1
|
Yang S, Hu M, Wu R, Hou Z, Zhang H, He W, Gao L, Liao F. Genetic Evidence of SpGH9A3 in Leaf Morphology Variation of Spathiphyllum 'Mojo'. Genes (Basel) 2024; 15:1132. [PMID: 39336723 PMCID: PMC11431335 DOI: 10.3390/genes15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Leaves play a crucial role as ornamental organs in Spathiphyllum, exhibiting distinct differences across various Spathiphyllum varieties. Leaf development is intricately linked to processes of cell proliferation and expansion, with cell morphology often regulated by plant cell walls, primarily composed of cellulose. Alterations in cellulose content can impact cell morphology, subsequently influencing the overall shape of plant organs. Although cellulases have been shown to affect cellulose levels in plant cells, genetic evidence linking them to the regulation of leaf shape remains limited. This study took the leaves of Spathiphyllum 'Mojo' and its somatic variants as the research objects. We screened four cellulase gene family members from the transcriptome and then measured the leaf cellulose content, cellulase activity, and expression levels of cellulase-related genes. Correlation analysis pinpointed the gene SpGH9A3 as closely associated with leaf shape variations in the mutant. Green fluorescent fusion protein assays revealed that the SpGH9A3 protein was localized to the cell membrane. Notably, the expression of the SpGH9A3 gene in mutant leaves peaked during the early spread stage, resulting in smaller overall leaf size and reduced cellulose content upon overexpression in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feixiong Liao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (W.H.)
| |
Collapse
|
2
|
Deng J, Ahmad B, Deng X, Fan Z, Liu L, Lu X, Pan Y, Zha X. Genome-wide analysis of the mulberry ( Morus abla L.) GH9 gene family and the functional characterization of MaGH9B6 during the development of the abscission zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1352635. [PMID: 38633459 PMCID: PMC11021789 DOI: 10.3389/fpls.2024.1352635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Plant glycoside hydrolase family 9 genes (GH9s) are widely distributed in plants and involved in a variety of cellular and physiological processes. In the current study, nine GH9 genes were identified in the mulberry and were divided into two subfamilies based on the phylogenetic analysis. Conserved motifs and gene structure analysis suggested that the evolution of the two subfamilies is relatively conserved and the glycoside hydrolase domain almost occupy the entire coding region of the GH9s gene. Only segmental duplication has played a role in the expansion of gene family. Collinearity analysis showed that mulberry GH9s had the closest relationship with poplar GH9s. MaGH9B1, MaGH9B6, MaGH9B5, and MaGH9B3 were detected to have transcript accumulation in the stalk of easy-to drop mature fruit drop, suggesting that these could play a role in mulberry fruit drop. Multiple cis-acting elements related to plant hormones and abiotic stress responses were found in the mulberry GH9 promoter regions and showed different activities under exogenous abscisic acid (ABA) and 2,4- dichlorophenoxyacetic acid (2,4-D) stresses. We found that the lignin content in the fruit stalk decreased with the formation of the abscission zone (AZ), which could indirectly reflect the formation process of the AZ. These results provide a theoretical basis for further research on the role of GH9s in mulberry abscission.
Collapse
Affiliation(s)
- Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bilal Ahmad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zelin Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Wang Y, Xu Y, Liao F, Li T, Li X, Wu B, Hong SB, Xu K, Zang Y, Zheng W. Genome-wide identification of GH9 gene family and the assessment of its role during fruit abscission zone formation in Vaccinium ashei. PLANT CELL REPORTS 2023; 42:1589-1609. [PMID: 37474780 DOI: 10.1007/s00299-023-03049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE The genomic location and stage-specific expression pattern of GH9 genes reveal their critical roles during fruit abscission zone formation in Vaccinium ashei. Glycosyl hydrolase family 9 (GH9) cellulases play a crucial role in both cellulose synthesis and hydrolysis during plant growth and development. Despite this importance, there is currently no study on the involvement of GH9-encoding genes, specifically VaGH9s, in abscission zone formation of rabbiteye blueberries (Vaccinium ashei). In this study, we identified a total of 61 VaGH9s in the genome, which can be classified into 3 subclasses based on conserved motifs and domains, gene structures, and phylogenetic analyses. Our synteny analysis revealed that VaGH9s are more closely related to the GH9s of Populus L. than to those of Arabidopsis, Vitis vinifera, and Citrus sinensis. In silico structural analysis predicted that most of VaGH9s are hydrophilic, and localized in cell membrane and/or cell wall, and the variable sets of cis-acting regulatory elements and functional diversity with four categories of stress response, hormone regulation, growth and development, and transcription factor-related elements are present in the promoter sequence of VaGH9s genes. Transcriptomic analysis showed that there were 22 differentially expressed VaGH9s in fruit abscission zone tissue at the veraison stage, and the expression of VaGH9B2 and VaGH9C10 was continuously increased during fruit maturation, which were in parallel with the increasing levels of cellulase activity and oxidative stress indicators, suggesting that they are involved in the separation stage of fruit abscission in Vaccinium ashei. Our work identified 22 VaGH9s potentially involved in different stages of fruit abscission and would aid further investigation into the molecular regulation of abscission in rabbiteye blueberries fruit.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yue Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Fangfang Liao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Ting Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Boping Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Wusu Road 666, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Systematic Analysis of the Grafting-Related Glucanase-Encoding GH9 Family Genes in Pepper, Tomato and Tobacco. PLANTS 2022; 11:plants11162092. [PMID: 36015396 PMCID: PMC9414958 DOI: 10.3390/plants11162092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Grafting is an important agricultural practice to control soil-borne diseases, alleviate continuous cropping problems and improve stress tolerance in vegetable industry, but it is relatively less applied in pepper production. A recent study has revealed the key roles of β-1, 4-glucanase in graft survival. We speculated that the GH9 family gene encoding glucanase may be involved in the obstacles of pepper grafting. Therefore, we performed a systematic analysis of the GH9 family in pepper, tomato and tobacco. A total of 25, 24 and 42 GH9 genes were identified from these three species. Compared with the orthologues of other solanaceous crops, the deduced pepper GH9B3 protein lacks a conserved motif (Motif 5). Promoter cis-element analysis revealed that a wound-responsive element exists in the promoter of tobacco NbGH9B3, but it is absent in the GH9B3 promoter of most solanaceous crops. The auxin-responsive related element is absent in CaGH9B3 promoter, but it presents in the promoter of tobacco, tomato, potato and petunia GH9B3. Tissue and induction expression profiles indicated that GH9 family genes are functionally differentiated. Nine GH9 genes, including CaGH9B3, were detected expressing in pepper stem. The expression patterns of NbGH9B3 and CaGH9B3 in grafting were different in our test condition, with obvious induction in tobacco but repression in pepper. Furthermore, weighted correlation network analysis (WGCNA) revealed 58 transcription factor genes highly co-expressed with NbGH9B3. Eight WRKY binding sites were detected in the promoter of NbGH9B3, and several NbWRKYs were highly co-expressed with NbGH9B3. In conclusion, the missing of Motif 5 in CaGH9B3, and lacking of wound- and auxin-responsive elements in the gene promoter are the potential causes of grafting-related problems in pepper. WRKY family transcription factors could be important regulator of NbGH9B3 in tobacco grafting. Our analysis points out the putative regulators of NbGH9B3, which would be helpful to the functional validation and the study of signal pathways related to grafting in the future.
Collapse
|
5
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
6
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
7
|
Behr M, Faleri C, Hausman JF, Planchon S, Renaut J, Cai G, Guerriero G. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl. PLANTA 2019; 250:1539-1556. [PMID: 31352512 DOI: 10.1007/s00425-019-03245-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.
Collapse
Affiliation(s)
- Marc Behr
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Sébastien Planchon
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy.
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.
| |
Collapse
|
8
|
Carlson CH, Gouker FE, Crowell CR, Evans L, DiFazio SP, Smart CD, Smart LB. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). ANNALS OF BOTANY 2019; 124:701-716. [PMID: 31008500 PMCID: PMC6821232 DOI: 10.1093/aob/mcz047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Increasing energy demands and the necessity to reduce greenhouse gas emissions are key motivating factors driving the development of lignocellulosic crops as an alternative to non-renewable energy sources. The effects of global climate change will require a better understanding of the genetic basis of complex adaptive traits to breed more resilient bioenergy feedstocks, like willow (Salix spp.). Shrub willow is a sustainable and dedicated bioenergy crop, bred to be fast-growing and high-yielding on marginal land without competing with food crops. In a rapidly changing climate, genomic advances will be vital for the sustained improvement of willow and other non-model bioenergy crops. Here, joint genetic mapping was used to exploit genetic variation garnered from both recent and historical recombination events in S. purpurea. METHODS A panel of North American naturalized S. purpurea accessions and full-sib F2S. purpurea population were genotyped and phenotyped for a suite of morphological, physiological, pest and disease resistance, and wood chemical composition traits, collected from multi-environment and multi-year replicated field trials. Controlling for population stratification and kinship in the association panel and spatial variation in the F2, a comprehensive mixed model analysis was used to dissect the complex genetic architecture and plasticity of these important traits. KEY RESULTS Individually, genome-wide association (GWAS) models differed in terms of power, but the combined approach, which corrects for yearly and environmental co-factors across datasets, improved the overall detection and resolution of associated loci. Although there were few significant GWAS hits located within support intervals of QTL for corresponding traits in the F2, many large-effect QTL were identified, as well as QTL hotspots. CONCLUSIONS This study provides the first comparison of linkage analysis and linkage disequilibrium mapping approaches in Salix, and highlights the complementarity and limits of these two methods for elucidating the genetic architecture of complex bioenergy-related traits of a woody perennial breeding programme.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Chase R Crowell
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Luke Evans
- Institute for Behavioral Genetics and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
9
|
Molecular Insights into FaEG1, a Strawberry Endoglucanase Enzyme Expressed during Strawberry Fruit Ripening. PLANTS 2019; 8:plants8060140. [PMID: 31141938 PMCID: PMC6631567 DOI: 10.3390/plants8060140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 01/04/2023]
Abstract
The endo-β-1,4-glucanases (EGs) that belong to the glycosyl hydrolase family 9 (GH9) have roles in cell wall synthesis, remodeling and degradation. Previous studies have suggested that EGs may play a key role in the ripening of different fruits including strawberries. In this study, we used reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assays to determine the transcript accumulation of an endo-β-1,4-glucanase (FaEG1) during fruit development in two different strawberry ‘Camarosa’ and ‘Monterey’ with contrasting softening ratios. Phylogenetic analyses suggest that FaEG1 belongs to the α group of the GH9 family with other proteins previously described with roles in elongation, abscission and ripening. Comparative modeling was used to obtain the FaEG1 structure. The model displays a α-barrel–type structure that is typical of the GH9 enzyme family, and comprises 12 α-helices, 2 310 helices and 6 β-sheets. The catalytic residues were oriented to the solvent in the middle of an open groove. Protein–ligand interactions were explored with cellulose and two xyloglucans as ligands; the results suggest that the FaEG1-cellulose and FaEG1-XXXGXXXG (the most abundant xyloglucan in strawberries) complexes were more stable complexes than XXFGXXFG. The cell wall degradation was observed by scanning electron microscopy (SEM). The data are congruent with the probable role of the FaEG1 protein in the dissembly of the cellulose-hemicellulose fraction during the ripening of strawberry fruit.
Collapse
|
10
|
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 2018; 6:e5427. [PMID: 30155351 PMCID: PMC6108316 DOI: 10.7717/peerj.5427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Betula luminifera H. Winkler, which is widely distributed in southern China, is an economically important broadleaf tree species. However, little genomic information of B. luminifera is available, and little is known about the molecular mechanisms of wood formation in this species. Meanwhile, few efforts have focused on investigating the early transcriptional changes during tension wood formation in woody plants. Results A reference transcriptome dataset was first generated containing 45,700 Unigenes, and 35,135 (76.9%) Unigenes were annotated by a BLAST similarity search against four public databases. Then, based on an anatomical investigation, the global gene expression changes during the early stages of tension wood formation were analyzed. Gene expression profiling showed that a total of 13,273 Unigenes were differentially regulated during the early stages of tension wood formation. Most genes involved in cellulose and lignin biosynthesis were highlighted to reveal their biological importance in tension wood formation. In addition, the transcription levels of many genes involved in the auxin response pathway were significantly changed during the early stages of tension wood formation. Furthermore, 18 TFs co-expressed with key enzymes of cellulose synthesis were identified. Conclusions Our results revealed the transcriptional changes associated with TW formation and identified potential key genes in the regulation of this process. These results will help to dissect the molecular mechanism of wood formation and provide key candidate genes for marker-assisted selection in B. luminifera.
Collapse
Affiliation(s)
- Miaomiao Cai
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Fei Ni
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3405-3417. [PMID: 28633298 PMCID: PMC5853651 DOI: 10.1093/jxb/erx186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
Collapse
Affiliation(s)
- Joakim Bygdell
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj K Srivastava
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Robert Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
12
|
Didi V, Jackson P, Hejátko J. Hormonal regulation of secondary cell wall formation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5015-27. [PMID: 26002972 DOI: 10.1093/jxb/erv222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation.
Collapse
Affiliation(s)
- Vojtěch Didi
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Phil Jackson
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Du Q, Wang L, Yang X, Gong C, Zhang D. Populus endo-β-1,4-glucanases gene family: genomic organization, phylogenetic analysis, expression profiles and association mapping. PLANTA 2015; 241:1417-34. [PMID: 25716095 DOI: 10.1007/s00425-015-2271-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/19/2015] [Indexed: 05/05/2023]
Abstract
Extensive characterization of the poplar GH9 gene family provides new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees. In higher plants, endo-β-1,4-glucanases (cellulases) belonging to the glycosyl hydrolase family 9 (GH9) have roles in cell wall synthesis, remodeling and degradation. To increase the understanding of the GH9 family in perennial woody species, we conducted an extensive characterization of the GH9 family in the model tree species, Populus. We characterized 25 putative GH9 members in Populus with three subclasses (A, B, and C), using structures and bioinformatic analysis. Phylogenetic analyses of 114 GH9s from plant (dicot, monocot, and conifer) and bacterial species (outgroup) demonstrated that plant GH9s are monophyletic with respect to bacteria GH9s. Three subclasses, A, B, and C, of plant GH9 are formed before the divergence of angiosperms and gymnosperms. Chromosomal localization and duplications of GH9s in the Populus genome showed that eight paralogous pairs remained in conserved positions on segmental duplicated blocks, suggesting duplication of chromosomal segments has contributed to the family expansion. By examining tissue-specific expression profiles for all 25 members, we found that GH9 members exhibited distinct but partially overlapping expression patterns, while certain members have higher transcript abundance in mature or developing xylem. Based on our understanding of intraspecific variation and linkage disequilibrium of two KORRIGANs (PtoKOR1 and PtoKOR2) in natural population of Populus tomentosa, two non-synonymous SNPs in PtoKOR1 associated with fiber width and holocellulose content were obtained. Characterizations of the poplar GH9 family provide new insights into GH9 function and evolution in woody species, and may drive novel progress for molecular breeding in trees.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China,
| | | | | | | | | |
Collapse
|
14
|
Shang X, Chai Q, Zhang Q, Jiang J, Zhang T, Guo W, Ruan YL. Down-regulation of the cotton endo-1,4-β-glucanase gene KOR1 disrupts endosperm cellularization, delays embryo development, and reduces early seedling vigour. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3071-83. [PMID: 25805716 PMCID: PMC4449532 DOI: 10.1093/jxb/erv111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Towards the aim of examining the potential function of KORRIGAN (KOR), a highly conserved membrane-bound endoglucanase, in reproductive development, here transgenic evidence is provided that a cotton (Gossypium hirsutum) endoglucanase, GhKOR1, plays significant roles in endosperm and embryo development. RNA interference (RNAi)- and co-suppression-mediated down-regulation of GhKOR1 resulted in smaller filial tissue and reduced seed weight, which were characterized by disrupted endosperm cellularization and delayed embryo development, leading to a delayed germination and a weak growth of seedlings early in development. The transgenic seeds exhibited fewer and smaller endosperm cells with irregular and brittle cell walls, and their embryos developed only to the globular stage at 10 days post-anthesis (DPA) when the wild-type endosperm has become highly cellularized and the embryo has progressed to the heart stage. The transgenic seed also displayed a significant reduction of callose in the seed coat transfer cells and reduced cellulose content both in the seed coat and in mature fibres. These findings demonstrate that GhKOR1 is required for the developmental of both seed filial and maternal tissues and the establishment of seedling vigour.
Collapse
Affiliation(s)
- Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Australia-China Research Centre for Crop Improvement, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Qichao Chai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxiong Jiang
- College of Bioscience and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Australia-China Research Centre for Crop Improvement, the University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Chen J, Chen B, Zhang D. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics 2015; 16:164. [PMID: 25886950 PMCID: PMC4372042 DOI: 10.1186/s12864-015-1390-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/24/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Wood formation affects the chemical and physical properties of wood, and thus affects its utility as a building material or a feedstock for biofuels, pulp and paper. To obtain genome-wide insights on the transcriptome changes and regulatory networks in wood formation, we used high-throughput RNA sequencing to characterize cDNA libraries of mature xylem from tension wood (TW), opposite wood (OW), and normal wood (NW), in the industrial tree species Populus tomentosa. RESULTS Our sequencing generated 140,978,316 (TW), 128,972,228 (OW), and 117,672,362 (NW) reads, corresponding to 10,127 (TW), 10,129 (OW), and 10,129 (NW) unique genes. Of these, 361 genes were differentially transcribed between TW and OW (log2FC ≥ 1 or ≤ -1, FDR < 0.05), 2,658 differed between OW and NW, and 2,417 differed between TW and NW. This indicates that NW differs significantly from the wood in branches; GO term analysis also indicated that OW experienced more transcriptome remodeling. The differentially expressed genes included 97 encoding transcription factors (TFs), 40 involved in hormone signal transduction, 33 in lignin biosynthesis, 21 in flavonoid biosynthesis, and 43 in cell wall metabolism, including cellulose synthase, sucrose synthase, and COBRA. More than half of the differentially expressed TF showed more than 4-fold lower transcript levels in NW compared with TW or OW, indicating that TF abundances differed dramatically in different wood types and may have important roles in the formation of reaction wood. In addition, transcripts of most of the genes involved in lignin biosynthesis were more abundant in OW compared with TW, consistent with the higher lignin content of OW. We constructed two transcriptomic networks for the regulation of lignin and cellulose biosynthesis, including TFs, based on the co-expression patterns of different genes. Lastly, we used reverse transcription quantitative PCR to validate the differentially expressed genes identified. CONCLUSIONS Here, we identified the global patterns and differences in gene expression among TW, OW, and NW, and constructed two transcriptomic regulatory networks involved in TW formation in P. tomentosa. We also identified candidate genes for molecular breeding of wood quality, and provided a starting point to decipher the molecular mechanisms of wood formation in Populus.
Collapse
Affiliation(s)
- Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
16
|
KORRIGAN1 interacts specifically with integral components of the cellulose synthase machinery. PLoS One 2014; 9:e112387. [PMID: 25383767 PMCID: PMC4226561 DOI: 10.1371/journal.pone.0112387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/15/2014] [Indexed: 11/20/2022] Open
Abstract
Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane–cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.
Collapse
|
17
|
Yu L, Chen H, Sun J, Li L. PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. TREE PHYSIOLOGY 2014; 34:1289-300. [PMID: 24728296 DOI: 10.1093/treephys/tpu020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
KORRIGAN (KOR), encoding an endo-1,4-β-glucanase, plays a critical role in the cellulose synthesis of plant cell wall formation. KOR sequence orthologs are duplicated in the Populus genome relative to Arabidopsis. This study reports an expression analysis of the KOR genes in Populus. The five PtrKOR genes displayed different expression patterns, suggesting that they play roles in different developmental processes. Through RNAi suppression, results demonstrated that PtrKOR1 is required for secondary cell wall cellulose formation in Populus. Together, the results suggest that the PtrKOR genes may play distinct roles in association with cell wall formation in different tissues.
Collapse
Affiliation(s)
- Liangliang Yu
- National Key Laboratory of Plant Molecular Genetics/CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hongpeng Chen
- National Key Laboratory of Plant Molecular Genetics/CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China Present address: China Eucalyptus Research Center, 30 Middle Renmin Ave, Zhanjiang, Guangdong 524022, China
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics/CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics/CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
18
|
High polymorphism in Est-SSR loci for cellulose synthase and β-amylase of sugarcane varieties (Saccharum spp.) used by the industrial sector for ethanol production. Appl Biochem Biotechnol 2014; 175:965-73. [PMID: 25351629 DOI: 10.1007/s12010-014-1340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
High and low polymorphisms in simple sequence repeats of expressed sequence tag (EST-SSR) for specific proteins and enzymes, such as β-amylase, cellulose synthase, xyloglucan endotransglucosylase, fructose 1,6-bisphosphate aldolase, and fructose 1,6-bisphosphatase, were used to illustrate the genetic divergence within and between varieties of sugarcane (Saccharum spp.) and to guide the technological paths to optimize ethanol production from lignocellulose biomass. The varieties RB72454, RB867515, RB92579, and SP813250 on the second stage of cutting, all grown in the state of Paraná (PR), and the varieties RB92579 and SP813250 cultured in the PR state and in Northeastern Brazil, state of Pernambuco (PE), were analyzed using five EST-SSR primers for EstC66, EstC67, EstC68, EstC69, and EstC91 loci. Genetic divergence was evident in the EstC67 and EstC69 loci for β-amylase and cellulose synthase, respectively, among the four sugarcane varieties. An extremely high level of genetic differentiation was also detected in the EstC67 locus from the RB82579 and SP813250 varieties cultured in the PR and PE states. High polymorphism in SSR of the cellulose synthase locus may explain the high variability of substrates used in pretreatment and enzymatic hydrolysis processes, which has been an obstacle to effective industrial adaptations.
Collapse
|
19
|
Mishima K, Fujiwara T, Iki T, Kuroda K, Yamashita K, Tamura M, Fujisawa Y, Watanabe A. Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 2014; 15:219. [PMID: 24649833 PMCID: PMC3999911 DOI: 10.1186/1471-2164-15-219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Forest trees have ecological and economic importance, and Japanese cedar has highly valued wood attributes. Thus, studies of molecular aspects of wood formation offer practical information that may be used for screening and forward genetics approaches to improving wood quality. RESULTS After identifying expressed sequence tags in Japanese cedar tissue undergoing xylogenesis, we designed a custom cDNA microarray to compare expression of highly regulated genes throughout a growing season. This led to identification of candidate genes involved both in wood formation and later cessation of growth and dormancy. Based on homology to orthologous protein groups, the genes were assigned to functional classes. A high proportion of sequences fell into functional classes related to posttranscriptional modification and signal transduction, while transcription factors and genes involved in the metabolism of sugars, cell-wall synthesis and lignification, and cold hardiness were among other classes of genes identified as having a potential role in xylem formation and seasonal wood formation. CONCLUSIONS We obtained 55,051 unique sequences by next-generation sequencing of a cDNA library prepared from cambial meristem and derivative cells. Previous studies on conifers have identified unique sequences expressed in developing xylem, but this is the first comprehensive study utilizing a collection of expressed sequence tags for expression studies related to xylem formation in Japanese cedar, which belongs to a different lineage than the Pinaceae. Our characterization of these sequences should allow comparative studies of genome evolution and functional genetics of wood species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Atsushi Watanabe
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
20
|
|
21
|
Li X, Yang X, Wu HX. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genomics 2013; 14:768. [PMID: 24209714 PMCID: PMC4046691 DOI: 10.1186/1471-2164-14-768] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks. These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress. In this study SilviScan® technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays. RESULTS CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness. However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion. Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness. However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone and calcium signalling as well as various environmental stresses were exclusively up-regulated in CW, providing important clues for earlier molecular signatures of reaction wood formation under gravity stimulus. CONCLUSIONS The first comprehensive investigation of tracheid characteristics, wood properties and gene transcription in branches of a conifer species revealed more accurate and new insights into reaction wood formation in response to gravity stress. The identified differentially transcribed genes with diverse functions conferred or implicated drastic CW and OW variation observed in radiata pine branches. These genes are excellent candidates for further researches on the molecular mechanisms of reaction wood formation with a view to plant gravitropism.
Collapse
Affiliation(s)
- Xinguo Li
- />CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Xiaohui Yang
- />CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601 Australia
- />Department of Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Harry X Wu
- />CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601 Australia
- />Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
22
|
Gardiner J. Evolutionary basins of attraction and convergence in plants and animals. Commun Integr Biol 2013; 6:e26760. [PMID: 24505506 PMCID: PMC3914912 DOI: 10.4161/cib.26760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Living organisms evolve, in part, according to the underlying properties of the amino acids and other compounds of which they are composed. Thus there are evolutionary basins of attraction that living organisms will tend to evolve toward. These processes are complex and probably beyond our current capabilities to fully envisage. But progress is being made toward an understanding of such principles by efforts to catalog protein folds and protein–protein interactions. Even plants and animals show convergent evolution, possibly driven by underlying evolutionary basins of attraction. Physical and chemical parameters and the properties of proteins present in the last common ancestor of these 2 taxa, including a putative connexin ancestor, may have played key roles here. Thus evolution is perhaps not as random as is sometimes depicted, but will follow predefined pathways. Here I address convergent evolution in plants and animals beginning at the molecular level and progressing to the organismic one.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences; The University of Sydney; Camperdown, NSW Australia
| |
Collapse
|
23
|
Xie G, Yang B, Xu Z, Li F, Guo K, Zhang M, Wang L, Zou W, Wang Y, Peng L. Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One 2013; 8:e50171. [PMID: 23308094 PMCID: PMC3537678 DOI: 10.1371/journal.pone.0050171] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Plant glycoside hydrolase family 9 (GH9) comprises typical endo-β-1,4-glucanase (EGases, EC3.2.1.4). Although GH9A (KORRIGAN) family genes have been reported to be involved in cellulose biosynthesis in plants, much remains unknown about other GH9 subclasses. In this study, we observed a global gene co-expression profiling and conducted a correlation analysis between OsGH9 and OsCESA among 66 tissues covering most periods of life cycles in 2 rice varieties. Our results showed that OsGH9A3 and B5 possessed an extremely high co-expression with OsCESA1, 3, and 8 typical for cellulose biosynthesis in rice. Using two distinct rice non-GH9 mutants and wild type, we performed integrative analysis of gene expression level by qRT-PCR, cellulase activities in situ and in vitro, and lignocellulose crystallinity index (CrI) in four internodes of stem tissues. For the first time, OsGH9B1, 3, and 16 were characterized with the potential role in lignocellulose crystallinity alteration in rice, whereas OsGH9A3 and B5 were suggested for cellulose biosynthesis. In addition, phylogenetic analysis and gene co-expression comparison revealed GH9 function similarity in Arabidopsis and rice. Hence, the data can provide insights into GH9 function in plants and offer the potential strategy for genetic manipulation of plant cell wall using the five aforementioned novel OsGH9 genes.
Collapse
Affiliation(s)
- Guosheng Xie
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhengdan Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mingliang Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lingqiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weihua Zou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanting Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Biomass and Bioenergy Research Centre, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
24
|
Nardi C, Escudero C, Villarreal N, Martínez G, Civello PM. The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities "in vitro". JOURNAL OF PLANT RESEARCH 2013; 126:151-159. [PMID: 22752710 DOI: 10.1007/s10265-012-0504-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/28/2012] [Indexed: 05/27/2023]
Abstract
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides "in vitro". The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (K(ad) = 33.6 ± 0.44 mL g(-1), K(ad) = 11.37 ± 0.87 mL g(-1), K(ad) = 10.4 ± 0.19 mL g(-1), respectively). According to "in vitro" enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.
Collapse
Affiliation(s)
- Cristina Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
25
|
Fromm J. Xylem Development in Trees: From Cambial Divisions to Mature Wood Cells. PLANT CELL MONOGRAPHS 2013. [DOI: 10.1007/978-3-642-36491-4_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB. Association genetics of chemical wood properties in black poplar (Populus nigra). THE NEW PHYTOLOGIST 2013; 197:162-176. [PMID: 23157484 DOI: 10.1111/nph.12003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 05/08/2023]
Abstract
Black poplar (Populus nigra) is a potential feedstock for cellulosic ethanol production, although breeding for this specific end use is required. Our goal was to identify associations between single nucleotide polymorphism (SNP) markers within candidate genes encoding cellulose and lignin biosynthetic enzymes, with chemical wood property phenotypic traits, toward the aim of developing genomics-based breeding technologies for bioethanol production. Pyrolysis molecular beam mass spectrometry was used to determine contents of five- and six-carbon sugars, lignin, and syringyl : guaiacyl ratio. The association population included 599 clones from 17 half-sib families, which were successfully genotyped using 433 SNPs from 39 candidate genes. Statistical analyses were performed to estimate genetic parameters, linkage disequilibrium (LD), and single marker and haplotype-based associations. A moderate to high heritability was observed for all traits. The LD, across all candidate genes, showed a rapid decay with physical distance. Analysis of single marker-phenotype associations identified six significant marker-trait pairs, whereas nearly 280 haplotypes were associated with phenotypic traits, in both an individual and multiple trait-specific manner. The rapid decay of LD within candidate genes in this population and the genetic associations identified suggest a close relationship between the associated SNPs and the causative polymorphisms underlying the genetic variation of lignocellulosic traits in black poplar.
Collapse
Affiliation(s)
- Fernando P Guerra
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, PO Box 747, Chile
| | - Jill L Wegrzyn
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Brian J Stanton
- Genetic Resources Conservation Program, Greenwood Resources, Portland, OR, 97201, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
- Bioenergy Research Center (BERC), University of California at Davis, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Buchanan M, Burton RA, Dhugga KS, Rafalski AJ, Tingey SV, Shirley NJ, Fincher GB. Endo-(1,4)-β-glucanase gene families in the grasses: temporal and spatial co-transcription of orthologous genes. BMC PLANT BIOLOGY 2012; 12:235. [PMID: 23231659 PMCID: PMC3557191 DOI: 10.1186/1471-2229-12-235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/20/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Endo-(1,4)-β-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-β-glucosyl residues, and wall loosening during cell elongation. RESULTS The endo-(1,4)-β-glucanase gene families from barley (Hordeum vulgare), maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa) and Brachypodium (Brachypodium distachyon) range in size from 23 to 29 members. Phylogenetic analyses show variations in clade structure between the grasses and Arabidopsis, and indicate differential gene loss and gain during evolution. Map positions and comparative studies of gene structures allow orthologous genes in the five species to be identified and synteny between the grasses is found to be high. It is also possible to differentiate between homoeologues resulting from ancient polyploidizations of the maize genome. Transcript analyses using microarray, massively parallel signature sequencing and quantitative PCR data for barley, rice and maize indicate that certain members of the endo-(1,4)-β-glucanase gene family are transcribed across a wide range of tissues, while others are specifically transcribed in particular tissues. There are strong correlations between transcript levels of several members of the endo-(1,4)-β-glucanase family and the data suggest that evolutionary conservation of transcription exists between orthologues across the grass family. There are also strong correlations between certain members of the endo-(1,4)-β-glucanase family and other genes known to be involved in cell wall loosening and cell expansion, such as expansins and xyloglucan endotransglycosylases. CONCLUSIONS The identification of these groups of genes will now allow us to test hypotheses regarding their functions and joint participation in wall synthesis, re-modelling and degradation, together with their potential role in lignocellulose conversion during biofuel production from grasses and cereal crop residues.
Collapse
Affiliation(s)
- Margaret Buchanan
- Australian Research Council Centre of Excellence in Plant Cell Walls, and the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, South Australia, 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, and the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, South Australia, 5064, Australia
| | - Kanwarpal S Dhugga
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc, 7300 NW 62nd Avenue, Johnston, IA, 50131-1004, USA
| | - Antoni J Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research DuPont Experimental Station, Building E353, Wilmington, DE, 198803, USA
| | - Scott V Tingey
- Genetic Discovery Group, DuPont Crop Genetics Research DuPont Experimental Station, Building E353, Wilmington, DE, 198803, USA
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, and the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, South Australia, 5064, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, and the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, South Australia, 5064, Australia
| |
Collapse
|
28
|
Liu Y, Xu F, Gou J, Al-Haddad J, Telewski FW, Bae HJ, Joshi CP. Importance of two consecutive methionines at the N-terminus of a cellulose synthase (PtdCesA8A) for normal wood cellulose synthesis in aspen. TREE PHYSIOLOGY 2012; 32:1403-12. [PMID: 23076823 DOI: 10.1093/treephys/tps096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
All known orthologs of a secondary wall-associated cellulose synthase (CesA) gene from Arabidopsis, AtCesA8, encode CesA proteins with two consecutive methionines at their N-termini (MM or 2M). Here, we report that these 2Ms in an aspen ortholog of AtCesA8, PtdCesA8A, are important for maintaining normal wood cellulose biosynthesis in aspen trees. Overexpression of an altered PtdCesA8A cDNA encoding a PtdCesA8A protein missing one methionine at the N-terminus (1M) in aspen resulted in substantial decrease in cellulose content and caused negative effects on wood strength, suggesting that both methionines are essential for proper CesA expression and function in developing xylem tissues. Transcripts from a pair of paralogous native PtdCesA8 genes, as well as introduced PtdCesA8A:1M transgenes were significantly reduced in developing xylem tissues of transgenic aspen plants, suggestive of a co-suppression event. Overexpression of a native PtdCesA8A cDNA encoding a CesA protein with 2Ms at the N-terminus did not cause any such phenotypic changes. These results suggest the importance of 2Ms present at the N-terminus of PtdCesA8A protein during cellulose synthesis in aspen.
Collapse
Affiliation(s)
- Yunxia Liu
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Maloney VJ, Samuels AL, Mansfield SD. The endo-1,4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. THE NEW PHYTOLOGIST 2012; 193:1076-1087. [PMID: 22150158 DOI: 10.1111/j.1469-8137.2011.03998.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The evolution of compositional polymers and their complex arrangement and deposition in the cell walls of terrestrial plants included the acquisition of key protein functions. A membrane-bound endoglucanase, termed Korrigan (KOR), has been shown to be required for proper cellulose synthesis. To date, no extensive characterization of the gymnosperm KOR has been undertaken. Characterization of the white spruce (Picea glauca) gene encoding KOR (PgKOR) shows conserved protein features such as polarized targeting signals and residues predicted to be essential for catalytic activity. The rescue of the Arabidopsis thaliana kor1-1 mutant by the expression of PgKOR suggests gene conservation, providing evidence for functional equivalence. Analyses of endogenous KOR expression in white spruce revealed the highest expression in young developing tissues, which corresponds with primary cell wall development. Additionally, RNA interference of the endogenous gymnosperm gene substantially reduced growth and structural glucose content, but had no effect on cellulose ultrastructure. Partial functional conservation of KOR in gymnosperms suggests that its role in cell wall synthesis dates back to 300 million yr ago (Mya), predating angiosperms, which arose 130 Mya, and shows that proteins contributing to proper cellulose deposition are important conserved features of vascular plants.
Collapse
Affiliation(s)
- Victoria J Maloney
- Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
| | - A Lacey Samuels
- Department of Botany, The University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
30
|
|
31
|
|
32
|
Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. MOLECULAR PLANT 2011; 4:331-45. [PMID: 21300756 DOI: 10.1093/mp/ssq081] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts. The main axis of the transgenic aspen plants quickly stopped growing, and weak branches adopted a weeping growth habit. Furthermore, transgenic plants initially developed smaller leaves and a less extensive root system. Secondary xylem (wood) of transgenic aspen plants contained as little as 10% cellulose normalized to dry weight compared to 41% cellulose typically found in normal aspen wood. This massive reduction in cellulose was accompanied by proportional increases in lignin (35%) and non-cellulosic polysaccharides (55%) compared to the 22% lignin and 36% non-cellulosic polysaccharides in control plants. The transgenic stems produced typical collapsed or 'irregular' xylem vessels that had altered secondary wall morphology and contained greatly reduced amounts of crystalline cellulose. These results demonstrate the fundamental role of secondary wall cellulose within the secondary xylem in maintaining the strength and structural integrity required to establish the vertical growth habit in trees.
Collapse
Affiliation(s)
- Chandrashekhar P Joshi
- Biotechnology Research Center, School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xie G, Peng L. Genetic engineering of energy crops: a strategy for biofuel production in China. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:143-50. [PMID: 21205188 DOI: 10.1111/j.1744-7909.2010.01022.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world. In concerns with food security in China, starch or sugar-based bioethanol and edible-oil-derived biodiesel are harshly restricted for large scale production. However, conversion of lignocellulosic residues from food crops is a potential alternative. Because of its recalcitrance, current biomass process is unacceptably expensive, but genetic breeding of energy crops is a promising solution. To meet the need, energy crops are defined with a high yield for both food and biofuel purposes. In this review, main grasses (rice, wheat, maize, sorghum and miscanthus) are evaluated for high biomass production, the principles are discussed on modification of plant cell walls that lead to efficient biomass degradation and conversion, and the related biotechnologies are proposed in terms of energy crop selection.
Collapse
Affiliation(s)
- Guosheng Xie
- National Key Laboratory of Crop Genetic Improvement, Biomass and Bioenergy Research Centre, and College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
34
|
Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. PLANTA 2010; 232:337-52. [PMID: 20458494 DOI: 10.1007/s00425-010-1181-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/19/2010] [Indexed: 05/05/2023]
Abstract
Wood has a wide variety of uses and is arguably the most important renewable raw material. The composition of xylem cell types in wood determines the utility of different types of wood for distinct commercial applications. Using expression profiling and phylogenetic analysis, we identified many xylem-associated regulatory genes that may control the differentiation of cells involved in wood formation in Arabidopsis and poplar. Prominent among these are NAC domain transcription factors (NACs). We studied NACs with putative involvement as negative (XND1 from Arabidopsis and its poplar orthologs PopNAC118, PopNAC122, PopNAC128, PopNAC129), or positive (SND2 and SND3 from Arabidopsis and their poplar orthologs PopNAC105, PopNAC154, PopNAC156, PopNAC157) regulators of secondary cell wall synthesis. Using quantitative PCR and in situ hybridization, we evaluated expression of these Populus NACs in a developmental gradient and in association with reaction wood and found that representatives from both groups were associated with wood-forming tissue and phloem fibers. Additionally, XND1 orthologs were expressed in mesophyll cells of developing leaves. We prepared transgenic Arabidopsis and poplar plants for overexpression of selected NACs. XND1 overexpression in poplar resulted in severe stunting. Additionally, poplar XND1 overexpressors lacked phloem fibers and showed reductions in cell size and number, vessel number, and frequency of rays in the xylem. Overexpression of PopNAC122, an XND1 ortholog, yielded an analogous phenotype in Arabidopsis. Overexpression of PopNAC154 in poplar reduced height growth and increased the relative proportion of bark versus xylem.
Collapse
Affiliation(s)
- Emily H Grant
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
35
|
Maloney VJ, Mansfield SD. Characterization and varied expression of a membrane-bound endo-beta-1,4-glucanase in hybrid poplar. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:294-307. [PMID: 20070872 DOI: 10.1111/j.1467-7652.2009.00483.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To understand better the intricacies of secondary cell wall biosynthesis in trees, we investigated changes in cellulose chemistry and ultrastructure manifested by the mis-regulation of the poplar membrane-bound beta-1,4-endoglucanase orthologous to KORRIGAN (AtKOR). We isolated the poplar KORRIGAN gene from hybrid poplar (Populus albaxgrandidentata; designated PaxgKOR) and created a self-complementary (hairpin) RNAi suppression construct using PCR products derived from the gene. Additionally, AtKOR was employed to generate transgenic poplar over-expressing KORRIGAN. It was found that down-regulation leads to moderate to severe defects in plant growth, an irregular xylem (irx) phenotype, and significantly impacts the ultrastructure of the cellulose synthesized. The RNAi-suppressed lines deposited significantly reduced quantities of a more highly crystalline cellulose, while the hemicellulose content and, more specifically, the xylose content increased. In addition, the amount of soluble sucrose in the leaves and xylem decreased. Conversely, the AtKOR transgenics did not significantly alter cell wall development or plant growth parameters, but it did impact the ultrastructure of the cellulose produced, generating trees with less crystalline cellulose and reduced xylose content.
Collapse
Affiliation(s)
- Victoria J Maloney
- Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Dharmawardhana P, Brunner AM, Strauss SH. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics 2010; 11:150. [PMID: 20199690 PMCID: PMC2846914 DOI: 10.1186/1471-2164-11-150] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/04/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth. RESULTS Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value = 0.05; >2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region. CONCLUSION Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.
Collapse
Affiliation(s)
- Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061-0324, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| |
Collapse
|
37
|
Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:649-65. [PMID: 19674407 DOI: 10.1111/j.1365-313x.2009.03989.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
38
|
Jiang S, Xu K, Zhao N, Zheng SX, Ren YP, Gao YB, Gu S. Ethylene evolution changes in tilted Fraxinus mandshurica Rupr. var. japonica maxim. seedlings in relation to tension wood formation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:707-713. [PMID: 19566649 DOI: 10.1111/j.1744-7909.2009.00835.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5 x 10(-7)micromol/L AVG, 12.5 x 10(-8)micromol/L AVG, and 11.8 x 10(-8)micromol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5 x 10(-7)micromol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5 x 10(-7)micromol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var. japonica Maxim. seedlings.
Collapse
Affiliation(s)
- Sha Jiang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, del Campillo E, Master ER, Vibe Scheller H, Sundberg B, Teeri TT, Mellerowicz EJ. KORRIGAN1 and its Aspen Homolog PttCel9A1 Decrease Cellulose Crystallinity in Arabidopsis Stems. ACTA ACUST UNITED AC 2009; 50:1099-115. [DOI: 10.1093/pcp/pcp062] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Kwon M. Tension Wood as a Model System to Explore the Carbon Partitioning between Lignin and Cellulose Biosynthesis in Woody Plants. ACTA ACUST UNITED AC 2008. [DOI: 10.3839/jabc.2008.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Lu S, Li L, Yi X, Joshi CP, Chiang VL. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:681-695. [PMID: 18281718 DOI: 10.1093/jxb/erm350] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Trees constitute the majority of lignocellulosic biomass existing on our planet. Trees also serve as important feedstock materials for various industrial products. However, little is known about the regulatory mechanisms of cellulose synthase (CesA) genes of trees. Here, the cloning and characterization of three CesA genes (EgraCesA1, EgraCesA2, and EgraCesA3) from an economically important tree species, Eucalyptus grandis, are reported. All three genes were specifically expressed in xylem cells of eucalyptus undergoing secondary cell wall biosynthesis. The GUS gene, expressed under the control of the EgraCesA2 or EgraCesA3 promoter, was also localized in the secondary xylem in transgenic tobacco stems. However, the EgraCesA1 promoter alone or along with its 5'-UTR introns was insufficient to direct appropriate GUS expression. EgraCesA2 and EgraCesA3 gene expression was up-regulated in tension-stressed eucalyptus xylem cells. Accordingly, GUS expression directed by the EgraCesA2 or EgraCesA3 promoter was also up-regulated. EgraCesA1 had no such response. Thus, it is most unlikely that EgraCesA1 is a subunit of the EgraCesA2-EgraCesA3 complex. The presence of at least two types of cellulose biosynthesis machinery in wood formation is an important clue in deciphering the underpinnings of the perennial growth of trees in various environmental conditions. By analysing GUS gene expression directed by the EgraCesA3 promoter or its deletions, several negative and positive regulatory regions controlling gene expression in xylem or phloem were identified. Also a region which is likely to contain mechanical stress-responsive elements was deduced. These results will guide further studies on identifying cis-regulatory elements directing CesA gene transcription and wood formation regulatory networks.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
42
|
Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ. Differential expansion and expression of alpha- and beta-tubulin gene families in Populus. PLANT PHYSIOLOGY 2007; 145:961-73. [PMID: 17885081 PMCID: PMC2048781 DOI: 10.1104/pp.107.107086] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/17/2007] [Indexed: 05/04/2023]
Abstract
Microtubule organization is intimately associated with cellulose microfibril deposition, central to plant secondary cell wall development. We have determined that a relatively large suite of eight alpha-TUBULIN (TUA) and 20 beta-TUBULIN (TUB) genes is expressed in the woody perennial Populus. A number of features, including gene number, alpha:beta gene representation, amino acid changes at the C terminus, and transcript abundance in wood-forming tissue, distinguish the Populus tubulin suite from that of Arabidopsis thaliana. Five of the eight Populus TUAs are unusual in that they contain a C-terminal methionine, glutamic acid, or glutamine, instead of the more typical, and potentially regulatory, C-terminal tyrosine. Both C-terminal Y-type (TUA1) and M-type (TUA5) TUAs were highly expressed in wood-forming tissues and pollen, while the Y-type TUA6 and TUA8 were abundant only in pollen. Transcripts of the disproportionately expanded TUB family were present at comparatively low levels, with phylogenetically distinct classes predominating in xylem and pollen. When tension wood induction was used as a model system to examine changes in tubulin gene expression under conditions of augmented cellulose deposition, xylem-abundant TUA and TUB genes were up-regulated. Immunolocalization of TUA and TUB in xylem and phloem fibers of stems further supported the notion of heavy microtubule involvement during cellulose microfibril deposition in secondary walls. The high degree of sequence diversity, differential expansion, and differential regulation of Populus TUA and TUB families may confer flexibility in cell wall formation that is of adaptive significance to the woody perennial growth habit.
Collapse
Affiliation(s)
- Rodney V Oakley
- Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931
| | | | | | | | | |
Collapse
|
43
|
Xu BY, Su W, Liu JH, Wang JB, Jin ZQ. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. PLANTA 2007; 226:529-39. [PMID: 17334781 DOI: 10.1007/s00425-007-0502-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/14/2007] [Indexed: 05/14/2023]
Abstract
The banana (Musa acuminate L. AAA group) fruit undergoes a postharvest ripening process, which plays an important role in improving the quality and extending the shelf life of bananas. To manipulate postharvest banana ripening, a better understanding of the mechanism of postharvest ripening is necessary. The isolation of mRNA transcripts encoding proteins associated with the ripening process is a powerful tool for this purpose. To isolate differentially expressed genes at the early stage of postharvest banana ripening, a forward suppression subtractive hybridization (SSH) cDNA library was constructed. SSH was performed with cDNA from banana fruit on the day of harvest as the "driver" and cDNA from banana fruit 2 days postharvest (DPH) as the "tester." A total of 289 clones in the SSH library were sequenced. BLASTX results revealed that 191 cDNAs had significant sequence homologies with known sequences in the NCBI database. Of the 191 cDNAs, 138 were singletons, and 53 belonged to divergent clusters containing 2-8 sequences. The identified cDNAs encoded proteins involved in cellular processes such as: metabolism; protein destination and storage; protein synthesis; signal transduction; transport and intracellular traffic; cell structure, growth, and division; transcription and post-transcription; and disease and defense. To characterize differentially expressed cDNAs in the SSH library, cDNA microarray analysis was conducted. A total of 26 cDNAs in the 2-DPH banana fruit were found to be up-regulated and these results were confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR). The information generated in this study provides new clues to aid in the understanding of banana ripening.
Collapse
Affiliation(s)
- Bi Yu Xu
- State Key Biotechnology Laboratory of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan province 571101, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Joshi CP, Mansfield SD. The cellulose paradox--simple molecule, complex biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:220-6. [PMID: 17468038 DOI: 10.1016/j.pbi.2007.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Cellulose is the most abundant biopolymer on earth. Despite its simple structure, omnipresence in the plant kingdom, and ever increasing global importance as industrial raw material, the genetic and biochemical regulation of cellulose biosynthesis continues to be unclear. Over the past ten years, the advances in functional genomics have significantly improved our understanding of the processes of cellulose biosynthesis in higher plants. However, for each question answered myriad new unanswered ones have arisen.
Collapse
Affiliation(s)
- Chandrashekhar P Joshi
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | |
Collapse
|
45
|
Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s1677-04202007000100001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annually, plants produce about 180 billion tons of cellulose making it the largest reservoir of organic carbon on Earth. Cellulose is a linear homopolymer of beta(1-4)-linked glucose residues. The coordinated synthesis of glucose chains is orchestrated by specific plasma membrane-bound cellulose synthase complexes (CelS). The CelS is postulated to be composed of approximately 36 cellulose synthase (CESA) subunits. The CelS synthesizes 36 glucose chains in close proximity before they are further organized into microfibrils that are further associated with other cell wall polymers. The 36 glucose chains in a microfibril are stabilized by intra- and inter-hydrogen bonding which confer great stability on microfibrils. Several elementary microfibrils come together to form macrofibrils. Many CESA isoforms appear to be involved in the cellulose biosynthetic process and at least three types of CESA isoforms appear to be necessary for the functional organization of CelS in higher plants.
Collapse
|
46
|
Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides - a complex process. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:621-30. [PMID: 17011813 DOI: 10.1016/j.pbi.2006.09.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
Cellulose, a major component of plant cell walls, is made by dynamic complexes that move within the plasma membrane while depositing cellulose directly into the wall. On the other hand, matrix polysaccharides are made in the Golgi and delivered to the wall via secretory vesicles. Several Golgi proteins that are involved in glucomannan and xyloglucan biosynthesis have been identified, including some glycan synthases that show sequence similarity to the cellulose synthase proteins and several glycosytransferases that add sidechains to the polysaccharide backbones. Recent progress in identifying the proteins needed for polysaccharide biosynthesis should lead to an improved understanding of the molecular details of these complex processes, and eventually to an ability to manipulate them in an effort to generate plants that have improved properties for human uses.
Collapse
Affiliation(s)
- Olivier Lerouxel
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|