1
|
Braidotti R, Falchi R, Calderan A, Pichierri A, Vankova R, Dobrev PI, Griesser M, Sivilotti P. Multi-hormonal analysis and aquaporins regulation reveal new insights on drought tolerance in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154243. [PMID: 38593590 DOI: 10.1016/j.jplph.2024.154243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.
Collapse
Affiliation(s)
- Riccardo Braidotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| | - Rachele Falchi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy.
| | - Alberto Calderan
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Alessandro Pichierri
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, 6, Czech Republic
| | - Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Paolo Sivilotti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via Delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
2
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
3
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
4
|
Wang L, Li J, Wang Y, Xue H, Dai Y, Han Y. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AOB PLANTS 2022; 14:plac051. [PMID: 36545298 PMCID: PMC9762721 DOI: 10.1093/aobpla/plac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Sea-buckthorn (Hippophae rhamnoides) is widely distributed across the Eurasian continent. Recently sea-buckthorn has shown premature ageing and decline when confronted with water deficiency and Holcocerus hippophaecolus damage in northwest China and the Loess Plateau region. However, the physiological process of sea-buckthorn senescence in response to drought and pest damage is still unknown. In this study, 4-year-old (4y), 15-year-old normal growth (15yN) and 15-year-old seriously moth-damaged sea-buckthorn plants (15yH) were used as the research objects. The growth of branches and roots, branch water potential and percentage loss of conductivity (PLC), branch vulnerability to embolism (quantified by P50, xylem water potential at 50 % of PLC), branch xylem parenchyma cell viability, photosynthesis and the non-structural carbohydrate (NSC) content in branches and roots in dry and wet seasons were measured. The results showed that the length, basal diameter of 1-year-old branches and the leaf area of 4y trees were significantly larger than that of 15yN and 15yH trees, and the fine root density of 15yH trees was significantly lower than that of 15yN trees in all measured areas. The branch-specific hydraulic conductivity of 15yN and 15yH trees was only 50.2 % and 12.3 % of that of 4y trees, and the P50 of 4y, 15yH and 15yN trees was -3.69 MPa, -2.71 MPa and -1.15 MPa, respectively. The midday water potential and photosynthetic rate were highest in 4y trees, followed by 15yN and then 15yH trees in both the dry season and wet seasons, while branch PLC declined in the opposite direction (15yH trees highest, 4y trees lowest). The degree of PLC repair within a day was highest in 4y trees, followed by 15yN and then 15yH trees, and the viability of xylem cells was consistent with this pattern. The branch xylem starch and NSC content of 4y and 15yN trees were significantly higher than that of 15yH trees in the dry season, and the root starch and NSC content of 4y trees were significantly higher than that of 15yH trees in the two seasons. The above results suggest that the hydraulic properties of the normal elderly and seriously pest-damaged sea-buckthorn were significantly worse than in juvenile plants. Narrower early wood width and vessel density, high embolism vulnerability and weak embolism repair capacity led to the decline in water-conducting ability, and similarly further affected photosynthesis and the root NSC content. The decline in xylem parenchyma cell viability was the main reason for the limited embolism repair in the branches.
Collapse
Affiliation(s)
- Lin Wang
- Corresponding author’s e-mail address:
| | - Junpeng Li
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Hao Xue
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| |
Collapse
|
5
|
Bellasio C, Quirk J, Ubierna N, Beerling DJ. Physiological responses to low CO 2 over prolonged drought as primers for forest-grassland transitions. NATURE PLANTS 2022; 8:1014-1023. [PMID: 36008546 DOI: 10.1038/s41477-022-01217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Savannahs dominated by grasses with scattered C3 trees expanded between 24 and 9 million years ago in low latitudes at the expense of forests. Fire, herbivory, drought and the susceptibility of trees to declining atmospheric CO2 concentrations ([CO2]a) are proposed as key drivers of this transition. The role of disturbance is well studied, but physiological arguments are mostly derived from models and palaeorecords, without direct experimental evidence. In replicated comparative experimental trials, we examined the physiological effects of [CO2]a and prolonged drought in a broadleaf forest tree, a savannah tree and a savannah C4 grass. We show that the forest tree was more disadvantaged than either the savannah tree or the C4 grass by the low [CO2]a and increasing aridity. Our experiments provide insights into the role of the intrinsic physiological susceptibility of trees in priming the disturbance-driven transition from forest to savannah in the conditions of the early Miocene.
Collapse
Affiliation(s)
- Chandra Bellasio
- Biology of Plants under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Palma, Spain.
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia.
- School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Joe Quirk
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Nerea Ubierna
- Biology of Plants under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Palma, Spain
| | | |
Collapse
|
6
|
Truong H, Garmyn D, Gal L, Fournier C, Sevellec Y, Jeandroz S, Piveteau P. Plants as a realized niche for Listeria monocytogenes. Microbiologyopen 2021; 10:e1255. [PMID: 34964288 PMCID: PMC8710918 DOI: 10.1002/mbo3.1255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a human pathogen. It is the causative agent of listeriosis, the leading cause of bacterial-linked foodborne mortality in Europe and elsewhere. Outbreaks of listeriosis have been associated with the consumption of fresh produce including vegetables and fruits. In this review we summarize current data providing direct or indirect evidence that plants can serve as habitat for L. monocytogenes, enabling this human pathogen to survive and grow. The current knowledge of the mechanisms involved in the interaction of this bacterium with plants is addressed, and whether this foodborne pathogen elicits an immune response in plants is discussed.
Collapse
Affiliation(s)
- Hoai‐Nam Truong
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Dominique Garmyn
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Carine Fournier
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | - Yann Sevellec
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Salmonella and Listeria UnitParis‐Est UniversityMaisons‐AlfortCedexFrance
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAEUniversity Bourgogne Franche‐ComtéDijonFrance
| | | |
Collapse
|
7
|
Patel J, Mishra A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. PHYSIOLOGIA PLANTARUM 2021; 172:1030-1044. [PMID: 33421148 DOI: 10.1111/ppl.13324] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Water is a vital resource for plants to grow, thrive, and complete their life cycle. In recent years, drastic changes in the climate, especially drought frequency and severity, have increased, which reduces agricultural productivity worldwide. Aquaporins are membrane channels belonging to the major intrinsic protein superfamily, which play an essential role in cellular water and osmotic homeostasis of plants under both control and water deficit conditions. A genome-wide search reveals the vast availability of aquaporin isoforms, phylogenetic relationships, different families, conserved residues, chromosomal locations, and gene structure of aquaporins. Furthermore, aquaporins gating and subcellular trafficking are commonly controlled by phosphorylation, cytosolic pH, divalent cations, reactive oxygen species, and stoichiometry. Researchers have identified their involvement in regulating hydraulic conductance, root system architecture, modulation of abiotic stress-related genes, seed viability and germination, phloem loading, xylem water exit, photosynthetic parameters, and post-drought recovery. Remarkable effects following the change in aquaporin activity and/or gene expression have been observed on root water transport properties, nutrient acquisition, physiology, transpiration, stomatal aperture, gas exchange, and water use efficiency. The present review highlights the role of different aquaporin homologs under water-deficit stress condition in model and crop plants. Moreover, the opportunity and challenges encountered to explore aquaporins for engineering drought-tolerant crop plants are also discussed here.
Collapse
Affiliation(s)
- Jaykumar Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. Int J Mol Sci 2021; 22:ijms22063045. [PMID: 33802641 PMCID: PMC8002507 DOI: 10.3390/ijms22063045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/31/2022] Open
Abstract
Vitis vinifera ‘Nebbiolo’ is one of the most important wine grape cultivars used to produce prestigious high-quality wines known throughout the world, such as Barolo and Barbaresco. ‘Nebbiolo’ is a distinctive genotype characterized by medium/high vigor, long vegetative and ripening cycles, and limited berry skin color rich in 3′-hydroxylated anthocyanins. To investigate the molecular basis of these characteristics, ‘Nebbiolo’ berries collected at three different stages of ripening (berry pea size, véraison, and harvest) were compared with V. vinifera ‘Barbera’ berries, which are rich in 3′,5′-hydroxylated anthocyanins, using transcriptomic and analytical approaches. In two consecutive seasons, the two genotypes confirmed their characteristic anthocyanin profiles associated with a different modulation of their transcriptomes during ripening. Secondary metabolism and response to stress were the functional categories that most differentially changed between ‘Nebbiolo’ and ‘Barbera’. The profile rich in 3′-hydroxylated anthocyanins of ‘Nebbiolo’ was likely linked to a transcriptional downregulation of key genes of anthocyanin biosynthesis. In addition, at berry pea size, the defense metabolism was more active in ‘Nebbiolo’ than ‘Barbera’ in absence of biotic attacks. Accordingly, several pathogenesis-related proteins, WRKY transcription factors, and stilbene synthase genes were overexpressed in ‘Nebbiolo’, suggesting an interesting specific regulation of defense pathways in this genotype that deserves to be further explored.
Collapse
|
9
|
Balestrini R, Ghignone S, Quiroga G, Fiorilli V, Romano I, Gambino G. Long-Term Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Berry Transcriptome. Int J Mol Sci 2020; 21:ijms21176067. [PMID: 32842492 PMCID: PMC7504522 DOI: 10.3390/ijms21176067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of ‘Nebbiolo’ grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
- Correspondence: ; Tel.: +39-011-650-2927
| | - Stefano Ghignone
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Gabriela Quiroga
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, Turin University, 10125 Turin, Italy;
| | - Irene Romano
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Giorgio Gambino
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| |
Collapse
|
10
|
Dai Y, Wang L, Wan X. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:177-186. [PMID: 31756604 DOI: 10.1016/j.plaphy.2019.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Frost-induced embolism and frost fatigue are two major aspects of frost damage to xylem water transport in trees. In this study, three species of each ring-porous, diffuse-porous, and coniferous trees growing in situ were used to explore their differences in winter embolism and frost fatigue. Changes in predawn water potential, predawn native embolism, maximal specific conductivity (Kmax), and cavitation resistance (P50, xylem water potential at 50% loss of conductivity) of current-year branches were measured from autumn to spring. Maximum native embolism of late winter was near 100% for ring-porous species, approximately 80% for diffuse-porous species, and below 50% for conifers. In early spring, there was no significant reduction of native embolism until formation of new vessels in ring-porous trees, while diffuse-porous trees and conifers exhibited a reduction in native embolism before development of new xylem. There was a significant decrease in P50 of ring- and diffuse-porous species over winter; however, in May P50 was markedly reduced along with formation of new vessels. Kmax of ring- and diffuse-porous species significantly decreased from autumn to late winter. The results revealed that vulnerability to cavitation and frost fatigue was related to conduit diameter. The strategies for coping with winter embolism differed among the three wood types: in ring-porous species there was no active embolism refilling; in diffuse-porous species there was refilling associated with positive xylem pressure; and in conifers there was refilling without positive xylem pressure. New vessels could completely restore stem hydraulic conductivity but only partially restore xylem cavitation resistance in spring.
Collapse
Affiliation(s)
- Yongxin Dai
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, PR China; College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, PR China.
| |
Collapse
|
11
|
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V. The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. Int J Mol Sci 2019; 21:E144. [PMID: 31878253 PMCID: PMC6981889 DOI: 10.3390/ijms21010144] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022] Open
Abstract
The xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport. However, a clear picture on the roles of NSCs in plant hydraulics has not been drawn to date. We summarize the current knowledge on the involvement of NSCs during embolism formation and subsequent hydraulic recovery. Under drought, sugars are generally accumulated in xylem parenchyma and in xylem sap. At drought-relief, xylem functionality is putatively restored in an osmotically driven process involving wood parenchyma, xylem sap and phloem compartments. By analyzing the published data on stem hydraulics and NSC contents under drought/frost stress and subsequent stress relief, we found that embolism build-up positively correlated to stem NSC depletion, and that the magnitude of post-stress hydraulic recovery positively correlated to consumption of soluble sugars. These findings suggest a close relationship between hydraulics and carbohydrate dynamics. We call for more experiments on hydraulic and NSC dynamics in controlled and field conditions.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| |
Collapse
|
12
|
Pagliarani C, Casolo V, Ashofteh Beiragi M, Cavalletto S, Siciliano I, Schubert A, Gullino ML, Zwieniecki MA, Secchi F. Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. PLANT, CELL & ENVIRONMENT 2019; 42:1775-1787. [PMID: 30756400 DOI: 10.1111/pce.13533] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Some plant species are capable of significant reduction of xylem embolism during recovery from drought despite stem water potential remains negative. However, the functional biology underlying this process is elusive. We subjected poplar trees to drought stress followed by a period of recovery. Water potential, hydraulic conductivity, gas exchange, xylem sap pH, and carbohydrate content in sap and woody stems were monitored in combination with an analysis of carbohydrate metabolism, enzyme activity, and expression of genes involved in sugar metabolic and transport pathways. Drought resulted in an alteration of differential partitioning between starch and soluble sugars. Upon stress, an increase in the starch degradation rate and the overexpression of sugar symporter genes promoted the efflux of disaccharides (mostly maltose and sucrose) to the apoplast. In turn, the efflux activity of the sugar-proton cotransporters caused a drop in xylem pH. The newly acidic environment induced the activity of apoplastic invertases leading to the accumulation of monosaccharides in the apoplast, thus providing the main osmoticum necessary for recovery. During drought and recovery, a complex network of coordinated molecular and biochemical signals was activated at the interface between xylem and parenchyma cells that appeared to prime the xylem for hydraulic recovery.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Maryam Ashofteh Beiragi
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Silvia Cavalletto
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Ilenia Siciliano
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
- AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy
| | - Andrea Schubert
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Maria Lodovica Gullino
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
- AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy
| | | | - Francesca Secchi
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|
13
|
Trifilò P, Kiorapostolou N, Petruzzellis F, Vitti S, Petit G, Lo Gullo MA, Nardini A, Casolo V. Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:513-520. [PMID: 31015090 DOI: 10.1016/j.plaphy.2019.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 05/26/2023]
Abstract
Embolism repair ability has been documented in numerous species. Although the actual mechanism driving this phenomenon is still debated, experimental findings suggest that non-structural carbohydrates (NSC) stored in wood parenchyma would provide the osmotic forces to drive the refilling of embolized conduits. We selected 12 broadleaved species differing in vulnerability to xylem embolism (P50) and amount of wood parenchyma in order to check direct evidence about the possible link(s) between parenchyma cells abundance, NSC availability and species-specific capacity to reverse xylem embolism. Branches were dehydrated until ∼50% loss of hydraulic conductivity was recorded (PLC ∼50%). Hydraulic recovery (ΔPLC) and NSC content was, then, assessed after 1h of rehydration. Species showed a different ability to recover their hydraulic conductivity from PLC∼50%. Removing the bark in the species showing hydraulic recovery inhibited the embolism reversal. Strong correlations between the ΔPLC and: a) the amount of parenchyma cells (mainly driven by the pith area), b) the consumption of soluble NSC have been recorded. Our results support the hypothesis that refilling of embolized vessels is mediated by the mobilization of soluble NSC and it is mainly recorded in species with a higher percentage of parenchyma cells that may be important in the hydraulic recovery mechanism as a source of carbohydrates and/or as a source of water.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Natasa Kiorapostolou
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefano Vitti
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy; Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100, Udine, Italy
| | - Giai Petit
- Dipartimento Territorio e Sistemi Agro-Forestali, Università di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100, Udine, Italy
| |
Collapse
|
14
|
Choat B, Nolf M, Lopez R, Peters JMR, Carins-Murphy MR, Creek D, Brodribb TJ. Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two genera. TREE PHYSIOLOGY 2019; 39:113-121. [PMID: 30137594 DOI: 10.1093/treephys/tpy093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Drought stress can result in significant impairment of the plant hydraulic system via blockage of xylem conduits by gas emboli. Recovery after drought stress is an essential component of plant survival but is still a poorly understood process. In this study, we examined the capacity of woody species from two genera (Eucalyptus and Quercus) to refill embolized xylem vessels during a cycle of drought and recovery. Observations were made on intact plants of Eucalyptus calmudulensis, E. grandis, E. saligna and Quercus palustris using X-ray microtomography. We found no evidence of an effective xylem refilling mechanism in any of the plant species. Despite rehydration and recovery of plant water potential to near pre-drought levels, embolized vessels were not refilled up to 72 h after rewatering. In E. saligna, water droplets accumulated in previously air-filled vessels for a very small percentage of vessels. However, no instances of complete refilling that would restore embolized vessels to hydraulic function were observed. Our observations suggest that rapid refilling of embolized vessels after drought may not be a wide spread mechanism in woody plants and that embolism formed during drought represents long term cost to the plant hydraulic system.
Collapse
Affiliation(s)
- Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Markus Nolf
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- PIAF, Institut National dela Recherche Agronomique, UCA, Clermont-Ferrand, France
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Petruzzellis F, Pagliarani C, Savi T, Losso A, Cavalletto S, Tromba G, Dullin C, Bär A, Ganthaler A, Miotto A, Mayr S, Zwieniecki MA, Nardini A, Secchi F. The pitfalls of in vivo imaging techniques: evidence for cellular damage caused by synchrotron X-ray computed micro-tomography. THE NEW PHYTOLOGIST 2018; 220:104-110. [PMID: 30040128 DOI: 10.1111/nph.15368] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Synchrotron X-ray computed micro-tomography (microCT) has emerged as a promising noninvasive technique for in vivo monitoring of xylem function, including embolism build-up under drought and hydraulic recovery following re-irrigation. Yet, the possible harmful effects of ionizing radiation on plant tissues have never been quantified. We specifically investigated the eventual damage suffered by stem living cells of three different species exposed to repeated microCT scans. Stem samples exposed to one, two or three scans were used to measure cell membrane and RNA integrity, and compared to controls never exposed to X-rays. Samples exposed to microCT scans suffered serious alterations to cell membranes, as revealed by marked increase in relative electrolyte leakage, and also underwent severe damage to RNA integrity. The negative effects of X-rays were apparent in all species tested, but the magnitude of damage and the minimum number of scans inducing negative effects were species-specific. Our data show that multiple microCT scans lead to disruption of fundamental cellular functions and processes. Hence, microCT investigation of phenomena that depend on physiological activity of living cells may produce erroneous results and lead to incorrect conclusions.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, A-3430, Tulln, Vienna, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Silvia Cavalletto
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giuliana Tromba
- Elettra Sincrotrone Trieste, Area Science Park, 34149, Basovizza, Trieste, Italy
| | - Christian Dullin
- Elettra Sincrotrone Trieste, Area Science Park, 34149, Basovizza, Trieste, Italy
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Max-Plank-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andrea Miotto
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
16
|
Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res 2018. [DOI: 10.1007/s11284-018-1588-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Shelden MC, Vandeleur R, Kaiser BN, Tyerman SD. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. FRONTIERS IN PLANT SCIENCE 2017; 8:1893. [PMID: 29163613 PMCID: PMC5681967 DOI: 10.3389/fpls.2017.01893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψL) and stem water potential (ψS), stomatal conductance (gs), transpiration (E), petiole hydraulics (KPet), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψL in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ50Petiole = -1.14 and ψ50Stem = -2.24 MPa) but not in Grenache (ψ50Petiole = -0.73 and ψ50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher KPet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves (VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1, and VvTIP2;1) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψL and ψS in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay.
Collapse
Affiliation(s)
- Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca Vandeleur
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Brent N. Kaiser
- Centre for Carbon, Water and Food, School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Trifilò P, Casolo V, Raimondo F, Petrussa E, Boscutti F, Lo Gullo MA, Nardini A. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:232-241. [PMID: 29073538 DOI: 10.1016/j.plaphy.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 05/17/2023]
Abstract
Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Valentino Casolo
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, via delle Scienze 91, 33100 Udine, Italy
| | - Fabio Raimondo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Elisa Petrussa
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, via delle Scienze 91, 33100 Udine, Italy
| | - Francesco Boscutti
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, via delle Scienze 91, 33100 Udine, Italy
| | - Maria Assunta Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
19
|
Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Marroni F, Bonfante P. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. MYCORRHIZA 2017; 27:417-430. [PMID: 28101667 DOI: 10.1007/s00572-016-0754-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
Grapevine, cultivated for both fruit and beverage production, represents one of the most economically important fruit crops worldwide. With the aim of better understanding how grape roots respond to beneficial microbes, a transcriptome sequencing experiment has been performed to evaluate the impact of a single arbuscular mycorrhizal (AM) fungal species (Funneliformis mosseae) versus a mixed inoculum containing a bacterial and fungal consortium, including different AM species, on Richter 110 rootstock. Results showed that the impact of a single AM fungus and of a complex microbial inoculum on the grapevine transcriptome differed. After 3 months, roots exclusively were colonized after the F. mosseae treatment and several AM marker genes were found to be upregulated. The mixed inoculum led only to traces of colonization by AM fungi, but elicited an important transcriptional regulation. Additionally, the expression of genes belonging to categories such as nutrient transport, transcription factors, and cell wall-related genes was significantly altered in both treatments, but the exact genes affected differed in the two conditions. These findings advance our understanding about the impact of soil beneficial microbes on the root system of a woody plant, also offering the basis for novel approaches in grapevine cultivation.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante del CNR, SS Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy.
| | - Alessandra Salvioli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Alessandra Dal Molin
- Centro di Genomica Funzionale dell'Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Mara Novero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Giovanni Gabelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Eleonora Paparelli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali (DI4A), Università degli Studi di Udine, Viale delle Scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata (IGA), Via J. Linussio 51, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali (DI4A), Università degli Studi di Udine, Viale delle Scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata (IGA), Via J. Linussio 51, 33100, Udine, Italy
| | - Paola Bonfante
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
20
|
Secchi F, Pagliarani C, Zwieniecki MA. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. PLANT, CELL & ENVIRONMENT 2017; 40:858-871. [PMID: 27628165 DOI: 10.1111/pce.12831] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | | |
Collapse
|
21
|
Lavoie-Lamoureux A, Sacco D, Risse PA, Lovisolo C. Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis. PHYSIOLOGIA PLANTARUM 2017; 159:468-482. [PMID: 27859326 DOI: 10.1111/ppl.12530] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 05/05/2023]
Abstract
The main factors regulating grapevine response to decreasing water availability were assessed under statistical support using published data related to leaf water relations in an extensive range of scion and rootstock genotypes. Matching leaf water potential (Ψleaf ) and stomatal conductance (gs ) data were collected from peer-reviewed literature with associated information. The resulting database contained 718 data points from 26 different Vitis vinifera varieties investigated as scions, 15 non-V. vinifera rootstock genotypes and 11 own-rooted V. vinifera varieties. Linearised data were analysed using the univariate general linear model (GLM) with factorial design including biological (scion and rootstock genotypes), methodological and environmental (soil) fixed factors. The first GLM performed on the whole database explained 82.4% of the variability in data distribution having the rootstock genotype the greatest contribution to variability (19.1%) followed by the scion genotype (16.2%). A classification of scions and rootstocks according to their mean predicted gs in response to moderate water stress was generated. This model also revealed that gs data obtained using a porometer were in average 2.1 times higher than using an infra-red gas analyser. The effect of soil water-holding properties was evaluated in a second analysis on a restricted database and showed a scion-dependant effect, which was dominant over rootstock effect, in predicting gs values. Overall the results suggest that a continuum exists in the range of stomatal sensitivities to water stress in V. vinifera, rather than an isohydric-anisohydric dichotomy, that is further enriched by the diversity of scion-rootstock combinations and their interaction with different soils.
Collapse
Affiliation(s)
- Anouk Lavoie-Lamoureux
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Dario Sacco
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Paul-André Risse
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Grugliasco, 10095, Italy
| |
Collapse
|
22
|
Nardini A, Savi T, Trifilò P, Lo Gullo MA. Drought Stress and the Recovery from Xylem Embolism in Woody Plants. PROGRESS IN BOTANY VOL. 79 2017. [DOI: 10.1007/124_2017_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Secchi F, Zwieniecki MA. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. PLANT, CELL & ENVIRONMENT 2016; 39:2350-2360. [PMID: 27187245 DOI: 10.1111/pce.12767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 05/25/2023]
Abstract
Severe water stress constrains, or even stops, water transport in the xylem due to embolism formation. Previously, the xylem of poplar trees was shown to respond to embolism formation by accumulating carbohydrates in the xylem apoplast and dropping xylem sap pH. We hypothesize that these two processes may be functionally linked as lower pH activates acidic invertases degrading sucrose and inducing accumulation of monosaccharides in xylem apoplast. Using a novel in vivo method to measure xylem apoplast pH, we show that pH drops from ~6.2 to ~5.6 in stems of severely stressed plants and rises following recovery of stem water status. We also show that in a lower pH environment, sugars are continuously accumulating in the xylem apoplast. Apoplastic carbohydrate accumulation was reduced significantly in the presence of a proton pump blocker (orthovanadate). These observations suggest that a balance in sugar concentrations exists between the xylem apoplast and symplast that can be controlled by xylem pH and sugar concentration. We conclude that lower pH is related to loss of xylem transport function, eventually resulting in accumulation of sugars that primes stems for recovery from embolism when water stress is relieved.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy.
| | | |
Collapse
|
24
|
Vitali M, Cochard H, Gambino G, Ponomarenko A, Perrone I, Lovisolo C. VvPIP2;4N aquaporin involvement in controlling leaf hydraulic capacitance and resistance in grapevine. PHYSIOLOGIA PLANTARUM 2016; 158:284-296. [PMID: 27137520 DOI: 10.1111/ppl.12463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 05/02/2023]
Abstract
Hydraulic capacitance (C) in a plant tissue buffers the xylem tension, storing and releasing water and has been highlighted in recent years as an important factor that affects water relations such as drought tolerance and embolism formation. Aquaporins (AQPs) are well known to control leaf hydraulic resistance (Rh) but their role in the control of C is unknown. Here, we assess Rh and C on detached grapevines wild-type (WT) (cv. Brachetto) leaves and over-expressing the aquaporin gene VvPIP2;4N (OE). For this purpose, we developed a new method inspired from the pressure-volume curve technique and the rehydration-kinetic-method, which allowed us to monitor the dynamics of dehydration and rehydration in the same leaf. The recovery after dehydration was measured in dark, light non-transpirative conditions, light-transpirative conditions and light-transpirative condition adding abscisic acid. Pressurizing to dehydrate leaves in the OE line, the recorded Rh and C were respectively lower and higher than those in the WT. The same results were obtained in the dark recovery by rehydration treatment. In the presence of light, either when leaves transpired or not (by depressing vapor pressure deficit), the described effects disappeared. The change in Rh and C did not affect the kinetics of desiccation of detached leaves in dark in air, in OE plants compared to WT ones. Our study highlighted that both Rh and C were influenced by the constitutive over-expression of VvPIP2;4N. The effect of AQPs on C is reported here for the first time and may involve a modulation of cell reflection coefficient.
Collapse
Affiliation(s)
- Marco Vitali
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy.
| | - Hervé Cochard
- INRA, UMR 547 PIAF, Clermont-Ferrand, F-63100, France
- UMR 547 PIAF, University Blaise Pascal, Aubière, F-63177, France
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco, 10095, Italy
| | | | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
- INRA, UMR 547 PIAF, Clermont-Ferrand, F-63100, France
| |
Collapse
|
25
|
Hacke UG, Laur J. Xylem refilling - a question of sugar transporters and pH? PLANT, CELL & ENVIRONMENT 2016; 39:2347-2349. [PMID: 27351802 DOI: 10.1111/pce.12784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
This article comments on: Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH.
Collapse
Affiliation(s)
- Uwe G Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada.
| | - Joan Laur
- Centre de Recherche en Horticulture, Université Laval, Envirotron, Québec, QC, G1V0A6, Canada
| |
Collapse
|
26
|
Luchi N, Capretti P, Pazzagli M, Pinzani P. Powerful qPCR assays for the early detection of latent invaders: interdisciplinary approaches in clinical cancer research and plant pathology. Appl Microbiol Biotechnol 2016; 100:5189-204. [PMID: 27112348 DOI: 10.1007/s00253-016-7541-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022]
Abstract
Latent invaders represent the first step of disease before symptoms occur in the host. Based on recent findings, tumors are considered to be ecosystems in which cancer cells act as invasive species that interact with the native host cell species. Analogously, in plants latent fungal pathogens coevolve within symptomless host tissues. For these reasons, similar detection approaches can be used for an early diagnosis of the invasion process in both plants and humans to prevent or reduce the spread of the disease. Molecular tools based on the evaluation of nucleic acids have been developed for the specific, rapid, and early detection of human diseases. During the last decades, these techniques to assess and quantify the proliferation of latent invaders in host cells have been transferred from the medical field to different areas of scientific research, such as plant pathology. An improvement in molecular biology protocols (especially referring to qPCR assays) specifically designed and optimized for detection in host plants is therefore advisable. This work is a cross-disciplinary review discussing the use of a methodological approach that is employed within both medical and plant sciences. It provides an overview of the principal qPCR tools for the detection of latent invaders, focusing on comparisons between clinical cancer research and plant pathology, and recent advances in the early detection of latent invaders to improve prevention and control strategies.
Collapse
Affiliation(s)
- Nicola Luchi
- National Research Council (IPSP-CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
| | - Paolo Capretti
- National Research Council (IPSP-CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze, Italy
- Department of Agri-Food Productions and Environmental Sciences (DiSPAA), University of Florence, Piazzale delle Cascine 28, Florence, Italy
| | - Mario Pazzagli
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Firenze, Italy
| | - Pamela Pinzani
- Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Firenze, Italy.
| |
Collapse
|
27
|
Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:23-32. [PMID: 26851572 DOI: 10.1016/j.plaphy.2016.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Drought stress affects anthocyanin accumulation and modification in vegetative and reproductive plant tissues. Anthocyanins are the most abundant flavonoids in grape (Vitis vinifera L.) coloured berry genotypes and are essential markers of grape winemaking quality. They are mostly mono- and di-methylated, such modifications increase their stability and improve berry quality for winemaking. Anthocyanin methylation in grape berries is induced by drought stress. A few caffeoyl-CoA O-methyltransferases (CCoAOMTs) active on anthocyanins have been described in grape. However, no drought-activated O-methyltransferases have been described in grape berries yet. In this study, we characterized VvCCoAOMT, a grapevine gene known to induce methylation of CoA esters in cultured grape cells. Transcript accumulation of VvCCoAOMT was detected in berry skins, and increased during berry ripening on the plant, and in cultured berries treated with ABA, concomitantly with accumulation of methylated anthocyanins, suggesting that anthocyanins may be substrates of this enzyme. Contrary as previously observed in cell cultures, biotic stress (Botrytis cinerea inoculation) did not affect VvCCoAOMT gene expression in leaves or berries, while drought stress increased VvCCoAOMT transcript in berries. The recombinant VvCCoAOMT protein showed in vitro methylating activity on cyanidin 3-O-glucoside. We conclude that VvCCoAOMT is a multifunctional O-methyltransferase that may contribute to anthocyanin methylation activity in grape berries, in particular under drought stress conditions.
Collapse
Affiliation(s)
- Debora Giordano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Sofia Provenzano
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Alessandra Ferrandino
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Marco Vitali
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Chiara Pagliarani
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Federica Roman
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Francesca Cardinale
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Simone D Castellarin
- The University of British Columbia Wine Research Centre, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Andrea Schubert
- University of Turin, Dept. Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy.
| |
Collapse
|
28
|
Pantaleo V, Vitali M, Boccacci P, Miozzi L, Cuozzo D, Chitarra W, Mannini F, Lovisolo C, Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci Rep 2016; 6:20167. [PMID: 26833264 PMCID: PMC4735847 DOI: 10.1038/srep20167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause–effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed.
Collapse
Affiliation(s)
- Vitantonio Pantaleo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Research Unit of Bari. Via Amendola 165/a, 70126 Bari, Italy
| | - Marco Vitali
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| | - Danila Cuozzo
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences, University of Torino. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy.,Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| |
Collapse
|
29
|
Kotowska MM, Hertel D, Rajab YA, Barus H, Schuldt B. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. FRONTIERS IN PLANT SCIENCE 2015; 6:191. [PMID: 25873922 PMCID: PMC4379754 DOI: 10.3389/fpls.2015.00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/09/2015] [Indexed: 05/04/2023]
Abstract
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.
Collapse
Affiliation(s)
- Martyna M. Kotowska
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Yasmin Abou Rajab
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| | - Henry Barus
- Faculty of Agriculture, Tadulaku University, PaluIndonesia
| | - Bernhard Schuldt
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, GöttingenGermany
| |
Collapse
|
30
|
Laur J, Hacke UG. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One 2014; 9:e111751. [PMID: 25406088 PMCID: PMC4236056 DOI: 10.1371/journal.pone.0111751] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023] Open
Abstract
Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.
Collapse
Affiliation(s)
- Joan Laur
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Uwe G. Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|