1
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
2
|
Fouad SH, Eldeeb M, Baioumy SA, Taha SI, Ibrahim RA, Elgendy A, Omran A, Hamdy M, Alharbi RA, Sindi AAA, Roman SW. Serum levels of Wnt5a in Egyptian women with obesity and their association with toll like receptor 2 Arg753Gln gene polymorphism in a pilot case control study of obesity as a state of metaflammation. Sci Rep 2025; 15:2702. [PMID: 39837875 PMCID: PMC11751074 DOI: 10.1038/s41598-025-85470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Female obesity is a worldwide health issue linked to chronic metabolic low-grade inflammation (metaflammation) causing multiple obesity-related co-morbid conditions. We aimed to assess the serum levels of wingless integration site family member 5 A (Wnt5a), leptin, and tumor necrosis factor-alpha (TNF-α) as markers of obesity-associated metaflammation and investigate the association with toll-like receptors2 (TLR2) gene (Arg753Gln) single nucleotide polymorphism (SNP) among Egyptian females. The study included 60 females with obesity and 30 matched controls. Serum levels of Wnt5a, leptin, and TNF-α were assessed by ELISA, while TLR2 (Arg753Gln) genotyping was done by PCR-RFLP. Serum Wnt5a, leptin, and TNF-α showed significantly higher levels in females with obesity than controls and a significant increase with higher classes of obesity. They showed significant positive correlations with each other. Only TNF-α and leptin were associated with metabolic syndrome (MetS) among the obesity group. According to TLR2 (Arg753Gln) SNP, the homozygous GG genotype was associated with elevated levels of Wnt5a, leptin, and TNF-α compared to the AA + GA model carriers. No significant differences were found in the distribution of TLR2 Arg753Gln (rs5743708) genotypes and alleles according to obesity or MetS, and the regression analysis showed no significant risk association. Serum Wnt5a, leptin, and TNF-α levels increase in women with obesity and the A allele of TLR2 (Arg753Gln) SNP could be protective against obesity-associated metaflammation.
Collapse
Affiliation(s)
- Shaimaa H Fouad
- Department of Internal Medicine /Allergy and Clinical Immunology, Ain- Shams University, Cairo, Egypt
| | - Mai Eldeeb
- Department of Internal Medicine /Allergy and Clinical Immunology, Ain- Shams University, Cairo, Egypt
| | - Shereen A Baioumy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, 11591, Egypt.
| | - Rehab Ali Ibrahim
- Department of Physical Medicine/Rheumatology and Rehabilitation, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Aya Elgendy
- Department of Internal Medicine /Allergy and Clinical Immunology, Ain- Shams University, Cairo, Egypt
| | - Azza Omran
- Department of Cardiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Marwa Hamdy
- Department of Medical Biochemistry and Molecular Biology, Ain-Shams University, Cairo, Egypt
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Albaha, Kingdom of Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Albaha, Kingdom of Saudi Arabia
| | - Sylvia W Roman
- Department of Internal Medicine /Allergy and Clinical Immunology, Ain- Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
4
|
Aune SK, Helseth R, Kalstad AA, Laake K, Åkra S, Arnesen H, Solheim S, Seljeflot I. Links Between Adipose Tissue Gene Expression of Gut Leakage Markers, Circulating Levels, Anthropometrics, and Diet in Patients with Coronary Artery Disease. Diabetes Metab Syndr Obes 2024; 17:2177-2190. [PMID: 38827167 PMCID: PMC11144434 DOI: 10.2147/dmso.s438818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Recent studies suggest gut-derived lipopolysaccharide (LPS)-translocation to play a role in both systemic inflammation and in inflammatory adipose tissue. We aimed to investigate whether circulating LPS-related inflammatory markers and corresponding genetic expression in adipose tissue were associated with obesity, cardiometabolic risk factors, and dietary habits in patients with coronary artery disease. Methods Patients (n=382) suffering a myocardial infarction 2-8 weeks prior to inclusion were enrolled in this cross-sectional study. Subcutaneous adipose tissue (SAT), taken from the gluteal region, and fasting blood samples were collected at inclusion for determination of genetic expression of LPS-binding protein (LBP), CD14, toll-like receptor 2 (TLR2), and TLR4 in SAT, and LPS, LBP, and soluble cluster of differentiation 14 (sCD14) in the circulation. All patients filled out a dietary registration form. Results Patients (median age 74 years, 25% women), had a median body mass index (BMI) of 25.9 kg/m2. Circulating levels of LBP correlated to BMI (p=0.02), were significantly higher in overweight or obese (BMI≥25 kg/m2) compared to normal- or underweight patients (BMI<25 kg/m2), and were significantly elevated in patients with T2DM, hypertension, and MetS, compared to patients without (p≤0.04, all). In SAT, gene expression of CD14 and LBP correlated significantly to BMI (p≤0.001, both), and CD14 and TLR2 expressions were significantly higher in patients with T2DM and MetS compared to patients without (p≤0.001, both). Circulating and genetically expressed CD14 associated with use of n-3 PUFAs (p=0.008 and p=0.003, respectively). No other significant associations were found between the measured markers and dietary habits. Conclusion In patients with established CAD, circulating levels of LBP and gene expression of CD14 and TLR2 in SAT were related to obesity, MetS, T2DM, and hypertension. This suggests that the LPS-LBP-CD14 inflammatory axis is activated in the chronic low-grade inflammation associated with cardiometabolic abnormalities, whereas no significant associations with dietary habits were observed.
Collapse
Affiliation(s)
- Susanne Kristine Aune
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Helseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kristian Laake
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
5
|
Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:273-295. [PMID: 39287855 DOI: 10.1007/978-3-031-63657-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1β) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
6
|
Buisson C, Leuzy V, Loizon E, Meugnier E, Monnoye M, Philippe C, Gérard P, Michalski MC, Laugerette F. Soy Lecithin in High-Fat Diets Exerts Dual Effects on Adipose Tissue Versus Ileum. Mol Nutr Food Res 2023; 67:e2200461. [PMID: 36708587 DOI: 10.1002/mnfr.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/10/2023] [Indexed: 01/30/2023]
Abstract
SCOPE Lipopolysaccharides and their transporters, LBP and sCD14, are involved in systemic inflammation following a high-fat diet. Natural emulsifiers such as soy lecithin, rich in soybean polar lipids (SPL), are often used by the food industry but little is known about effects of associating SPL with different oils. METHODS AND RESULTS Thus, this study investigates the effects of 4 weeks feeding of palm (P) or rapeseed (R) oil-enriched diets with or without SPL in mice, on white adipose tissue (WAT) inflammation, on ileum permeability, and on microbiota composition. When SPL are associated with rapeseed oil, a greater gene expression of leptin and inflammation in WAT is observed compared to P-SPL. In ileum, R-SPL group results in a lower expression of TLR4, IAP that detoxify bacterial LPS and tight junction proteins than R group. In turn, the gene expression of Reg3β and Reg3γ, which have antimicrobial activity, is higher in ileum of R-SPL group than in R group. SPL in rapeseed oil increases specific bacterial species belonging to Lachnospiraceae, Alistipes, and Bacteroidales. CONCLUSION The incorporation of SPL in a diet with rapeseed oil exerts differential effect on WAT and ileum, with respectively an inflammation of WAT and an antimicrobial activity in ileum, associated with specific microbiota changes.
Collapse
Affiliation(s)
- Charline Buisson
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Valentin Leuzy
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Magali Monnoye
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Catherine Philippe
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France.,CRNH Rhône-Alpes, Oullins, 69310, France
| | - Fabienne Laugerette
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| |
Collapse
|
7
|
NUCB2/Nesfatin-1 Reduces Obesogenic Diet Induced Inflammation in Mice Subcutaneous White Adipose Tissue. Nutrients 2022; 14:nu14071409. [PMID: 35406022 PMCID: PMC9003550 DOI: 10.3390/nu14071409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Excess adipose tissue accumulation and obesity are characterised by chronic, low-grade, systemic inflammation. Nestfatin-1 is a neuropeptide derived from the precursor protein nucleobindin-2 (NUCB2), which was initially reported to exert anorexigenic effects. The present study aimed to investigate the effects of an obesogenic diet (OD; high-fat, high-sugar) in NUCB2 knockout (KO) mice and of nesfatin-1 treatment in LPS-stimulated 3T3-L1 preadipocytes. Methods: Subcutaneous white adipose tissue (Sc-WAT) samples from wild type (WT) and NUCB2 KO mice that were fed a normal diet (ND), or the OD for 12 weeks were used for RNA and protein extraction, as well as immunohistochemistry. 3T3-L1 cells were treated with 100 nM nesfatin-1 during differentiation and stimulated with 1 µg/mL LPS for measuring the expression and secretion of pro-inflammatory mediators by qPCR, western blotting, immunofluorescence, Bioplex, and ELISA. Results: Following the OD, the mRNA, protein and cellular expression of pro-inflammatory mediators (Tnfα, Il-6, Il-1β, Adgre1, Mcp1, TLR4, Hmbgb1 and NF-kB) significantly increased in the ScWAT of NUCB2 KO mice compared to ND controls. Adiponectin and Nrf2 expression significantly decreased in the ScWAT of OD-fed NUCB2 KO, without changes in the OD-fed WT mice. Furthermore, nesfatin-1 treatment in LPS-stimulated 3T3-L1 cells significantly reduced the expression and secretion of pro-inflammatory cytokines (Tnfα, Il-6, Il-1β, Mcp1) and hmgb1. Conclusion: An obesogenic diet can induce significant inflammation in the ScWAT of NUCB2 KO mice, involving the HMGB1, NRF2 and NF-kB pathways, while nesfatin-1 reduces the pro-inflammatory response in LPS-stimulated 3T3-L1 cells. These findings provide a novel insight into the metabolic regulation of inflammation in WAT.
Collapse
|
8
|
Thouvenot K, Turpin T, Taïlé J, Clément K, Meilhac O, Gonthier MP. Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules 2022; 12:biom12030378. [PMID: 35327570 PMCID: PMC8945445 DOI: 10.3390/biom12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during obesity and constitutes a major public health problem worldwide. A strong link has been established between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic inflammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the periodontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues, including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, periodontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. Moreover, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation and oxidative stress contributes to disruption of the insulin signaling pathway and promotes insulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly, therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria and improve insulin resistance.
Collapse
Affiliation(s)
- Katy Thouvenot
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Teva Turpin
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Janice Taïlé
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Karine Clément
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Marie-Paule Gonthier
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
- Correspondence: ; Tel.: +33-262-693-92-08-55
| |
Collapse
|
9
|
O’Neill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14:eabh1478. [PMID: 35171653 PMCID: PMC9885891 DOI: 10.1126/scitranslmed.abh1478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc C. Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tran H. Do
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joyce Y. Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tissa R. Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.,Corresponding author.
| |
Collapse
|
10
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
11
|
Lang V, Ferencik S, Ananthasubramaniam B, Kramer A, Maier B. Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice. eLife 2021; 10:e62469. [PMID: 34661529 PMCID: PMC8598165 DOI: 10.7554/elife.62469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Local circadian clocks are active in most cells of our body. However, their impact on circadian physiology is still under debate. Mortality by endotoxic (LPS) shock is highly time-of-day dependent and local circadian immune function such as the cytokine burst after LPS challenge has been assumed to be causal for the large differences in survival. Here, we investigate the roles of light and myeloid clocks on mortality by endotoxic shock. Strikingly, mice in constant darkness (DD) show a threefold increased susceptibility to LPS as compared to mice in light-dark conditions. Mortality by endotoxic shock as a function of circadian time is independent of light-dark cycles as well as myeloid CLOCK or BMAL1 as demonstrated in conditional knockout mice. Unexpectedly, despite the lack of a myeloid clock these mice still show rhythmic patterns of pro- and anti-inflammatory cytokines such as TNFα, MCP-1, IL-18, and IL-10 in peripheral blood as well as time-of-day and site-dependent traffic of myeloid cells. We speculate that systemic time-cues are sufficient to orchestrate innate immune response to LPS by driving immune functions such as cell trafficking and cytokine expression.
Collapse
Affiliation(s)
- Veronika Lang
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Sebastian Ferencik
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bharath Ananthasubramaniam
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| | - Bert Maier
- Laboratory of Chronobiology, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
12
|
Munro P, Rekima S, Loubat A, Duranton C, Pisani DF, Boyer L. Impact of thermogenesis induced by chronic β3-adrenergic receptor agonist treatment on inflammatory and infectious response during bacteremia in mice. PLoS One 2021; 16:e0256768. [PMID: 34437647 PMCID: PMC8389438 DOI: 10.1371/journal.pone.0256768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
White adipocytes store energy differently than brown and brite adipocytes which dissipate energy under the form of heat. Studies have shown that adipocytes are able to respond to bacteria thanks to the presence of Toll-like receptors at their surface. Despite this, little is known about the involvement of each class of adipocytes in the infectious response. We treated mice for one week with a β3-adrenergic receptor agonist to induce activation of brown adipose tissue and brite adipocytes within white adipose tissue. Mice were then injected intraperitoneally with E. coli to generate acute infection. The metabolic, infectious and inflammatory parameters of the mice were analysed during 48 hours after infection. Our results shown that in response to bacteria, thermogenic activity promoted a discrete and local anti-inflammatory environment in white adipose tissue characterized by the increase of the IL-1RA secretion. More generally, activation of brown and brite adipocytes did not modify the host response to infection including no additive effect with fever and an equivalent bacteria clearance and inflammatory response. In conclusion, these results suggest an IL-1RA-mediated immunomodulatory activity of thermogenic adipocytes in response to acute bacterial infection and open a way to characterize their effect along more chronic infection as septicaemia.
Collapse
Affiliation(s)
| | - Samah Rekima
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Agnès Loubat
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, Nice, France
- * E-mail: (DFP); (LB)
| | - Laurent Boyer
- Université Côte d’Azur, Inserm, C3M, Nice, France
- * E-mail: (DFP); (LB)
| |
Collapse
|
13
|
Li J, Mao YS, Chen F, Xia DX, Zhao TQ. Palmitic acid up regulates Gal-3 and induces insulin resistance in macrophages by mediating the balance between KLF4 and NF-κB. Exp Ther Med 2021; 22:1028. [PMID: 34373714 PMCID: PMC8343820 DOI: 10.3892/etm.2021.10460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance is the main sign of type 2 diabetes mellitus and is often accompanied by the infiltration of inflammatory factors. These inflammatory factors are mainly produced and secreted by macrophages. The purpose of the current study was to explore the relationship between macrophages and insulin resistance, and to determine its underlying mechanism. The insulin resistance of macrophages was induced by palmitic acid (PA) in vitro. The glucose uptake rate of macrophages, the expression levels of inflammatory cytokines and the expression levels of insulin resistance-related proteins were detected. The protein expression levels of Krüppel-like factor 4 (KLF4), toll-like receptor 4 (TLR4), NF-κB and Galectin-3 (Gal-3) were detected via western blotting and recovery experiments were performed by combining the Gal-3 and TLR4 inhibitors GB1107 and TAK242. The results revealed that PA-induced macrophages demonstrated insulin resistance. Additionally, KLF4 protein was inhibited and the sugar uptake rate was significantly lower than that of the control group. Western blotting and immunofluorescence assays revealed that the expression of Gal-3 in PA-induced macrophages was significantly upregulated. The addition of the Gal-3 inhibitor GB1107 significantly increased glucose utilization and reduced insulin resistance in PA-treated cells. Inhibitor of TLR4 inhibited the protein expression level of the TLR4/NF-κB pathway. In conclusion, PA promoted the TLR4/phosphorylated-NF-κB signaling pathway by inhibiting KLF4, promoted the upregulation of Gal-3 expression and improved the insulin resistance of macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yu-Shan Mao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Fen Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Dong-Xia Xia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Tin-Qi Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
14
|
Höpfinger A, Karrasch T, Schäffler A, Schmid A. Regulation of CAMP (cathelicidin antimicrobial peptide) expression in adipocytes by TLR 2 and 4. Innate Immun 2021; 27:184-191. [PMID: 33509002 PMCID: PMC7882808 DOI: 10.1177/1753425920988167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent data argue for a pro-inflammatory role of CAMP (cathelicidin antimicrobial peptide) in adipocytes and adipose tissue (AT) and for regulatory circuits involving TLRs. In order to investigate regulatory effects of TLR2 and TLR4, 3T3-L1 adipocytes were stimulated with TLR2 agonistic lipopeptide MALP-2 and with TLR4 agonist LPS in presence or absence of signal transduction inhibitors. CAMP gene expression was analysed by quantitative real-time PCR in adipocytes and in murine AT compartments and cellular subfractions. CAMP expression was higher in gonadal than in subcutaneous AT and there was a gender-specific effect with higher levels in males. Adipocytes had higher CAMP expression than the stroma-vascular cell (SVC) fraction. MALP-2 up-regulated CAMP expression significantly, mediated by STAT3 and PI3K and potentially (non-significant trend) by NF-κB and MAPK, but not by raf-activated MEK-1/-2. Moreover, LPS proved to act as a potent inducer of CAMP via NF-κB, PI3K and STAT3, whereas specific inhibition of MAPK and MEK-1/-2 had no effect. In conclusion, activation of TLR2 and TLR4 by classical ligands up-regulates adipocyte CAMP expression involving classical signal transduction elements. These might represent future drug targets for pharmacological modulation of CAMP expression in adipocytes, especially in the context of metabolic and infectious diseases.
Collapse
Affiliation(s)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Germany
| | | | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Germany
| |
Collapse
|
15
|
Dahman LSB, Al-Daghri NM, Alfadda AA, Sallam RM, McTernan PG. Assessment of NF-κB-SN50’s Effect on Adipose Tumor Necrosis Factor-Alpha and Angiotensinogen Secretion and Expression. THE 1ST INTERNATIONAL ELECTRONIC CONFERENCE ON BIOMOLECULES: NATURAL AND BIO-INSPIRED THERAPEUTICS FOR HUMAN DISEASES 2020:15. [DOI: https:/doi.org/10.3390/iecbm2020-08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Affiliation(s)
- Lotfi S. Bin Dahman
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Medical Biochemistry Department, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Yemen
| | - Nasser M. Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem M. Sallam
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo 11381, Egypt
| | - Philip G. McTernan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham NG1 8NS, UK
| |
Collapse
|
16
|
The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. Int J Mol Sci 2019; 20:ijms20235895. [PMID: 31771283 PMCID: PMC6928976 DOI: 10.3390/ijms20235895] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Excess energy intake can trigger an uncontrolled inflammatory response, leading to systemic low-grade inflammation and metabolic disturbances that are hypothesised to contribute to cardiovascular disease and type 2 diabetes. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are suggested to mitigate this inflammatory response, but the mechanisms are unclear, especially at the tissue level. Adipose tissues, the first tissues to give an inflammatory response, may be an important target site of action for EPA and DHA. To evaluate the effects of EPA and DHA in white and brown adipose tissues, we fed male C57Bl/6J mice either a high fat diet (HFD) with 5% corn oil, an HFD with 40% of the corn oil substituted for purified EPA and DHA triglycerides (HFD-ED), or normal chow, for 8 weeks. Fatty acid profiling and transcriptomics were used to study how EPA and DHA affect retroperitoneal white and brown adipose tissues. HFD-ED fed mice showed reduced lipid accumulation and levels of the pro-inflammatory fatty acid arachidonic acid in both white and brown adipose tissues, compared with HFD-corn oil fed animals. The transcriptomic analysis showed changes in β-oxidation pathways, supporting the decreased lipid accumulation in the HFD-ED fed mice. Therefore, our data suggests that EPA and DHA supplementation of a high fat diet may be anti-inflammatory, as well as reduce lipid accumulation in adipose tissues.
Collapse
|
17
|
Komazin G, Maybin M, Woodard RW, Scior T, Schwudke D, Schombel U, Gisch N, Mamat U, Meredith TC. Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. J Biol Chem 2019; 294:19405-19423. [PMID: 31704704 DOI: 10.1074/jbc.ra119.010836] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) from the Gram-negative bacterial outer membrane potently activates the human innate immune system. LPS is recognized by the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD2) complex, leading to the release of pro-inflammatory cytokines. Alkaline phosphatase (AP) is currently being investigated as an anti-inflammatory agent for detoxifying LPS through dephosphorylating lipid A, thus providing a potential treatment for managing both acute (sepsis) and chronic (metabolic endotoxemia) pathologies wherein aberrant TLR4/MD2 activation has been implicated. Endogenous LPS preparations are chemically heterogeneous, and little is known regarding the LPS chemotype substrate range of AP. Here, we investigated the activity of AP on a panel of structurally defined LPS chemotypes isolated from Escherichia coli and demonstrate that calf intestinal AP (cIAP) has only minimal activity against unmodified enteric LPS chemotypes. Pi was only released from a subset of LPS chemotypes harboring spontaneously labile phosphoethanolamine (PEtN) modifications connected through phosphoanhydride bonds. We demonstrate that the spontaneously hydrolyzed O-phosphorylethanolamine is the actual substrate for AP. We found that the 1- and 4'-lipid A phosphate groups critical in TLR4/MD2 signaling become susceptible to hydrolysis only after de-O-acylation of ester linked primary acyl chains on lipid A. Furthermore, PEtN modifications on lipid A specifically enhanced hTLR4 agonist activity of underacylated LPS preparations. Computational binding models are proposed to explain the limitation of AP substrate specificity imposed by the acylation state of lipid A, and the mechanism of PEtN in enhancing hTLR4/MD2 signaling.
Collapse
Affiliation(s)
- Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Scior
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Nicolas Gisch
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
18
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
19
|
Wallet SM, Puri V, Gibson FC. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines (Basel) 2018; 6:E21. [PMID: 29621153 PMCID: PMC6027258 DOI: 10.3390/vaccines6020021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that provide innate immune sensing of conserved pathogen-associated molecular patterns (PAMPs) to engage early immune recognition of bacteria, viruses, and protozoa. Furthermore, TLRs provide a conduit for initiation of non-infectious inflammation following the sensing of danger-associated molecular patterns (DAMPs) generated as a consequence of cellular injury. Due to their essential role as DAMP and PAMP sensors, TLR signaling also contributes importantly to several systemic diseases including cardiovascular disease, diabetes, and others. The overlapping participation of TLRs in the control of infection, and pathogenesis of systemic diseases, has served as a starting point for research delving into the poorly defined area of infection leading to increased risk of various systemic diseases. Although conflicting studies exist, cardiovascular disease, diabetes, cancer, rheumatoid arthritis, and obesity/metabolic dysfunction have been associated with differing degrees of strength to infectious diseases. Here we will discuss elements of these connections focusing on the contributions of TLR signaling as a consequence of bacterial exposure in the context of the oral infections leading to periodontal disease, and associations with metabolic diseases including atherosclerosis and type 2 diabetes.
Collapse
Affiliation(s)
- Shannon M Wallet
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Frank C Gibson
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
21
|
Nativel B, Couret D, Giraud P, Meilhac O, d'Hellencourt CL, Viranaïcken W, Da Silva CR. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Sci Rep 2017; 7:15789. [PMID: 29150625 PMCID: PMC5693985 DOI: 10.1038/s41598-017-16190-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis is a key bacterium in chronic periodontitis, which is associated with several chronic inflammatory diseases. Lipopolysaccharides from P. gingivalis (Pg LPS) can activate multiple cell types via the production of pro-inflammatory cytokines. The receptors for Pg LPS have initially been reported as TLR2, contrasting with the well-studied TLR4 receptor for E. coli LPS; this observation remains controversial since synthetic Pg lipid A activates TLR4 but not TLR2. Despite this observation, the dogma of Pg LPS-mediated TLR2 activation remains the basis of many hypotheses and result interpretations. In the present work, we aimed at determining whether TLR4 or TLR2, or both, mediate Pg LPS pro-inflammatory activity using Pg LPS with different grades of purity, instead of synthetic lipid A from Pg LPS. Here we show that Pg LPS 1) acts exclusively through TLR4, and 2) are differently recognized by mouse and human TLR4 both in vitro and in vivo. Taken together, our results suggest that Pg LPS activity is mediated exclusively through TLR4 and only weakly induces proinflammatory cytokine secretion in mouse models. Caution should be taken when extrapolating data from mouse systems exposed to Pg or Pg LPS to humans.
Collapse
Affiliation(s)
- Brice Nativel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Unité de soins intensifs neurologiques, Saint Pierre de La Réunion, France
| | - Pierre Giraud
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Wildriss Viranaïcken
- Université de La Réunion, CNRS UMR9192, INSERM U1187, IRD UMR249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Christine Robert Da Silva
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
22
|
Hermier D, Mathé V, Lan A, Santini C, Quignard-Boulangé A, Huneau JF, Mariotti F. Postprandial low-grade inflammation does not specifically require TLR4 activation in the rat. Nutr Metab (Lond) 2017; 14:65. [PMID: 29075306 PMCID: PMC5649083 DOI: 10.1186/s12986-017-0220-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4), an innate immune receptor, is suspected to play a key role in the postprandial inflammation that is induced by a high-fat meal rich in saturated fatty acids (SFA). Our objective was to test this hypothesis by using a specific competitive inhibitor of TLR4 (INH) vs vehicle (VEH) administered immediately before a high-SFA meal in rats. Methods First, in a cross-over kinetic study of 12 rats receiving INH and VEH i.v. 10 min before the test meal, we measured plasma inflammatory and vascular markers for 6 h. Then, in 20 rats, 3 h after INH or VEH followed by the test meal (parallel study), we measured the mRNA level of a set of cytokines (Il1-β, Il-6, Tnfα, Mcp-1, Pai-1), and of Tlr4 and Tlr2 in the adipose tissue and the liver, and that of adhesion molecules (Icam-1 and Vcam-1) in the aorta. Results Plasma IL-6 and PAI-1 increased >4-fold at 3–4 h after test-meals, very similarly after INH as compared to VEH. The expression of TLR2 and of all measured cytokine genes in the adipose tissue was dramatically higher after INH (vs VEH). In the liver, gene expression of Il1-β, Tnfα, Mcp-1 and Tlr2, was also higher after INH, though more moderately, whereas that of Il-6 and Pai-1 was similar between groups. INH did not affect mRNA level of Icam-1 and Vcam-1 in the aorta. Conclusion TLR4 activation is not specifically required to mediate systemic postprandial inflammation and we propose that TLR2 and TLR4 exert a dual and interdependent mediation of the postprandial inflammatory response, at least in the adipose tissue.
Collapse
Affiliation(s)
- Dominique Hermier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Véronique Mathé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Annaïg Lan
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Clélia Santini
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Annie Quignard-Boulangé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Jean-François Huneau
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - François Mariotti
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| |
Collapse
|
23
|
Cucchi F, Rossmeislova L, Simonsen L, Jensen MR, Bülow J. A vicious circle in chronic lymphoedema pathophysiology? An adipocentric view. Obes Rev 2017; 18:1159-1169. [PMID: 28660651 DOI: 10.1111/obr.12565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Chronic lymphoedema is a disease caused by a congenital or acquired damage to the lymphatic system and characterized by complex chains of pathophysiologic events such as lymphatic fluid stasis, chronic inflammation, lymphatic vessels impairment, adipose tissue deposition and fibrosis. These events seem to maintain and reinforce themselves through a positive feedback loop: regardless of the initial cause of lymphatic stasis, the dysfunctional adipose tissue and its secretion products can worsen lymphatic vessels' function, aggravating lymph leakage and stagnation, which can promote further adipose tissue deposition and fibrosis, similar to what may happen in obesity. In addition to the current knowledge about the tight and ancestral interrelation between immunity system and metabolism, there is evidence for similarities between obesity-related and lymphatic damage-induced lymphoedema. Together, these observations indicate strong reciprocal relationship between lymphatics and adipose tissue and suggest a possible key role of the adipocyte in the pathophysiology of chronic lymphoedema's vicious circle.
Collapse
Affiliation(s)
- F Cucchi
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - L Rossmeislova
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - M R Jensen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - J Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark.,Department of Biomedical Sciences, Copenhagen University, Denmark
| |
Collapse
|
24
|
Adipocyte-Macrophage Cross-Talk in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:327-343. [DOI: 10.1007/978-3-319-48382-5_14] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
García-Escobar E, Monastero R, García-Serrano S, Gómez-Zumaquero JM, Lago-Sampedro A, Rubio-Martín E, Colomo N, Rodríguez-Pacheco F, Soriguer F, Rojo-Martínez G. Dietary fatty acids modulate adipocyte TNFa production via regulation of its DNA promoter methylation levels. J Nutr Biochem 2017; 47:106-112. [PMID: 28575756 DOI: 10.1016/j.jnutbio.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
The factors regulating TNF alpha (TNFa) levels could be considered therapeutic targets against metabolic syndrome development. DNA methylation is a potent regulator of gene expression and may be associated with protein levels. In this study we investigate whether the effect of dietary fatty acids on TNFa released from adipocytes might be associated with modifications of the TNFa promoter DNA methylation status. A group of rats was assigned to three diets with a different composition of saturated, monounsaturated and polyunsaturated fatty acids. Samples of visceral adipose tissues were taken for adipocyte isolation, in which released TNFa levels were measured, and for methylation and expression studies. In addition, 3 T3-L1 cells were treated with palmitic, oleic and linoleic acids, with and without 5-Azacitydine (5-AZA). After treatments, cells and supernatants were included in the same analyses as rat samples. TNFa promoter methylation levels, gene expression and secretion were different according to the diets and fatty acid treatments associated with them. Cells treated with 5-AZA displayed higher TNFa levels than in the absence of 5-AZA, without differences between fatty acids. According to our results, dietary fatty acid regulation of adipocyte TNFa levels may be mediated by epigenetic modifications of the TNFa promoter DNA methylation levels.
Collapse
Affiliation(s)
- Eva García-Escobar
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain.
| | - Roberto Monastero
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain
| | - Sara García-Serrano
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| | - Juan M Gómez-Zumaquero
- CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain; ECAI de Genomica del Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Lago-Sampedro
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| | - Elehazara Rubio-Martín
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| | - Natalia Colomo
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain
| | - Federico Soriguer
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| | - Gemma Rojo-Martínez
- UGC Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Malaga, Malaga, Spain; CIBER of the Instituto de Salud Carlos III (CIBERDEM CB07/08/0019), Málaga, Spain
| |
Collapse
|
26
|
Le Sage F, Meilhac O, Gonthier MP. Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes. Mol Cell Endocrinol 2017; 446:102-110. [PMID: 28216438 DOI: 10.1016/j.mce.2017.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
Gut microbiota LPS contributes to obesity-related chronic inflammation and oxidative stress, promoting insulin resistance. Periodontal disease also represents a risk factor for type 2 diabetes and is associated with obesity. This study compared the effect of LPS from P. gingivalis periodontopathogen and E. coli enterobacteria on inflammatory adipokine secretion and redox status of 3T3-L1 adipocytes. We found that both LPS activated TLR2- and TLR4-mediated signaling pathways involving MyD88 adaptor and NFκB transcription factor, leading to an increased secretion of leptin, resistin, IL-6 and MCP-1. These effects were partly blocked by inhibitors targeting p38 MAPK, JNK and ERK. Moreover, P. gingivalis LPS reduced adiponectin secretion. Both LPS also enhanced ROS production and the expression of NOX2, NOX4 and iNOS genes. P. gingivalis LPS altered catalase gene expression. Collectively, these results showed that LPS of periodontal bacteria induced pro-inflammatory adipokine secretory profile and oxidative stress in adipocytes which may participate to obesity-related insulin resistance.
Collapse
Affiliation(s)
- Fanny Le Sage
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Sainte-Clotilde, F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde, F-97490, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Sainte-Clotilde, F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde, F-97490, France; CHU de La Réunion, Saint-Denis, F-97400, France
| | - Marie-Paule Gonthier
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Sainte-Clotilde, F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde, F-97490, France.
| |
Collapse
|
27
|
Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharmacol Res 2017; 119:303-312. [DOI: 10.1016/j.phrs.2017.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 02/02/2023]
|
28
|
EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells. Differentiation 2017; 95:21-30. [DOI: 10.1016/j.diff.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
|
29
|
Innate Immunity of Adipose Tissue in Rodent Models of Local and Systemic Staphylococcus aureus Infection. Mediators Inflamm 2017; 2017:5315602. [PMID: 28428684 PMCID: PMC5385907 DOI: 10.1155/2017/5315602] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background. The role of adipose tissue in systemic inflammation during bacterial infection is unclear. Effects of Staphylococcus aureus infection on adipocytes in rodent models of experimental endocarditis and peritonitis, the impact of S. aureus infection on gene expression in epididymal and subcutaneous adipose tissue, and effects of S. aureus infection on the toll-like receptor-2- (TLR2-) cathelicidin pathway in vivo and in vitro were investigated. Material and methods. The rat model of catheter-induced S. aureus endocarditis and the mouse model of S. aureus-induced peritonitis were used for infection experiments, gene expression profiling in adipose tissue, and measurement of cytokines. 3T3-L1 adipocytes were analyzed for expression of the TLR2-cathelicidin pathway. Results. Upon systemic bacterial infection by S. aureus, there is a shift from anti- to proinflammatory cytokines in serum and in adipose tissue gene expression. The TLR2-cathelicidin pathway is increasingly expressed during adipocyte differentiation in vitro and is induced upon stimulation by synthetic lipopeptides. Conclusions. Systemic infection by Gram-positive bacteria induces proinflammatory transformation of adipose tissue sites distinct from infection sites, documented on the levels of gene expression and secreted mediators. The TLR2-cathelicidine pathway is expressed and highly inducible in adipocytes in vitro. Lipopeptides are important immune-modulators of adipocytes in both gene expression and protein secretion.
Collapse
|
30
|
Rozati R, Allauddin N. Single Nucleotide Polymorphisms in CD14 and Toll-like Receptor 4 Genes in Patients with Polycystic Ovarian Syndrome. ACTA ACUST UNITED AC 2017. [DOI: 10.5005/jp-journals-10006-1518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Introduction
Polycystic ovary syndrome (PCOS) is a complex disease having genetic, immunologic, and environmental components, and candidate genes on innate immunity have been hypothesized to be involved in its etiology. We examined the possible association of CD14 and toll-like receptor 4 (TLR4) polymorphisms with PCOS.
Materials and methods
A total of 219 women with PCOS and 272 healthy women were recruited in the study. Their samples were genotyped for the polymorphism of CD14 and TLR4 genes.
Results
The distributions of genotypes of both polymorphisms were found to be significant in women with PCOS compared with controls. The distributions of alleles were also found to be predominant in PCOS compared with controls.
Conclusion
Polymorphisms in CD14-159C>T and TLR4-299A>G significantly increased susceptibility to PCOS. Further studies with larger sample sizes are warranted to confirm these findings.
How to cite this article
Allauddin N, Rozati R. Single Nucleotide Polymorphisms in CD14 and Toll-like Receptor 4 Genes in Patients with Polycystic Ovarian Syndrome. J South Asian Feder Obst Gynae 2017;9(4):304-307.
Collapse
|
31
|
Cantone L, Iodice S, Tarantini L, Albetti B, Restelli I, Vigna L, Bonzini M, Pesatori AC, Bollati V. Particulate matter exposure is associated with inflammatory gene methylation in obese subjects. ENVIRONMENTAL RESEARCH 2017; 152:478-484. [PMID: 27838013 PMCID: PMC5250798 DOI: 10.1016/j.envres.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Overweight and obesity are becoming more widespread with alarming projections for the coming years. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases and altering the biomarkers of vascular inflammation. The associated biological mechanisms have not been fully understood yet; the common denominator in the pathogenesis of the co-morbidities of obesity is the presence of an active, low-grade inflammatory process. DNA methylation has been shown to regulate inflammatory pathways that are responsible for the development of cardiovascular diseases. OBJECTIVES The aim of the study was to investigate, in a population of overweight/obese subjects, the effects of PM on blood DNA methylation in genes associated to inflammatory response. METHODS Using bisulfite pyrosequencing, we measured DNA methylation in peripheral blood mononuclear cells from 186 overweighted/obese subjects. In particular, we quantified DNA methylation in a set of 3 candidate genes, including CD14, TLR4 and TNF-α, because of the important roles that these genes play in the inflammatory pathway. Personal exposure to PM10 was estimated for each subject based on the local PM10 concentrations, measured by monitoring stations at residential address. Repeated measure models were used to evaluate the association of PM10 with each genes, accounting for possible correlations among the genes that regulate the same inflammatory pathway. RESULTS We found an inverse association between the daily PM10 exposure and the DNA methylation of inflammatory genes, measured in peripheral blood of healthy overweight/obese subjects. Considering different exposure time-windows, the effect on CD14 and TLR4 methylation was observed, respectively, in days 4-5-6, and days 6-7-8. TNF-α methylation was not associated to PM10. CONCLUSIONS Our findings support a picture in which PM10 exposure and transcriptional regulation of inflammatory gene pathway in obese subjects are associated.
Collapse
Affiliation(s)
- Laura Cantone
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| | - Simona Iodice
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Letizia Tarantini
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Albetti
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Restelli
- Department of Preventive Medicine, UOC Protezione e Promozione Salute Lavoratori Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisella Vigna
- Department of Preventive Medicine, UOC Protezione e Promozione Salute Lavoratori Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Bonzini
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Preventive Medicine, UOC Protezione e Promozione Salute Lavoratori Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab., Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Zhong QQ, Wang X, Li YF, Peng LJ, Jiang ZS. Secretory leukocyte protease inhibitor promising protective roles in obesity-associated atherosclerosis. Exp Biol Med (Maywood) 2016; 242:250-257. [PMID: 27698252 DOI: 10.1177/1535370216672747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI), a serine protease inhibitor, which was most commonly examined in mucosal fluids such as saliva, is a versatile molecule and plays non-redundant roles. In addition to its anti-protease activity, SLPI has been shown to express anti-bacterial, anti-viral, anti-fungal, and anti-inflammatory properties as well as participating in innate and adaptive immune responses, most of which has been well documented. Recently, it is reported that SLPI is expressed in adipocytes and adipose tissue where it could play an important feedback role in the resolution of inflammation. Furthermore, circulating SLPI has been shown to correlate with progressive metabolic dysfunction. Moreover, adenoviral gene delivery of elafin and SLPI attenuates nuclear factor-κB-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. This review contributes to unraveling the protective role of SLPI in obesity-related atherosclerosis development, and the potential role in preventing arterial plaque rupture.
Collapse
Affiliation(s)
- Qiao-Qing Zhong
- 1 Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China.,2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China.,3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Xiang Wang
- 3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Yun-Feng Li
- 3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Li-Jun Peng
- 2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China.,4 Department of Science and Teaching, Children's Hospital of Hunan Province, Changsha 410007, China
| | - Zhi-Sheng Jiang
- 2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
33
|
Gunasekaran MK, Virama-Latchoumy AL, Girard AC, Planesse C, Guérin-Dubourg A, Ottosson L, Andersson U, Césari M, Roche R, Hoareau L. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte 2016; 5:384-388. [PMID: 27994953 PMCID: PMC5160392 DOI: 10.1080/21623945.2016.1245818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022] Open
Abstract
Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.
Collapse
Affiliation(s)
- Manoj Kumar Gunasekaran
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Anne-Laurence Virama-Latchoumy
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Anne-Claire Girard
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Centre Hospitalier Universitaire (CHU) de La Réunion
| | - Cynthia Planesse
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| | | | - Lars Ottosson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stokholm, Sweden
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stokholm, Sweden
| | - Maya Césari
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Régis Roche
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| | - Laurence Hoareau
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| |
Collapse
|
34
|
Ojeda-Ojeda M, Martínez-García M, Alpañés M, Luque-Ramírez M, Escobar-Morreale HF. Association of TLR2 S450S and ICAM1 K469E polymorphisms with polycystic ovary syndrome (PCOS) and obesity. J Reprod Immunol 2016; 113:9-15. [DOI: 10.1016/j.jri.2015.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
35
|
Cavalcante-Silva LHA, Galvão JGFM, da Silva JSDF, de Sales-Neto JM, Rodrigues-Mascarenhas S. Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Front Physiol 2015; 6:341. [PMID: 26635627 PMCID: PMC4652019 DOI: 10.3389/fphys.2015.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
The intimate interplay between immune system, metabolism, and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signaling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José G F M Galvão
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Juliane Santos de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Sandra Rodrigues-Mascarenhas
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| |
Collapse
|
36
|
Uraki S, Tameda M, Sugimoto K, Shiraki K, Takei Y, Nobori T, Ito M. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling. PLoS One 2015; 10:e0131346. [PMID: 26121241 PMCID: PMC4487891 DOI: 10.1371/journal.pone.0131346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/01/2015] [Indexed: 12/28/2022] Open
Abstract
Background & Aims It has been suggested that amino acid (aa) substitution at position 70 from arginine (70R) to glutamine (70Q) in the genotype 1b hepatitis C virus (HCV) core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes. Methods The influence of treatment with HCV core protein (70R or 70Q) on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and triglyceride content was also analyzed. The effects of toll-like receptor (TLR)2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined. Results IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%. Conclusions Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.
Collapse
Affiliation(s)
- Satoko Uraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | - Masahiko Tameda
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Kazushi Sugimoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
- * E-mail:
| | - Katsuya Shiraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
| | - Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
37
|
Liu Q, Li Y, Zhao X, Yang X, Liu Q, Kong Q. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure. Mar Drugs 2015; 13:3388-406. [PMID: 26023843 PMCID: PMC4483635 DOI: 10.3390/md13063388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
38
|
Tencerová M, Kračmerová J, Krauzová E, Mališová L, Kováčová Z, Wedellová Z, Šiklová M, Štich V, Rossmeislová L. Experimental hyperglycemia induces an increase of monocyte and T-lymphocyte content in adipose tissue of healthy obese women. PLoS One 2015; 10:e0122872. [PMID: 25894202 PMCID: PMC4403863 DOI: 10.1371/journal.pone.0122872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background/Objectives Hyperglycemia represents one of possible mediators for activation of immune system and may contribute to worsening of inflammatory state associated with obesity. The aim of our study was to investigate the effect of a short-term hyperglycemia (HG) on the phenotype and relative content of immune cells in circulation and subcutaneous abdominal adipose tissue (SAAT) in obese women without metabolic complications. Subjects/Methods Three hour HG clamp with infusion of octreotide and control investigations with infusion of octreotide or saline were performed in three groups of obese women (Group1: HG, Group 2: Octreotide, Group 3: Saline, n=10 per group). Before and at the end of the interventions, samples of SAAT and blood were obtained. The relative content of immune cells in blood and SAAT was determined by flow cytometry. Gene expression analysis of immunity-related markers in SAAT was performed by quantitative real-time PCR. Results In blood, no changes in analysed immune cell population were observed in response to HG. In SAAT, HG induced an increase in the content of CD206 negative monocytes/macrophages (p<0.05) and T lymphocytes (both T helper and T cytotoxic lymphocytes, p<0.01). Further, HG promoted an increase of mRNA levels of immune response markers (CCL2, TLR4, TNFα) and lymphocyte markers (CD3g, CD4, CD8a, TBX21, GATA3, FoxP3) in SAAT (p<0.05 and 0.01). Under both control infusions, none of these changes were observed. Conclusions Acute HG significantly increased the content of monocytes and lymphocytes in SAAT of healthy obese women. This result suggests that the short-term HG can modulate an immune status of AT in obese subjects.
Collapse
Affiliation(s)
- Michaela Tencerová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
- * E-mail:
| | - Jana Kračmerová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Eva Krauzová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Lucia Mališová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Zuzana Kováčová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Zuzana Wedellová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
- Second Internal Medicine Department, Vinohrady Teaching Hospital, Prague, Czech Republic
| | - Michaela Šiklová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Vladimir Štich
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Lenka Rossmeislová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| |
Collapse
|
39
|
Advanced application of porcine intramuscular adipocytes for evaluating anti-adipogenic and anti-inflammatory activities of immunobiotics. PLoS One 2015; 10:e0119644. [PMID: 25789857 PMCID: PMC4366390 DOI: 10.1371/journal.pone.0119644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
We previously established a clonal porcine intramuscular preadipocyte (PIP) line and we were able to establish a protocol to obtain functional mature adipocytes from PIP cells. We hypothesized that both PIP cells and mature adipocytes are likely to be useful in vitro tools for increasing our understanding of immunobiology of adipose tissue, and for the selection and study of immunoregulatory probiotics (immunobiotics) able to modulate adipocytes immune responses. In this study, we investigated the immunobiology of PIP cells and mature adipocytes in relation to their response to TNF-α stimulation. In addition, we evaluated the possibility that immunobiotic microorganisms modify adipogenesis and immune functions of porcine adipose tissue through Peyer’s patches (PPs) immune-competent cells. We treated the porcine PPs immune cells with different probiotic strains; and we evaluated the effect of conditioned media from probiotic-stimulated immune cells in PIP cells and mature adipocytes. The Lactobacillus GG and L. gasseri TMC0356 showed remarkable effects, and were able to significantly reduce the expression of pro-inflammatory factors and negative regulators (A20, Bcl-3, and MKP-1) in adipocytes challenged with TNF-α. The results of this study demonstrated that the evaluation of IL-6, and MCP-1 production, and A20 and Bcl-3 down-regulation in TNF-α-challenged adipocytes could function as biomarkers to screen and select potential immunobiotic strains. Taking into consideration that several in vivo and in vitro studies clearly demonstrated the beneficial effects of Lactobacillus GG and L. gasseri TMC0356 in adipose inflammation, the results presented in this work indicate that the PIP cells and porcine adipocytes could be used for the screening and the selection of new immunobiotic strains with the potential to functionally modulate adipose inflammation when orally administered.
Collapse
|
40
|
Marimoutou M, Le Sage F, Smadja J, Lefebvre d'Hellencourt C, Gonthier MP, Robert-Da Silva C. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. JOURNAL OF INFLAMMATION-LONDON 2015; 12:10. [PMID: 25685071 PMCID: PMC4329220 DOI: 10.1186/s12950-015-0055-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Background Adipose cells responsible for fat storage are the targets of reactive oxygen species (ROS) like H2O2 and pro-inflammatory agents including TNFα and LPS. Such mediators contribute to oxidative stress and alter inflammatory processes in adipose tissue, leading to insulin resistance during obesity. Thus, the identification of natural compounds such as plant polyphenols able to increase the antioxidant and anti-inflammatory capacity of the body is of high interest. We aimed to evaluate the biological properties of polyphenol-rich extracts from the medicinal plants A. borbonica, D. apetalum and G. mauritiana on preadipocytes exposed to H2O2, TNFα or LPS mediators. Methods Medicinal plant extracts were analysed for their polyphenol contents by Folin-Ciocalteu and UPLC-ESI-MS methods as well as for their free radical-scavenging activities by DPPH and ORAC assays. To assess the ability of polyphenol-rich extracts to protect 3T3-L1 preadipocytes against H2O2, TNFα or LPS mediators, several parameters including cell viability (MTT and LDH assays), ROS production (DCFH-DA test), IL-6 and MCP-1 secretion (ELISA) were evaluated. Moreover, the expression of superoxide dismutase, catalase and NF-κB genes was explored (RT-QPCR). Results All medicinal plants exhibited high levels of polyphenols with free radical-scavenging capacities. Flavonoids such as quercetin, kaempferol, epicatechin and procyanidins, and phenolic acids derived from caffeic acid including chlorogenic acid, were detected. Polyphenol-rich plant extracts did not exert a cytotoxic effect on preadipocytes but protected them against H2O2 anti-proliferative action. Importantly, they down-regulated ROS production and the secretion of IL-6 and MCP-1 pro-inflammatory markers induced by H2O2, TNFα and LPS mediators. Such a protective action was associated with an increase in superoxide dismutase antioxidant enzyme gene expression and a decrease in mRNA levels of NF-κB pro-inflammatory transcription factor. Conclusion This study highlights that antioxidant strategies based on polyphenols derived from medicinal plants tested could contribute to regulate adipose tissue redox status and immune process, and thus participate to the improvement of obesity-related oxidative stress and inflammation.
Collapse
Affiliation(s)
- Méry Marimoutou
- UMR Diabète athérothrombose Thérapies Réunion Océan Indien, Inserm U1188 - Université de La Réunion, Plateforme CYROI, 2 rue Maxime Rivière, 97490 Saint-Denis, La Réunion France
| | - Fanny Le Sage
- UMR Diabète athérothrombose Thérapies Réunion Océan Indien, Inserm U1188 - Université de La Réunion, Plateforme CYROI, 2 rue Maxime Rivière, 97490 Saint-Denis, La Réunion France
| | - Jacqueline Smadja
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, EA 2212, Université de La Réunion, 15 avenue René Cassin, CS 92003, 97744 Saint-Denis, La Réunion France
| | - Christian Lefebvre d'Hellencourt
- UMR Diabète athérothrombose Thérapies Réunion Océan Indien, Inserm U1188 - Université de La Réunion, Plateforme CYROI, 2 rue Maxime Rivière, 97490 Saint-Denis, La Réunion France
| | - Marie-Paule Gonthier
- UMR Diabète athérothrombose Thérapies Réunion Océan Indien, Inserm U1188 - Université de La Réunion, Plateforme CYROI, 2 rue Maxime Rivière, 97490 Saint-Denis, La Réunion France
| | - Christine Robert-Da Silva
- UMR Diabète athérothrombose Thérapies Réunion Océan Indien, Inserm U1188 - Université de La Réunion, Plateforme CYROI, 2 rue Maxime Rivière, 97490 Saint-Denis, La Réunion France
| |
Collapse
|
41
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [PMID: 25512010 DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 2014; 5:316. [PMID: 25071777 PMCID: PMC4090903 DOI: 10.3389/fimmu.2014.00316] [Citation(s) in RCA: 596] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine, and dog), in terms of molecular, cellular, and functional properties of TLR4.
Collapse
Affiliation(s)
- Céline Vaure
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| | - Yuanqing Liu
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| |
Collapse
|
43
|
Stolarczyk E, Lord GM, Howard JK. The immune cell transcription factor T-bet: A novel metabolic regulator. Adipocyte 2014; 3:58-62. [PMID: 24575371 PMCID: PMC3917935 DOI: 10.4161/adip.26220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated insulin resistance is accompanied by an alteration in the Th1/Th2 balance in adipose tissue. T-bet (Tbx21) is an immune cell transcription factor originally described as the master regulator of Th1 cell development, although is now recognized to have a role in both the adaptive and innate immune systems. T-bet also directs T-cell homing to pro-inflammatory sites by the regulation of CXCR3 expression. T-bet−/− mice have increased visceral adiposity but are more insulin-sensitive, exhibiting reduced immune cell content and cytokine secretion specifically in the visceral fat depot, perhaps due to altered T-cell trafficking. Studies of T-bet deficiency on Rag2- and IFN-γ-deficient backgrounds indicate the importance of CD4+ T cells and IFN-γ in this model. This favorable metabolic phenotype, uncoupling adiposity from insulin resistance, is present in young lean mice yet persists with age and increasing obesity. We suggest a novel role for T-bet in metabolic regulation.
Collapse
|
44
|
Vu BG, Gourronc FA, Bernlohr DA, Schlievert PM, Klingelhutz AJ. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines. PLoS One 2013; 8:e77988. [PMID: 24205055 PMCID: PMC3813495 DOI: 10.1371/journal.pone.0077988] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs) on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. Methodology/Principal Findings Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT) and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. Conclusions/Significance Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to understand further the mechanism by which toxins are involved in wound healing and the development and clinical manifestations of obesity and diabetes.
Collapse
Affiliation(s)
- Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Francoise A. Gourronc
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - David A. Bernlohr
- Department of Biochemistry and Molecular Biology/Biophysics, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aloysius J. Klingelhutz
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
45
|
Nativel B, Marimoutou M, Thon-Hon VG, Gunasekaran MK, Andries J, Stanislas G, Planesse C, Da Silva CR, Césari M, Iwema T, Gasque P, Viranaicken W. Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue. PLoS One 2013; 8:e76039. [PMID: 24073286 PMCID: PMC3779194 DOI: 10.1371/journal.pone.0076039] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Low-grade inflammation (LGI) is a central phenomenon in the genesis of obesity and insulin-resistance characterized by IL-6 in human serum. Whereas this LGI was initially thought to be mainly attributed to macrophage activation, it is now known that pre-adipocytes and adipocytes secrete several adipokines including IL-6 and participate to LGI and associated pathologies. In macrophages, HMGB1 is a nuclear yet secreted protein and acts as a cytokine to drive the production of inflammatory molecules through RAGE and TLR2/4. In this paper we tested the secretion of HMGB1 and the auto- and paracrine contribution to fat inflammation using the human preadipocyte cell line SW872 as a model. We showed that 1) human SW872 secreted actively HMGB1, 2) IL-6 production was positively linked to high levels of secreted HMGB1, 3) recombinant HMGB1 boosted IL-6 expression and this effect was mediated by the receptor RAGE and did not involve TLR2 or TLR4. These results suggest that HMGB1 is a major adipokine contributing to LGI implementation and maintenance, and can be considered as a target to develop news therapeutics in LGI associated pathologies such as obesity and type II diabetes.
Collapse
Affiliation(s)
- Brice Nativel
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Mery Marimoutou
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Vincent G. Thon-Hon
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Manoj Kumar Gunasekaran
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Jessica Andries
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Giovédie Stanislas
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Cynthia Planesse
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | | | - Maya Césari
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Thomas Iwema
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Philippe Gasque
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Wildriss Viranaicken
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
- * E-mail:
| |
Collapse
|
46
|
Gunasekaran MK, Viranaicken W, Girard AC, Festy F, Cesari M, Roche R, Hoareau L. Inflammation triggers high mobility group box 1 (HMGB1) secretion in adipose tissue, a potential link to obesity. Cytokine 2013; 64:103-11. [PMID: 23938155 DOI: 10.1016/j.cyto.2013.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/19/2013] [Accepted: 07/21/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Low grade inflammation is one of the major metabolic disorders in case of obesity due to variable secretion of adipose derived cytokines called adipokines. Recently the nuclear protein HMGB1 was identified as an inflammatory alarmin in obesity associated diseases. However HMGB1 role in adipose tissue inflammation is not yet studied. OBJECTIVES The aim of this study was to prove the expression of HMGB1 in human adipose tissue and to assess the levels of expression between normo-weight and obese individuals. Furthermore we determined which type of cells within adipose tissue is involved in HMGB1 production under inflammatory signal. METHODS Western-blot was performed on protein lysates from human normo-weight and obese adipose tissue to study the differential HMGB1 expression. Human normo-weight adipose tissue, adipose-derived stromal cells (ASCs) and adipocytes were cultured and stimulated with LPS to induce inflammation. HMGB1, IL-6 and MCP-1 secretion and gene expression were quantified by ELISA and Q-PCR respectively, as well as cell death by LDH assay. HMGB1 translocation during inflammation was tracked down by immunofluorescence in ASCs. RESULTS HMGB1 was expressed 2-fold more in adipose tissue from obese compared to normo-weight individuals. LPS led to an up-regulation in HMGB1 secretion and gene expression in ASCs, while no change was noticed in adipocytes. Moreover, this HMGB1 release was not attributable to any cell death. In LPS-stimulated ASCs, HMGB1 translocation from nucleus to cytoplasm was detectable at 12h and the nuclear HMGB1 was completely drained out after 24h of treatment. CONCLUSION The expression level studies between adipose tissue from normo-weight and obese individuals together with in vitro results strongly suggest that adipose tissue secretes HMGB1 in response to inflammatory signals which characterized obesity.
Collapse
Affiliation(s)
- Manoj Kumar Gunasekaran
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité (GEICO), University of Reunion Island, CYROI, 2 rue Maxime Rivière, 97 490 Sainte-Clotilde, Reunion
| | | | | | | | | | | | | |
Collapse
|
47
|
Murumalla RK, Gunasekaran MK, Padhan JK, Bencharif K, Gence L, Festy F, Césari M, Roche R, Hoareau L. Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation. Lipids Health Dis 2012; 11:175. [PMID: 23259689 PMCID: PMC3551671 DOI: 10.1186/1476-511x-11-175] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/18/2012] [Indexed: 12/27/2022] Open
Abstract
Background On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. Methods Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid - LA and PA) and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid - EPA, DHA and OA) with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1). In order to determine if TLR2 and TLR4 are activated by fatty acid (FA), we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. Results None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. Conclusions This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.
Collapse
Affiliation(s)
- Ravi Kumar Murumalla
- GEICO-Study Group on Chronic Inflammation and Obesity, Platform 'Cyclotron Reunion Ocean Indien' CYROI, 2 Rue Maxime Rivière, Sainte-Clotilde, Reunion Island 97490, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brenner C, Simmonds RE, Wood S, Rose V, Feldmann M, Turner J. TLR signalling and adapter utilization in primary human in vitro differentiated adipocytes. Scand J Immunol 2012; 76:359-70. [PMID: 22690903 DOI: 10.1111/j.1365-3083.2012.02744.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLRs) are central to innate immunity and yet their expression is widespread and not restricted to professional inflammatory cells. TLRs have been reported on adipocytes and have been implicated in obesity-associated pathologies such as diabetes. Why TLRs are found on adipocytes is not clear although one hypothesis is that they may coordinate energy utilization for the energy intensive process of an immune response. We have explored TLR signalling in primary human in vitro differentiated adipocytes and investigated the specific adapter molecules that are involved. Only lipopolysaccharide (LPS), poly(I:C), Pam3CSK4 and MALP-2 could induce the production of IL-6, IL-8 and MCP-1 by adipocytes. Poly(I:C) alone caused a strong induction of type I interferons, as assessed by IP-10 production. Using siRNA, it was confirmed that LPS-dependent signalling in adipocytes occurs via TLR4 utilizing the adapter molecules MyD88, Mal and TRIF and caused rapid degradation of IκBα. Pam3CSK4 signalling utilized TLR2, MyD88 and Mal (but not TRIF). However, the response to poly(I:C) observed in these cells appeared not to require TRIF, but MyD88 was required for induction of NFκB-dependent cytokines by Poly(I:C). Despite this, IκBα degradation could not be detected in poly(I:C) stimulated adipocytes at any time-point up to 4 h. Indeed, IL-6 transcription was not induced until 8-16 h after exposure. These data suggest that Pam3CSK4 and LPS signal via the expected routes in human adipocytes, whereas poly(I:C)/TLR3 signalling may act via a TRIF-independent, MyD88-dependent route.
Collapse
Affiliation(s)
- C Brenner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, London, UK
| | | | | | | | | | | |
Collapse
|
49
|
Zhou YJ, Zhou H, Li Y, Song YL. NOD1 activation induces innate immune responses and insulin resistance in human adipocytes. DIABETES & METABOLISM 2012. [PMID: 23182460 DOI: 10.1016/j.diabet.2012.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIMS The innate immune-receptor nucleotide oligomerization domain (NOD) protein recognizes intracellular bacterial peptidoglycan. Activation of the innate immune system contributes to the development and progression of insulin resistance. The present study aimed to determine the presence of NOD1 and NOD2 in human adipose cells as well as to assess their functionality. METHODS Subcutaneous abdominal fat from obese subjects was biopsied and characterized for NOD expression using quantitative real-time PCR (qPCR). Human adipocytes were stimulated with iE-DAP (NOD1-specific ligand), and NOD1, proinflammatory cytokine production and nuclear factor (NF)-κB activation were quantified using qPCR, enzyme-linked immunosorbent assay (Elisa) and luciferase assay. Insulin-stimulated glucose uptake was determined by measuring 2-deoxy-D-[(3)H] glucose uptake. Expression and phosphorylation of IRS-1, Akt and JNK were evaluated using Western blotting. RESULTS NOD1/NOD2 mRNA expression was induced during adipocyte differentiation and enhanced in human adipose depots. Stimulation of isolated human adipocytes with iE-DAP induced NF-κB p65 nuclear translocation and a marked increase in proinflammatory cytokine production, including MCP-1, IL-6 and IL-8. NOD1 activation weakened insulin signal transduction as revealed by increased JNK and IRS-1 Ser307 phosphorylation, inhibited IRS-1 tyrosine phosphorylation, and reduced insulin-induced phosphorylation of Akt on Ser473 and Thr308 in human adipocytes. Moreover, NOD1 activation reduced insulin-induced glucose uptake, leading to insulin resistance. CONCLUSION These results suggest that NOD1 signaling could be one of the links between innate immunity and insulin resistance in human adipocytes. This study provides supporting evidence for NOD1 protein as a component of innate immunity involved in insulin resistance.
Collapse
Affiliation(s)
- Y-J Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, 110032 Shenyang, PR China.
| | | | | | | |
Collapse
|
50
|
Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul Pharmacol 2012; 58:3-20. [PMID: 22982056 DOI: 10.1016/j.vph.2012.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 01/17/2023]
Abstract
Type 2 diabetes mellitus is an inflammatory disease and the mechanisms that underlie this disease, although still incompletely understood, take place in the adipose tissue of obese subjects. Concurrently, the prevalence of obesity caused by Western diet's excessive energy intake and the lack of exercise escalates, and is believed to be causative for the chronic inflammatory state in adipose tissue. Overnutrition itself as an overload of energy may induce the adipocytes to secrete chemokines activating and attracting immune cells to adipose tissue. But also inflammation-mediating food ingredients like saturated fatty acids are believed to directly initiate the inflammatory cascade. In addition, hypoxia in adipose tissue as a direct consequence of obesity, and its effect on gene expression in adipocytes and surrounding cells in fat tissue of obese subjects appears to play a central role in this inflammatory response too. In contrast, revisiting diet all over the world, there are also some natural food products and beverages which are associated with curative effects on human health. Several natural compounds known as spices such as curcumin, capsaicin, and gingerol, or secondary plant metabolites catechin, resveratrol, genistein, and quercetin have been reported to provide an improved health status to their consumers, especially with regard to diabetes, and therefore have been investigated for their anti-inflammatory effect. In this review, we will give an overview about these phytochemicals and their role to interfere with inflammatory cascades in adipose tissue and their potential for fighting against inflammatory diseases like diabetes as investigated in vivo.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | | | | |
Collapse
|