers with an elevated level of PCSK-9 in T2DM-N and T2DM-DL subjects. PCSK-9 is a nontraditional biomarker in diabetes that may help identify patients at risk of developing secondary complications of diabetes in the Indian population. However, further large cohort validation studies are needed.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
- Department of Immunology and Microbiology, South TX Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P, India
| |
Collapse
|
31
|
AL-Qabbaa SM, Qaboli SI, Alshammari TK, Alamin MA, Alrajeh HM, Almuthnabi LA, Alotaibi RR, Alonazi AS, Bin Dayel AF, Alrasheed NM, Alrasheed NM. Sitagliptin Mitigates Diabetic Nephropathy in a Rat Model of Streptozotocin-Induced Type 2 Diabetes: Possible Role of PTP1B/JAK-STAT Pathway. Int J Mol Sci 2023; 24:ijms24076532. [PMID: 37047505 PMCID: PMC10095069 DOI: 10.3390/ijms24076532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. This study examined the therapeutic effects of sitagliptin, a dipeptidyl peptidase inhibitor, on DN and explored the underlying mechanism. Male Wistar albino rats (n = 12) were intraperitoneally administered a single dose of streptozotocin (30 mg/kg) to induce diabetes. Streptozotocin-treated and untreated rats (n = 12) were further divided into normal control, normal sitagliptin-treated control, diabetic control, and sitagliptin-treated diabetic groups (n = 6 in each). The normal and diabetic control groups received normal saline, whereas the sitagliptin-treated control and diabetic groups received sitagliptin (100 mg/kg, p.o.). We assessed the serum levels of DN and inflammatory biomarkers. Protein tyrosine phosphatase 1 B (PTP1B), phosphorylated Janus kinase 2 (P-JAK2), and phosphorylated signal transducer activator of transcription (P-STAT3) levels in kidney tissues were assessed using Western blotting, and kidney sections were examined histologically. Sitagliptin reduced DN and inflammatory biomarkers and the expression of PTP1B, p-JAK2, and p-STAT3 (p < 0.001) and improved streptozotocin-induced histological changes in the kidney. These results demonstrate that sitagliptin ameliorates inflammation by inhibiting DPP-4 and consequently modulating the PTP1B-related JAK/STAT axis, leading to the alleviation of DN.
Collapse
|
32
|
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, Sasson S, Maulucci G. Metabolic Imaging and Molecular Biology Reveal the Interplay between Lipid Metabolism and DHA-Induced Modulation of Redox Homeostasis in RPE Cells. Antioxidants (Basel) 2023; 12:339. [PMID: 36829896 PMCID: PMC9952658 DOI: 10.3390/antiox12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and β-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.
Collapse
Affiliation(s)
- Giada Bianchetti
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Maria Elisabetta Clementi
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Beatrice Sampaolese
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Cassandra Serantoni
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessio Abeltino
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Shlomo Sasson
- Faculty of Medicine, Institute for Drug Research, The Hebrew University, Jerusalem 911210, Israel
| | - Giuseppe Maulucci
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
33
|
Wang S, Huo H, Wu H, Ma F, Liao J, Li X, Ding Q, Tang Z, Guo J. Effects of NAC assisted insulin on cholesterol metabolism disorders in canine type 1 diabetes mellitus. Life Sci 2023; 313:121193. [PMID: 36463942 DOI: 10.1016/j.lfs.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disease characterized by insulin deficiency and often accompanied by hypercholesterolemia. NAC is an effective antioxidative drug, but its application in the treatment of diabetes is still rare. A total of forty beagles were randomly divided into five groups: control group, DM group, INS group, INS with NAC group, and NAC group. The experiment lasted for 120 days. Results revealed that biochemical criterion increased in the DM group, while the indicators significantly decreased on the INS combined with NAC treatment group. Moreover, the insulin released test demonstrated that the model of T1DM was successfully constructed. The result of B ultrasound of gallbladder showed remarkable cholestasis in DM group. The cholesterol metabolism-related enzyme activity (HMGCR and SQLE) was evidently increased in DM group, but decreased in INS and NAC group. The content of TG, LDL-c, and HDL-c in liver was detected by the kit, and it was found that the content of TG, LDL-c, and HDL-c in DM group were reduced. Histopathological observation revealed that the cholestasis of liver cells and hepatic cords were disordered in DM group, the symptoms were alleviated under INS and NAC treatment. Additionally, the protein and mRNA expression of HMGCR and LDLR were obviously increased in DM group, but down regulated in INS and NAC treatment group. Overall, the liver function injury and secondary hypercholesterolemia can be found in T1DM canines, and NAC can relieve cholesterol metabolism disorder in the treatment of canine T1DM.
Collapse
Affiliation(s)
- Shuzhou Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Qingyu Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
34
|
Mesquita PG, de Araujo LM, Neves FDAR, Borin MDF. Metabolites of endophytic fungi isolated from leaves of Bauhinia variegata exhibit antioxidant activity and agonist activity on peroxisome proliferator-activated receptors α, β/δ and γ. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1049690. [PMID: 37746194 PMCID: PMC10512301 DOI: 10.3389/ffunb.2022.1049690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from Bauhinia variegata leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.
Collapse
Affiliation(s)
| | | | | | - Maria de Fátima Borin
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Faculty of Sciences Health, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
35
|
Abstract
Post-surgical adhesions are a major complication leading to organ dysfunctions, pain, intestinal obstruction, and infertility. The incidence of post-surgical adhesion is really high. The factors involved in the pathogenesis of post-surgical fibrosis, are largely unknown, for example why two patients with similar abdominal operation have a different risks of adhesion severity? High secretion of pro-inflammatory cytokines and growth factors, includes tumour necrosis factor α (TNF-α), interleukin 6 (IL6), and transforming growth factor β (TGF-β) by persistent recruitment of immune cells and the inappropriate proliferated fibroblast/mesothelial cells can stimulate signalling pathways particularly TGF-β leads to the up-regulation of some pro-fibrotic genes that impair fibrinolytic activity and promote extracellular matrix (ECM) accumulation. In this review, we focus on the role of diabetes and hyperglycaemia on post-surgical fibrosis, including the molecular mechanisms affected by hyperglycaemia that cause inflammation, oxidative stress, and increase the expression of pro-fibrotic molecules.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
36
|
Gál K, Asbóth G, Vass M, Bíró A, Markovich A, Homoki J, Fidler G, Paholcsek M, Cziáky Z, Németh N, Remenyik J, Soltész P. Monitoring and recovery of hyperglycaemia-induced endothelial dysfunction with rheopheresis in diabetic lower extremity ulceration with hyperviscosity. Diab Vasc Dis Res 2022; 19:14791641221131788. [PMID: 36357361 PMCID: PMC9661626 DOI: 10.1177/14791641221131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Rheopheresis is an extracorporeal haematotherapy that improves haemorheological status by filtering proteins that enhance blood viscosity. It also has anti-inflammatory effects by removing inflammatory cytokines. Our study aims to examine the effects of rheopheresis on the endothelial status in diabetic lower extremity ulceration. METHODS In vitro experiments were performed in a HUVEC model to mimic hyperglycaemic stress. We determined the changes in gene expression levels of IL-6, IL-8, TNF-alpha, endothelin convertase enzyme, ET-1, and NO synthase, as well as the ROS and intracellular GSH levels upon hyperglycaemia. In in vivo studies, two rheopheresis procedures were performed on seven patients with diabetic lower extremity ulceration with hyperviscosity, and we measured the changes in plasma concentrations of ET-1, TXB2, SOD enzyme activity, and extracellular components of the glutathione pool depending on treatments. RESULTS Our results showed that hyperglycaemia increases endothelial expression of inflammatory cytokines, ET-1, and endothelin convertase enzyme, while NO synthase was decreased. As a result of rheopheresis, we observed decreased ET-1 and TXB2 concentrations in the plasma and beneficial changes in the parameters of the glutathione pool. CONCLUSION To summarize our results, hyperglycaemia-induced oxidative stress and endothelial inflammation can be moderated by rheopheresis in diabetic lower extremity ulceration with hyperviscosity.
Collapse
Affiliation(s)
- Kristóf Gál
- Division of Angiology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Georgina Asbóth
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Melinda Vass
- Division of Angiology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bíró
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Arnold Markovich
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Judit Homoki
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Gábor Fidler
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Group, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Department of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management University of Debrecen, Debrecen, Hungary
| | - Pál Soltész
- Division of Angiology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Pál Soltész, Division of Angiology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond krt. 22, Debrecen 4032, Hungary.
| |
Collapse
|
37
|
Kundu A, Gali S, Sharma S, Park JH, Kyung SY, Kacew S, Kim IS, Lee KY, Kim HS. Tenovin-1 Ameliorates Renal Fibrosis in High-Fat-Diet-Induced Diabetic Nephropathy via Antioxidant and Anti-Inflammatory Pathways. Antioxidants (Basel) 2022; 11:antiox11091812. [PMID: 36139886 PMCID: PMC9495519 DOI: 10.3390/antiox11091812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diet (HFD)-induced obesity has been involved in the development of diabetic nephropathy (DN). Tenovin-1, a potent selective SIRT1/2 inhibitor, regulates various target proteins. The present study evaluated the protective effect of Tenovin-1 against renal fibrosis in HFD-induced Zucker diabetic fatty (ZDF) rats. Rats were fed a normal chow diet or HFD. Tenovin-1 (45 mg/kg) administered to HFD-fed rats decreased inflammatory cytokine expression in the serum of the rats. The antioxidant status and oxidative damage to lipids or DNA were significantly restored by Tenovin-1. Additionally, Tenovin-1 reduced the levels of blood urea nitrogen (BUN), serum creatinine (sCr), microalbumin, and urinary protein-based biomarkers in the urine of HFD-fed rats. The abnormal architecture of the kidney and pancreas was restored by Tenovin-1 administration. Tenovin-1 also reduced apoptosis in the kidneys of the HFD-fed rats and HG-treated NRK-52E cells. It significantly lowered the levels of ECM proteins in the kidneys of HFD-fed rats and HG-treated NRK-52E cells. Additionally, Tenovin-1 markedly reduced claudin-1, SIRT1, and SIRT2, but increased SIRT3 and SIRT4 in HFD-fed rats and NRK-52E cells treated with HG. Furthermore, Tenovin-1 altered epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor-β (PDGFR-β), and signal transducer and activator of transcription 3 (STAT3) levels in the kidneys of HFD-fed rats. Conclusively, this study shows that Tenovin-1 can be a potential candidate drug for the treatment of HFD-induced renal fibrosis, in vivo and in vitro models.
Collapse
Affiliation(s)
- Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Correspondence: (K.Y.L.); (H.S.K.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Korea
- Correspondence: (K.Y.L.); (H.S.K.)
| |
Collapse
|
38
|
Motto AE, Lawson-Evi P, Eklu-Gadegbeku K. Antidiabetic and antioxidant potential of total extract and supernatant fraction of the roots of Anogeissus leiocarpus in HFD-fed and Streptozocin -induced diabetic rats. Biomed Pharmacother 2022; 154:113578. [PMID: 36027612 DOI: 10.1016/j.biopha.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
Abstract
The aim of this study was to evaluate the antidiabetic properties of hydro alcoholic extract and supernatant fraction of the roots of Anogeissus leiocarpus, a plant used by traditional healers to treat Diabetes mellitus. Diabetes mellitus was induced by a single intraperitoneal administration of Streptozocin to Sprague Dawley rats under a fructose-enriched fat diet. Diabetic rats were treated with 500 mg/kg of total extract and 100 mg/kg of supernatant. The antidiabetic activity was assessed by measuring blood glucose level, lipid profile, insulin and biochemical parameters together with the antioxidant potential. The administration of total extract and supernatant exhibited significant decrease (p < 0.01) of the blood glucose level in the diabetic rats after 7 days of treatment compared to the diabetic rats. A significant reduction in the serum concentrations of cholesterol (19.7 %) and triglycerides (56.7 %) was observed in the treated diabetic rats. The levels of insulin did not differ across all the groups. However, compared to diabetic rats, HOMA-IR (Homeostasis Model Assessment for Insulin-resistance) and HOMA-β (Homeostasis Model Assessment for β cell function) showed a statistical decrease in insulin resistance and an increase in pancreatic β cell function in the treated diabetic rats. Moreover, total extract and supernatant significantly increased GSH level and decreased lipid peroxidation because of their antioxidant properties. In comparison, the supernatant fraction exerted stronger antidiabetic and antioxidant effects than the total extract. Hence, the roots of Anogeissus leiocarpus are a potent antidiabetic agent that can be developed as an alternative medicine for diabetes and its complications.
Collapse
Affiliation(s)
- Aku Enam Motto
- Laboratory of Physiology/Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, BP 1515, Togo.
| | - Povi Lawson-Evi
- Laboratory of Physiology/Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Kwashie Eklu-Gadegbeku
- Laboratory of Physiology/Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, BP 1515, Togo
| |
Collapse
|
39
|
Martins MDPSC, de Carvalho VBL, Rodrigues LARL, Oliveira ASDSS, Arcanjo DDR, dos Santos MAP, Machado JSR, e Martins MDCDC, Rocha MDM. Effects of zinc supplementation on glycemic control and oxidative stress in experimental diabetes: A systematic review. Clin Nutr ESPEN 2022; 51:28-36. [DOI: 10.1016/j.clnesp.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022]
|
40
|
Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a Complementary Therapeutic Approach for Dysglycemia and Dyslipidemia Control in Type 2 Diabetes Mellitus and Its Molecular Mechanism of Action: A Review. Nutrients 2022; 14:nu14132773. [PMID: 35807953 PMCID: PMC9269353 DOI: 10.3390/nu14132773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
The scientific evidence that cinnamon may exert beneficial effects on type 2 diabetes mellitus due to the biological activity of its bioactive compounds has been increasing in recent years. This review provides an overview of the effects of cinnamon on clinical parameters of diabetes and summarizes the molecular mechanisms of action of cinnamon on glucose and lipid metabolism. Search criteria include an electronic search using PubMed, Medline, and Cochrane Library databases. English literature references from 2000 up to 2022 were included. Following title and abstract review, full articles that met the inclusion criteria were included. The results from the available evidence revealed that cinnamon improved glycemic and lipidemic indicators. Clinical trials clarified that cinnamon also possesses an anti-inflammatory effect, which may act beneficially in diabetes. Based on in vitro and in vivo studies, cinnamon seems to elicit the regulation of glucose metabolism in tissues by insulin-mimetic effect and enzyme activity improvement. Furthermore, cinnamon seems to decrease cholesterol and fatty acid absorption in the gut. The current literature search showed a considerable number of studies on diabetic subjects. Some limitations in comparing published data should be highlighted, including variability in doses, extracts and species of cinnamon, administration forms, and antidiabetic therapy.
Collapse
Affiliation(s)
- Maria Leonor Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.L.S.); (M.A.B.)
| | - Maria Alexandra Bernardo
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.L.S.); (M.A.B.)
| | - Jaipaul Singh
- School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Maria Fernanda de Mesquita
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.L.S.); (M.A.B.)
- Correspondence:
| |
Collapse
|
41
|
Ramlingareddy, A Ramachandrayya S, Jacob J, Mala M. A correlative study of copper, ceruloplasmin, iron, total iron binding capacity and total antioxidant capacity in diabetic nephropathy. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Diabetic nephropathy is the common cause of final stage of kidney disease. Studies on trace elements and oxidant-antioxidant status in diabetes mellitus are required for establishing the mechanisms involved in pathogenesis of diabetic complications, and also to establish biomarkers of diabetic nephropathy in addition to the conventional markers. The present study aimed to assess and correlate the blood levels of copper, iron, ceruloplasmin, total iron binding capacity (TIBC) and total antioxidant capacity (TAC) in diabetic nephropathy patients in comparison to diabetic individuals without complications and normal healthy controls.
Materials and Methods: The study subjects were, diabetic patients with nephropathy (group 1), diabetic patients without complications (group 2), and healthy controls (group 3). In the serum samples of all study subjects levels of copper, iron, ceruloplasmin, TIBC and TAC were estimated by standard spectrophotometric methods.
Results: Levels of copper, ceruloplasmin, iron and TIBC in serum were significantly higher and TAC was lower in diabetic patients when compared to controls, and more pronounced changes were seen in diabetic nephropathy patients when compared to diabetic patients with no complications. There was significant positive correlation among glycated hemoglobin, copper, iron and microalbumin in diabetic patients with or without nephropathy. Serum Total antioxidant capacity showed significant negative correlation with HbA1c, microalbuminuria, copper, and iron in diabetic patients with and without nephropathy.
Conclusion: Serum levels of trace elements could serve as diagnostic and prognostic biomarkers of diabetic nephropathy complimentary to microalbuminuria and glycated haemoglobin. Monitoring the trace elements and oxidative stress biomarkers in diabetic patients could be beneficial to prevent oxidative stress and pathogenesis of diabetic complications.
Collapse
|
42
|
Bassey IE, Ikpi DE, Isong IKP, Akpan UO, Onyeukwu CC, Nwankwo NP, Udofia IG. Effect of combined calcium, magnesium, vitamin C and E supplementation on seminal parameters and serum oxidative stress markers in fructose-induced diabetic Wistar rats. Arch Physiol Biochem 2022; 128:643-650. [PMID: 31983250 DOI: 10.1080/13813455.2020.1716017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Deleterious effects of diabetes on seminal quality, serum metals and antioxidants have been confirmed. OBJECTIVE This study evaluated the effect of combined calcium, magnesium, vitamin C and E supplementation on seminal parameters, serum total antioxidant capacity (TAC), nitric oxide (NO), malonyldialdehyde (MDA), calcium and magnesium in fructose-induced diabetic rats. MATERIALS AND METHODS Thirty rats were grouped into non-diabetic controls, diabetic controls, diabetic rats given vitamin E + C, calcium + magnesium and vitamin E + C + calcium + magnesium. The analytes were evaluated using standard methods. Statistical significance was set at p < .05. RESULTS The diabetic controls had significantly higher MDA (p = .036) but lower (p = .0001) TAC, calcium, magnesium, sperm count, and %motility than the non-diabetic controls. The Vitamin C + E group showed the greatest improvement as they had the highest values of seminal parameters compared to other supplemented groups. CONCLUSION Combined Vitamin C + E supplementation may provide better ameliorative benefits than a combination of Vitamin C, E, calcium and magnesium in diabetics.
Collapse
Affiliation(s)
- Iya Eze Bassey
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Daniel Ewa Ikpi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Idongesit Kokoabasi Paul Isong
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Uwem Okon Akpan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Chibuzor Charles Onyeukwu
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Nnenna Princess Nwankwo
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Inyene Gordon Udofia
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| |
Collapse
|
43
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
44
|
Investigation of DHA-Induced Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells through the Combination of Metabolic Imaging and Molecular Biology. Antioxidants (Basel) 2022; 11:antiox11061072. [PMID: 35739970 PMCID: PMC9219962 DOI: 10.3390/antiox11061072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions. The present results show that the treatment with DHA under high-glucose conditions activated erythroid 2-related factor Nrf2, which orchestrates the activation of cellular antioxidant pathways and ultimately inhibits apoptosis. This process was accompanied by a marked increase in the expression of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) Quinone Oxidoreductase 1 (Nqo1), which is correlated with a contextual modulation and intracellular re-organization of the NAD+/NADH redox balance. This investigation of the mechanisms underlying the impairment induced by high levels of glucose on redox homeostasis of the BRB and the subsequent recovery provided by DHA provides both a powerful indicator for the detection of RPE cell impairment as well as a potential metabolic therapeutic target for the early intervention in its treatment.
Collapse
|
45
|
Chou A, Carloni R, Xue W, Seeram V, Ferreira JA. Evaluation of glycemic control in critically ill patients with bacteremia: a retrospective, single-center cohort study. J Investig Med 2022; 70:1387-1391. [PMID: 35580916 DOI: 10.1136/jim-2021-002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Dysglycemia is a common complication in hospitalized patients and has been suggested to play a significant role in the pathology and virulence of patients with bacteremia. The literature evaluating this relationship in critically ill patients, however, is limited. This retrospective, single-center cohort study aimed to investigate the relationship of glycemic control with 28-day intensive care unit (ICU)-free days in critically ill patients with bacteremia. Glycemic control was evaluated and determined based on time in targeted blood glucose range (TIR) of 70-140 mg/dL. Using a threshold of 80%, patients were then categorized into 2 groups: TIR-lo (<80%) and TIR-hi (≥80%). Unadjusted data identified a significant difference in ICU-free days (TIR-lo 21.29 days vs TIR-hi 24.08 days, p=0.007). However, due to an excess of zero ICU-free days, a zero-inflated Poisson model was used for analysis and demonstrated that patients in the TIR-lo group were 2.57 times more likely to have zero ICU-free days (p=0.033), which was attributed to mortality. Of the survivors, no difference was seen with TIR status and the number of ICU-free days (p=0.780). These findings demonstrate that glycemic control may increase the likelihood of being liberated from the ICU within a 28-day period, which the authors attributed to increased survival. However, of the patients who left the ICU, glycemic control was not associated with a significant difference in the number of ICU-free days.
Collapse
Affiliation(s)
- Alaina Chou
- Department of Pharmacy, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Rachael Carloni
- Department of Pharmacy, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Wei Xue
- Department of Biostatistics, UF Health Shands Hospital, Gainesville, Florida, USA
| | - Vandana Seeram
- Department of Pulmonary and Critical Care Medicine, UF Health Jacksonville, Jacksonville, Florida, USA
| | - Jason A Ferreira
- Department of Pharmacy, UF Health Jacksonville, Jacksonville, Florida, USA
| |
Collapse
|
46
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|
48
|
Influence of intermittent fasting on prediabetes-induced neuropathy: Insights on a novel mechanistic pathway. Metabol Open 2022; 14:100175. [PMID: 35402890 PMCID: PMC8991399 DOI: 10.1016/j.metop.2022.100175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Peripheral neuropathy (PN) is correlated with obesity and metabolic syndrome. Intermittent fasting (IF) has been described as the cornerstone in the management of obesity; however, its role in prediabetic complications is not well elucidated. Cytochromes P450 Monooxygenases (CYP450) are major sources of Reactive Oxygen Species (ROS) that orchestrate the onset and development of diabetic complications. One of the CYP-metabolites, Expoxyecosatetraenoic Acids (EETs), are considered to be negative regulators of ROS production. In this study, we elucidated the role of IF on ROS production and investigated its influence on prediabetes-induced PN. Methods C57/BL6 control mice, prediabetic, prediabetic that underwent alternate day fasting with different diet composition, and prediabetic mice treated with EET-metabolizing sEH-inhibitor, AUDA. Body mass composition, metabolic, behavioral, and molecular tests were performed. Results High-fat diet (HFD) led to an increase in NADPH-induced ROS production; that was due to an alteration in the epoxygenase pathway assessed by the decrease in CYP1a1/1a2 expression. IF reinstated the homeostatic levels of EETs in HFD-fed mice. Moreover, treatment with AUDA mimicked the beneficial effect observed with IF. Conclusion IF and EETs bioavailability have a protective role in prediabetes-induced PN, suggesting a novel interventional strategy in the management of prediabetes and its associated complications.
Collapse
|
49
|
Đorđević MM, Tolić A, Rajić J, Mihailović M, Arambašić Jovanović J, Uskoković A, Grdović N, Đorđević MB, Mišić D, Šiler B, Vidaković M, Dinić S. Centaurium erythraea methanol extract improves the functionality of diabetic liver and kidney by mitigating hyperglycemia-induced oxidative stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
50
|
Sen S. Liposome-encapsulated glycyrrhizin alleviates hyperglycemia and glycation-induced iron-catalyzed oxidative reactions in streptozotocin-induced diabetic rats. J Liposome Res 2022; 32:376-385. [PMID: 35166624 DOI: 10.1080/08982104.2022.2036756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra has been reported to ameliorate diabetes. Here, the effects of liposome-encapsulated glycyrrhizin on STZ-induced diabetes and associated oxidative stress were investigated. Wistar rats were grouped as control (NC, received placebo), diabetic (DC, STZ-induced), diabetic treated with free glycyrrhizin (DTG, 3 i.v. doses, 1.6 mg/0.5 ml), empty liposomes (DTl, 3 i.v. doses), and liposome-encapsulated glycyrrhizin (DTbd, 3 i.v. doses, 1.6 mg/0.5 ml). Serum glucose, insulin, intraperitoneal glucose tolerance test and glycohemoglobin were estimated. Free iron and iron-mediated oxidative stress were examined. Histological examinations of the kidney and liver were performed. Liposomal-glycyrrhizin treatment caused significant improvement of hyperglycemia (DC vs. DTbd p < .05), glucose intolerance (DC vs. DTG p < .01 and DC vs. DTbd p < .05), insulin (DC vs. DTG p < .1, DTbd vs. DC p < .05 and DTbd vs. DTG p < .1) and glycohemoglobin (DC vs. DTG p < .1 and DC vs. DTbd p < .05) levels in the DTbd group. Alleviation of free iron release (DC vs. DTbd p < .05), lipid peroxidation (DC + H2O2 vs. DTbd + H2O2 p < .05), deoxyribose (DC + H2O2 vs. DTbd + H2O2, p < .05), and DNA degradation occurred in the DTbd group. The abnormalities of the kidney and liver were abolished in the DTbd group. The inhibitory effects were more pronounced compared to free glycyrrhizin. Liposome-encapsulated glycyrrhizin treatment caused inhibition of diabetic complications through its antioxidant effects and can be exploited for effective treatment of diabetes.
Collapse
Affiliation(s)
- Subhrojit Sen
- Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|