1
|
Xie X, Ji D, Chen F, Lin Z, Deng K, Song J, Wang J. Arthroscopic versus open fixation for medial malleolus fractures improves trauma response and bone healing. Sci Rep 2025; 15:15050. [PMID: 40301478 PMCID: PMC12041381 DOI: 10.1038/s41598-025-96078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
Medial malleolus fracture is traditionally performed via an open approach. However, significant drawbacks such as exfoliated soft tissue injury, infection, prolonged recovery periods have been reported. Recently, arthroscopy-assisted reduction percutaneous internal fixation (ARPF) demonstrates advantages in minimizing soft tissue damage, improving joint visualization, and enhancing postoperative recovery, however, robust comparative evidence remains sparse on the efficacy of ARPF versus open reduction and internal fixation (ORIF) in treating medial malleolus fractures. The current study provides preliminary evidence suggesting the potential utility of trauma response indexes and bone metabolism markers in clinical outcomes evaluation associated with these two surgical techniques. A retrospective study was conducted on 60 patients with medial malleolus fractures from January 2021 to November 2023, The patients were divided into the ARPF (arthroscopy-assisted reduction and percutaneous internal fixation) group (n = 28) and the ORIF (open reduction and internal fixation) group (n = 32). The differences in preoperative general data, intraoperative bleeding volume, operation time, hospital stay, bone union time, and preoperative, postoperative 1 day, postoperative 3 days inflammatory response indicators [C-reactive protein (CRP), interleukin-6 (IL-6), cortisol (Cor), norepinephrine (NE)] and preoperative, postoperative 2 weeks, 4 weeks bone metabolism markers [bone carboxyglutamicacid protein (BGP), bone alkaline phosphatase (BALP), β-collagen degradation products (β-CTX)] levels, and postoperative 6 months, 1 year Olerud-Molander Ankle Score (OMAS) were compared. No significant differences were observed in age, gender, injury side, or cause of injury between the two groups (P > 0.05). Compared to the ORIF group, the ARPF group exhibited reduced intraoperative blood loss, shorter hospital stays, and accelerated bone healing time. However, the duration of surgery was significantly longer (p < 0.05). Postoperative CRP levels on days 1 and 3 were lower in the ARPF group compared to the ORIF group. Similarly, IL-6 levels on days 1 and 3 were also lower in the ARPF group. Cor levels on days 1 and 3, as well as NE levels on days 1 and 3, were both lower in the ARPF group. At weeks 2 and 4 postoperatively, BGP and BALP levels were both higher, butβ-CTX levels were lower in the ARPF group. Additionally, the OMAS scores at 6 months and 1 year postoperatively were higher in the ARPF group. Arthroscopy-assisted reduction and percutaneous internal fixation for isolated medial malleolus fracture can minimize intraoperative bleeding, reduce trauma, expedite fracture healing, enhance ankle functional recovery, making it a valuable technique for clinical application.
Collapse
Affiliation(s)
- Xihong Xie
- Department of Trauma Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Danting Ji
- Department of Rehabilitation Medicine, Shenzhen Guangming District People Hospital, Shenzhen, 518107, China
| | - Feiqiang Chen
- Department of Trauma Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Zejin Lin
- Department of Trauma Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Kai Deng
- Department of Trauma Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Jinqi Song
- Department of Trauma Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Jing Wang
- Department of Joint Surgery, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, Guangdong, China. wangjing.-
| |
Collapse
|
2
|
Blank V, Karlas T, Anderegg U, Wiegand J, Arnold J, Bundalian L, Le Duc GD, Körner C, Ebert T, Saalbach A. Thy-1 restricts steatosis and liver fibrosis in steatotic liver disease. Liver Int 2024; 44:2075-2090. [PMID: 38702958 DOI: 10.1111/liv.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis, metabolic dysfunction-associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy-1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. METHODS The impact of Thy-1 on the development of SLD and progression to fibrosis was investigated in high-fat diet (HFD)-induced SLD wild-type and Thy-1-deficient mice. In addition, the serum soluble Thy-1 (sThy-1) concentration was analysed in patients with metabolic dysfunction-associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. RESULTS We demonstrated that Thy-1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD-induced SLD mice. Mechanistically, Thy-1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy-1 prevents palmitic acid-mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy-1-deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy-1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. CONCLUSION Our data strongly suggest that Thy-1 may function as a fibrosis-protective factor in mouse and human SLD.
Collapse
Affiliation(s)
- Valentin Blank
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
- Division of Interdisciplinary Ultrasound, Department of Internal Medicine I - Gastroenterology and Pneumology, University Hospital Halle, Halle, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Josi Arnold
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Gabriela-Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christiane Körner
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Ebert
- Division of Endocrinology, Department of Medicine III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Hamberger F, Mederacke YS, Mederacke I. An inducible model for genetic manipulation and fate-tracing of PDGFRβ-expressing fibrogenic cells in the liver. Sci Rep 2023; 13:7322. [PMID: 37147343 PMCID: PMC10162963 DOI: 10.1038/s41598-023-34353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Myofibroblasts are the source of extracellular matrix protein during liver fibrogenesis. Fibroblasts, hepatic stellate cells (HSCs) and vascular smooth muscle cells are mesenchymal subpopulations in the liver that are characterized by the expression of PDGFRβ and contribute to the pool of these myofibroblasts. Conditional knockout models are important to better understand the function of specific liver cell populations including mesenchymal cells. While there is a limited number of constitutive mouse models for liver mesenchymal cell specific transgene expression, there is no established model for inducible gene targeting in HSCs or PDGFRβ-expressing mesenchymal cell populations in the liver. To address this, we investigated whether the tamoxifen inducible PDGFRβ-P2A-CreERT2 mouse can be used as a reliable tool to specifically express transgens in liver mesenchymal cells. Our data demonstrate, that PDGFRβ-P2A-CreERT2 specifically and efficiently marks over 90% of retinoid positive HSCs in healthy and fibrotic liver in mice upon tamoxifen injection, and that those cells give rise to Col1a1-expressing myofibroblasts in different models of liver fibrosis. Together with a negligible background recombination of only about 0.33%, this confirms that the PDGFRβ-P2A-CreERT2 mouse is nearly as efficient as established constitutive LratCre and PDGFRβ-Cre mouse models for recombination in HSCs, and that it is a powerful model for mesenchymal liver cell studies that require an inducible Cre approach.
Collapse
Affiliation(s)
- Florian Hamberger
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Lei L, Bruneau A, El Mourabit H, Guégan J, Folseraas T, Lemoinne S, Karlsen TH, Hoareau B, Morichon R, Gonzalez-Sanchez E, Goumard C, Ratziu V, Charbord P, Gautheron J, Tacke F, Jaffredo T, Cadoret A, Housset C. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 2022; 76:1360-1375. [PMID: 35278227 DOI: 10.1002/hep.32456] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.
Collapse
Affiliation(s)
- Lin Lei
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Haquima El Mourabit
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Justine Guégan
- Institut du Cerveau (ICM), Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Trine Folseraas
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Tom Hemming Karlsen
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM, UMS Production et Analyse de Données en Sciences de la Vie et en Santé (PASS), Cytométrie Pitié-Salpêtrière (CyPS), Paris, France
| | - Romain Morichon
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Claire Goumard
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Vlad Ratziu
- Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Charbord
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
5
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 1091] [Impact Index Per Article: 272.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Garcia-Vicién G, Mezheyeuski A, Bañuls M, Ruiz-Roig N, Molleví DG. The Tumor Microenvironment in Liver Metastases from Colorectal Carcinoma in the Context of the Histologic Growth Patterns. Int J Mol Sci 2021; 22:1544. [PMID: 33546502 PMCID: PMC7913731 DOI: 10.3390/ijms22041544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is the third most common cancer. Likewise, it is a disease that has a long survival if it is prematurely detected. However, more than 50% of patients will develop metastases, mainly in the liver (LM-CRC), throughout the evolution of their disease, which accounts for most CRC-related deaths. Treatment it is certainly a controversial issue, since it has not been shown to increase overall survival in the adjuvant setting, although it does improve disease free survival (DFS). Moreover, current chemotherapy combinations are administered based on data extrapolated from primary tumors (PT), not considering that LM-CRC present a very particular tumor microenvironment that can radically condition the effectiveness of treatments designed for a PT. The liver has a particular histology and microenvironment that can determine tumor growth and response to treatments: double blood supply, vascularization through fenestrated sinusoids and the presence of different mesenchymal cell types, among other particularities. Likewise, the liver presents a peculiar immune response against tumor cells, a fact that correlates with the poor response to immunotherapy. All these aspects will be addressed in this review, putting them in the context of the histological growth patterns of LM-CRC, a particular pathologic feature with both prognostic and predictive repercussions.
Collapse
Affiliation(s)
- Gemma Garcia-Vicién
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - María Bañuls
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Ruiz-Roig
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 L’Hospitalet de Llobregat, Spain
| | - David G. Molleví
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
7
|
Anfuso B, El-Khobar KE, Ie SI, Avellini C, Radillo O, Raseni A, Tiribelli C, Sukowati CHC. Activation of hepatic stem cells compartment during hepatocarcinogenesis in a HBsAg HBV-transgenic mouse model. Sci Rep 2018; 8:13168. [PMID: 30177788 PMCID: PMC6120871 DOI: 10.1038/s41598-018-31406-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic infection of Hepatitis B Virus (HBV) is one of the highest risk factors of hepatocellular carcinoma (HCC). The accumulation of HBV surface antigen (HBsAg) into hepatocytes induces inflammation and oxidative stress, impairing their replicative ability and allowing the activation of the hepatic stem cells (SC) compartment. This study aimed to understand the involvement of SC during hepatocarcinogenesis in HBsAg-related liver damage, from early injury until HCC. HBsAg-transgenic (TG) and wild type (WT) mouse were followed at several stages of the liver damage: inflammation, early hepatocytes damage, dysplasia, and HCC. Serum transaminases, liver histology, and diagnostic data were collected. The expressions of SC and cancer stem cells (CSC) markers was analyzed by RT-qPCR, immunohistochemistry and Western blot. Starting from 3 months, TG animals showed a progressive liver damage characterized by transaminases increase. The up-regulations of SCs markers Cd34 and Sca-1 started from the beginning of the inflammatory stage while progressive increase of Krt19 and Sox9 and CSCs markers Epcam and Cd133 from early hepatic injury. The expressions of Cd133, Cd34, and Afp were significantly higher in HCC compared to paired non-HCC tissue, in contrast to Epcam and Krt19. Western blot and IHC confirmed the positivity of Cd34 and Cd133 in small cells subpopulation.
Collapse
MESH Headings
- AC133 Antigen/genetics
- AC133 Antigen/metabolism
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Disease Models, Animal
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/metabolism
- Gene Expression
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/virology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Keratin-19/genetics
- Keratin-19/metabolism
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- SOX9 Transcription Factor/genetics
- SOX9 Transcription Factor/metabolism
- Stem Cells/metabolism
- Stem Cells/pathology
- Transaminases/blood
- Transaminases/genetics
Collapse
Affiliation(s)
- Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Korri E El-Khobar
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Susan I Ie
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Claudio Avellini
- Department of Medical and Biological Sciences, University Hospital, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Oriano Radillo
- Laboratory of Clinical Analysis, Children Hospital Burlo Garofolo IRCCS, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Alan Raseni
- Laboratory of Clinical Analysis, Children Hospital Burlo Garofolo IRCCS, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Caecilia H C Sukowati
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy.
| |
Collapse
|
8
|
Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends Parasitol 2018. [PMID: 29526403 DOI: 10.1016/j.pt.2018.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a common pathology in various liver diseases. Hepatic stellate cells (HSCs) are the main cell type responsible for collagen deposition and fibrosis formation in the liver. Schistosomiasis is characterised by granulomatous fibrosis around parasite eggs trapped within the liver and other host tissues. This response is facilitated by the recruitment of immune cells and the activation of HSCs. The interactions between HSCs and schistosome eggs are complex and diverse, and a better understanding of these interactions could lead to improved resolution of fibrotic liver disease, including that associated with schistosomiasis. Here, we discuss recent advances in HSC biology and the role of HSCs in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, Herston, QLD, 4006, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Shang L, Hosseini M, Liu X, Kisseleva T, Brenner DA. Human hepatic stellate cell isolation and characterization. J Gastroenterol 2018; 53:6-17. [PMID: 29094206 DOI: 10.1007/s00535-017-1404-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
The hepatic stellate cells (HSCs) localize at the space of Disse in the liver and have multiple functions. They are identified as the major contributor to hepatic fibrosis. Significant understanding of HSCs has been achieved using rodent models and isolated murine HSCs; as well as investigating human liver tissues and human HSCs. There is growing interest and need of translating rodent study findings to human HSCs and human liver diseases. However, species-related differences impose challenges on the translational research. In this review, we focus on the current information on human HSCs isolation methods, human HSCs markers, and established human HSC cell lines.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, La Jolla, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - David Allen Brenner
- Department of Medicine, University of California, San Diego, La Jolla, USA.
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0602, USA.
| |
Collapse
|
10
|
Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Int J Artif Organs 2017; 40:294-306. [PMID: 28574111 DOI: 10.5301/ijao.5000594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Livers discarded after standard organ retrieval are commonly used as a cell source for hepatocyte transplantation. Due to the scarcity of organ donors, this leads to a shortage of suitable cells for transplantation. Here, the isolation of liver cells from diseased livers removed during liver transplantation is studied and compared to the isolation of cells from liver specimens obtained during partial liver resection. METHODS Hepatocytes from 20 diseased explanted livers (Ex-group) were isolated, cultured and stored at 4°C for up to 48 hours, and compared to hepatocytes isolated from the normal liver tissue of 14 liver lobe resections (Rx-group). The nonparenchymal cell fraction (NPC) was analyzed by flow cytometry to identify potential liver progenitor cells, and OptiPrep™ (Sigma-Aldrich) density gradient centrifugation was used to enrich the progenitor cells for immediate transplantation. RESULTS There were no differences in viability, cell integrity and metabolic activity in cell culture and survival after cold storage when comparing the hepatocytes from the Rx-group and the Ex-group. In some cases, the latter group showed tendencies of increased resistance to isolation and storage procedures. The NPC of the Ex-group livers contained considerably more EpCAM+ and significantly more CD90+ cells than the Rx-group. Progenitor cell enrichment was not sufficient for clinical application. CONCLUSIONS Hepatocytes isolated from diseased explanted livers showed the essential characteristics of being adequate for cell transplantation. Increased numbers of liver progenitor cells can be isolated from diseased explanted livers. These results support the feasibility of using diseased explanted livers as a cell source for liver cell transplantation.
Collapse
|
11
|
Katsumata LW, Miyajima A, Itoh T. Portal fibroblasts marked by the surface antigen Thy1 contribute to fibrosis in mouse models of cholestatic liver injury. Hepatol Commun 2017; 1:198-214. [PMID: 29404454 PMCID: PMC5721447 DOI: 10.1002/hep4.1023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis, a condition that is characterized by excessive production and accumulation of extracellular matrix, including collagen, is the most common outcome of chronic liver injuries of different etiologies. Vitamin A‐storing hepatic stellate cells (HSCs) are considered to be the main source of this collagen production, with activation in response to liver injury. In contrast, the contribution of other cell types to this fibrogenic response remains largely elusive due to the lack of specific surface markers to identify and isolate these cells for detailed analysis. Here, we identify a mesenchymal population of thymus cell antigen 1 (Thy1)+ CD45− cells (Thy1 MCs) in the mouse liver; these cells reside near the portal vein in vivo and indicate profibrogenic characteristics in vitro, shown by their expression of collagen and α‐smooth muscle actin. Flow cytometric analysis of mouse liver nonparenchymal cells revealed that vitamin A storage and Thy1 expression were mutually exclusive, indicating that Thy1 MCs are distinct from HSCs. Importantly, Thy1 MCs reacted and contributed to the development of liver fibrosis specifically in mouse models of cholestatic liver injury. With the occurrence of cholestatic liver injury, collagen‐producing Thy1 MCs expanded in cell number and inhibited collagen degradation through up‐regulation of matrix metalloproteinase inhibitor Timp1 expression, thereby promoting the accumulation of extracellular matrix in the periportal area. Conclusion: This study establishes Thy1 as a useful cell surface marker to prospectively identify and isolate periportal fibroblasts and further highlights a significant contribution of these cells to the pathogenesis of liver fibrosis caused by cholestatic liver injuries. We suggest that Thy1 MCs may be an interesting therapeutic target for treating liver fibrosis in addition to the well‐characterized HSCs. (Hepatology Communications 2017;1:198‐214)
Collapse
Affiliation(s)
- Len William Katsumata
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| | - Tohru Itoh
- Laboratory of Cell Growth and Differentiation Institute of Molecular and Cellular Biosciences, University of Tokyo Tokyo Japan
| |
Collapse
|
12
|
Manzanares MÁ, Usui A, Campbell DJ, Dumur CI, Maldonado GT, Fausther M, Dranoff JA, Sirica AE. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1068-1092. [PMID: 28315313 DOI: 10.1016/j.ajpath.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
To gain insight into the cellular and molecular interactions mediating the desmoplastic reaction and aggressive malignancy of mass-forming intrahepatic cholangiocarcinoma (ICC), we modeled ICC desmoplasia and progression in vitro. A unique three-dimensional (3D) organotypic culture model was established; within a dilute collagen-type I hydrogel, a novel clonal strain of rat cancer-associated myofibroblasts (TDFSM) was co-cultured with a pure rat cholangiocarcinoma cell strain (TDECC) derived from the same ICC type as TDFSM. This 3D organotypic culture model reproduced key features of desmoplastic reaction that closely mimicked those of the in situ tumor, as well as promoted cholangiocarcinoma cell growth and progression. Our results supported a resident liver mesenchymal cell origin of the TDFSM cells, which were not neoplastically transformed. Notably, 3D co-culturing of TDECC cells with TDFSM cells provoked the formation of a dense fibrocollagenous stroma in vitro that was associated with significant increases in both proliferative TDFSM myofibroblastic cells and TDECC cholangiocarcinoma cells accumulating within the gel matrix. This dramatic desmoplastic ICC-like phenotype, which was not observed in the TDECC or TDFSM controls, was highly dependent on transforming growth factor (TGF)-β, but not promoted by TGF-α. However, TGF-α was determined to be a key factor for promoting cholangiocarcinoma cell anaplasia, hyperproliferation, and higher malignant grading in this 3D culture model of desmoplastic ICC.
Collapse
Affiliation(s)
- Miguel Á Manzanares
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Akihiro Usui
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Deanna J Campbell
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Gabrielle T Maldonado
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
13
|
Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, Zhang M, Sun M, Cong M, Karin D, Taura K, Benner C, Heinz S, Bera T, Brenner DA, Kisseleva T. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest 2017; 127:1254-1270. [PMID: 28287406 DOI: 10.1172/jci88845] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cholestatic liver fibrosis is caused by obstruction of the biliary tract and is associated with early activation of portal fibroblasts (PFs) that express Thy-1, fibulin 2, and the recently identified marker mesothelin (MSLN). Here, we have demonstrated that activated PFs (aPFs) and myofibroblasts play a critical role in the pathogenesis of liver fibrosis induced by bile duct ligation (BDL). Conditional ablation of MSLN+ aPFs in BDL-injured mice attenuated liver fibrosis by approximately 50%. Similar results were observed in MSLN-deficient mice (Msln-/- mice) or mice deficient in the MSLN ligand mucin 16 (Muc16-/- mice). In vitro analysis revealed that MSLN regulates TGF-β1-inducible activation of WT PFs by disrupting the formation of an inhibitory Thy-1-TGFβRI complex. MSLN also facilitated the FGF-mediated proliferation of WT aPFs. Therapeutic administration of anti-MSLN-blocking Abs attenuated BDL-induced fibrosis in WT mice. Liver specimens from patients with cholestatic liver fibrosis had increased numbers of MSLN+ aPFs/myofibroblasts, suggesting that MSLN may be a potential target for antifibrotic therapy.
Collapse
|
14
|
Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016; 92:84-92. [PMID: 27591095 PMCID: PMC5079826 DOI: 10.1016/j.diff.2016.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis results from chronic injury of hepatocytes and activation of Collagen Type I producing myofibroblasts that produce fibrous scar in liver fibrosis. Myofibroblasts are not present in the normal liver but rapidly appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of liver resident cells including portal fibroblasts, hepatic stellate cells, mesenchymal progenitor cells, and fibrocytes recruited from the bone marrow. It is considered that hepatic stellate cells and portal fibroblasts are the major source of hepatic myofibroblasts. In fact, the origin of myofibroblasts differs significantly for chronic liver diseases of different etiologies, such as cholestatic liver disease or hepatotoxic liver disease. Depending on etiology of hepatic injury, the fibrogenic foci might initiate within the hepatic lobule as seen in chronic hepatitis, or primarily affect the portal areas as in most biliary diseases. It has been suggested that activated portal fibroblasts/myofibroblasts work as "myofibroblasts for cholangiocytes" while hepatic stellate cells work as "myofibroblast for hepatocytes". This review will focus on our current understanding of the activated portal fibroblasts/myofibroblasts in cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Daniel Karin
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Yukinori Koyama
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA.
| |
Collapse
|
15
|
Li C, Kuemmerle JF. Genetic and epigenetic regulation of intestinal fibrosis. United European Gastroenterol J 2016; 4:496-505. [PMID: 27536359 DOI: 10.1177/2050640616659023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Crohn's disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn's disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn's disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn's disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn's disease and contrast that with other fibrotic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| | - John F Kuemmerle
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA; Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
16
|
Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Sci Rep 2016; 6:26587. [PMID: 27215737 PMCID: PMC4877602 DOI: 10.1038/srep26587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
The human brain is a highly vascular organ in which the blood-brain barrier (BBB) tightly regulates molecules entering the brain. Pericytes are an integral cell type of the BBB, regulating vascular integrity, neuroinflammation, angiogenesis and wound repair. Despite their importance, identifying pericytes amongst other perivascular cell types and deciphering their specific role in the neurovasculature remains a challenge. Using primary adult human brain cultures and fluorescent-activated cell sorting, we identified two CD73(+)CD45(-) mesenchymal populations that showed either high or low CD90 expression. CD90 is known to be present on neurons in the brain and peripheral blood vessels. We found in the human brain, that CD90 immunostaining localised to the neurovasculature and often associated with pericytes. In vitro, CD90(+) cells exhibited higher basal proliferation, lower expression of markers αSMA and CD140b, produced less extracellular matrix (ECM) proteins, and exhibited lesser pro-inflammatory responses when compared to the CD90(-) population. Thus, CD90 distinguishes two interrelated, yet functionally distinct pericyte populations in the adult human brain that may have discrete roles in neurovascular function, immune response and scar formation.
Collapse
|
17
|
Don't Feed After Midnight: Gremlin and Chronic Pancreatitis. Pancreas 2016; 45:631-2. [PMID: 27077711 DOI: 10.1097/mpa.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
18
|
El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol 2016; 7:120. [PMID: 27065888 PMCID: PMC4814710 DOI: 10.3389/fphys.2016.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/17/2016] [Indexed: 01/20/2023] Open
Abstract
Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in primary culture. In conclusion, this straightforward and reproducible method of PMF culture, can be used to identify new markers of PMFs at different stages of differentiation, to compare their phenotype with those of HSC-MFs and ultimately determine their progenitors and specific functions in liver wound-healing.
Collapse
Affiliation(s)
- Haquima El Mourabit
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Emilien Loeuillard
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| |
Collapse
|
19
|
Guo X, Wang S, Dou YL, Guo XF, Chen ZL, Wang XW, Shen ZQ, Qiu ZG, Jin M, Li JW. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells. Rejuvenation Res 2015; 18:211-24. [PMID: 25556695 DOI: 10.1089/rej.2014.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Xuan Guo
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Shu Wang
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Ya-ling Dou
- 3 Peking Union Medical College Hospital , Chinese Medical Academy, Beijing, China
| | - Xiang-fei Guo
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Zhao-li Chen
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Xin-wei Wang
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Zhi-qiang Shen
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Zhi-gang Qiu
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Min Jin
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| | - Jun-wen Li
- 1 Institute of Health and Environmental Medicine , Tianjin, China .,2 Key Laboratory of Risk Assessment and Control for Environment & Food Safety , Tianjin, China
| |
Collapse
|
20
|
Lemoinne S, Cadoret A, Rautou PE, El Mourabit H, Ratziu V, Corpechot C, Rey C, Bosselut N, Barbu V, Wendum D, Feldmann G, Boulanger C, Henegar C, Housset C, Thabut D. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology 2015; 61:1041-55. [PMID: 25043701 DOI: 10.1002/hep.27318] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Liver fibrosis expanding from portal tracts and vascular remodeling are determinant factors in the progression of liver diseases to cirrhosis. In the present study, we examined the potential contribution of portal myofibroblasts (PMFs) to the vascular changes leading to cirrhosis. The analyses of liver cells based on the transcriptome of rat PMFs, compared to hepatic stellate cell HSC-derived myofibroblasts in culture, identified collagen, type XV, alpha 1 (COL15A1) as a marker of PMFs. Normal liver contained rare COL15A1-immunoreactive cells adjacent to the bile ducts and canals of Hering in the portal area. A marked increase in COL15A1 expression occurred together with that of the endothelial marker, von Willebrand factor, in human and rat liver tissue, at advanced stages of fibrosis caused by either biliary or hepatocellular injury. In cirrhotic liver, COL15A1-expressing PMFs adopted a perivascular distribution outlining vascular capillaries proximal to reactive ductules, within large fibrotic septa. The effect of PMFs on endothelial cells (ECs) was evaluated by in vitro and in vivo angiogenesis assays. PMF-conditioned medium increased the migration and tubulogenesis of liver ECs as well as human umbilical vein ECs and triggered angiogenesis within Matrigel plugs in mice. In coculture, PMFs developed intercellular junctions with ECs and enhanced the formation of vascular structures. PMFs released vascular endothelial growth factor (VEGF)A-containing microparticles, which activated VEGF receptor 2 in ECs and largely mediated their proangiogenic effect. Cholangiocytes potentiated the angiogenic properties of PMFs by increasing VEGFA expression and microparticle shedding in these cells. CONCLUSION PMFs are key cells in hepatic vascular remodeling. They signal to ECs through VEGFA-laden microparticles and act as mural cells for newly formed vessels, driving scar progression from portal tracts into the parenchyma.
Collapse
Affiliation(s)
- Sara Lemoinne
- Sorbonne Universités, UPMC Université Paris 06, CDR Saint-Antoine and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM, UMR_S 938, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Patil PB, Joshi M, Kuna VK, Xu B, Johannesson L, Olausson M, Sumitran-Holgersson S. TEMPORARY REMOVAL: CD271 identifies functional human hepatic stellate cells, which localize in peri-sinusoidal and portal areas in liver after partial hepatectomy. Cytotherapy 2014; 16:990-9. [PMID: 24831840 DOI: 10.1016/j.jcyt.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AIMS Hepatic stellate cells (HSCs) are liver-resident mesenchymal cells involved in essential processes in the liver. However, knowledge concerning these cells in human livers is limited because of the lack of a simple isolation method. METHODS We isolated fetal and adult human liver cells by immunomagnetic beads coated with antibodies to a mesenchymal stromal cell marker (CD271) to enrich a population of HSCs. The cells were characterized by cell cultivation, immunocytochemistry, flow cytometry, reverse-transcription polymerase chain reaction and immunohistochemistry. Cells were injected into nude mice after partial hepatectomy to study in vivo localization of the cells. RESULTS In vitro, CD271(+) cells were lipid-containing cells expressing several HSC markers: the glial fibrillary acidic protein, desmin, vimentin and α-smooth muscle actin but negative for CK8, albumin and hepatocyte antigen. The cells produced several inflammatory cytokines such as interleukin (IL)-6, IL-1A, IL-1B and IL-8 and matrix metalloproteinases MMP-1 and MMP-3 and inhibitors TIMP-1 and TIMP-2. In vivo, fetal CD271(+) cells were found in the peri-sinusoidal space and around portal vessels, whereas adult CD271(+) cells were found mainly in the portal connective tissue and in the walls of the portal vessels, which co-localized with α-smooth muscle actin or desmin. CD271(-) cells did not show this pattern of distribution in the liver parenchyma. CONCLUSIONS The described protocol establishes a method for isolation of mesenchymal cell precursors for hepatic stellate cells, portal fibroblasts and vascular smooth muscle cells. These cells provide a novel culture system to study human hepatic fibrogenesis, gene expression and transcription factors controlling HSC regulation.
Collapse
Affiliation(s)
- Pradeep B Patil
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Meghnad Joshi
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Vijay Kumar Kuna
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bo Xu
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liza Johannesson
- Gynecology and Obstetrics at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Olausson
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Suchitra Sumitran-Holgersson
- Sahlgrenska University Hospital, Laboratory for Transplantation and Regenerative Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Cell cycle association and hypoxia regulation of excision repair cross complementation group 1 protein (ERCC1) in tumor cells of head and neck cancer. Tumour Biol 2014; 35:7807-19. [PMID: 24817012 PMCID: PMC4158184 DOI: 10.1007/s13277-014-2001-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/22/2014] [Indexed: 12/18/2022] Open
Abstract
Excision repair cross complementation group 1 (ERCC1) is a key component of homologous recombination-based repair of interstrand DNA cross-links (ICLs). As a consequence, ERCC1 mediates resistance to mitomycin C (MMC) and platinum chemotherapeutic agents and may predict treatment failure. Clinical response to MMC or cisplatin (CDDP)-based radiochemotherapy (RCT) was assessed in 106 head and neck squamous cell carcinoma (HNSCC) patients and correlated with cell nuclear immunoreactivity of the mouse monoclonal (clone: 8 F1) ERCC1 antibody in tumor tissue samples. BEAS-2B epithelial and Detroit 562 pharyngeal squamous carcinoma cells were treated with CDDP, MMC, and 5-fluorouracil (5-FU) at 50 % growth inhibitory (IC-50) concentrations. ERCC1 protein synthesis was compared with cell cycle distribution using combined immunocytochemistry and flow cytometry. ERCC1 messenger RNA (mRNA) and protein expression was investigated in normoxic and hypoxic conditions in Detroit 562 cells. Clinically, the nonresponder revealed significantly lower HNSCC tissue ERCC1 immunoreactivity than the responder (p = 0.0064) or control normal mucosa, which led to further mechanistic investigations. In vitro, control cells and cells treated with cytotoxic agents showed increasing ERCC1 levels from the G1 through S and G2 phases of the cell cycle. In CDDP-treated cells, ERCC1 mRNA and protein expression increased. Under hypoxic conditions, ERCC1 gene expression significantly decreased. Although ERCC1+ cells show increased chemoresistance, they might be particularly radiosensitive, representing G2 cell cycle phase and less hypoxic. ERCC1 expression might be indirectly related with some conditions important for RCT treatment, but it is not a clear predictor for its failure in HNSCC patients.
Collapse
|
23
|
Motoyama H, Komiya T, Thuy LTT, Tamori A, Enomoto M, Morikawa H, Iwai S, Uchida-Kobayashi S, Fujii H, Hagihara A, Kawamura E, Murakami Y, Yoshizato K, Kawada N. Cytoglobin is expressed in hepatic stellate cells, but not in myofibroblasts, in normal and fibrotic human liver. J Transl Med 2014; 94:192-207. [PMID: 24296877 DOI: 10.1038/labinvest.2013.135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022] Open
Abstract
Cytoglobin (CYGB) is ubiquitously expressed in the cytoplasm of fibroblastic cells in many organs, including hepatic stellate cells. As yet, there is no specific marker with which to distinguish stellate cells from myofibroblasts in the human liver. To investigate whether CYGB can be utilized to distinguish hepatic stellate cells from myofibroblasts in normal and fibrotic human liver, human liver tissues damaged by infection with hepatitis C virus (HCV) and at different stages of fibrosis were obtained by liver biopsy. Immunohistochemistry was performed on histological sections of liver tissues using antibodies against CYGB, cellular retinol-binding protein-1 (CRBP-1), α-smooth muscle actin (α-SMA), thymocyte differentiation antigen 1 (Thy-1), and fibulin-2 (FBLN2). CYGB- and CRBP-1-positive cells were counted around fibrotic portal tracts in histological sections of the samples. The expression of several of the proteins listed above was examined in cultured mouse stellate cells. Quiescent stellate cells, but not portal myofibroblasts, expressed both CYGB and CRBP-1 in normal livers. In fibrotic and cirrhotic livers, stellate cells expressed both CYGB and α-SMA, whereas myofibroblasts around the portal vein expressed α-SMA, Thy-1, and FBLN2, but not CYGB. Development of the fibrotic stage was positively correlated with increases in Sirius red-stained, α-SMA-positive, and Thy-1-positive areas, whereas the number of CYGB- and CRBP-1-positive cells decreased with fibrosis development. Primary cultured mouse stellate cells expressed cytoplasmic CYGB at day 1, whereas they began to express α-SMA at the cellular margins at day 4. Thy-1 was undetectable throughout the culture period. In human liver tissues, quiescent stellate cells are CYGB positive. When activated, they also become α-SMA positive; however, they are negative for Thy-1 and FBLN2. Thus, CYGB is a useful marker with which to distinguish stellate cells from portal myofibroblasts in the damaged human liver.
Collapse
Affiliation(s)
- Hiroyuki Motoyama
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tohru Komiya
- Department of Biological Function, Faculty of Science, Osaka City University, Osaka, Japan
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroyasu Morikawa
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shuji Iwai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yoshiki Murakami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katsutoshi Yoshizato
- 1] Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan [2] PhoenixBio, Higashihiroshima, Hiroshima, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
24
|
Machado MV, Diehl AM. Liver renewal: detecting misrepair and optimizing regeneration. Mayo Clin Proc 2014; 89:120-30. [PMID: 24388030 DOI: 10.1016/j.mayocp.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Cirrhosis and liver cancer, the main causes of liver-related morbidity and mortality, result from defective repair of liver injury. This article summarizes rapidly evolving knowledge about liver myofibroblasts and progenitors, the 2 key cell types that interact to orchestrate effective repair, because deregulation of these cells is likely to be central to the pathogenesis of both cirrhosis and liver cancer. We focus on cirrhosis pathogenesis because cirrhosis is the main risk factor for primary liver cancer. Emerging evidence suggests that the defective repair process has certain characteristics that might be exploited for biomarker development. Recent findings in preclinical models also indicate that the newly identified cellular and molecular targets are amenable to therapeutic manipulation. Thus, recent advances in our understanding about key cell types and fundamental mechanisms that regulate liver regeneration have opened new avenues to improve the outcomes of liver injury. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01899859.
Collapse
Affiliation(s)
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC.
| |
Collapse
|
25
|
Sukowati CHC, Anfuso B, Torre G, Francalanci P, Crocè LS, Tiribelli C. The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PLoS One 2013; 8:e76830. [PMID: 24116172 PMCID: PMC3792890 DOI: 10.1371/journal.pone.0076830] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
Although the CD90 (Thy-1) was proposed as biomarker of several tumors and cancer stem cells, the involvement of this molecule in the progression of hepatocellular carcinoma (HCC) and other less frequent hepatic neoplasms is still undefined. The distribution of CD90 was investigated both in in vivo (human tissues samples) and in vitro (human HCC cell line JHH-6). A total of 67 liver tumors were analyzed: 51 HCC, 6 cholangiocarcinoma and 10 hepatoblastoma. In all cases, paired tissue sample of both the tumor and cirrhotic liver was available. Hepatic tissue obtained in 12 healthy livers was used as control. CD90 gene expression was studied by RT-qPCR, protein expression was assessed by quantitative Western Blot, immunofluorescence and flow cytometry. The CD90 expression analysis showed a significant increment in tumor compared to both its paired cirrhotic tissue and normal liver (p<0.05 and p<0.001, respectively). This increase was accompanied by the up-regulation of stromal component in the cancer, as demonstrated by alpha smooth muscle actin staining. In vitro analysis of JHH-6 cell line showed a higher proliferation capacity of CD90(+) compared to CD90(-) cells (p<0.001), also noticed in 3D clonogenic assay (p<0.05), associated by a significant higher expression of the promoting factors (hepatocyte growth factor, fibroblast associated protein and alpha smooth muscle actin 2). A higher expression of the breast cancer resistance protein was found in CD90(+) subpopulation while the multidrug resistance protein 1 showed an opposite behavior. Collectively, these results point to the importance of CD90 in the HCC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Actins/genetics
- Actins/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Mice, SCID
- Microscopy, Fluorescence
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
| | - Beatrice Anfuso
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
| | - Giuliano Torre
- Hepatology Unit, Gastroenterology and Nutrition, Department of Surgery and Transplantation, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Paola Francalanci
- Department of Laboratories, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lory Saveria Crocè
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Fausther M, Lavoie EG, Dranoff JA. Contribution of Myofibroblasts of Different Origins to Liver Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2013; 1:225-230. [PMID: 23997993 DOI: 10.1007/s40139-013-0020-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common cause of liver failure is cirrhosis, due to progressive liver fibrosis and other architectural changes in the liver. Fibrosis occurs after liver injury or stress and results directly from an imbalance between the processes of extracellular matrix synthesis (fibrogenesis) and degradation (fibrolysis). Although research studies have identified several promising targets at the molecular level, current therapies to prevent and treat hepatic fibrosis in patients have only shown limited success. It is well established that liver myofibroblasts are the primary effector cells responsible for the extensive extracellular matrix accumulation and scar formation observed during hepatic fibrosis, in both clinical and experimental settings. Thus, as the major fibrogenic cells implicated in wound healing and tissue repair response, liver myofibroblasts could represent excellent targets for antifibrotic therapies. Still, the exact natures and identities of liver myofibroblasts precursors have yet to be resolved, and their relative contribution to hepatic fibrosis to be determined. The goal of this review is to examine the relative importance of liver myofibroblast precursors in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock AR 72205, USA
| | | | | |
Collapse
|
27
|
Lemoinne S, Cadoret A, El Mourabit H, Thabut D, Housset C. Origins and functions of liver myofibroblasts. Biochim Biophys Acta Mol Basis Dis 2013; 1832:948-54. [PMID: 23470555 DOI: 10.1016/j.bbadis.2013.02.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 02/06/2023]
Abstract
Myofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to other aspects of the wound healing response, including regeneration and angiogenesis. They display the de novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are derived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are currently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Sara Lemoinne
- UPMC Univ Paris 06, UMR_S 938, Paris, France; INSERM, U938, CdR Saint-Antoine, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Payushina OV, Butorina NN, Sheveleva ON, Kozhevnikova MN, Starostin VI. Cell Composition of the Primary Culture of Fetal Liver. Bull Exp Biol Med 2013; 154:566-73. [DOI: 10.1007/s10517-013-2001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Payushina OV. Hematopoietic Microenvironment in the Fetal Liver: Roles of Different Cell Populations. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/979480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoiesis is the main function of the liver during a considerable period of mammalian prenatal development. Hematopoietic cells of the fetal liver exist in a specific microenvironment that controls their proliferation and differentiation. This microenvironment is created by different cell populations, including epitheliocytes, macrophages, various stromal elements (hepatic stellate cells, fibroblasts, myofibroblasts, vascular smooth muscle and endothelial cells, mesenchymal stromal cells), and also cells undergoing epithelial-to-mesenchymal transition. This paper considers the involvement of these cell types in the regulation of fetal liver hematopoiesis.
Collapse
Affiliation(s)
- Olga V. Payushina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
30
|
Juniantito V, Izawa T, Yuasa T, Ichikawa C, Tanaka M, Kuwamura M, Yamate J. Immunophenotypical analysis of myofibroblasts and mesenchymal cells in the bleomycin-induced rat scleroderma, with particular reference to their origin. ACTA ACUST UNITED AC 2012; 65:567-77. [PMID: 22749686 DOI: 10.1016/j.etp.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/26/2012] [Accepted: 05/31/2012] [Indexed: 12/28/2022]
Abstract
Cellular characteristics of myofibroblasts and its possible origin with mesenchymal stem cell nature in scleroderma remain to be investigated. We analyzed these cells in scleroderma induced in F344 rats by bleomycin (BLM) by immunolabeling using a panel of marker antibodies for cytoskeletons (vimentin, desmin, α-smooth muscle actin (α-SMA)) and stromal stem cells (Thy-1, A3). Skin samples were collected at 1, 2, 3, and 4 weeks after initiation of subcutaneous injections of BLM (100 μl of 1 mg/ml, daily). In double immunofluorescence, myofibroblasts reacting simultaneously to α-SMA, vimentin, and Thy-1 were seen in sclerotic lesions with a time-dependent increase. Mesenchymal cells in the perifollicular dermal sheath (PDS) displayed increased reactivity for Thy-1 and vimentin, but α-SMA expression did not increase in these cells. In double immunofluorescence, both myofibroblasts and pericytes in newly formed blood vessels in sclerotic lesions co-expressed α-SMA, vimentin and Thy-1, and the PDS cells and pericytes reacted simultaneously to A3, Thy-1 and vimentin. Desmin-positive cells were infrequently seen around the blood vessels. Based on these findings, the PDS cells and pericytes may be involved as possible progenitors of myofibroblasts in sclerotic lesions in the stromal stem cell lineage. Interestingly, increased number of TUNEL-positive apoptotic epithelial cells in the atrophied hair follicles significantly correlated with increase in immunohistochemical scoring of vimentin and Thy-1 in the PDS. Apoptosis in the hair follicle might have mediate the perifollicular fibrosis, resulting in extensive scleroderma. The present findings would provide new insights in the pathogenesis of BLM-induced scleroderma in terms of myofibroblasts and its origin.
Collapse
Affiliation(s)
- Vetnizah Juniantito
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano-shi, Osaka 598-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
32
|
Ning H, Lin G, Lue TF, Lin CS. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun 2011. [PMID: 21903091 DOI: 10.1016/j.bbrc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stro-1 is the best-known mesenchymal stem cell (MSC) marker. However, previous studies have observed its expression in the endothelium. In the present study we performed immunofluorescence (IF) staining for Stro-1, using endothelial marker vWF as reference. In the liver, both proteins were expressed in the endothelium of the central veins and hepatic sinusoids. In the lung, both were expressed in the endothelium of pulmonary blood vessels, but while vWF was absent in the alveolar capillaries, Stro-1 was present. In the kidney, both were expressed in the endothelium of renal arterial branches, but while vWF was strongly expressed in the glomeruli, Stro-1 only scantly. IF staining in cultured endothelial cells also showed extensive overlaps between Stro-1 and vWF. Western blot analysis with Stro-1 antibody detected a single protein band of 75 kd in endothelial cells but not smooth muscle cells, fibroblasts, or B cells. Cancer cell lines PC3, DU145, MCF7, and K562 were also positive. Adipose-derived stem cells (ADSCs) expressed higher levels of Stro-1 when cultured beyond the first passage or when induced to differentiate into endothelial cells. These data, together with previous studies, indicate that Stro-1 is intrinsically an endothelial antigen, and its expression in MSC is probably an induced event.
Collapse
Affiliation(s)
- Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | | | | | | |
Collapse
|
33
|
Ning H, Lin G, Lue TF, Lin CS. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun 2011; 413:353-7. [PMID: 21903091 DOI: 10.1016/j.bbrc.2011.08.104] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/20/2011] [Indexed: 12/22/2022]
Abstract
Stro-1 is the best-known mesenchymal stem cell (MSC) marker. However, previous studies have observed its expression in the endothelium. In the present study we performed immunofluorescence (IF) staining for Stro-1, using endothelial marker vWF as reference. In the liver, both proteins were expressed in the endothelium of the central veins and hepatic sinusoids. In the lung, both were expressed in the endothelium of pulmonary blood vessels, but while vWF was absent in the alveolar capillaries, Stro-1 was present. In the kidney, both were expressed in the endothelium of renal arterial branches, but while vWF was strongly expressed in the glomeruli, Stro-1 only scantly. IF staining in cultured endothelial cells also showed extensive overlaps between Stro-1 and vWF. Western blot analysis with Stro-1 antibody detected a single protein band of 75 kd in endothelial cells but not smooth muscle cells, fibroblasts, or B cells. Cancer cell lines PC3, DU145, MCF7, and K562 were also positive. Adipose-derived stem cells (ADSCs) expressed higher levels of Stro-1 when cultured beyond the first passage or when induced to differentiate into endothelial cells. These data, together with previous studies, indicate that Stro-1 is intrinsically an endothelial antigen, and its expression in MSC is probably an induced event.
Collapse
Affiliation(s)
- Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | | | | | | |
Collapse
|
34
|
Deng H, Wang HF, Gao YB, Jin XL, Xiao JC. Hepatic progenitor cell represents a transitioning cell population between liver epithelium and stroma. Med Hypotheses 2011; 76:809-12. [PMID: 21382669 DOI: 10.1016/j.mehy.2011.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/04/2011] [Accepted: 02/14/2011] [Indexed: 12/18/2022]
Abstract
Following an acute injury, the liver may maintain its structure and function through mitotic division of mature hepatocytes (i.e. hepatic regeneration). However, the regeneration ability of hepatocytes can be impaired in chronic liver diseases including chronic viral infection and alcohol abuse. Hepatic progenitor cells/oval cells (HPCs/OCs), capable of differentiation into both hepatocytes and cholangiocytes, occur and proliferate during chronic injury. Unfortunately, a use of HPCs for clinical therapy is blocked by the difficulty of exact identity of HPCs in liver. Focusing on the links between phenotype of HPCs and real stem cells originating from fetal liver or bone marrow (BM), the recent studies of HPCs neglect functional analysis and the close relationship between activation of HPCs and extracellular matrix (ECM) remodeling. It is currently widely accepted that mesenchymal-epithelial transition (EMT) and epithelial-mesenchymal transition (MET) play important roles not only in liver development but also in healing of chronic injured adult liver. Co-expression of epithelial/mesenchymal and HPCs markers has been demonstrated in cells undergoing EMT/MET. These cells led to hepatic regeneration after transplanted into rats with chronic liver injury. Notably, there is an increased expression of mesenchymal markers in HPCs after exposure to transforming growth factor-beta1 (TGF-β1). Based on these evidences, we hypothesize that HPCs represent a transitioning cell population undergoing EMT/MET, both parenchymal and mesenchymal cells of liver may be the direct sources of HPCs.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
35
|
Guyot C, Lepreux S, Combe C, Sarrazy V, Billet F, Balabaud C, Bioulac-Sage P, Desmoulière A. Fibrogenic cell phenotype modifications during remodelling of normal and pathological human liver in cultured slices. Liver Int 2010; 30:1529-40. [PMID: 20846345 DOI: 10.1111/j.1478-3231.2010.02342.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The debate concerning the potential remodelling and/or reversibility of cirrhotic lesions and biliary fibrosis is still open. AIMS/METHODS In this work, we have used the precision-cut liver slice (PCLS) model, which maintains cell-cell and cell-matrix interactions to study, by immunohistochemistry, the behaviour of the different fibrogenic cells, i.e. hepatic stellate cells (HSC) and portal fibroblasts, in cultured (for 1 week) PCLS derived from normal and fibrotic human livers. RESULTS In normal liver, before and after culture, α-smooth muscle (SM) actin was present only in the vessel walls. Platelet-derived growth factor (PDGF) receptor-β was expressed before and after culture by portal fibroblasts, and appeared after culture in HSC. Before culture, CD 34 was not expressed in parenchyma, but appeared after culture in sinusoidal endothelial cells. In cirrhotic lesions, before culture, α-SM actin, PDGF receptor-β and Thy-1 were expressed in septa; after culture, α-SM actin expression disappeared but the expression of the PDGF receptor-β and Thy-1 was maintained. In cholestatic liver specimens, α-SM actin, PDGF receptor-β and Thy-1 expression, which was present before culture in enlarged portal areas, disappeared after culture, and apoptosis was detected. In the parenchyma of both cirrhotic and cholestatic livers, the expression of the PDGF receptor-β and of CD 34, which was not observed before culture, was present in HSC and sinusoidal endothelial cells, respectively, after culture. CONCLUSIONS These results indicate that during remodelling of pathological tissues in cultured liver slices, the myofibroblastic cells derived from HSC or from portal fibroblasts show different behaviours, suggesting different mechanisms of activation/deactivation.
Collapse
Affiliation(s)
- Christelle Guyot
- INSERM U889 and Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Haag M, Van Linthout S, Schröder SEA, Freymann U, Ringe J, Tschöpe C, Sittinger M. Endomyocardial biopsy derived adherent proliferating cells - a potential cell source for cardiac tissue engineering. J Cell Biochem 2010; 109:564-75. [PMID: 20013794 DOI: 10.1002/jcb.22433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heart diseases are a leading cause of morbidity and mortality. Cardiac stem cells (CSC) are considered as candidates for cardiac-directed cell therapies. However, clinical translation is hampered since their isolation and expansion is complex. We describe a population of human cardiac derived adherent proliferating (CAP) cells that can be reliably and efficiently isolated and expanded from endomyocardial biopsies (0.1 cm(3)). Growth kinetics revealed a mean cell doubling time of 49.9 h and a high number of 2.54 x 10(7) cells in passage 3. Microarray analysis directed at investigating the gene expression profile of human CAP cells demonstrated the absence of the hematopoietic cell markers CD34 and CD45, and of CD90, which is expressed on mesenchymal stem cells (MSC) and fibroblasts. These data were confirmed by flow cytometry analysis. CAP cells could not be differentiated into adipocytes, osteoblasts, chondrocytes, or myoblasts, demonstrating the absence of multilineage potential. Moreover, despite the expression of heart muscle markers like alpha-sarcomeric actin and cardiac myosin, CAP cells cannot be differentiated into cardiomyocytes. Regarding functionality, CAP cells were especially positive for many genes involved in angiogenesis like angiopoietin-1, VEGF, KDR, and neuropilins. Globally, principal component and hierarchical clustering analysis and comparison with microarray data from many undifferentiated and differentiated reference cell types, revealed a unique identity of CAP cells. In conclusion, we have identified a unique cardiac tissue derived cell type that can be isolated and expanded from endomyocardial biopsies and which presents a potential cell source for cardiac repair. Results indicate that these cells rather support angiogenesis than cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Marion Haag
- Tissue Engineering Laboratory, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tucholskystr. 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
UNLABELLED Portal fibroblasts are an important yet often overlooked nonparenchymal cell population in the liver. They are distinct from hepatic stellate cells, yet like stellate cells differentiate in the setting of chronic injury to fibrogenic myofibroblasts, playing an important role in collagen production in the fibrotic liver. Portal fibroblasts (PFs) are located adjacent to bile duct epithelia and thus play a particularly significant role in biliary fibrosis. New data suggest that they may also have key functions independent of fibrogenesis. This review addresses the definition and characteristics of PFs as well as their signaling pathways, interactions with the biliary epithelium, and contributions to liver pathobiology. CONCLUSION PFs are an important and multifunctional nonparenchymal cell population in need of further study.
Collapse
Affiliation(s)
- Jonathan A. Dranoff
- Department of Medicine (Digestive Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520
| | - Rebecca G. Wells
- Department of Medicine (Gastroenterology), The University of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA, 19104
| |
Collapse
|
38
|
Malik IA, Moriconi F, Sheikh N, Naz N, Khan S, Dudas J, Mansuroglu T, Hess CF, Rave-Fränk M, Christiansen H, Ramadori G. Single-dose gamma-irradiation induces up-regulation of chemokine gene expression and recruitment of granulocytes into the portal area but not into other regions of rat hepatic tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1801-15. [PMID: 20185578 DOI: 10.2353/ajpath.2010.090505] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver damage is a serious clinical complication of gamma-irradiation. We therefore exposed rats to single-dose gamma-irradiation (25 Gy) that was focused on the liver. Three to six hours after irradiation, an increased number of neutrophils (but not mononuclear phagocytes) was observed by immunohistochemistry to be attached to portal vessels between and around the portal (myo)fibroblasts (smooth muscle actin and Thy-1(+) cells). MCP-1/CCL2 staining was also detected in the portal vessel walls, including some cells of the portal area. CC-chemokine (MCP-1/CCL2 and MCP-3/CCL7) and CXC-chemokine (KC/CXCL1, MIP-2/CXCL2, and LIX/CXCL5) gene expression was significantly induced in total RNA from irradiated livers. In laser capture microdissected samples, an early (1 to 3 hours) up-regulation of CCL2, CXCL1, CXCL8, and CXCR2 gene expression was detected in the portal area but not in the parenchyma; with the exception of CXCL1 gene expression. In addition, treatment with an antibody against MCP-1/CCL2 before irradiation led to an increase in gene expression of interferon-gamma and IP-10/CXCL10 in liver tissue without influencing the recruitment of granulocytes. Indeed, the CCL2, CXCL1, CXCL2, and CXCL5 genes were strongly expressed and further up-regulated in liver (myo)fibroblasts after irradiation (8 Gy). Taken together, these results suggest that gamma-irradiation of the liver induces a transient accumulation of granulocytes within the portal area and that (myo)fibroblasts of the portal vessels may be one of the major sources of the chemokines involved in neutrophil recruitment. Moreover, inhibition of more than one chemokine (eg, CXCL1 and CXCL8) may be necessary to reduce leukocytes recruitment.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- Department of Internal Medicine, University Hospital Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dollé L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA, Geerts A. The quest for liver progenitor cells: a practical point of view. J Hepatol 2010; 52:117-29. [PMID: 19913937 DOI: 10.1016/j.jhep.2009.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chronic liver diseases can lead to hepatic dysfunction with organ failure. At present, orthotopic liver transplantation represents the benchmark therapy of terminal liver disease. However this practice is limited by shortage of donor grafts, the need for lifelong immunosuppression and very demanding state-of-the-art surgery. For this reason, new therapies have been developed to restore liver function, primarily in the form of hepatocyte transplantation and artificial liver support devices. While already offered in very specialized centers, both of these modalities still remain experimental. Recently, liver progenitor cells have shown great promise for cell therapy, and consequently they have attracted a lot of attention as an alternative or supportive tool for liver transplantation. These liver progenitor cells are quiescent in the healthy liver and become activated in certain liver diseases in which the regenerative capacity of mature hepatocytes and/or cholangiocytes is impaired. Although reports describing liver progenitor cells are numerous, they have not led to a consensus on the identity of the liver progenitor cell. In this review, we will discuss some of the characteristics of these cells and the different ways that have been used to obtain these from rodents. We will also highlight the challenges that researchers are facing in their quest to identify and use liver progenitor cells.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Cell Biology, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
41
|
Piscaglia F, Dudás J, Knittel T, Di Rocco P, Kobold D, Saile B, Zocco MA, Timpl R, Ramadori G. Expression of ECM proteins fibulin-1 and -2 in acute and chronic liver disease and in cultured rat liver cells. Cell Tissue Res 2009; 337:449-462. [PMID: 19609566 PMCID: PMC2728066 DOI: 10.1007/s00441-009-0823-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 05/25/2009] [Indexed: 01/10/2023]
Abstract
Fibulin-2 has previously been considered as a marker to distinguish rat liver myofibroblasts from hepatic stellate cells. The function of other fibulins in acute or chronic liver damage has not yet been investigated. The aim of this study has been to evaluate the expression of fibulin-1 and -2 in models of rat liver injury and in human liver cirrhosis. Their cellular sources have also been investigated. In normal rat liver, fibulin-1 and -2 were both mainly present in the portal field. Fibulin-1-coding transcripts were detected in total RNA of normal rat liver, whereas fibulin-2 mRNA was only detected by sensitive, real-time quantitative polymerase chain reaction. In acute liver injury, the expression of fibulin-1 was significantly increased (17.23-fold after 48 h), whereas that of fibulin-2 was not modified. The expression of both fibulin-1 and -2 was increased in experimental rat liver cirrhosis (19.16- and 26.47-fold, respectively). At the cellular level, fibulin-1 was detectable in hepatocytes, "activated" hepatic stellate cells, and liver myofibroblasts (2.71-, 122.65-, and 469.48-fold over the expression in normal rat liver), whereas fibulin-2 was restricted to liver myofibroblasts and was regulated by transforming growth factor beta-1 (TGF-beta1) in 2-day-old hepatocyte cultures and in liver myofibroblasts. Thus, fibulin-1 and -2 respond differentially to single and repeated damaging noxae, and their expression is differently present in liver cells. Expression of the fibulin-2 gene is regulated by TGF-beta1 in liver myofibroblasts.
Collapse
Affiliation(s)
- Fabio Piscaglia
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
- Present Address: Divisione di Medicina Interna – Bolondi, University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - József Dudás
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
- Present Address: Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Thomas Knittel
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Paola Di Rocco
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Dominik Kobold
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Bernhard Saile
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Rupert Timpl
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | - Giuliano Ramadori
- Department of Internal Medicine and Gastroenterology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
- Department of Gastroenterology and Endocrinology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
42
|
Mansuroglu T, Dudás J, Elmaouhoub A, Joza TZ, Ramadori G. Hepatoblast and mesenchymal cell-specific gene-expression in fetal rat liver and in cultured fetal rat liver cells. Histochem Cell Biol 2009; 132:11-9. [PMID: 19381675 PMCID: PMC2693773 DOI: 10.1007/s00418-009-0596-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2009] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine whether passaged rat fetal liver cells are functional hepatoblasts. Hepatocyte/hepatoblast- and liver myofibroblast-gene-expressions were studied in adult and fetal rat liver tissues as well as in primary and passaged cultures of isolated rat fetal liver cells at both the mRNA and protein level. Desmin- and Alpha-Smooth Muscle Actin (SMA)-positive cells were located in the walls of liver vessels, whereas Desmin-positive/SMA-negative cells were distributed within the liver parenchyma. Primary cultures contained Prox1-positive hepatoblasts, Desmin/SMA-positive myofibroblasts and only a few Desmin-positive/SMA-negative cells. Albumin and alpha-fetoprotein (AFP) could be detected in the primary cultures and to a lesser extent after the first passage. The number of Desmin-positive/SMA-negative cells decreased with successive passage, such that after the second passage, only Desmin/SMA-positive cells could be detected. SMA-gene-expression increased during the passages, suggesting that myofibroblasts become the major cell population of fetal liver cell cultures over time. This observation needs to be taken into account, should passaged fetal liver cells be used for liver cell transplantation. Moreover it contradicts the concept of epithelial-mesenchymal transformation and suggests rather that selective overgrowth of mesenchymal cells occurs in culture.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antigens, Differentiation/metabolism
- Cells, Cultured
- Desmin/metabolism
- Endothelium, Vascular/embryology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Female
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Liver/cytology
- Liver/embryology
- Liver/growth & development
- Liver/metabolism
- Mesoderm/cytology
- Mesoderm/embryology
- Mesoderm/growth & development
- Mesoderm/metabolism
- Muscle, Smooth/cytology
- Muscle, Smooth/embryology
- Muscle, Smooth/growth & development
- Muscle, Smooth/metabolism
- Pregnancy
- Rats
- Rats, Wistar
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Tümen Mansuroglu
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - József Dudás
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
- Department of Otorhinolaryngology, University Hospital Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Abderrahim Elmaouhoub
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Tobias Z. Joza
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Giuliano Ramadori
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|