1
|
Liu J, Wang Y, Chen X, Tang L, Yang Y, Yang Z, Sun R, Mladenov P, Wang X, Liu X, Jin S, Li H, Zhao L, Wang Y, Wang W, Deng X. Specific metabolic and cellular mechanisms of the vegetative desiccation tolerance in resurrection plants for adaptation to extreme dryness. PLANTA 2024; 259:47. [PMID: 38285274 DOI: 10.1007/s00425-023-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yuanyuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxiu Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Agrobioinstitute, Agricultural Academy Bulgaria, Sofia, 1164, Bulgaria
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songsong Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing University of Agriculture, Beijing, 102206, China
| | - Wenhe Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
2
|
Yang Q, Yang R, Gao B, Liang Y, Liu X, Li X, Zhang D. Metabolomic Analysis of the Desert Moss Syntrichia caninervis Provides Insights into Plant Dehydration and Rehydration Response. PLANT & CELL PHYSIOLOGY 2023; 64:1419-1432. [PMID: 37706231 DOI: 10.1093/pcp/pcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.
Collapse
Affiliation(s)
- Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| |
Collapse
|
3
|
Shoko R, Magogo B, Pullen J, Mudziwapasi R, Ndlovu J. Construction and analysis of protein-protein interaction networks based on nuclear proteomics data of the desiccation-tolerant Xerophyta schlechteri leaves subjected to dehydration stress. Commun Integr Biol 2023; 16:2193000. [PMID: 36969388 PMCID: PMC10038031 DOI: 10.1080/19420889.2023.2193000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In order to understand the mechanism of desiccation tolerance in Xerophyta schlechteri, we carried out an in silico study to identify hub proteins and functional modules in the nuclear proteome of the leaves. Protein-protein interaction networks were constructed and analyzed from proteome data obtained from Abdalla and Rafudeen. We constructed networks in Cytoscape using the GeneMania software and analyzed them using a Network Analyzer. Functional enrichment analysis of key proteins in the respective networks was done using GeneMania network enrichment analysis, and GO (Gene Ontology) terms were summarized using REViGO. Also, community analysis of differentially expressed proteins was conducted using the Cytoscape Apps, GeneMania and ClusterMaker. Functional modules associated with the communities were identified using an online tool, ShinyGO. We identified HSP 70-2 as the super-hub protein among the up-regulated proteins. On the other hand, 40S ribosomal protein S2-3 (a protein added by GeneMANIA) was identified as a super-hub protein associated with the down-regulated proteins. For up-regulated proteins, the enriched biological process terms were those associated with chromatin organization and negative regulation of transcription. In the down-regulated protein-set, terms associated with protein synthesis were significantly enriched. Community analysis identified three functional modules that can be categorized as chromatin organization, anti-oxidant activity and metabolic processes.
Collapse
Affiliation(s)
- Ryman Shoko
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
- CONTACT Ryman Shoko Department of Biology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Babra Magogo
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Jessica Pullen
- Department of Animal Science and Rangeland Management, Lupane State University, Lupane, Zimbabwe
| | - Reagan Mudziwapasi
- Department of Research and Innovation, Midlands State University, Gweru, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
4
|
Mihailova G, Christov NK, Sárvári É, Solti Á, Hembrom R, Solymosi K, Keresztes Á, Velitchkova M, Popova AV, Simova-Stoilova L, Todorovska E, Georgieva K. Reactivation of the Photosynthetic Apparatus of Resurrection Plant Haberlea rhodopensis during the Early Phase of Recovery from Drought- and Freezing-Induced Desiccation. PLANTS 2022; 11:plants11172185. [PMID: 36079568 PMCID: PMC9460447 DOI: 10.3390/plants11172185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Haberlea rhodopensis is a unique desiccation-tolerant angiosperm that also survives winter frost. As, upon freezing temperatures, H. rhodopensis desiccates, the taxon is proposed to survive low temperature stress using its desiccation tolerance mechanisms. To reveal the validity of this hypothesis, we analyzed the structural alterations and organization of photosynthetic apparatus during the first hours of recovery after drought- and freezing-induced desiccation. The dynamics of the ultrastructure remodeling in the mesophyll cells and the restoration of the thylakoid membranes shared similarities independent of the reason for desiccation. Among the most obvious changes in thylakoid complexes, the proportion of the PSI-LHCII complex strongly increased around 70% relative water content (RWC), whereas the proportion of Lhc monomers decreased from the beginning of rehydration. We identified enhanced levels of cyt b6f complex proteins that contributed to the enhanced electron flow. The high abundance of proteins related to excitation energy dissipation, PsbS, Lhcb5, Lhcb6 and ELIPs, together with the increased content of dehydrins contributed to the preservation of cellular integrity. ELIP expression was maintained at high levels up to 9 h into recovery. Although the recovery processes from drought- and freezing-induced desiccation were found to be similar in progress and time scale, slight variations indicate that they are not identical.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Bilding 21, 1113 Sofia, Bulgaria
| | - Nikolai K. Christov
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Richard Hembrom
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Áron Keresztes
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Bilding 21, 1113 Sofia, Bulgaria
| | - Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Bilding 21, 1113 Sofia, Bulgaria
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Bilding 21, 1113 Sofia, Bulgaria
| | - Elena Todorovska
- AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Bilding 21, 1113 Sofia, Bulgaria
- Correspondence: or ; Tel.: +359-2-979-2620
| |
Collapse
|
5
|
Proteomics Evidence of a Systemic Response to Desiccation in the Resurrection Plant Haberlea rhodopensis. Int J Mol Sci 2022; 23:ijms23158520. [PMID: 35955654 PMCID: PMC9369045 DOI: 10.3390/ijms23158520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Global warming and drought stress are expected to have a negative impact on agricultural productivity. Desiccation-tolerant species, which are able to tolerate the almost complete desiccation of their vegetative tissues, are appropriate models to study extreme drought tolerance and identify novel approaches to improve the resistance of crops to drought stress. In the present study, to better understand what makes resurrection plants extremely tolerant to drought, we performed transmission electron microscopy and integrative large-scale proteomics, including organellar and phosphorylation proteomics, and combined these investigations with previously published transcriptomic and metabolomics data from the resurrection plant Haberlea rhodopensis. The results revealed new evidence about organelle and cell preservation, posttranscriptional and posttranslational regulation, photosynthesis, primary metabolism, autophagy, and cell death in response to desiccation in H. rhodopensis. Different protective intrinsically disordered proteins, such as late embryogenesis abundant (LEA) proteins, thaumatin-like proteins (TLPs), and heat shock proteins (HSPs), were detected. We also found a constitutively abundant dehydrin in H. rhodopensis whose phosphorylation levels increased under stress in the chloroplast fraction. This integrative multi-omics analysis revealed a systemic response to desiccation in H. rhodopensis and certain targets for further genomic and evolutionary studies on DT mechanisms and genetic engineering towards the improvement of drought tolerance in crops.
Collapse
|
6
|
Vidović M, Battisti I, Pantelić A, Morina F, Arrigoni G, Masi A, Jovanović SV. Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:1199. [PMID: 35567200 PMCID: PMC9104375 DOI: 10.3390/plants11091199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Ana Pantelić
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Mihailova G, Vasileva I, Gigova L, Gesheva E, Simova-Stoilova L, Georgieva K. Antioxidant Defense during Recovery of Resurrection Plant Haberlea rhodopensis from Drought- and Freezing-Induced Desiccation. PLANTS 2022; 11:plants11020175. [PMID: 35050062 PMCID: PMC8778515 DOI: 10.3390/plants11020175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
In this study, the contribution of nonenzymatic (ascorbate, glutathione) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase) in the first hours of recovery of the resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation was assessed. The initial stage of recovery after desiccation is critical for plants, but less investigated. To better understand the alterations in the activity of antioxidant enzymes, their isoenzyme patterns were determined. Our results showed that ascorbate content remained high during the first 9 h of rehydration of desiccated plants and declined when the leaves′ water content significantly increased. The glutathione content remained high at the first hour of rehydration and then strongly decreased. The changes in ascorbate and glutathione content during recovery from drought- and freezing-induced desiccation showed great similarity. At the beginning of rehydration (1–5 h), the activities of antioxidant enzymes were significantly increased or remained as in dry plants. During 7–24 h of rehydration, certain differences in the enzymatic responses between the two plant groups were registered. The maintenance of a high antioxidant activity and upregulation of individual enzyme isoforms indicated their essential role in protecting plants from oxidative damage during the onset of recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Ivanina Vasileva
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Liliana Gigova
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Emiliya Gesheva
- Laboratory of Plant-Soil Interactions, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Lyudmila Simova-Stoilova
- Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Katya Georgieva
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Correspondence: or ; Tel.: +359-2-979-2620
| |
Collapse
|
8
|
Nergui K, Jin S, Zhao L, Liu X, Xu T, Wei J, Chen X, Yang Y, Li H, Liu Y, Wang Y, Liu J, Zhao T, Li Y, Tang L, Sun R, Wang X, Liu Y, Deng X. Comparative analysis of physiological, agronomic and transcriptional responses to drought stress in wheat local varieties from Mongolia and Northern China. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:23-35. [PMID: 34844115 DOI: 10.1016/j.plaphy.2021.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the major abiotic stresses that threaten wheat production worldwide, especially in the Mongolian Plateau and adjacent regions. This study aims to find local wheat varieties with high yields and drought resistance at various developmental stages based on agronomic traits and drought resistance indices analysis and explore the underlining molecular mechanisms by transcriptome analysis. Our results revealed that drought stress started at the seedling stage has a greater impact on crop yields. Four types of drought responses were found among the tested varieties. Type 1 and type 2 show low tolerance to drought stress despite high or low yield in control condition, type 3 exhibits high yield under control condition but dropped significantly after drought, and type 4 displays relatively high and stable yields under control and drought conditions. Transcriptome analysis performed with the representative varieties of the four types revealed GO terms and KEGG pathways enriched among drought-triggered differential expressed genes (DEGs). A network containing 18 modules was constructed using weighted gene co-expression analysis (WGCNA). Ten modules were significantly correlated to yield by module-trait correlation, and 3 modules showed Darkhan 144 specific gene expression patterns. C2H2 zinc finger factor-recognized motifs were identified from the promoters of genes in these modules. qRT-PCR confirmed several key DEGs with specific expression patterns and physiological measurements validated the relatively low oxidative damage and high antioxidant capacity in the drought tolerant variety Dankhan 144. These findings provide an important basis for local agriculture and breeding of drought-tolerant high yield wheat varieties.
Collapse
Affiliation(s)
- Khandmaa Nergui
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Songsong Jin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoqiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Wei
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuanyuan Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tong Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ling Tang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Runze Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaohua Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
9
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
10
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
11
|
Xu X, Legay S, Sergeant K, Zorzan S, Leclercq CC, Charton S, Giarola V, Liu X, Challabathula D, Renaut J, Hausman JF, Bartels D, Guerriero G. Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:377-398. [PMID: 33901322 PMCID: PMC8453721 DOI: 10.1111/tpj.15294] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.
Collapse
Affiliation(s)
- Xuan Xu
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Sylvain Legay
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Céline C Leclercq
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Sophie Charton
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Jean-Francois Hausman
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Gea Guerriero
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
12
|
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. Anal Bioanal Chem 2020; 412:8299-8312. [PMID: 33037906 DOI: 10.1007/s00216-020-02965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia.
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, Belgrade, 11042, Serbia.
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
- Proteomics Center University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padua, Italy
| | - Filis Morina
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Antonio Masi
- DAFNAE - University of Padova, Viale Università 16 - AGRIPOLIS, I-35020, Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy.
- Proteomics Center University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padua, Italy.
- CRIBI Biotechnology Center, University of Padova, viale G. Colombo 3, 35131, Padua, Italy.
| |
Collapse
|
13
|
García-Fontana C, Vilchez JI, Manzanera M. Proteome Comparison Between Natural Desiccation-Tolerant Plants and Drought-Protected Caspicum annuum Plants by Microbacterium sp. 3J1. Front Microbiol 2020; 11:1537. [PMID: 32765446 PMCID: PMC7381273 DOI: 10.3389/fmicb.2020.01537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Desiccation-tolerant plants are able to survive for extended periods of time in the absence of water. The molecular understanding of the mechanisms used by these plants to resist droughts can be of great value for improving drought tolerance in crops. This understanding is especially relevant in an environment that tends to increase the number and intensity of droughts. The combination of certain microorganisms with drought-sensitive plants can improve their tolerance to water scarcity. One of these bacteria is Microbacterium sp. 3J1, an actinobacteria able to protect pepper plants from drought. In this study, we supplemented drought-tolerant and drought-sensitive plant rhizospheres with Microbacterium sp. 3J1 and analyzed their proteomes under drought to investigate the plant-microbe interaction. We also compare this root proteome with the proteome found in desiccation-tolerant plants. In addition, we studied the proteome of Microbacterium sp. 3J1 subjected to drought to analyze its contribution to the plant-microbe interaction. We describe those mechanisms shared by desiccation-tolerant plants and sensitive plants protected by microorganisms focusing on protection against oxidative stress, and production of compatible solutes, plant hormones, and other more specific proteins.
Collapse
Affiliation(s)
| | | | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Lin CT, Xu T, Xing SL, Zhao L, Sun RZ, Liu Y, Moore JP, Deng X. Weighted Gene Co-expression Network Analysis (WGCNA) Reveals the Hub Role of Protein Ubiquitination in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2019; 60:2707-2719. [PMID: 31410481 DOI: 10.1093/pcp/pcz160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Chih-Ta Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Lai Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Li Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Run-Ze Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - John Paul Moore
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Matieland 7602, South Africa
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Shi J, Wang W, Lin Y, Xu K, Xu Y, Ji D, Chen C, Xie C. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation. BMC PLANT BIOLOGY 2019; 19:475. [PMID: 31694541 PMCID: PMC6836531 DOI: 10.1186/s12870-019-2076-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pyropia haitanensis, distributes in the intertidal zone, can tolerate water losses exceeding 90%. However, the mechanisms enabling P. haitanensis to survive harsh conditions remain uncharacterized. To elucidate the mechanism underlying P. haitanensis desiccation tolerance, we completed an integrated analysis of its transcriptome and proteome as well as transgenic Chlamydomonas reinhardtii carrying a P. haitanensis gene. RESULTS P. haitanensis rapidly adjusted its physiological activities to compensate for water losses up to 60%, after which, photosynthesis, antioxidant systems, chaperones, and cytoskeleton were activated to response to severe desiccation stress. The integrative analysis suggested that transketolase (TKL) was affected by all desiccation treatments. Transgenic C. reinhardtii cells overexpressed PhTKL grew better than the wild-type cells in response to osmotic stress. CONCLUSION P. haitanensis quickly establishes acclimatory homeostasis regarding its transcriptome and proteome to ensure its thalli can recover after being rehydrated. Additionally, PhTKL is vital for P. haitanensis desiccation tolerance. The present data may provide new insights for the breeding of algae and plants exhibiting enhanced desiccation tolerance.
Collapse
Affiliation(s)
- Jianzhi Shi
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yinghui Lin
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| |
Collapse
|
16
|
Liu J, Moyankova D, Djilianov D, Deng X. Common and Specific Mechanisms of Desiccation Tolerance in Two Gesneriaceae Resurrection Plants. Multiomics Evidences. FRONTIERS IN PLANT SCIENCE 2019; 10:1067. [PMID: 31552070 PMCID: PMC6737074 DOI: 10.3389/fpls.2019.01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 05/06/2023]
Abstract
Environmental stress, especially water deficiency, seriously limits plant distribution and crop production worldwide. A small group of vascular angiosperm plants termed "resurrection plants," possess desiccation tolerance (DT) to withstand dehydration and to recover fully upon rehydration. In recent years, with the rapid development of life science in plants different omics technologies have been widely applied in resurrection plants to study DT. Boea hygrometrica is native in East and Southeast Asia, and Haberlea rhodopensis is endemic to the Balkans in Europe. They are both resurrection pants from Gesneriaceae family. This paper reviews recent advances in transcriptome and metabolome, and discusses the differences and similarities of DT features between both species. Finally, we believe we provide novel insights into understanding the mechanisms underlying the acquisition and evolution of desiccation tolerance of the resurrection plants that could substantially contribute to develop new approaches for agriculture to overcome water deficiency in future.
Collapse
Affiliation(s)
- Jie Liu
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, China
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation. Int J Mol Sci 2019; 20:ijms20123101. [PMID: 31242611 PMCID: PMC6627786 DOI: 10.3390/ijms20123101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginellamoellendorffii. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.
Collapse
|
18
|
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. DRL1, Encoding A NAC Transcription Factor, Is Involved in Leaf Senescence in Grapevine. Int J Mol Sci 2019; 20:ijms20112678. [PMID: 31151316 PMCID: PMC6600502 DOI: 10.3390/ijms20112678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chaohui Yan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Li Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Qingtian Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Zhen Han
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Bo Li
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| |
Collapse
|
19
|
Yobi A, Batushansky A, Oliver MJ, Angelovici R. Adaptive responses of amino acid metabolism to the combination of desiccation and low nitrogen availability in Sporobolus stapfianus. PLANTA 2019; 249:1535-1549. [PMID: 30725176 DOI: 10.1007/s00425-019-03105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Depending on nitrogen availability, S. stapfianus uses different amino acid metabolism strategies to cope with desiccation stress. The different metabolic strategies support essential processes for the desiccation tolerance phenotype. To provide a comprehensive assessment of the role played by amino acids in the adaptation of Sporobolus stapfianus to a combination of desiccation and nitrogen limitation, we used an absolute quantification of free and protein-bound amino acids (FAAs and PBAAs) as well as their gamma-glutamyl (gg-AA) derivatives in four different tissues grown under high- and low-nitrogen regimes. We demonstrate that although specific FAAs and gg-AAs increased in desiccating immature leaves under both nitrogen regimes, the absolute change in the total amount of either is small or negligible, negating their proposed role in nitrogen storage. FAAs and PBAAs decrease in underground tissues during desiccation, when nitrogen is abundant. In contrast, PBAAs are drastically reduced from the mature leaves, when nitrogen is limiting. Nevertheless, the substantial reduction in PBAA and FAA fractions in both treatments is not manifested in the immature leaves, which strongly suggests that these amino acids are further metabolized to fuel central metabolism or other metabolic adjustments that are essential for the acquisition of desiccation tolerance (DT).
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Melvin J Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA.
| |
Collapse
|
20
|
Tuzet A, Rahantaniaina MS, Noctor G. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H 2O 2 Processing: Insights from an Experimentally Constrained Kinetic Model. Antioxid Redox Signal 2019; 30:1238-1268. [PMID: 30044135 DOI: 10.1089/ars.2018.7601] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Plant stress involves redox signaling linked to reactive oxygen species such as hydrogen peroxide (H2O2), which can be generated at high rates in photosynthetic cells. The systems that process H2O2 include catalase (CAT) and the ascorbate-glutathione pathway, but interactions between them remain unclear. Modeling can aid interpretation and pinpoint areas for investigation. Recent Advances: Based on emerging data and concepts, we introduce a new experimentally constrained kinetic model to analyze interactions between H2O2, CAT, ascorbate, glutathione, and NADPH. The sensitivity points required for accurate simulation of experimental observations are analyzed, and the implications for H2O2-linked redox signaling are discussed. CRITICAL ISSUES We discuss several implications of the modeled results, in particular the following. (i) CAT and ascorbate peroxidase can share the load in H2O2 processing even in optimal conditions. (ii) Intracellular H2O2 concentrations more than the low μM range may rarely occur. (iii) Ascorbate redox turnover is largely independent of glutathione until ascorbate peroxidation exceeds a certain value. (iv) NADPH availability may determine glutathione redox status through its influence on monodehydroascorbate reduction. (v) The sensitivity of glutathione status to oxidative stress emphasizes its potential suitability as a sensor of increased H2O2. FUTURE DIRECTIONS Important future questions include the roles of other antioxidative systems in interacting with CAT and the ascorbate-glutathione pathway as well as the nature and significance of processes that achieve redox exchange between different subcellular compartments. Progress in these areas is likely to be favored by integrating kinetic modeling analyses into experimentally based programs, allowing each approach to inform the other.
Collapse
Affiliation(s)
- Andrée Tuzet
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France
| | - Marie-Sylviane Rahantaniaina
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France.,2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Graham Noctor
- 2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
21
|
Wang B, Yang L, Zhang Y, Chen S, Gao X, Wan C. Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration. J Proteomics 2019; 192:160-168. [DOI: 10.1016/j.jprot.2018.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
22
|
Challabathula D, Zhang Q, Bartels D. Protection of photosynthesis in desiccation-tolerant resurrection plants. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:84-92. [PMID: 29778495 DOI: 10.1016/j.jplph.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 05/14/2023]
Abstract
Inhibition of photosynthesis is a central, primary response that is observed in both desiccation-tolerant and desiccation-sensitive plants affected by drought stress. Decreased photosynthesis during drought stress can either be due to the limitation of carbon dioxide entry through the stomata and the mesophyll cells, due to increased oxidative stress or due to decreased activity of photosynthetic enzymes. Although the photosynthetic rates decrease in both desiccation-tolerant and sensitive plants during drought, the remarkable difference lies in the complete recovery of photosynthesis after rehydration in desiccation-tolerant plants. Desiccation of sensitive plants leads to irreparable damages of the photosynthetic membranes, in contrast the photosynthetic apparatus is deactivated during desiccation in desiccation-tolerant plants. Desiccation-tolerant plants employ different strategies to protect and/or maintain the structural integrity of the photosynthetic apparatus to reactivate photosynthesis upon water availability. Two major mechanisms are distinguished. Homoiochlorophyllous desiccation-tolerant plants preserve chlorophyll and thylakoid membranes and require active protection mechanisms, while poikilochlorophyllous plants degrade chlorophyll in a regulated manner but then require de novo synthesis during rehydration. Desiccation-tolerant plants, particularly homoiochlorophyllous plants, employ conserved and novel antioxidant enzymes/metabolites to minimize the oxidative damage and to protect the photosynthetic machinery. De novo synthesized, stress-induced proteins in combination with antioxidants are localized in chloroplasts and are important components of the protective network. Genome sequence informations provide some clues on selection of genes involved in protecting photosynthetic structures; e.g. ELIP genes (early light inducible proteins) are enriched in the genomes and more abundantly expressed in homoiochlorophyllous desiccation-tolerant plants. This review focuses on the mechanisms that operate in the desiccation-tolerant plants to protect the photosynthetic apparatus during desiccation.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
23
|
Wang Y, Liu K, Bi D, Zhou S, Shao J. Molecular phylogeography of East Asian Boea clarkeana (Gesneriaceae) in relation to habitat restriction. PLoS One 2018; 13:e0199780. [PMID: 29969490 PMCID: PMC6029794 DOI: 10.1371/journal.pone.0199780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/13/2018] [Indexed: 11/23/2022] Open
Abstract
Subfamily Cyrtandroideae (Gesneriaceae) comprises a broadly distributed group of rocky-slope herbs, with China being the center of its distributional range. The normal growth of many species within the family is particularly dependent on special habitats. Due to the paucity of molecular studies, very little is known regarding East Asian herb phylogeographic pattern. Here, we investigate the molecular phylogeography of Boea clarkeana Hemsl., a unique resurrection herb endemic to China, focusing on geographically restrictive effects of habitat distribution on evolutionary history. Variation in three chloroplast DNA (cpDNA) intergenic spacers (psbA-trnH, rps12-rpl20, and trnL-trnF), the ribosomal internal transcribed spacer (ITS) and simple sequence repeats in expressed sequence tags (EST-SSRs) was investigated across 18 populations to assess genetic diversity, genetic structure and historical dynamics. Genetic diversity was low within populations (cpDNA, hS = 0.03, πS×10(3) = 0.17; ITS, hS = 0.16, πS×10(3) = 0.43) but high for species (cpDNA, hT = 0.82, πT×10(3) = 3.12; ITS, hT = 0.88, πT×10(3) = 6.39); 76 alleles were detected in this highly inbred species (FIS = 0.22), with a significantly low average of 1.34 alleles per locus. No cpDNA or ITS haplotypes were shared between regions. Based on cpDNA results, the Mt. Huangshan-Tianmu and Mt. Qinling-Daba haplotypes are ancestral; these two regions represent potential refugia. Although no evidence of significant retreat-migration phenomena during glacial cycles was detected, interglacial range expansion from northern Mt. Qinling-Daba was identified (121,457 yr BP). Rapid agricultural growth caused bottlenecks in many populations, especially on Mt. Huang-Tianmu. Habitat restriction and fragmentation, weak seed and pollen dispersal abilities, and long-term isolation caused by human-induced or environmental changes are considered the main causes of extinction of several populations and low genetic diversity within populations and regions. These analyses clarify the effects of habitat restriction on B. clarkeana, representing an evolutionary reference for similar gesneriads, and enrich our understanding of the molecular phylogeography of East Asian rocky-slope herbs.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| | - Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| | - De Bi
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shoubiao Zhou
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| |
Collapse
|
24
|
Neeragunda Shivaraj Y, Barbara P, Gugi B, Vicré-Gibouin M, Driouich A, Ramasandra Govind S, Devaraja A, Kambalagere Y. Perspectives on Structural, Physiological, Cellular, and Molecular Responses to Desiccation in Resurrection Plants. SCIENTIFICA 2018; 2018:9464592. [PMID: 30046509 PMCID: PMC6036803 DOI: 10.1155/2018/9464592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 05/21/2023]
Abstract
Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gugi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Sharatchandra Ramasandra Govind
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Akash Devaraja
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| |
Collapse
|
25
|
Zhang Q, Bartels D. Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3211-3222. [PMID: 29385548 DOI: 10.1093/jxb/erx489] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/20/2017] [Indexed: 05/21/2023]
Abstract
Due to the ability to tolerate extreme dehydration, desiccation-tolerant plants have been widely investigated to find potential approaches for improving water use efficiency or developing new crop varieties. The studies of desiccation-tolerant plants have identified sugar accumulation, specific protein synthesis, cell structure changes, and increased anti-oxidative reactions as part of the mechanisms of desiccation tolerance. However, plants respond differently according to the severity of water loss, and the process of water loss affects desiccation tolerance. A detailed analysis within the dehydration process is important for understanding the process of desiccation tolerance. This review defines dehydration and desiccation, finds the boundary for the relative water content between dehydration and desiccation, compares the molecular responses to dehydration and desiccation, compares signaling differences between dehydration and desiccation, and finally summarizes the strategies launched in desiccation-tolerant plants for dehydration and desiccation, respectively. The roles of abscisic acid (ABA) and reactive oxygen species (ROS) in sensing and signaling during dehydration are discussed. We outline how this knowledge can be exploited to generate drought-tolerant crop plants.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Germany
| |
Collapse
|
26
|
Mihailova G, Kocheva K, Goltsev V, Kalaji HM, Georgieva K. Application of a diffusion model to measure ion leakage of resurrection plant leaves undergoing desiccation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:185-192. [PMID: 29459287 DOI: 10.1016/j.plaphy.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 05/29/2023]
Abstract
Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Konstantina Kocheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8, Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| | - Hazem M Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; Institute of Technology and Life Sciences (ITP), Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland.
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| |
Collapse
|
27
|
Tan T, Sun Y, Luo S, Zhang C, Zhou H, Lin H. Efficient modulation of photosynthetic apparatus confers desiccation tolerance in the resurrection plant Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2017; 58:1976-1990. [PMID: 29036694 DOI: 10.1093/pcp/pcx140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/04/2017] [Indexed: 05/20/2023]
Abstract
Boea hygrometrica (B. hygrometrica) can tolerate severe desiccation and resume photosynthetic activity rapidly upon water availability. However, little is known about the mechanisms by which B. hygrometrica adapts to dehydration and resumes competence upon rehydration. Here we determine how B. hygrometrica deals with oxidative stress, excessive excitation/electron pressures as well as photosynthetic apparatus modulation during dehydration/rehydration. By measuring ROS generation and scavenging efficiency, we found that B. hygrometrica possesses efficient strategies to maintain cellular redox homeostasis. Transmission electron microscopy (TEM) analysis revealed a remarkable alteration of chloroplast architecture and plastoglobules (PGs) accumulation during dehydration/rehydration. Pulse-amplitude modulated (PAM) chlorophyll fluorescence measurements, P700 redox assay as well as chlorophyll fluorescence emission spectra analysis on leaves of B. hygrometrica during dehydration/rehydration were also performed. Results showed that the photochemical activity of PSII as well as photoprotective energy dissipation in PSII undergo gradual inactivation/activation during dehydration/rehydration in B. hygrometrica; PSI activity is relatively induced upon water deficit, and dehydration leads to physical interaction between PSI and LHCII. Furthermore, blue-native polyacrylamide gel electrophoresis (BN-PAGE) and immunoblot analysis revealed that the protein abundance of light harvesting complexes decrease markedly along with internal water deficit to restrict light absorption and attenuate electron transfer, resulting in limited light excitation and repressed photosynthesis. In contrast, many thylakoid proteins remain at a basal level even after full dehydration. Taken together, our study demonstrated that efficient modulation of cellular redox homeostasis and photosynthetic activity confers desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shishuai Luo
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Georgieva K, Dagnon S, Gesheva E, Bojilov D, Mihailova G, Doncheva S. Antioxidant defense during desiccation of the resurrection plant Haberlea rhodopensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:51-59. [PMID: 28268193 DOI: 10.1016/j.plaphy.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 05/01/2023]
Abstract
Maintaining a strong antioxidant system is essential for preventing drought-induced oxidative stress. Thus, in the present study we investigated the role of some non-enzymic and enzymic antioxidants in desiccation tolerance of Haberlea rhodopensis. The effects of high light upon desiccation on antioxidant capacity was estimated by comparing the response of shade and sun plants. The significant enhancement of the antioxidant capacity at 8% RWC corresponded to an enormous increase in flavonoid content. The important role of ascorbate-glutathione cycle in overcoming oxidative stress during drying of H. rhodopensis was established. The antioxidant capacity increased upon dehydration of both shade and sun plants but some differences in non-enzymatic and enzymatic antioxidants were observed. Investigations on the role of polyphenols in desiccation tolerance are scarce. In the present study the polyphenol profiles (fingerprints) of the resurrection plant Haberlea rhodopensis, including all components of the complex are obtained for the first time. It was clarified that the polyphenol complex of H. rhodopensis includes only two types of glycosides - phenylethanoid glucosides and hispidulin 8-C-glucosides. Upon desiccation the polyphenol content increase and the main role of phenylethanoid glucosides in the protection of H. rhodopensis was revealed.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria.
| | - Soleya Dagnon
- Department of Organic Chemistry, Plovdiv University Paisii Hilendarski, "Tzar Assen II" 24, 4000 Plovdiv, Bulgaria
| | - Emiliya Gesheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Dimitar Bojilov
- Department of Organic Chemistry, Plovdiv University Paisii Hilendarski, "Tzar Assen II" 24, 4000 Plovdiv, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Snezhana Doncheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| |
Collapse
|
29
|
Wang B, Du H, Zhang Z, Xu W, Deng X. BhbZIP60 from Resurrection Plant Boea hygrometrica Is an mRNA Splicing-Activated Endoplasmic Reticulum Stress Regulator Involved in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:245. [PMID: 28286511 PMCID: PMC5323427 DOI: 10.3389/fpls.2017.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/09/2017] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions cause endoplasmic reticulum (ER) stress in plants. To mitigate ER stress damage, ER associated transcription factors and inositol-requiring enzyme-1 (IRE1)-mediated bZIP60 mRNA splicing are activated in plants. A drought-induced gene, encoding the ortholog of AtbZIP60, was identified in the resurrection plant Boea hygrometrica, termed BhbZIP60. In response to ER stress and dehydration, BhbZIP60 mRNA can be spliced to create a frame shift in the C terminus by the excision of 23b segment in a manner of its ortholog in other plants, thus translocating to the nucleus instead of the cytoplasm. The splicing-activated BhbZIP60 (BhbZIP60S) could function in the same way as its Arabidopsis ortholog by restoring the molecular phenotype of the mutant atbzip60. When overexpressed in Arabidopsis, BhbZIP60S provided transgenic plants with enhanced tolerance to drought, tunicamycin and mannitol stresses with upregulation of the expressions of ER quality control (QC) genes (BiP2, BiP3, CNX1, and sPDI) and abscisic acid (ABA) responsive genes (RD29A, RAB18, and RD17). Furthermore, in the yeast one-hybrid system, BhbZIP60S was capable of interacting with ER stress responsive elements (ERSE and ERSE-II) that exist in the promoters of known ER-QC genes, but not binding to ABA responsive cis-elements (ABREs). Our results demonstrated that drought-induced BhbZIP60 may have a function in drought tolerance via the splicing-activated BhbZIP60S to mediate ER-QC by direct binding to the promoters of ER-QC genes. This study evidently demonstrates the involvement of ER-QC in the drought tolerance of Arabidopsis and the desiccation tolerance of the resurrection plant B. hygrometrica.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Agriculture, Xinjiang Agricultural UniversityUrumqi, China
| | - Hong Du
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Zhennan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| |
Collapse
|
30
|
Zhang Q, Song X, Bartels D. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes 2016; 4:E40. [PMID: 28248249 PMCID: PMC5260972 DOI: 10.3390/proteomes4040040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
31
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
32
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
33
|
Kolenc Z, Vodnik D, Mandelc S, Javornik B, Kastelec D, Čerenak A. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:67-78. [PMID: 27085598 DOI: 10.1016/j.plaphy.2016.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions.
Collapse
Affiliation(s)
- Zala Kolenc
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310, Žalec, Slovenia
| | - Dominik Vodnik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Stanislav Mandelc
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Branka Javornik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Damijana Kastelec
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Andreja Čerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310, Žalec, Slovenia.
| |
Collapse
|
34
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
35
|
Challabathula D, Puthur JT, Bartels D. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Ann N Y Acad Sci 2015; 1365:89-99. [PMID: 26376004 DOI: 10.1111/nyas.12884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Tamil Nadu, India.,Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kerala, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Ma C, Wang H, Macnish AJ, Estrada-Melo AC, Lin J, Chang Y, Reid MS, Jiang CZ. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia. HORTICULTURE RESEARCH 2015; 2:15034. [PMID: 26504577 PMCID: PMC4595987 DOI: 10.1038/hortres.2015.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Hong Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
37
|
Zhu Y, Wang B, Phillips J, Zhang ZN, Du H, Xu T, Huang LC, Zhang XF, Xu GH, Li WL, Wang Z, Wang L, Liu YX, Deng X. Global Transcriptome Analysis Reveals Acclimation-Primed Processes Involved in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2015; 56:1429-41. [PMID: 25907569 DOI: 10.1093/pcp/pcv059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 05/18/2023]
Abstract
Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China These authors contributed equally to this work
| | - Bo Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China These authors contributed equally to this work
| | - Jonathan Phillips
- IMBIO (Molekulare Physiologie und Biotechnologie der Pflanzen), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Present address: Monsanto Company, 800 North Lindbergh Blvd, St. Louis, MO 63167, USA
| | - Zhen-Nan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Du
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lian-Cheng Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Fei Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Guang-Hui Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Long Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ling Wang
- Shanghai OE Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
38
|
Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z, Zhou Q, Hu M, Wang Y, Chen M, Xu Y, Jin H, Xiao X, Hu G, Bao F, Hu Y, Wan P, Li L, Deng X, Kuang T, Xiang C, Zhu JK, Oliver MJ, He Y. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proc Natl Acad Sci U S A 2015; 112:5833-7. [PMID: 25902549 PMCID: PMC4426394 DOI: 10.1073/pnas.1505811112] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Drying without dying" is an essential trait in land plant evolution. Unraveling how a unique group of angiosperms, the Resurrection Plants, survive desiccation of their leaves and roots has been hampered by the lack of a foundational genome perspective. Here we report the ∼1,691-Mb sequenced genome of Boea hygrometrica, an important resurrection plant model. The sequence revealed evidence for two historical genome-wide duplication events, a compliment of 49,374 protein-coding genes, 29.15% of which are unique (orphan) to Boea and 20% of which (9,888) significantly respond to desiccation at the transcript level. Expansion of early light-inducible protein (ELIP) and 5S rRNA genes highlights the importance of the protection of the photosynthetic apparatus during drying and the rapid resumption of protein synthesis in the resurrection capability of Boea. Transcriptome analysis reveals extensive alternative splicing of transcripts and a focus on cellular protection strategies. The lack of desiccation tolerance-specific genome organizational features suggests the resurrection phenotype evolved mainly by an alteration in the control of dehydration response genes.
Collapse
Affiliation(s)
- Lihong Xiao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ge Yang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liechi Zhang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xinhua Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Shuang Zhao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Zhongzhong Ji
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qing Zhou
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Min Hu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yu Wang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ming Chen
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yu Xu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Haijing Jin
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuan Xiao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guipeng Hu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ping Wan
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xin Deng
- Key Laboratory of Plant Resources and
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chengbin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei 230022, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and
| | - Melvin J Oliver
- Plant Genetics Research Unit, Midwest Area, Agricultural Research Service, United State Department of Agriculture, University of Missouri, Columbia, MO 65211
| | - Yikun He
- School of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
39
|
Charuvi D, Nevo R, Shimoni E, Naveh L, Zia A, Adam Z, Farrant JM, Kirchhoff H, Reich Z. Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. PLANT PHYSIOLOGY 2015; 167:1554-65. [PMID: 25713340 PMCID: PMC4378169 DOI: 10.1104/pp.114.255794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 05/18/2023]
Abstract
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.
Collapse
Affiliation(s)
- Dana Charuvi
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Reinat Nevo
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Eyal Shimoni
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Leah Naveh
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ahmad Zia
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Zach Adam
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Jill M Farrant
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Helmut Kirchhoff
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| | - Ziv Reich
- Department of Biological Chemistry (D.C., R.N., Z.R.) and Electron Microscopy Unit (E.S.), Weizmann Institute of Science, Rehovot 76100, Israel;Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (L.N., Z.A.);Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340 (A.Z., H.K.); andDepartment of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa (J.M.F.)
| |
Collapse
|
40
|
Li W, Xu F, Chen S, Zhang Z, Zhao Y, Jin Y, Li M, Zhu Y, Liu Y, Yang Y, Deng X. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium. FRONTIERS IN PLANT SCIENCE 2014; 5:647. [PMID: 25477893 PMCID: PMC4238373 DOI: 10.3389/fpls.2014.00647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/02/2014] [Indexed: 05/09/2023]
Abstract
Excessive Ca is toxic to plants thus significantly affects plant growth and species distribution in Ca-rich karst areas. To understand how plants survive high Ca soil, laboratory experiments were established to compare the physiological responses and internal Ca distribution in organ, tissue, cell, and intracellular levels under different Ca levels for Lysionotus pauciflorus and Boea hygrometrica, two karst habitant Gesneriaceae species in Southwest China. In the controlled condition, L. pauciflorus could survive as high as 200 mM rhizospheric soluble Ca, attributed to a series of physiological responses and preferential storage that limited Ca accumulation in chloroplasts of palisade cells. In contrast, B. hygrometrica could survive only 20 mM rhizospheric soluble Ca, but accumulated a high level of internal Ca in both palisade and spongy cells without disturbance on photosynthetic activity. By phenotype screening of transgenic plants expressing high Ca-inducible genes from B. hygrometrica, the expression of BhDNAJC2 in A. thaliana was found to enhance plant growth and photosynthesis under high soluble Ca stress. BhDNAJC2 encodes a recently reported heat shock protein (HSP) 40 family DnaJ-domain protein. The Ca-resistant phenotype of BhDNAJC2 highlights the important role of chaperone-mediated protein quality control in Ca tolerance in B. hygrometrica. Taken together, our results revealed that distinctive mechanisms were employed in the two Gesneriaceae karst habitants to cope with a high Ca environment.
Collapse
Affiliation(s)
- Wenlong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Falun Xu
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Shixuan Chen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Zhennan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Yan Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Yukuan Jin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Meijing Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Yan Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yi Yang
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| |
Collapse
|
41
|
Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Fernie AR, Mueller-Roeber B. Natural products from resurrection plants: Potential for medical applications. Biotechnol Adv 2014; 32:1091-101. [DOI: 10.1016/j.biotechadv.2014.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
|
42
|
Li A, Wang D, Yu B, Yu X, Li W. Maintenance or collapse: responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant Paraisometrum mileense. PLoS One 2014; 9:e103430. [PMID: 25068901 PMCID: PMC4113352 DOI: 10.1371/journal.pone.0103430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/01/2014] [Indexed: 11/21/2022] Open
Abstract
Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation.
Collapse
Affiliation(s)
- Aihua Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Wang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Buzhu Yu
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaomei Yu
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weiqi Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
43
|
Zhao Y, Xu T, Shen CY, Xu GH, Chen SX, Song LZ, Li MJ, Wang LL, Zhu Y, Lv WT, Gong ZZ, Liu CM, Deng X. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana. PLoS One 2014; 9:e98098. [PMID: 24851859 PMCID: PMC4031123 DOI: 10.1371/journal.pone.0098098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/29/2014] [Indexed: 11/26/2022] Open
Abstract
Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ying Shen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shi-Xuan Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Li-Zhen Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Jing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei-Tao Lv
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Zhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Garcés Cea M, Claverol S, Alvear Castillo C, Rabert Pinilla C, Bravo Ramírez L. Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. C R Biol 2014; 337:235-43. [PMID: 24702892 DOI: 10.1016/j.crvi.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
The Hymenophyllaceae is a primitive family within the Filicopsidae. One of the most exceptional features of this family of ferns is the presence of fronds with one or just a few cell layers (hence their name of filmy ferns), and the absence of stomata. Hymenophyllum caudiculatum and Hymenophyllum dentatum are able to lose more than 82% of their fully hydrated water content, to remain dry for extended periods of time (days or weeks), and to survive and remain viable following rehydration. The aim of this work was to understand whether the adaptive strategy of the Hymenophyllaceae for desiccation tolerance is constitutive or inducible. A proteomic approach was adopted in combination with physiological parameters to assess whether there were changes in the protein content during dehydration and following rehydration. Detached fronds were used to monitor the rates of photosynthesis in desiccation experiments, sugar accumulation, and high-resolution 2-DE to analyze proteome variation during a desiccation-rehydration cycle. The analyzed proteome exhibited little variation (3-4%) between hydrated and desiccated states, while variation was greater between the desiccated and rehydrated states (8.7-10%). Eighty-two discrete proteins were analyzed by MS/MS, and 65 were identified. About 21% of the analyzed proteins (17) were mixtures of two or more different polypeptides. Of the identified proteins, more than a half (33 spots, 55%) had functions related to energy-photosynthesis. The second largest category with known function (five spots, 8%) was related to cell rescue, defense, and virulence. More than one in every four proteins analyzed belonged to a group of hypothetical proteins (18 spots, 28%). The results suggest that the Hymenophyllaceae represent an example of a change in adaptive strategy from a typical vascular to the poikilohydric homoiochlorophyllous adaptation, which they share with the bryophytes that grow in profusion in the same habitats. The speed at which desiccation takes place therefore precludes the induction of protective systems, suggesting a constitutive mechanism of cellular protection.
Collapse
Affiliation(s)
- Marcelo Garcés Cea
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de la Frontera, PO Box 54-D, Temuco, Chile; Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile.
| | - Stephan Claverol
- Pôle Protéomique, Plateforme génomique fonctionnelle de Bordeaux, Université Victor-Segalen, Bordeaux-2, 146, rue Léo-Saignat, 33076 Bordeaux, France
| | - Carla Alvear Castillo
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| | - Claudia Rabert Pinilla
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| | - León Bravo Ramírez
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| |
Collapse
|
45
|
Suguiyama VF, Silva EA, Meirelles ST, Centeno DC, Braga MR. Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering. FRONTIERS IN PLANT SCIENCE 2014; 5:96. [PMID: 24672534 PMCID: PMC3953666 DOI: 10.3389/fpls.2014.00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/26/2014] [Indexed: 05/05/2023]
Abstract
Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.
Collapse
Affiliation(s)
- Vanessa F. Suguiyama
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| | - Emerson A. Silva
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| | | | - Danilo C. Centeno
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| | - Marcia R. Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| |
Collapse
|
46
|
Dinakar C, Bartels D. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2013; 4:482. [PMID: 24348488 DOI: 10.3389/fpls.201300482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 05/29/2023]
Abstract
Most higher plants are unable to survive desiccation to an air-dried state. An exception is a small group of vascular angiosperm plants, termed resurrection plants. They have evolved unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and mostly adjust their water content with the relative humidity in the environment. Desiccation tolerance is a complex phenomenon and depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Most of the resurrection plants have a large genome and are difficult to transform which makes them unsuitable for genetic approaches. However, technical advances have made it possible to analyze changes in gene expression on a large-scale. These approaches together with comparative studies with non-desiccation tolerant plants provide novel insights into the molecular processes required for desiccation tolerance and will shed light on identification of orphan genes with unknown functions. Here, we review large-scale recent transcriptomic, proteomic, and metabolomic studies that have been performed in desiccation tolerant plants and discuss how these studies contribute to understanding the molecular basis of desiccation tolerance.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn Bonn, Germany ; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn Bonn, Germany
| |
Collapse
|
47
|
Dinakar C, Bartels D. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2013; 4:482. [PMID: 24348488 PMCID: PMC3842845 DOI: 10.3389/fpls.2013.00482] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 05/18/2023]
Abstract
Most higher plants are unable to survive desiccation to an air-dried state. An exception is a small group of vascular angiosperm plants, termed resurrection plants. They have evolved unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and mostly adjust their water content with the relative humidity in the environment. Desiccation tolerance is a complex phenomenon and depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Most of the resurrection plants have a large genome and are difficult to transform which makes them unsuitable for genetic approaches. However, technical advances have made it possible to analyze changes in gene expression on a large-scale. These approaches together with comparative studies with non-desiccation tolerant plants provide novel insights into the molecular processes required for desiccation tolerance and will shed light on identification of orphan genes with unknown functions. Here, we review large-scale recent transcriptomic, proteomic, and metabolomic studies that have been performed in desiccation tolerant plants and discuss how these studies contribute to understanding the molecular basis of desiccation tolerance.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil NaduThiruvarur, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| |
Collapse
|
48
|
Mitra J, Xu G, Wang B, Li M, Deng X. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system. FRONTIERS IN PLANT SCIENCE 2013; 4:446. [PMID: 24273545 PMCID: PMC3824148 DOI: 10.3389/fpls.2013.00446] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 05/18/2023]
Abstract
Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called "resurrection plants," the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance (DT) as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly, and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of DT. Extensive studies have been conducted to identify the physiological, cellular, and molecular mechanisms underlying DT in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological, and biochemical, and molecular alterations that accompany the acquisition of DT in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of DT.
Collapse
Affiliation(s)
- Jayeeta Mitra
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Guanghui Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Meijing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
49
|
Fan P, Nie L, Jiang P, Feng J, Lv S, Chen X, Bao H, Guo J, Tai F, Wang J, Jia W, Li Y. Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS One 2013; 8:e80595. [PMID: 24265831 PMCID: PMC3827210 DOI: 10.1371/journal.pone.0080595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Halophytes such as Salicornia europaea have evolved to exhibit unique mechanisms controlled by complex networks and regulated by numerous genes and interactions to adapt to habitats with high salinity. However, these mechanisms remain unknown. METHODS To investigate the mechanism by which halophytes tolerate salt based on changes in the whole transcriptome, we performed transcriptome sequencing and functional annotation by database search. Using the unigene database, we conducted digital gene expression analysis of S. europaea at various time points after these materials were treated with NaCl. We also quantified ion uptakes. Gene functional enrichment analysis was performed to determine the important pathways involved in this process. RESULTS A total of 57,151 unigenes with lengths of >300 bp were assembled, in which 57.5% of these unigenes were functionally annotated. Differentially expressed genes indicated that cell wall metabolism and lignin biosynthetic pathways were significantly enriched in S. europaea to promote the development of the xylem under saline conditions. This result is consistent with the increase in sodium uptake as ions pass through the xylem. Given that PSII efficiency remained unaltered, salt treatment activated the expression of electron transfer-related genes encoded by the chloroplast chromosome. Chlorophyll biosynthesis was also inhibited, indicating the energy-efficient state of the electron transfer system of S. europaea. CONCLUSIONS The key function of adjusting important primary metabolic pathways in salt adaption was identified by analyzing the changes in the transcriptome of S. europaea. These pathways could involve unique salt tolerance mechanisms in halophytes. This study also provided information as the basis of future investigations on salt response genes in S. europaea. Ample gene resources were also provided to improve the genes responsible for the salt tolerance ability of crops.
Collapse
Affiliation(s)
- Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lingling Nie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xianyang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
50
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|