1
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
2
|
Liu Z, Sun P, Li X, Xiao W, Pi L, Liang YK. BIG coordinates auxin and SHORT ROOT to promote asymmetric stem cell divisions in Arabidopsis roots. PLANT CELL REPORTS 2024; 43:188. [PMID: 38960994 DOI: 10.1007/s00299-024-03274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
KEY MESSAGE BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Xiao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Cappetta E, Del Regno C, Conte M, Castro-Hinojosa C, Del Sol-Fernández S, Vergata C, Buti M, Curcio R, Onder A, Mazzei P, Funicello N, De Pasquale S, Terzaghi M, Del Gaudio P, Leone A, Martinelli F, Moros M, Ambrosone A. An Integrated Multilevel Approach Unveils Complex Seed-Nanoparticle Interactions and Their Implications for Seed Priming. ACS NANO 2023; 17:22539-22552. [PMID: 37931310 DOI: 10.1021/acsnano.3c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotechnology has the potential to revolutionize agriculture with the introduction of engineered nanomaterials. However, their use is hindered by high cost, marginal knowledge of their interactions with plants, and unpredictable effects related to massive use in crop cultivation. Nanopriming is an innovative seed priming technology able to match economic, agronomic, and environmental needs in agriculture. The present study was focused on unveiling, by a multilevel integrated approach, undisclosed aspects of seed priming mediated by iron oxide magnetic nanoparticles in pepper seeds (Capsicum annuum), one of the most economically important crops worldwide. Inductively coupled plasma atomic emission mass spectrometry and scanning electron microscopy were used to quantify the MNP uptake and assess seed surface changes. Magnetic resonance imaging mapped the distribution of MNPs prevalently in the seed coat. The application of MNPs significantly enhanced the root and vegetative growth of pepper plants, whereas seed priming with equivalent Fe concentrations supplied as FeCl3 did not yield these positive effects. Finally, global gene expression by RNA-sequencing identified more than 2,200 differentially expressed genes, most of them involved in plant developmental processes and defense mechanisms. Collectively, these data provide evidence on the link between structural seed changes and an extensive transcriptional reprogramming, which boosts the plant growth and primes the embryo to cope with environmental challenges that might occur during the subsequent developmental and growth stages.
Collapse
Affiliation(s)
- Elisa Cappetta
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Carmine Del Regno
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
| | - Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environmental and Forestry Sciences (DAGRI), University of Florence, Firenze 50144, Italy
| | - Rossella Curcio
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Anil Onder
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Pierluigi Mazzei
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Nicola Funicello
- Department of Physics 'E.R. Caianiello', University of Salerno, Fisciano 84084, Italy
| | - Salvatore De Pasquale
- Department of Physics 'E.R. Caianiello', University of Salerno, Fisciano 84084, Italy
| | - Mattia Terzaghi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70121, Italy
| | | | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, Fisciano 84084, Italy
| |
Collapse
|
4
|
Huang M, Chen J, Yang X, Zheng Y, Ma Y, Sun K, Han N, Bian H, Qiu T, Wang J. A unique mutation in PIN-FORMED1 and a genetic pathway for reduced sensitivity of Arabidopsis roots to N-1-naphthylphthalamic acid. PHYSIOLOGIA PLANTARUM 2023; 175:e14120. [PMID: 38148206 DOI: 10.1111/ppl.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The small chemical N-1-naphthylphthalamic acid (NPA) has long been used as a polar auxin transport inhibitor. Recent biochemical and structural investigations have revealed that this molecule competes with the auxin IAA (indole-3-acetic acid) inside the PIN-FORMED auxin efflux carriers. However, the existence of any mutations in PIN family proteins capable of uncoupling the docking of IAA from NPA remains unclear. We report that Arabidopsis thaliana seedlings overexpressing SMALL AUXIN UP RNA 41 were hypersensitive to NPA-induced root elongation inhibition. We mutagenized this line to improve the genetic screening efficiency for NPA hyposensitivity mutants. Using bulked segregation analysis and mapping-by-sequencing assessment of these mutants, we identified a core genetic pathway for NPA-induced root elongation inhibition, including genes required for auxin biosynthesis, transportation, and signaling. To evaluate specific changes of auxin signaling activity in mutant roots before and after NPA treatment, the DR5::GFP/DR5::YFP markers were introduced and observed. Most importantly, we discovered a unique mutation in the PIN1 protein, substituting a proline residue with leucine at position 584, leading to a loss of NPA sensitivity while keeping the auxin efflux capacity. Transforming the null mutant pin1-201 with the PIN1::PIN1P584L -GFP fusion construct rescued the PIN1 function and provided NPA hyposensitivity. The proline residue is predicted to be adjacent to a hinge in the middle region of the ninth transmembrane helix of PIN1 and is conserved from moss to higher plants. Our work may bring new insights into the engineering of NPA-resistant PINs for auxin biology studies.
Collapse
Affiliation(s)
- Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zheng
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
BnKAT2 Positively Regulates the Main Inflorescence Length and Silique Number in Brassica napus by Regulating the Auxin and Cytokinin Signaling Pathways. PLANTS 2022; 11:plants11131679. [PMID: 35807631 PMCID: PMC9269334 DOI: 10.3390/plants11131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Brassica napus is the dominant oil crop cultivated in China for its high quality and high yield. The length of the main inflorescence and the number of siliques produced are important traits contributing to rapeseed yield. Therefore, studying genes related to main inflorescence and silique number is beneficial to increase rapeseed yield. Herein, we focused on the effects of BnKAT2 on the main inflorescence length and silique number in B. napus. We explored the mechanism of BnKAT2 increasing the effective length of main inflorescence and the number of siliques through bioinformatics analysis, transgenic technology, and transcriptome sequencing analysis. The full BnKAT2(BnaA01g09060D) sequence is 3674 bp, while its open reading frame is 2055 bp, and the encoded protein comprises 684 amino acids. BnKAT2 is predicted to possess two structural domains, namely KHA and CNMP-binding domains. The overexpression of BnKAT2 effectively increased the length of the main inflorescence and the number of siliques in B. napus, as well as in transgenic Arabidopsis thaliana. The type-A Arabidopsis response regulator (A-ARR), negative regulators of the cytokinin, are downregulated in the BnKAT2-overexpressing lines. The Aux/IAA, key genes in auxin signaling pathways, are downregulated in the BnKAT2-overexpressing lines. These results indicate that BnKAT2 might regulate the effective length of the main inflorescence and the number of siliques through the auxin and cytokinin signaling pathways. Our study provides a new potential function gene responsible for improvement of main inflorescence length and silique number, as well as a candidate gene for developing markers used in MAS (marker-assisted selection) breeding to improve rapeseed yield.
Collapse
|
6
|
BIG Modulates Stem Cell Niche and Meristem Development via SCR/SHR Pathway in Arabidopsis Roots. Int J Mol Sci 2022; 23:ijms23126784. [PMID: 35743225 PMCID: PMC9224481 DOI: 10.3390/ijms23126784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/18/2022] Open
Abstract
BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the BIG gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the BIG gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of WUSCHEL-RELATED HOMEOBOX5 (WOX5) gene expression. BIG affected auxin distribution by regulating the expression of PIN-FORMED proteins (PINs), but the root morphological defects of big mutants could not be rescued solely by increasing auxin transport. Although the loss of BIG gene function resulted in decreased expression of the PLT1 and PLT2 genes, genetic interaction assays indicate that this is not the main reason for the root morphological defects of big mutants. Furthermore, genetic interaction assays suggest that BIG affects the stem cell niche (SCN) activity through the SCRSCARECROW (SCR)/SHORT ROOT (SHR) pathway and BIG disruption reduces the expression of SCR and SHR genes. In conclusion, our findings reveal that the BIG gene maintains root meristem activity and SCN integrity mainly through the SCR/SHR pathway.
Collapse
|
7
|
Schroeder MM, Gomez MY, McLain N, Gachomo EW. Bradyrhizobium japonicum IRAT FA3 Alters Arabidopsis thaliana Root Architecture via Regulation of Auxin Efflux Transporters PIN2, PIN3, PIN7, and ABCB19. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:215-229. [PMID: 34941379 DOI: 10.1094/mpmi-05-21-0118-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Beneficial rhizobacteria can stimulate changes in plant root development. Although root system growth is mediated by multiple factors, the regulated distribution of the phytohormone auxin within root tissues plays a principal role. Auxin transport facilitators help to generate the auxin gradients and maxima that determine root structure. Here, we show that the plant-growth-promoting rhizobacterial strain Bradyrhizobium japonicum IRAT FA3 influences specific auxin efflux transporters to alter Arabidopsis thaliana root morphology. Gene expression profiling of host transcripts in control and B. japonicum-inoculated roots of the wild-type A. thaliana accession Col-0 confirmed upregulation of PIN2, PIN3, PIN7, and ABCB19 with B. japonicum and identified genes potentially contributing to a diverse array of auxin-related responses. Cocultivation of the bacterium with loss-of-function auxin efflux transport mutants revealed that B. japonicum requires PIN3, PIN7, and ABCB19 to increase lateral root development and utilizes PIN2 to reduce primary root length. Accelerated lateral root primordia production due to B. japonicum was not observed in single pin3, pin7, or abcb19 mutants, suggesting independent roles for PIN3, PIN7, and ABCB19 during the plant-microbe interaction. Our work demonstrates B. japonicum's influence over host transcriptional reprogramming during plant interaction with this beneficial microbe and the subsequent alterations to root system architecture.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mercedes M Schroeder
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Nathan McLain
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, U.S.A
| |
Collapse
|
8
|
Takagi D, Ishiyama K, Suganami M, Ushijima T, Fujii T, Tazoe Y, Kawasaki M, Noguchi K, Makino A. Manganese toxicity disrupts indole acetic acid homeostasis and suppresses the CO 2 assimilation reaction in rice leaves. Sci Rep 2021; 11:20922. [PMID: 34686733 PMCID: PMC8536708 DOI: 10.1038/s41598-021-00370-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the essentiality of Mn in terrestrial plants, its excessive accumulation in plant tissues can cause growth defects, known as Mn toxicity. Mn toxicity can be classified into apoplastic and symplastic types depending on its onset. Symplastic Mn toxicity is hypothesised to be more critical for growth defects. However, details of the relationship between growth defects and symplastic Mn toxicity remain elusive. In this study, we aimed to elucidate the molecular mechanisms underlying symplastic Mn toxicity in rice plants. We found that under excess Mn conditions, CO2 assimilation was inhibited by stomatal closure, and both carbon anabolic and catabolic activities were decreased. In addition to stomatal dysfunction, stomatal and leaf anatomical development were also altered by excess Mn accumulation. Furthermore, indole acetic acid (IAA) concentration was decreased, and auxin-responsive gene expression analyses showed IAA-deficient symptoms in leaves due to excess Mn accumulation. These results suggest that excessive Mn accumulation causes IAA deficiency, and low IAA concentrations suppress plant growth by suppressing stomatal opening and leaf anatomical development for efficient CO2 assimilation in leaves.
Collapse
Affiliation(s)
- Daisuke Takagi
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan ,grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Keiki Ishiyama
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| | - Mao Suganami
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.443549.b0000 0001 0603 1148Present Address: Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296 Japan
| | - Tomokazu Ushijima
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Takeshi Fujii
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Youshi Tazoe
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan ,grid.505732.60000 0004 6417 4827Present Address: Faculty of Agro-Food Science, Niigata Agro-Food University, Tainai, Niigata 959-2702 Japan
| | - Michio Kawasaki
- grid.412493.90000 0001 0454 7765Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101 Japan
| | - Ko Noguchi
- grid.410785.f0000 0001 0659 6325Department of Applied Life Science, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 Japan
| | - Amane Makino
- grid.69566.3a0000 0001 2248 6943Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572 Japan
| |
Collapse
|
9
|
Li C, Liu G, Geng X, He C, Quan T, Hayashi KI, De Smet I, Robert HS, Ding Z, Yang ZB. Local regulation of auxin transport in root-apex transition zone mediates aluminium-induced Arabidopsis root-growth inhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:55-66. [PMID: 34273207 DOI: 10.1111/tpj.15424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Aluminium (Al) stress is a major limiting factor for worldwide crop production in acid soils. In Arabidopsis thaliana, the TAA1-dependent local auxin biosynthesis in the root-apex transition zone (TZ), the major perception site for Al toxicity, is crucial for the Al-induced root-growth inhibition, while the mechanism underlying Al-regulated auxin accumulation in the TZ is not fully understood. In the present study, the role of auxin transport in Al-induced local auxin accumulation in the TZ and root-growth inhibition was investigated. Our results showed that PIN-FORMED (PIN) proteins such as PIN1, PIN3, PIN4 and PIN7 and AUX1/LAX proteins such as AUX1, LAX1 and LAX2 were all ectopically up-regulated in the root-apex TZ in response to Al stress and coordinately regulated local auxin accumulation in the TZ and root-growth inhibition. The ectopic up-regulation of PIN1 in the TZ under Al stress was regulated by both ethylene and auxin, with auxin signalling acting downstream of ethylene. Al-induced PIN1 up-regulation and auxin accumulation in the root-apex TZ was also regulated by the calossin-like protein BIG. Together, our results provide insight into how Al stress induces local auxin accumulation in the TZ and root-growth inhibition through the local regulation of auxin transport.
Collapse
Affiliation(s)
- Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| | - Guangchao Liu
- School of Life Science, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaoyu Geng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| | - Chunmei He
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| | - Taiyong Quan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, 004205, Czech Republic
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, P.R. China
| |
Collapse
|
10
|
Robinson R, Sollapura V, Couroux P, Sprott D, Ravensdale M, Routly E, Xing T, Robert LS. The Brassica mature pollen and stigma proteomes: preparing to meet. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1546-1568. [PMID: 33650121 DOI: 10.1111/tpj.15219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Successful pollination in Brassica brings together the mature pollen grain and stigma papilla, initiating an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes, comprising the primary molecular effectors required upon their meeting. Knowledge of the roles and global composition of these proteomes in Brassica species is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. Brassica napus, Brassica oleracea and Brassica rapa) that holds considerable potential as a bio-industrial crop. A total of 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also the important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and revealed 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination. Corresponding pollen and stigma transcriptomes were also generated, highlighting functional divergences between the proteome and transcriptome during different stages of pollen-stigma interaction. This study illustrates the investigative potential of combining the most comprehensive Brassicaceae pollen and stigma proteomes to date with iTRAQ and transcriptome data to provide a unique global perspective of pollen and stigma development and interaction.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Vishwanath Sollapura
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Ravensdale
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Tim Xing
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
11
|
Nidhi S, Preciado J, Tie L. Knox homologs shoot meristemless (STM) and KNAT6 are epistatic to CLAVATA3 (CLV3) during shoot meristem development in Arabidopsis thaliana. Mol Biol Rep 2021; 48:6291-6302. [PMID: 34417947 DOI: 10.1007/s11033-021-06622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In Arabidopsis, the genes SHOOT MERISTEMLESS (STM) and CLAVATA3 (CLV3) antagonistically regulate shoot meristem development. STM is essential for both development and maintenance of the meristem, as stm mutants fail to develop a shoot meristem. CLV3, on the other hand, negatively regulates meristem proliferation, and clv3 mutants possess an enlarged shoot meristem. Genetic interaction studies revealed that stm and clv3 dominantly suppress each other's phenotypes. STM works in conjunction with its closely related homologue KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6) to promote meristem development and organ separation, as stm knat6 double mutants fail to form shoot meristem and produce a fused cotyledon. RESULTS In this study, we show that clv3 fails to promote shoot meristem formation in stm-1 background if we also remove KNAT6. stm-1 knat6 clv3 triple mutants result in shoot meristem termination and produce fused cotyledons similar to stm knat6 double mutant. Notably, the stm-1 knat6 and stm-1 knat6 clv3 alleles lack tissue in the presumed region of SAM that is a novel phenotype reported in Arabidopsis mutants. stm-1 knat6 clv3 also showed reduced inflorescence size as compared to clv3 single or stm clv3 double mutants. CONCLUSION In contrast to previously published data, these data suggest that STM and KNAT6 are redundantly required for the vegetative SAM, but insufficient for the inflorescence meristem.
Collapse
Affiliation(s)
- Sharma Nidhi
- Howard Hughes Medical Institute, Stanford, CA, USA. .,Carnegie Institute of Science, Stanford, CA, USA.
| | - Jesus Preciado
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Liu Tie
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA. .,Carnegie Institute of Science, Stanford, CA, USA.
| |
Collapse
|
12
|
Bruggeman Q, Piron-Prunier F, Tellier F, Faure JD, Latrasse D, Manza-Mianza D, Mazubert C, Citerne S, Boutet-Mercey S, Lugan R, Bergounioux C, Raynaud C, Benhamed M, Delarue M. Involvement of Arabidopsis BIG protein in cell death mediated by Myo-inositol homeostasis. Sci Rep 2020; 10:11268. [PMID: 32647331 PMCID: PMC7347573 DOI: 10.1038/s41598-020-68235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life. We previously identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalysing myo-inositol synthesis, and that displays light-dependent formation of lesions on leaves due to Salicylic Acid (SA) over-accumulation. Rationale of this work was to identify novel regulators of plant PCD using a genetic approach. A screen for secondary mutations that abolish the mips1 PCD phenotype identified a mutation in the BIG gene, encoding a factor of unknown molecular function that was previously shown to play pleiotropic roles in plant development and defence. Physiological analyses showed that BIG is required for lesion formation in mips1 via SA-dependant signalling. big mutations partly rescued transcriptomic and metabolomics perturbations as stress-related phytohormones homeostasis. In addition, since loss of function of the ceramide synthase LOH2 was not able to abolish cell death induction in mips1, we show that PCD induction is not fully dependent of sphingolipid accumulation as previously suggested. Our results provide further insights into the role of the BIG protein in the control of MIPS1-dependent cell death and also into the impact of sphingolipid homeostasis in this pathway.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Florence Piron-Prunier
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Christelle Mazubert
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raphael Lugan
- Institut de Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Marianne Delarue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Paris Diderot, Sorbonne Paris-Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
13
|
Dal Santo S, Tucker MR, Tan HT, Burbidge CA, Fasoli M, Böttcher C, Boss PK, Pezzotti M, Davies C. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. PLANT MOLECULAR BIOLOGY 2020; 103:91-111. [PMID: 32043226 DOI: 10.1007/s11103-020-00977-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/04/2020] [Indexed: 05/08/2023]
Abstract
Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.
Collapse
Affiliation(s)
- Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Level 4, Main WIC Building, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Hwei-Ting Tan
- School of Agriculture, Food and Wine, Level 4, Main WIC Building, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Crista A Burbidge
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Marianna Fasoli
- E. & J. Gallo Winery, 600 Yosemite Blvd, Modesto, CA, 95354, USA
| | - Christine Böttcher
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Paul K Boss
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Christopher Davies
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
14
|
Zhang WJ, Zhai LM, Yu HX, Peng J, Wang SS, Zhang XS, Su YH, Tang LP. The BIG gene controls size of shoot apical meristems in Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:543-552. [PMID: 32025802 DOI: 10.1007/s00299-020-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BIG regulates the shoot stem cell population. The shoot apical meristem (SAM) contains a population of self-renewing cells, and provides daughter cells for initiation and development of aerial parts of plants. However, the underlying mechanisms of SAM size regulation remain largely unclear. Here, we identified a mutant that displayed a large SAM, designated big-shoot meristem (big-m), in Arabidopsis thaliana. The phenotype of big-m is caused by a new T-DNA insertion allele of BIG, causing a loss of function. The big-m mutant had more stem cells in the SAM than in the wild type. Expression of WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) was promoted in big-m compared with the wild type, showing that BIG functions upstream of WUS and STM. Therefore, BIG is an important regulator of the stem cell population in the SAM. Furthermore, genetic analysis indicated that BIG acts synergistically with PIN-FORMED1 (PIN1) in controlling SAM size. Our results suggest that BIG plays an important role in controlling Arabidopsis thaliana SAM growth via PIN1-mediated auxin homeostasis.
Collapse
Affiliation(s)
- Wen Jie Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Li Ming Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hai Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jing Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shan Shan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Li Ping Tang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
15
|
Zhang RX, Li S, He J, Liang YK. BIG regulates sugar response and C/N balance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2019; 14:1669418. [PMID: 31580197 PMCID: PMC6804704 DOI: 10.1080/15592324.2019.1669418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 05/31/2023]
Abstract
Mutations in BIG gene not only produce pleiotropic phenotypes of plant development but also impair plant adaptive responses under various stresses. However, the role of BIG gene in sugar signaling is not known. In this study, we first found that BIG deficiency significantly sensitized the sugar-induced anthocyanin accumulation and the sugar-inhibited primary root growth, suggesting BIG is an important component of the sugar signaling pathway. Then we found that big mutant plants had higher sugar levels compared with the wild type, indicating the involvement of BIG gene in regulating plant sugar homeostasis. Importantly, we also found that the relative ratio of carbon to nitrogen (C/N) was greatly enhanced by BIG deficiency. Overall, our work expands the known functionality of BIG and reveals its role in regulating sugar response and C/N balance. It is likely that BIG connects nutrient, light, and hormone signaling networks for regulating plant development and adaptive responses.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Siwen Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:335-348. [PMID: 30372534 DOI: 10.1111/nph.15568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuangchen Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Hao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Cheng R, Gong L, Li Z, Liang YK. Rice BIG gene is required for seedling viability. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:39-50. [PMID: 30530202 DOI: 10.1016/j.jplph.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 05/07/2023]
Abstract
Arabidopsis BIG (AtBIG) gene encodes an enormous protein that is required for auxin transport. Loss of AtBIG function not only profoundly changes plant architecture but also alters plant adaptability to environmental stimuli. A putative homolog of AtBIG exists in the rice genome, but no function has been ascribed to it. In this study, we focus on the characterization of the gene structure and function of OsBIG. Sequence and phylogenetic analysis shows that the homologs of OsBIG have high amino acid conservation in several domains across species. Transgenic rice plants in which the expression of OsBIG was disrupted through the CRISPR/Cas9 system-mediated genome editing were used for phenotypic analysis. The Osbig/- plants show high levels of cell death, enhanced electrolyte leakage and membrane lipid peroxidation, and reduced chlorophyll content, which likely accounted for the seedling lethality. Moreover, gene expression between Osbig/- and wild-type plants analyzed by RNA-seq indicates that a number of metabolic and hormonal pathways including ribosome, DNA replication, photosynthesis, and chlorophyll metabolism were significantly perturbed by OsBIG deficiency. In summary, OsBIG gene is integral to the normal growth and development in rice.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhengzheng Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Li N, Wang W, Bitas V, Subbarao K, Liu X, Kang S. Volatile Compounds Emitted by Diverse Verticillium Species Enhance Plant Growth by Manipulating Auxin Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1021-1031. [PMID: 29741467 DOI: 10.1094/mpmi-11-17-0263-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Some volatile compounds (VC) play critical roles in intra- and interspecies interactions. To investigate roles of VC in fungal ecology, we characterized how VC produced by Verticillium spp., a group of broad-host-range soilborne fungal pathogens, affect plant growth and development. VC produced by 19 strains corresponding to 10 species significantly enhanced the growth of Arabidopsis thaliana and Nicotiana benthamiana. Analysis of VC produced by four species revealed the presence of diverse compounds, including those previously shown to affect plant growth. Using A. thaliana, we investigated the mechanism underpinning plant growth enhancement by Verticillium dahliae VC. Allometric analysis indicated that VC caused preferential resource allocation for root growth over shoot growth. Growth responses of A. thaliana mutants defective in auxin or ethylene signaling suggested the involvement of several components of auxin signaling, with TIR3 playing a key role. AUX1, TIR1, and AXR1 were also implicated but appeared to play lesser roles. Inhibition of auxin efflux using 1-naphthylphthalamic acid blocked VC-mediated growth enhancement. Spatial and temporal expression patterns of the auxin-responsive reporter DR5::GUS indicated that the activation of auxin signaling occurred before enhanced plant growth became visible. Results from this study suggest critical yet overlooked roles of VC in Verticillium ecology and pathology.
Collapse
Affiliation(s)
- Ningxiao Li
- 1 Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wenzhao Wang
- 2 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Vasileios Bitas
- 3 Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University; and
| | - Krishna Subbarao
- 4 Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Xingzhong Liu
- 2 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Seogchan Kang
- 1 Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
- 3 Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University; and
| |
Collapse
|
19
|
He J, Zhang R, Peng K, Tagliavia C, Li S, Xue S, Liu A, Hu H, Zhang J, Hubbard KE, Held K, McAinsh MR, Gray JE, Kudla J, Schroeder JI, Liang Y, Hetherington AM. The BIG protein distinguishes the process of CO 2 -induced stomatal closure from the inhibition of stomatal opening by CO 2. THE NEW PHYTOLOGIST 2018; 218:232-241. [PMID: 29292834 PMCID: PMC5887946 DOI: 10.1111/nph.14957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/12/2017] [Indexed: 05/09/2023]
Abstract
We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses.
Collapse
Affiliation(s)
- Jingjing He
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Ruo‐Xi Zhang
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Kai Peng
- School of Biological SciencesLife Sciences Building24 Tyndall AvenueBristolBS8 1TQUK
| | | | - Siwen Li
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shaowu Xue
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Amy Liu
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Honghong Hu
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Jingbo Zhang
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Katharine E. Hubbard
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
- School of Environmental SciencesUniversity of HullHullHU6 7RXUK
| | - Katrin Held
- Institut für Biologie und Biotechnologie der PflanzenUniversität MünsterSchlossplatz 7Münster48149Germany
| | | | - Julie E. Gray
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth Court, Western BankSheffieldS10 2TNUK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenUniversität MünsterSchlossplatz 7Münster48149Germany
| | - Julian I. Schroeder
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Yun‐Kuan Liang
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | | |
Collapse
|
20
|
Zhang Z, Zhang X, Lin Z, Wang J, Xu M, Lai J, Yu J, Lin Z. The genetic architecture of nodal root number in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1032-1044. [PMID: 29364547 DOI: 10.1111/tpj.13828] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 05/25/2023]
Abstract
The maize nodal root system plays a crucial role in the development of the aboveground plant and determines the yield via the uptake of water and nutrients in the field. However, the genetic architecture of the maize nodal root system is not well understood, and it has become the 'dark matter' of maize genetics. Here, a large teosinte-maize population was analyzed, and high-resolution mapping revealed that 62 out of 133 quantitative trait loci (QTLs), accounting for approximately half of the total genetic variation in nodal root number, were derived from QTLs for flowering time, which was further validated through a transgenic analysis and a genome-wide association study. However, only 16% of the total genetic variation in nodal root number was derived from QTLs for plant height. These results gave a hint that flowering time played a key role in shaping nodal root number via indirect selection during maize domestication. Our results also supported that more aerial nodal roots and fewer crown roots might be favored in temperate maize, and this root architecture might efficiently improve root-lodging resistance and the ability to take up deep water and nitrogen under dense planting.
Collapse
Affiliation(s)
- Zhihai Zhang
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Xuan Zhang
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Zhelong Lin
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jian Wang
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Mingliang Xu
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jinsheng Lai
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jianming Yu
- Department of Agronomy, Iowa State University, 513 Farm House Ln, Ames, IA, 50011-1050, USA
| | - Zhongwei Lin
- National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| |
Collapse
|
21
|
Douglas SJ, Li B, Kliebenstein DJ, Nambara E, Riggs CD. A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels. PLoS One 2017; 12:e0177045. [PMID: 28493925 PMCID: PMC5426679 DOI: 10.1371/journal.pone.0177045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/23/2017] [Indexed: 12/02/2022] Open
Abstract
BREVIPEDICELLUS (BP) encodes a class-I KNOTTED1-like homeobox (KNOX) transcription factor that plays a critical role in conditioning a replication competent state in the apical meristem, and it also governs growth and cellular differentiation in internodes and pedicels. To search for factors that modify BP signaling, we conducted a suppressor screen on bp er (erecta) plants and identified a mutant that ameliorates many of the pleiotropic defects of the parent line. Map based cloning and complementation studies revealed that the defect lies in the FILAMENTOUS FLOWER (FIL) gene, a member of the YABBY family of transcriptional regulators that contribute to meristem organization and function, phyllotaxy, leaf and floral organ growth and polarity, and are also known to repress KNOX gene expression. Genetic and cytological analyses of the fil-10 suppressor line indicate that the role of FIL in promoting growth is independent of its previously characterized influences on meristem identity and lateral organ polarity, and likely occurs non-cell-autonomously from superior floral organs. Transcription profiling of inflorescences revealed that FIL downregulates numerous transcription factors which in turn may subordinately regulate inflorescence architecture. In addition, FIL, directly or indirectly, activates over a dozen genes involved in glucosinolate production in part by activating MYB28, a known activator of many aliphatic glucosinolate biosynthesis genes. In the bp er fil-10 suppressor mutant background, enhanced expression of CYP71A13, AMIDASE1 (AMI) and NITRILASE genes suggest that auxin levels can be modulated by shunting glucosinolate metabolites into the IAA biosynthetic pathway, and increased IAA levels in the bp er fil-10 suppressor accompany enhanced internode and pedicel elongation. We propose that FIL acts to oppose KNOX1 gene function through a complex regulatory network that involves changes in secondary metabolites and auxin.
Collapse
Affiliation(s)
- Scott J. Douglas
- Department of Biological Sciences, University of Toronto-Scarborough, Scarborough, Ontario, Canada
| | - Baohua Li
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Gene Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - C. Daniel Riggs
- Department of Biological Sciences, University of Toronto-Scarborough, Scarborough, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Gene Evolution and Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Dierck R, De Keyser E, De Riek J, Dhooghe E, Van Huylenbroeck J, Prinsen E, Van Der Straeten D. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum. PLoS One 2016; 11:e0161732. [PMID: 27557329 PMCID: PMC4996534 DOI: 10.1371/journal.pone.0161732] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two differently branching cut flower Chrysanthemum morifolium (Ramat) genotypes. C17 is a split-type which forms an inflorescence meristem after a certain vegetative period, while C18 remains vegetative under long day conditions. Plant growth of both genotypes was monitored during 5 subsequent weeks starting one week before flower initiation occurred in C17. Axillary bud outgrowth was measured weekly and samples of shoot apex, stem and axillary buds were taken during the first two weeks. We combined auxin and cytokinin measurements by UPLC-MS/MS with RT-qPCR expression analysis of genes involved in shoot branching regulation pathways in chrysanthemum. These included bud development genes (CmBRC1, CmDRM1, CmSTM, CmLsL), auxin pathway genes (CmPIN1, CmTIR3, CmTIR1, CmAXR1, CmAXR6, CmAXR2, CmIAA16, CmIAA12), cytokinin pathway genes (CmIPT3, CmHK3, CmRR1) and strigolactone genes (CmMAX1 and CmMAX2). Genotype C17 showed a release from apical dominance after floral transition coinciding with decreased auxin and increased cytokinin levels in the subapical axillary buds. As opposed to C17, C18 maintained strong apical dominance with vegetative growth throughout the experiment. Here high auxin levels and decreasing cytokinin levels in axillary buds and stem were measured. A differential expression of several branching genes accompanied the different hormonal change and bud outgrowth in C17 and C18. This was clear for the strigolactone biosynthesis gene CmMAX1, the transcription factor CmBRC1 and the dormancy associated gene CmDRM1, that all showed a decreased expression in C17 at floral transition and an increased expression in C18 with continuous vegetative growth. These results offer a case study for Chrysanthemum, showing an altered cytokinin to auxin balance and differential gene expression between vegetative growth with apical dominance and transition to generative growth with loss of apical dominance and axillary bud outgrowth. This suggests a conservation of several aspects of the hormonal and genetical regulation of bud outgrowth in Chrysanthemum. Furthermore, 15 previously uncharacterised genes in chrysanthemum, were described in this study. Of those genes involved in axillary bud outgrowth we identified CmDRM1, CmBRC1 and CmMAX1 as having an altered expression preceding axillary bud outgrowth, which could be useful as markers for bud activity.
Collapse
Affiliation(s)
- Robrecht Dierck
- Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, Melle, Belgium
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, Ghent, Belgium
| | - Ellen De Keyser
- Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Jan De Riek
- Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Emmy Dhooghe
- Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Johan Van Huylenbroeck
- Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, Melle, Belgium
| | - Els Prinsen
- University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, Ghent, Belgium
| |
Collapse
|
23
|
Wu L, Luo P, Di DW, Wang L, Wang M, Lu CK, Wei SD, Zhang L, Zhang TZ, Amakorová P, Strnad M, Novák O, Guo GQ. Forward genetic screen for auxin-deficient mutants by cytokinin. Sci Rep 2015; 5:11923. [PMID: 26143750 PMCID: PMC4491711 DOI: 10.1038/srep11923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/09/2015] [Indexed: 01/02/2023] Open
Abstract
Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Pan Luo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Dong-Wei Di
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Li Wang
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Ming Wang
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Cheng-Kai Lu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Shao-Dong Wei
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Tian-Zi Zhang
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Petra Amakorová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci U S A 2015; 112:E2477-86. [PMID: 25918418 DOI: 10.1073/pnas.1500605112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maize is a major crop and a model plant for studying C4 photosynthesis and leaf development. However, a genomewide regulatory network of leaf development is not yet available. This knowledge is useful for developing C3 crops to perform C4 photosynthesis for enhanced yields. Here, using 22 transcriptomes of developing maize leaves from dry seeds to 192 h post imbibition, we studied gene up- and down-regulation and functional transition during leaf development and inferred sets of strongly coexpressed genes. More significantly, we developed a method to predict transcription factor binding sites (TFBSs) and their cognate transcription factors (TFs) using genomic sequence and transcriptomic data. The method requires not only evolutionary conservation of candidate TFBSs and sets of strongly coexpressed genes but also that the genes in a gene set share the same Gene Ontology term so that they are involved in the same biological function. In addition, we developed another method to predict maize TF-TFBS pairs using known TF-TFBS pairs in Arabidopsis or rice. From these efforts, we predicted 1,340 novel TFBSs and 253 new TF-TFBS pairs in the maize genome, far exceeding the 30 TF-TFBS pairs currently known in maize. In most cases studied by both methods, the two methods gave similar predictions. In vitro tests of 12 predicted TF-TFBS interactions showed that our methods perform well. Our study has significantly expanded our knowledge on the regulatory network involved in maize leaf development.
Collapse
|
25
|
Guo X, Qin Q, Yan J, Niu Y, Huang B, Guan L, Li Y, Ren D, Li J, Hou S. TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1058-75. [PMID: 25560878 PMCID: PMC4348754 DOI: 10.1104/pp.114.249904] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/31/2014] [Indexed: 05/18/2023]
Abstract
In plants, cell morphogenesis is dependent on intercellular auxin accumulation. The polar subcellular localization of the PIN-FORMED (PIN) protein is crucial for this process. Previous studies have shown that the protein kinase PINOID (PID) and protein phosphatase6-type phosphatase holoenzyme regulate the phosphorylation status of PIN1 in root tips and shoot apices. Here, we show that a type-one protein phosphatase, TOPP4, is essential for the formation of interdigitated pavement cell (PC) pattern in Arabidopsis (Arabidopsis thaliana) leaf. The dominant-negative mutant topp4-1 showed severely inhibited interdigitated PC growth. Expression of topp4-1 gene in wild-type plants recapitulated the PC defects in the mutant. Genetic analyses suggested that TOPP4 and PIN1 likely function in the same pathway to regulate PC morphogenesis. Furthermore, colocalization, in vitro and in vivo protein interaction studies, and dephosphorylation assays revealed that TOPP4 mediated PIN1 polar localization and endocytic trafficking in PCs by acting antagonistically with PID to modulate the phosphorylation status of PIN1. In addition, TOPP4 affects the cytoskeleton pattern through the Rho of Plant GTPase-dependent auxin-signaling pathway. Therefore, we conclude that TOPP4-regulated PIN1 polar targeting through direct dephosphorylation is crucial for PC morphogenesis in the Arabidopsis leaf.
Collapse
Affiliation(s)
- Xiaola Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Qianqian Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Jia Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yali Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Bingyao Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Liping Guan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Dongtao Ren
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China (X.G., Q.Q., J.Y., Y.N., B.H., L.G., J.L., S.H.); andState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| |
Collapse
|
26
|
Abstract
The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
27
|
Farrell JD, Byrne S, Paina C, Asp T. De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy. PLoS One 2014; 9:e103567. [PMID: 25126744 PMCID: PMC4134189 DOI: 10.1371/journal.pone.0103567] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Perennial ryegrass is a highly heterozygous outbreeding grass species used for turf and forage production. Heterozygosity can affect de-Bruijn graph assembly making de novo transcriptome assembly of species such as perennial ryegrass challenging. Creating a reference transcriptome from a homozygous perennial ryegrass genotype can circumvent the challenge of heterozygosity. The goals of this study were to perform RNA-sequencing on multiple tissues from a highly inbred genotype to develop a reference transcriptome. This was complemented with RNA-sequencing of a highly heterozygous genotype for SNP calling. RESULT De novo transcriptome assembly of the inbred genotype created 185,833 transcripts with an average length of 830 base pairs. Within the inbred reference transcriptome 78,560 predicted open reading frames were found of which 24,434 were predicted as complete. Functional annotation found 50,890 transcripts with a BLASTp hit from the Swiss-Prot non-redundant database, 58,941 transcripts with a Pfam protein domain and 1,151 transcripts encoding putative secreted peptides. To evaluate the reference transcriptome we targeted the high-affinity K+ transporter gene family and found multiple orthologs. Using the longest unique open reading frames as the reference sequence, 64,242 single nucleotide polymorphisms were found. One thousand sixty one open reading frames from the inbred genotype contained heterozygous sites, confirming the high degree of homozygosity. CONCLUSION Our study has developed an annotated, comprehensive transcriptome reference for perennial ryegrass that can aid in determining genetic variation, expression analysis, genome annotation, and gene mapping.
Collapse
Affiliation(s)
- Jacqueline D. Farrell
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - Cristiana Paina
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| |
Collapse
|
28
|
MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing. Gene 2013; 532:222-9. [DOI: 10.1016/j.gene.2013.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 01/22/2023]
|