1
|
Bessiatti Fava Oliveira AP, Resende LM, da Silva MS, de Azevedo Dos Santos L, Carvalho AO, Chaves RP, Nagano CS, Moreira FF, Seabra SH, Da Cunha M, de Oliveira Mello É, Taveira GB, Rodrigues R, Gomes VM. Lipid Transfer Proteins (LTPs) Partially Purified from Capsicum chinense Jacq. Seeds: Antifungal Properties and α-amylase Inhibitory Activity. Protein J 2025; 44:201-212. [PMID: 39924634 DOI: 10.1007/s10930-025-10256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
In this study, we identified and partially purified antimicrobial peptides belonging to the family of lipid transfer proteins (LTPs) from Capsicum chinense seeds (UENF 1751 accession). Fractions rich in LTPs were obtained via ion exchange chromatography and subsequently purified via reverse-phase chromatography in an HPLC system. Therefore, two fractions were revealed: C1 (the nonretained fraction) and C2 (the retained fraction in ion-exchange chromatography). Fraction C1 was subjected to reverse-phase chromatography via a C18 column on an HPLC system, and ten fractions were obtained (P1-P10), all of which significantly inhibited the growth of Candida albicans, except for P4 and P9. The viability analysis of the active fractions at a concentration of 100 µg.mL-1 against C. albicans revealed that they did not exhibit fungicidal activity but rather exhibited fungistatic activity. The peptide is considered fungicidal when it results in the total loss of viable yeast cells, that is, when it causes the complete death of the fungi. When the substance only inhibits cell growth, but does not eliminate them completely, the effect is classified as fungistatic. Fractions P3, P4, P7, and P10 inhibited Tenebrio molitor larvae α-amylase. The P10 fraction presented protein bands in its electrophoretic profile with a molecular mass between 6.5 kDa and 14.2 kDa and reacted positively to an antibody produced against a protein from the LTP family bywestern blotting. The results of the analysis of amino acid residues from the P10 fraction revealed similarity between type I LTPs and type II LTPs. The ultrastructural aspects of C. albicans cells exposed to the P10 fraction were evaluated via transmission electron microscopy (TEM), with significant differences in their morphology being evident compared with those of the control. In summary, our results demonstrated the presence of LTPs in C. chinense seeds with inhibitory effects on the growth of yeasts of the genus Candida, which exhibited fungistatic effects and structural changes in C. albicans cells, in addition to exhibiting inhibitory effects on the larval insect T. molitor α-amylase.
Collapse
Affiliation(s)
- Arielle Pinheiro Bessiatti Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Larissa Maximiano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Renata Pinheiro Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Felipe Figueirôa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Campos dos Goytacazes, RJ, 28015-602, Brazil.
| |
Collapse
|
2
|
Jia Y, Li C, Qin J, Xiong M, Gou B, Zhai W, Li Q. Xoo Effector TalAE73-Targeted OsLTPL23 Mediates Bacterial Blight Resistance in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6567-6579. [PMID: 40062843 DOI: 10.1021/acs.jafc.4c12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Transcription activator-like effectors (TALEs) secreted from Xanthomonas oryzae pv oryzae (Xoo) function as a pathogenicity factor to activate rice bacterial blight (BB) susceptibility, conforming to the gene-for-gene paradigm as well as resistance. Xoo pathotypes generally harbor one to three major TALEs targeting OsSWEET genes to determine pathogenicity; conversely, the immunity events mediated by minor TALEs have not been taken seriously. Here, we demonstrated that lipid transfer protein encoding gene OsLTPL23 positively regulates rice resistance to Xoo pathotype PXO61, and TalAE73PXO61, a representative member of the most widely distributed TALE family in 135 Xoo isolates, transcriptionally activates OsLTPL23 expression. Further, TalAE73PXO61 is an avirulence protein, causing effector-triggered immunity in compatible rice-Xoo interaction. In addition, reactive oxygen species accumulation, nitrate uptake, and salicylic acid homeostasis are transcriptionally and physiologically associated with OsLTPL23-dependent BB resistance.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Mei Xiong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Gou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Wei H, Lu Z, Xue C, Jiang H, Xu X, Liu G, Zhong F, Zhang J, Lian B. Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response. Int J Biol Macromol 2025; 295:139600. [PMID: 39788225 DOI: 10.1016/j.ijbiomac.2025.139600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The non-specific lipid-transfer proteins (LTPs), particularly the glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs), play pivotal roles in various plant physiological functions, particularly in the context of environmental stress adaptation. Despite their importance, LTPGs in willow (Salix matsudana), an ecologically and economically important species, remains poorly understood. This study systematically identified and characterized 30 SmLTPGs in the S. matsudana genome, classifying them into four distinct classes based on phylogenetic analysis. Tandem and segmental duplications in SmLTPGs highlighted their evolutionary diversification. Expression profiling revealed dynamic changes across various willow varieties and significant roles for SmLTPG24/25 and SmLTPG05 in salt and submergence stress responses, respectively. Additionally, co-expression analysis indicated a potential collaboration between SmLTPGs, fatty acid desaturases (FADs), and long-chain acyl-CoA synthetases (LACSs) in FA biosynthesis, contributing to resilience against salt and submergence stresses. This research provided critical insights into the molecular mechanisms underlying willow adaptability to environmental stresses and established a foundation for future applications in stress-tolerant willow breeding and management.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Chen Xue
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Hanchun Jiang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xi Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
4
|
Bekele B, Andargie M, Gallach M, Beyene D, Tesfaye K. Decoding gene expression dynamics during seed development in sesame (Sesamum indicum L.) through RNA-Seq analysis. Genomics 2025; 117:110997. [PMID: 39809365 DOI: 10.1016/j.ygeno.2025.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood. This study analyzed transcriptomes at two seed development stages: Young Stage (YS, pods 1.5-2.5 cm) and Mature Stage (MS, brown pods >2.5 cm), to explore regulatory mechanisms and identify key genes involved in lipid biosynthesis. From 25,173 genes, 18,820 with expression values >10 CPM in at least 70 % of replicates were included in differential expression (DE) analysis. Active expression (LFC > 0) was observed in 9372 and 9448 genes at YS and MS, respectively. DEGs were annotated, revealing roles in various biological processes, (e.g., mRNA metabolic process, reproduction-related developmental processes, seed development), molecular functions (e.g., aminoacyltransferase activity, ubiquitin-like protein and ubiquitin-protein transferase activities), and cellular components (e.g., peroxisome, microbody, lipid droplet). KEGG analysis highlighted genes involved in fatty acid synthesis (e.g., fabG, fabZ), TAG biosynthesis (DGAT1, GPAT), and alpha-linolenic acid metabolism (AOS, LCAT3). Key genes upregulated at MS included SIN_1025205 (protein transport), SIN_1006853 (acetylajmalan esterase), and SIN_1003267 (gamma-cadinene synthase). The study generated a valuable transcriptome dataset and gene list for seed development and lipid biosynthesis, which will be validated through functional studies. An interactive webpage is provided for data exploration.
Collapse
Affiliation(s)
- Bantayehu Bekele
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia.; Biology Department, Oda bultum University, Chiro, Ethiopia.
| | | | | | - Dereje Beyene
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Olivieri B, Giovannini M, Pessina B, Du Toit G, Barni S, Bonadonna P, Caminati M, Foong R, Mori F, Novembre E, Senna G, Skypala I. IgE-mediated lipid transfer protein allergy in children. Pediatr Allergy Immunol 2025; 36:e70064. [PMID: 40126026 PMCID: PMC11931989 DOI: 10.1111/pai.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Lipid Transfer Protein (LTP) allergy, traditionally more prevalent in adults from Southern Europe, is increasingly recognized in pediatric populations worldwide. This review explores the epidemiology, pathogenesis, clinical manifestations, diagnosis, and management of LTP allergy in children. LTP allergy can present with severe systemic symptoms both in children and adults; in children-only studies, anaphylaxis is reported in up to half of the patients. Moreover, children often display polysensitization to multiple plant-based foods. The prevalence of LTP allergy among children remains under-researched, contributing to diagnostic and clinical practice variability. Key allergenic sources involved include peach (Pru p 3) and other Rosaceae fruits, as well as tree nuts, with cofactors such as physical activity frequently triggering or exacerbating reactions. Advancements in understanding natural tolerance and targeted therapies, along with expanding LTP immunotherapy, offer promising directions for improving the management of this challenging condition in pediatric patients.
Collapse
Affiliation(s)
| | - Mattia Giovannini
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Benedetta Pessina
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - George Du Toit
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Children's Allergy ServiceEvelina London Children's Hospital, Guy's and St Thomas' HospitalLondonUK
| | - Simona Barni
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | | | - Marco Caminati
- Allergy UnitVerona University HospitalVeronaItaly
- Department of MedicineUniversity of VeronaVeronaItaly
| | - Ru‐Xin Foong
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Children's Allergy ServiceEvelina London Children's Hospital, Guy's and St Thomas' HospitalLondonUK
| | - Francesca Mori
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Elio Novembre
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
| | - Gianenrico Senna
- Allergy UnitVerona University HospitalVeronaItaly
- Department of MedicineUniversity of VeronaVeronaItaly
| | - Isabel Skypala
- Department of Allergy & Clinical ImmunologyRoyal Brompton & Harefield Hospitals, Part of Guys and St Thomas NHS Foundation TrustLondonUK
- Department of Inflammation and RepairImperial CollegeLondonUK
| |
Collapse
|
6
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Rohilla M, Mazumder A, Chowdhury D, Bhardwaj R, Kumar Mondal T. Understanding natural genetic variation for nutritional quality in grain and identification of superior haplotypes in deepwater rice genotypes of Assam, India. Gene 2024; 928:148801. [PMID: 39068998 DOI: 10.1016/j.gene.2024.148801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rice grown under deepwater ecosystem is considered to be natural farming and hence they are considered to be input efficient. Thus, to identify gene responsible for nutritional content under natural conditions, a genome-wide association study (GWAS)was performed. GWAS identified single nucleotide polymorphisms (SNPs) significantly associated with various nutritional quality traits such as Zn (mg/kg), Fe (mg/kg), Protein (%), Oil (%), Amylose (%), Starch (%), Phytic acid (%), Phenol (%) and TDF (%) in 184 deepwater rice accessions evaluated over 2 consecutive years. A total of 278 SNPs distributed across 12 chromosomes were found to be significantly associated with Zn, Oil and Phenol content. Among them, eight high confidence SNPs were significant and identified on chr1 (AX-95933712), chr7 (AX-95957036), and chr8 (AX-95965181) for Zn content. Similarly, on chr2 (AX-95945186), chr8 (AX-95964718), and chr11 (AX-95961099) have been found to be associated with Oil content and on chr3 (AX-95922121) and chr4 (AX-95963889) for Phenol content. Genomic regions of ± 220 kb flanking the three consistent lowest p value containing SNPs for each trait were considered for finding superior haplotypes. These SNPs showed significant phenotypic variations with different identified haplotype blocks. The allelic variations with phenotypes were considered to be superior haplotypes i.e., Block 1: Hap 1 (ACCC) for high Zn content, Block 2: Hap 1 (CT) for high Oil content, and Block 2: Hap 1(CGGG) for low Phenol content. The discovered superior haplotype with high nutritional content could be important for understanding the mechanisms involving nutrient use efficiency. Thus, the present study demonstrated that developing rice varieties with appropriate nutritional quality traits will be possible through the incorporation of such superior haplotypes in breeding programs.
Collapse
Affiliation(s)
- Megha Rohilla
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India
| | - Abhishek Mazumder
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India
| | - Dhiren Chowdhury
- Regional Agricultural Research Station, Assam Agricultural University, North Lakhimpur, Assam, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
8
|
Teixeira CSS, Carriço-Sá B, Villa C, Mafra I, Costa J. Can Physicochemical Properties Alter the Potency of Aeroallergens? Part 1 - Aeroallergen Protein Families. Curr Allergy Asthma Rep 2024; 24:591-607. [PMID: 39302571 PMCID: PMC11464574 DOI: 10.1007/s11882-024-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW Respiratory allergies are non-communicable diseases caused by the hypersensitivity of the immune system to environmental aeroallergens. The culprits are aero-transported proteins eliciting respiratory symptoms in sensitized/allergic individuals. This review intends to provide a holistic overview on the categorization of aeroallergens into protein families (Part 1) and to exploit the impact of physicochemical properties on inhalant protein allergenicity (Part 2). This first part will focus particularly on aeroallergen organization into families and how this classification fits their physicochemical properties. RECENT FINDINGS Aeroallergen classification into protein families facilitates the identification of common physicochemical properties, thus aiding a better comprehension of known allergens, while predicting the behavior of novel ones. The available online databases gathering important features of aeroallergens are currently scarce. Information on distinct aeroallergen classification is still lacking, as data is dispersed and often outdated, hampering an efficient evaluation of new aeroallergens.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Liu J, Zhu J, Yang R, Su C, Wang Z, Meng J, Luan Y. SlLTPg1, a tomato lipid transfer protein, positively regulates in response to biotic stresses. Int J Biol Macromol 2024; 279:135219. [PMID: 39216573 DOI: 10.1016/j.ijbiomac.2024.135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is among the most devastating diseases affecting tomato and other Solanaceae species. Lipid transfer proteins (LTPs) represent a class of small, basic proteins that play a crucial role in combating biotic stresses. Previous studies have shown that SlLTPg1 most strongly responds after P. infestans infestation among the LTPs family in tomato. However, the function of SlLTPg1 in disease resistance remains unclear. Here, we constructed transient overexpression and VIGS-silenced plants of SlLTPg1. Our results revealed that SlLTPg1 plays a regulatory role in enhancing tomato resistance against P. infestans. This enhancement was attributed to the upregulation of defense-related genes and reactive oxygen species (ROS) scavenging genes, as well as increased enzymatic antioxidant activities. Importantly, we found that the SlLTPg1 protein significantly inhibited the growth of Fusarium oxysporum (F. oxysporum) by observing the zone of inhibition. Interestingly, we found smaller lesion diameters and upregulated expression levels of PR genes in transient overexpression SlLTPg1 of tobacco. Therefore, we further constructed transgenic tobacco lines of SlLTPg1, presenting evidence that overexpression of SlLTPg1 could positively regulate the resistance of tobacco to F. oxysporum. These findings revealed the role of SlLTPg1 in tomato resistance to P. infestans and tobacco resistance to F. oxysporum. Moreover, we propose SlLTPg1 as a potential candidate gene for augmenting broad-spectrum plant resistance against pathogens.
Collapse
Affiliation(s)
- Jie Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Zhang J, Li X, Zhang C, Liu X, Wang CL. PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with the occurrence of pear fruit russeting. Int J Biol Macromol 2024; 278:134771. [PMID: 39151864 DOI: 10.1016/j.ijbiomac.2024.134771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Non-specific lipid-transfer proteins (nsLTPs) are a group of small, cysteine-rich proteins that are involved in the transport of cuticular wax and other lipid compounds. Accumulating evidence suggests that dynamic changes in cuticular waxes are strongly associated with fruit russeting, an undesirable visual quality that negatively affects consumer appeal in pears. Currently, the regulatory role of nsLTPs in cuticular wax deposition and pear fruit skin russeting remains unclear. Here, we characterized the variations of cuticular waxes in non-treated (russeted) and preharvest bagging treated (non-russeted) pear fruits throughout fruit development and confirmed that the contents of cuticular waxes were significantly negatively correlated with the occurrence of pear fruit russeting. Based on RNA-Sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) analyses, two nsLTP genes (PpyLTP36 and PpyLTP39) were identified, which exhibited high expression levels in non-russeted pear fruit skins and were significantly repressed during fruit skin russeting. Subcellular localization analysis demonstrated that PpyLTP36 and PpyLTP39 were localized to the plasma membrane (PM). Further, transient Virus-Induced Gene Silencing (VIGS) analyses of PpyLTP36 and PpyLTP39 in pear fruits significantly reduced cuticular wax deposition. In conclusion, PpyLTP36 and PpyLTP39 are involved in the transmembrane transport of cuticular wax and are associated with pear fruit skin russeting.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
11
|
Duan M, Bao L, Eman M, Han D, Zhang Y, Zheng B, Yang S, Rao MJ. The Ectopic Expression of the MpDIR1(t) Gene Enhances the Response of Plants from Arabidopsis thaliana to Biotic Stress by Regulating the Defense Genes and Antioxidant Flavonoids. PLANTS (BASEL, SWITZERLAND) 2024; 13:2692. [PMID: 39409562 PMCID: PMC11478391 DOI: 10.3390/plants13192692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
The Defective in Induced Resistance 1 (DIR1) gene, a member of the lipid transferase proteins (LTPs), plays a crucial role in plant defense against pathogens. While previous transcriptomic studies have highlighted the significant expression of citrus LTPs during biotic stress, functional annotations of LTPs in the Citrus genera remain limited. In this study, we cloned the Murraya paniculata DIR1 (MpDIR1(t)) gene and overexpressed it in Arabidopsis thaliana to evaluate its stress response mechanisms against biotic stress. The transgenic Arabidopsis lines showed fewer disease symptoms in response to Pseudomonas syringae (Pst DC3000) compared to wild-type Arabidopsis. Defense and pathogenesis-responsive genes such as PR1, PR4, PR5, and WRKY12 were significantly induced, showing a 2- to 12-fold increase in all transgenic lines compared to the wild type. In addition, the Pst DC3000-infected transgenic Arabidopsis lines demonstrated elevated levels of flavonoids and salicylic acid (SA), along with higher expression of SA-related genes, compared to the wild type. Moreover, all transgenic lines possessed lower reactive oxygen species levels and higher activity of antioxidant defense enzymes such as superoxide dismutase, peroxidase, and catalase under Pst DC3000 stress compared to the wild type. The up-regulation of defense genes, activation of the SA pathway, accumulation of flavonoids, and reinforcement of antioxidant defense mechanisms in transgenic Arabidopsis lines in response to Pst DC3000 underscore the critical role of MpDIR1(t) in fortifying plant immunity. Thus, MpDIR1(t) constitutes a promising candidate gene for improving bacterial disease resistance in commercial citrus cultivars.
Collapse
Affiliation(s)
- Mingzheng Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Liuyuan Bao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Momina Eman
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
- Institute of Pure & Applied Biology (IP&AB), Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Duo Han
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Yongzhi Zhang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
| | - Shunqiang Yang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Cherene MB, Taveira GB, Almeida-Silva F, da Silva MS, Cavaco MC, da Silva-Ferreira AT, Perales JEA, de Oliveira Carvalho A, Venâncio TM, da Motta OV, Rodrigues R, Castanho MARB, Gomes VM. Structural and Biochemical Characterization of Three Antimicrobial Peptides from Capsicum annuum L. var. annuum Leaves for Anti-Candida Use. Probiotics Antimicrob Proteins 2024; 16:1270-1287. [PMID: 37365421 DOI: 10.1007/s12602-023-10112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.
Collapse
Affiliation(s)
- Milena Bellei Cherene
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Calvinho Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Olney Vieira da Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
13
|
Gonçalves G, da Silva MS, dos Santos LA, Guimarães TZ, Taveira GB, Almeida FA, Ferreira SR, Amancio Oliveira AE, Nagano CS, Chaves RP, Silveira V, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Structural and Functional Characterization of New Lipid Transfer Proteins with Chitin-Binding Properties: Insights from Protein Structure Prediction, Molecular Docking, and Antifungal Activity. Biochemistry 2024; 63:1824-1836. [PMID: 38968244 PMCID: PMC11256766 DOI: 10.1021/acs.biochem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.
Collapse
Affiliation(s)
- Gabriella
Rodrigues Gonçalves
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Layrana Azevedo dos Santos
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Thomas Zacarone
Afonso Guimarães
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Felipe Astolpho Almeida
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Sarah Rodrigues Ferreira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Antonia Elenir Amancio Oliveira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Celso Shiniti Nagano
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Renata Pinheiro Chaves
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Vanildo Silveira
- Laboratório
de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602 RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório
de Melhoramento e Genética Vegetal, Centro de Ciências
e Tecnologias Agropecuárias, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
14
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
15
|
Grijincu M, Tănasie G, Zbîrcea LE, Buzan MR, Tamaș TP, Cotarcă MD, Huțu I, Babaev E, Stolz F, Dorofeeva Y, Valenta R, Păunescu V, Panaitescu C, Chen KW. Non-Specific Lipid Transfer Protein Amb a 6 Is a Source-Specific Important Allergenic Molecule in Ragweed Pollen. Int J Mol Sci 2024; 25:6513. [PMID: 38928218 PMCID: PMC11204090 DOI: 10.3390/ijms25126513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Tudor-Paul Tamaș
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Monica-Daniela Cotarcă
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “King Michael I of Romania”, 300645 Timișoara, Romania
| | - Elijahu Babaev
- Biomay AG, Vienna Competence Center, 1220 Vienna, Austria
| | - Frank Stolz
- Biomay AG, Vienna Competence Center, 1220 Vienna, Austria
| | - Yulia Dorofeeva
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Department of Clinical Immunology and Allergy, Sechenov First State Medical University, 119991 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Kuan-Wei Chen
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| |
Collapse
|
16
|
Gokulan CG, Bangale U, Balija V, Ballichatla S, Potupureddi G, Rao D, Varma P, Magar N, Jallipalli K, Manthri S, Padmakumari AP, Laha GS, Rao LVS, Barbadikar KM, Raman MS, Patel HK, Maganti SM, Sonti RV. Multiomics-assisted characterization of rice-Yellow Stem Borer interaction provides genomic and mechanistic insights into stem borer resistance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:122. [PMID: 38713254 DOI: 10.1007/s00122-024-04628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.
Collapse
Affiliation(s)
- C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Umakanth Bangale
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Vishalakshi Balija
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Suneel Ballichatla
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gopi Potupureddi
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Deepti Rao
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Prashanth Varma
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Nakul Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Karteek Jallipalli
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Sravan Manthri
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - A P Padmakumari
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gouri S Laha
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - L V Subba Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | | | | | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Ghaziabad, 201002, India.
| | - Sheshu Madhav Maganti
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India.
- ICAR-Central Tobacco Research Institute, Rajamahendravaram, Andhra Pradesh, 533105, India.
| | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
17
|
Song J, Mavraganis I, Shen W, Yang H, Zou J. Applying a non-GMO breeding approach with an identified natural variation to reduce food allergen Len c3 in Lens culinaris seeds. FRONTIERS IN PLANT SCIENCE 2024; 15:1355902. [PMID: 38742216 PMCID: PMC11090098 DOI: 10.3389/fpls.2024.1355902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Lentils (Lens culinaris) are produced in diverse agroecological regions and are consumed as one of the most important food legumes worldwide. Lentils possess a nutritional profile from a human health perspective that is not only nutrient dense but also offers a better balance between protein and carbohydrates. However, lentil causes food allergy, which has been a significant concern due to increased consumption in parts of the world. Len c3, a non-specific lipid transfer protein (LTP), was identified as one of the allergens in lentil seeds. In this study, we identified an LTP gene Lcu.2RBY.4g013600 that encodes the lentil allergen Len c3. We then focused on gene screening from a collection of natural accessions to search for natural mutations of the Len c3 allergen-encoding gene. A natural lentil line M11 was identified with mutations at LcLTP3b and low accumulation of vicilin through genomic-assisted approaches. Furthermore, we generated a pool of lentil germplasms with LcLTP3b mutation background through crossing the identified lentil plant M11 with two lentil cultivars, CDC Redmoon and CDC Gold. These generated lentil hybrids can be used as a breeding resource targeting at reducing allergen risk in lentil consumption.
Collapse
Affiliation(s)
| | | | | | | | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Maghraby A, Alzalaty M. Genome-wide identification and evolutionary analysis of the AP2/EREBP, COX and LTP genes in Zea mays L. under drought stress. Sci Rep 2024; 14:7610. [PMID: 38556556 PMCID: PMC10982304 DOI: 10.1038/s41598-024-57376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
AP2 (APETALA2)/EREBP (ethylene-responsive element-binding protein), cytochrome c oxidase (COX) and nonspecific lipid transfer proteins (LTP) play important roles in the response to drought stress. This is the first study to identify the COX gene in Zea mays L. via genome-wide analysis. The qRT‒PCR results indicated that AP2/EREBP, COX and LTP were downregulated, with fold changes of 0.84, 0.53 and 0.31, respectively, after 12 h of drought stress. Genome-wide analysis identified 78 AP2/EREBP, 6 COX and 10 LTP genes in Z. mays L. Domain analysis confirmed the presence of the AP2 domain, Cyt_c_Oxidase_Vb domain and nsLTP1 in the AP2/EREBP, COX and LTP proteins, respectively. The AP2/EREBP protein family (AP2) includes five different domain types: the AP2/ERF domain, the EREBP-like factor (EREBP), the ethylene responsive factor (ERF), the dehydration responsive element binding protein (DREB) and the SHN SHINE. Synteny analysis of the AP2/EREBP, COX and LTP genes revealed collinearity orthologous relationships in O. sativa, H. vulgare and A. thaliana. AP2/EREBP genes were found on the 10 chromosomes of Z. mays L. COX genes were found on chromosomes 1, 3, 4, 5, 7 and 8. LTP genes were found on chromosomes 1, 3, 6, 8, 9 and 10. In the present study, the Ka/Ks ratios of the AP2/EREBP paralogous pairs indicated that the AP2/EREBP genes were influenced primarily by purifying selection, which indicated that the AP2/EREBP genes received strong environmental pressure during evolution. The Ka/Ks ratios of the COX-3/COX-4 paralogous pairs indicate that the COX-3/COX-4 genes were influenced primarily by Darwinian selection (driving change). For the LTP genes, the Ka/Ks ratios of the LTP-1/LTP-10, LTP-5/LTP-3 and LTP-4/LTP-8 paralogous pairs indicate that these genes were influenced primarily by purifying selection, while the Ka/Ks ratios of the LTP-2/LTP-6 paralogous pairs indicate that these genes were influenced primarily by Darwinian selection. The duplication time of the AP2/EREBP paralogous gene pairs in Z. mays L. ranged from approximately 9.364 to 100.935 Mya. The duplication time of the COX-3/COX-4 paralogous gene pair was approximately 5.217 Mya. The duplication time of the LTP paralogous gene pairs ranged from approximately 19.064 to 96.477 Mya. The major focus of research is to identify the genes that are responsible for drought stress tolerance to improve maize for drought stress tolerance. The results of the present study will improve the understanding of the functions of the AP2/EREBP, COX and LTP genes in response to drought stress.
Collapse
Affiliation(s)
- Amaal Maghraby
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mohamed Alzalaty
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
19
|
Melnikova DN, Bogdanov IV, Potapov AE, Alekseeva AS, Finkina EI, Ovchinnikova TV. Molecular Insight into Ligand Binding and Transport by the Lentil Lipid Transfer Protein Lc-LTP2: The Role of Basic Amino Acid Residues at Opposite Entrances to the Hydrophobic Cavity. Biomolecules 2023; 13:1699. [PMID: 38136572 PMCID: PMC10741581 DOI: 10.3390/biom13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Lipid transfer proteins (LTPs) realize their functions in plants due to their ability to bind and transport various ligands. Structures of many LTPs have been studied; however, the mechanism of ligand binding and transport is still not fully understood. In this work, we studied the role of Lys61 and Lys81 located near the "top" and "bottom" entrances to the hydrophobic cavity of the lentil lipid transfer protein Lc-LTP2, respectively, in these processes. Using site-directed mutagenesis, we showed that both amino acid residues played a key role in lipid binding to the protein. In experiments with calcein-loaded liposomes, we demonstrated that both the above-mentioned lysine residues participated in the protein interaction with model membranes. According to data obtained from fluorescent spectroscopy and TNS probe displacement, both amino acid residues are necessary for the ability of the protein to transfer lipids between membranes. Thus, we hypothesized that basic amino acid residues located at opposite entrances to the hydrophobic cavity of the lentil Lc-LTP2 played an important role in initial protein-ligand interaction in solution as well as in protein-membrane docking.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
| | - Andrey E. Potapov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anna S. Alekseeva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.V.B.); (A.S.A.); (E.I.F.); (T.V.O.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
20
|
Zhu F, Cao MY, Zhu PX, Zhang QP, Lam HM. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5236-5254. [PMID: 37246636 DOI: 10.1093/jxb/erad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng-Xiang Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
21
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Bvindi C, Howe K, Wang Y, Mullen RT, Rogan CJ, Anderson JC, Goyer A. Potato Non-Specific Lipid Transfer Protein StnsLTPI.33 Is Associated with the Production of Reactive Oxygen Species, Plant Growth, and Susceptibility to Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2023; 12:3129. [PMID: 37687375 PMCID: PMC10490331 DOI: 10.3390/plants12173129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small proteins capable of transferring phospholipids between membranes and binding non-specifically fatty acids in vitro. They constitute large gene families in plants, e.g., 83 in potato (Solanum tuberosum). Despite their recognition decades ago, very few have been functionally characterized. Here, we set out to better understand the function of one of the potato members, StnsLTPI.33. Using quantitative polymerase chain reaction, we show that StnsLTPI.33 is expressed throughout the potato plant, but at relatively higher levels in roots and leaves compared to petals, anthers, and the ovary. We also show that ectopically-expressed StnsLTPI.33 fused to green fluorescent protein colocalized with an apoplastic marker in Nicotiana benthamiana leaves, indicating that StnsLTPI.33 is targeted to the apoplast. Constitutive overexpression of the StnsLTPI.33 gene in potato led to increased levels of superoxide anions and reduced plant growth, particularly under salt stress conditions, and enhanced susceptibility to Alternaria solani. In addition, StnsLTPI.33-overexpressing plants had a depleted leaf pool of pipecolic acid, threonic acid, and glycine, while they accumulated putrescine. To our knowledge, this is the first report of an nsLTP that is associated with enhanced susceptibility to a pathogen in potato.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Kate Howe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| |
Collapse
|
23
|
Aldakhil T, Alshammari SO, Siraj B, El-Aarag B, Zarina S, Salehi D, Ahmed A. The structural characterization and bioactivity assessment of nonspecific lipid transfer protein 1 (nsLTP1) from caraway (Carum carvi) seeds. BMC Complement Med Ther 2023; 23:254. [PMID: 37474939 PMCID: PMC10357877 DOI: 10.1186/s12906-023-04083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Carum carvi (caraway) of the Apiaceae family has been used in many cultures as a cooking spice and part of the folk medicine. Previous reports primarily focus on the medicinal properties of caraway seed essential oil and the whole seeds extract. However, no effort has been made to study caraway proteins and their potential pharmacological properties, including nonspecific lipid transfer protein (nsLTP), necessitating further research. The current study aimed to characterize nonspecific lipid transfer protein 1 (nsLTP1) from caraway seed, determine its three-dimensional structure, and analyze protein-ligand complex interactions through docking studies. We also evaluated nsLTP1 in vitro cytotoxic effect and antioxidant capacity. Additionally, nsLTP1 thermal- and pH- stability were investigated. METHODS Caraway nsLTP1 was purified using two-dimensional chromatography. The complete amino acid sequence of nsLTP1 was achieved by intact protein sequence for the first 20 residues and the overlapping digested peptides. The three-dimensional structure was predicted using MODELLER. Autodock Vina software was employed for docking fatty acids against caraway nsLTP1. Assessment of nsLTP1 cytotoxic activity was achieved by MTS assay, and the Trolox equivalent antioxidant capacity (TAC) was determined. Thermal and pH stability of the nsLTP1 was examined by circular dichroism (CD) spectroscopy. RESULTS Caraway nsLTP1 is composed of 91 residues and weighs 9652 Da. The three-dimensional structure of caraway nsLTP1 sequence was constructed based on searching known structures in the PDB. We chose nsLTP of Solanum melongena (PDB ID: 5TVI) as the modeling template with the highest identity among all other homologous proteins. Docking linolenic acid with caraway protein showed a maximum binding score of -3.6 kcal/mol. A preliminary screening of caraway nsLTP1 suppressed the proliferation of human breast cancer cell lines MDA-MB-231 and MCF-7 in a dose‑dependent manner with an IC50 value of 52.93 and 44.76 μM, respectively. Also, nsLTP1 (41.4 μM) showed TAC up to 750.4 μM Trolox equivalent. Assessment of nsLTP1 demonstrated high thermal/pH stability. CONCLUSION To the best of our knowledge, this is the first study carried out on nsLTP1 from caraway seeds. We hereby report the sequence of nsLTP1 from caraway seeds and its possible interaction with respective fatty acids using in silico approach. Our data indicated that the protein had anticancer and antioxidant activities and was thermally stable.
Collapse
Affiliation(s)
- Taibah Aldakhil
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia
| | - Saud O Alshammari
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
- Department of Plant Chemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Arar, 91431, Saudi Arabia
| | - Bushra Siraj
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Bishoy El-Aarag
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - David Salehi
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
24
|
Saxena H, Negi H, Keshan R, Chitkara P, Kumar S, Chakraborty A, Roy A, Singh IK, Singh A. A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation. Front Genet 2023; 14:1195554. [PMID: 37456660 PMCID: PMC10348895 DOI: 10.3389/fgene.2023.1195554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Lipid Transfer Proteins (LTPs) play a crucial role in synthesizing lipid barrier polymers and are involved in defense signaling during pest and pathogen attacks. Although LTPs are conserved with multifaceted roles in plants, these are not yet identified and characterized in Cicer arietinum. In this study, a genome-wide analysis of LTPs was executed and their physiochemical properties, biochemical function, gene structure analysis, chromosomal localization, promoter analysis, gene duplication, and evolutionary analysis were performed using in silico tools. Furthermore, tissue-specific expression analysis and gene expression analysis during pest attack was also conducted for the LTPs. A total of 48 LTPs were identified and named as CaLTPs. They were predicted to be small unstable proteins with "Glycolipid transfer protein" and "Alpha-Amylase Inhibitors, Lipid Transfer and Seed Storage" domains, that are translocated to the extracellular region. CaLTPs were predicted to possess 3-4 introns and were located on all the eight chromosomes of chickpea with half of the CaLTPs being localized on chromosomes 4, 5, and 6, and found to be closely related to LTPs of Arabidopsis thaliana and Medicago trancatula. Gene duplication and synteny analysis revealed that most of the CaLTPs have evolved due to tandem or segmental gene duplication and were subjected to purifying selection during evolution. The promoters of CaLTPs had development-related, phytohormone-responsive, and abiotic and biotic stress-related cis-acting elements. A few CaLTP transcripts exhibited differential expression in diverse tissue types, while others showed no/very low expression. Out of 20 jasmonate-regulated CaLTPs, 14 exhibited differential expression patterns during Helicoverpa armigera-infestation, indicating their role in plant defense response. This study identified and characterized CaLTPs from an important legume, C. arietinum, and indicated their involvement in plant defense against H. armigera-infestation, which can be further utilized to explore lipid signaling during plant-pest interaction and pest management.
Collapse
Affiliation(s)
- Harshita Saxena
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Harshita Negi
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Radhika Keshan
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Amit Roy
- Forest Molecular Entomology Lab, EXTEMIT-K, EVA 4.0, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, University of Delhi, Delhi, India
| |
Collapse
|
25
|
Zhang Y, Che H, Li C, Jin T. Food Allergens of Plant Origin. Foods 2023; 12:foods12112232. [PMID: 37297475 DOI: 10.3390/foods12112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review presents an update on the physical, chemical, and biological properties of food allergens in plant sources, focusing on the few protein families that contribute to multiple food allergens from different species and protein families recently found to contain food allergens. The structures and structural components of the food allergens in the allergen families may provide further directions for discovering new food allergens. Answers as to what makes some food proteins allergens are still elusive. Factors to be considered in mitigating food allergens include the abundance of the protein in a food, the property of short stretches of the sequence of the protein that may constitute linear IgE binding epitopes, the structural properties of the protein, its stability to heat and digestion, the food matrix the protein is in, and the antimicrobial activity to the microbial flora of the human gastrointestinal tract. Additionally, recent data suggest that widely used techniques for mapping linear IgE binding epitopes need to be improved by incorporating positive controls, and methodologies for mapping conformational IgE binding epitopes need to be developed.
Collapse
Affiliation(s)
- Yuzhu Zhang
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Caiming Li
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
26
|
Han Z, Xiong D, Schneiter R, Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:651-668. [PMID: 36932700 DOI: 10.1111/mpp.13320] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Santos-Silva CAD, Ferreira-Neto JRC, Amador VC, Bezerra-Neto JP, Vilela LMB, Binneck E, Rêgo MDS, da Silva MD, Mangueira de Melo ALT, da Silva RH, Benko-Iseppon AM. From Gene to Transcript and Peptide: A Deep Overview on Non-Specific Lipid Transfer Proteins (nsLTPs). Antibiotics (Basel) 2023; 12:antibiotics12050939. [PMID: 37237842 DOI: 10.3390/antibiotics12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds. Recently, nsLTPs have been the focus of a plethora of research and reviews, providing a functional overview of their potential activity. The present work compiles relevant information on nsLTP omics and evolution, and it adds meta-analysis of nsLTPs, including: (1) genome-wide mining in 12 plant genomes not studied before; (2) latest common ancestor analysis (LCA) and expansion mechanisms; (3) structural proteomics, scrutinizing nsLTPs' three-dimensional structure/physicochemical characteristics in the context of nsLTP classification; and (4) broad nsLTP spatiotemporal transcriptional analysis using soybean as a study case. Combining a critical review with original results, we aim to integrate high-quality information in a single source to clarify unexplored aspects of this important gene/peptide family.
Collapse
Affiliation(s)
| | | | - Vinícius Costa Amador
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Lívia Maria Batista Vilela
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina 86085-981, Brazil
| | - Mireli de Santana Rêgo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Manassés Daniel da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | - Rahisa Helena da Silva
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
28
|
Li J, Wang Q, Wang Y, Wu X, Liu Y, Wan M, Wang L, Wang X, Zhang C, Wang X, Tang X, Heng W. Identification of nsLTP family in Chinese white pear (Pyrus bretschneideri) reveals its potential roles in russet skin formation. PLANTA 2023; 257:113. [PMID: 37165276 DOI: 10.1007/s00425-023-04153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Identification of PbLTP genes in pear and functional characterization of PbLTP4 in the transport of suberin monomers of russet skin formation. Non-specific lipid-transfer protein (nsLTP) is an abundant and diverse alkaline small molecule protein in the plant kingdom with complex and diverse biophysiological functions, such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. Up to now, only a tiny fraction of nsLTPs have been functionally identified, and the distribution of nsLTPs in pear (Pyrus bretschneideri) (PbLTPs) has not been fully characterized. In this study, the genome-wide analysis of the nsLTP gene family in the pear genome identified 67 PbLTP proteins, which could be divided into six types (1, 2, C, D, E, and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. In addition, PbLTP4 was highly expressed in russet pear skin compared with green skin, which was located in the plasma membrane. Coexpression network analysis showed that PbLTP4 closely related to suberin biosynthetic genes. The biological function of PbLTP4 in promoting suberification has been demonstrated by overexpression in Arabidopsis. Identification of suberin monomers showed that PbLTP4 promotes suberification by regulating 9,12-octadecadienoic acid and hexadecanoic acid transport. These results provide helpful insights into the characteristics of PbLTP genes and their biological function in the transport of suberin monomers of russet skin formation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yajing Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiexuan Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xueqian Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
29
|
Huang D, Zhong G, Zhang S, Jiang K, Wang C, Wu J, Wang B. Trichome-Specific Analysis and Weighted Gene Co-Expression Correlation Network Analysis (WGCNA) Reveal Potential Regulation Mechanism of Artemisinin Biosynthesis in Artemisia annua. Int J Mol Sci 2023; 24:ijms24108473. [PMID: 37239820 DOI: 10.3390/ijms24108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.
Collapse
Affiliation(s)
- Dawei Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guixian Zhong
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyang Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Wei H, Liu G, Qin J, Zhang Y, Chen J, Zhang X, Yu C, Chen Y, Lian B, Zhong F, Movahedi A, Zhang J. Genome-wide characterization, chromosome localization, and expression profile analysis of poplar non-specific lipid transfer proteins. Int J Biol Macromol 2023; 231:123226. [PMID: 36641014 DOI: 10.1016/j.ijbiomac.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small and have a broad biological function involved in reproductive development and abiotic stress resistance. Although a small part of plant nsLTPs have been identified, these proteins have not been characterized in poplar at the genomic level. A genome-wide characterization and expression identification of poplar nsLTP members were performed in this study. A total of 42 poplar nsLTP genes were identified from the poplar genome. A comprehensive analysis of poplar nsLTPs was conducted by a phylogenetic tree, duplication events, gene structures, and conserved motifs. The cis-elements of poplar nsLTPs were predicted to respond to light, hormone, and abiotic stress. Many transcription factors (TFs) were identified to interact with poplar nsLTP cis-elements. The tested poplar nsLTPs were expressed in leaves, stems, and roots, but their expression levels differed among tested tissues. Most poplar nsLTP expression levels were changed by abiotic stress, implying that poplar nsLTP may be involved in abiotic stress resistance. Network analysis showed that poplar nsLTPs are putative genes involved in fatty acid (FA) metabolism. This research provides sight into the further study to explain the regulatory mechanism of the poplar nsLTPs.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
31
|
Gribkova IN, Eliseev MN, Lazareva IV, Zakharova VA, Sviridov DA, Egorova OS, Kozlov VI. The Phenolic Compounds' Role in Beer from Various Adjuncts. Molecules 2023; 28:molecules28052295. [PMID: 36903541 PMCID: PMC10004787 DOI: 10.3390/molecules28052295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The present article considers the influence of malt with various adjuncts on beer organic compounds and taste profile composition, with more attention paid to the phenol complex change. The topic under consideration is relevant since it studies the interactions of phenolic compounds with other biomolecules, and expands the understanding of the adjuncts organic compounds contribution and their joint effect on beer quality. METHODS Samples of beer were analyzed at a pilot brewery using barley and wheat malts, barley, rice, corn and wheat, and then fermented. The beer samples were assessed by industry-accepted methods and using instrumental analysis methods (high-performance liquid chromatography methods-HPLC). The obtained statistical data were processed by the Statistics program (Microsoft Corporation, Redmond, WA, USA, 2006). RESULTS The study showed that at the stage of hopped wort organic compounds structure formation, there is a clear correlation between the content of organic compounds and dry substances, including phenolic compounds (quercetin, catechins), as well as isomerized hop bitter resines. It is shown that the riboflavin content increases in all adjunct wort samples, and mostly with the use of rice-up to 4.33 mg/L, which is 9.4 times higher than the vitamin levels in malt wort. The melanoidin content in the samples was in the range of 125-225 mg/L and its levels in the wort with additives exceeded the malt wort. Changes in β-glucan and nitrogen with thiol groups during fermentation occurred with different dynamics and depending on the adjunct's proteome. The greatest decrease in non-starch polysaccharide content was observed in wheat beer and nitrogen with thiol groups content-in all other beer samples. The change in iso-α-humulone in all samples at the beginning of fermentation correlated with a decrease in original extract, and in the finished beer there was no correlation. The behavior of catechins, quercetin, and iso-α-humulone has been shown to correlate with nitrogen with thiol groups during fermentation. A strong correlation was shown between the change in iso-α-humulone and catechins, as well as riboflavin and quercetin. It was established that various phenolic compounds were involved in the formation of taste, structure, and antioxidant properties of beer in accordance with the structure of various grains, depending on the structure of its proteome. CONCLUSIONS The obtained experimental and mathematical dependences make it possible to expand the understanding of intermolecular interactions of beer organic compounds and take a step toward predicting the quality of beer at the stage of using adjuncts.
Collapse
Affiliation(s)
- Irina N. Gribkova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
- Correspondence: ; Tel.: +7(926)-249-16-20
| | - Mikhail N. Eliseev
- Academic Department of Commodity Science and Commodity Expertise, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Irina V. Lazareva
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Varvara A. Zakharova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Dmitrii A. Sviridov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Olesya S. Egorova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Valery I. Kozlov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| |
Collapse
|
32
|
Wang D, Song J, Lin T, Yin Y, Mu J, Liu S, Wang Y, Kong D, Zhang Z. Identification of potato Lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. PLANT DIRECT 2023; 7:e491. [PMID: 36993902 PMCID: PMC10041547 DOI: 10.1002/pld3.491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP. Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Jian Song
- Institute of Industrial CropsShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Tuanrong Lin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Yuhe Yin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Junxiang Mu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Shuancheng Liu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Yaqin Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Zhicheng Zhang
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| |
Collapse
|
33
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
34
|
Emission of floral volatiles is facilitated by cell-wall non-specific lipid transfer proteins. Nat Commun 2023; 14:330. [PMID: 36658137 PMCID: PMC9852552 DOI: 10.1038/s41467-023-36027-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
For volatile organic compounds (VOCs) to be released from the plant cell into the atmosphere, they have to cross the plasma membrane, the cell wall, and the cuticle. However, how these hydrophobic compounds cross the hydrophilic cell wall is largely unknown. Using biochemical and reverse-genetic approaches combined with mathematical simulation, we show that cell-wall localized non-specific lipid transfer proteins (nsLTPs) facilitate VOC emission. Out of three highly expressed nsLTPs in petunia petals, which emit high levels of phenylpropanoid/benzenoid compounds, only PhnsLTP3 contributes to the VOC export across the cell wall to the cuticle. A decrease in PhnsLTP3 expression reduces volatile emission and leads to VOC redistribution with less VOCs reaching the cuticle without affecting their total pools. This intracellular build-up of VOCs lowers their biosynthesis by feedback downregulation of phenylalanine precursor supply to prevent self-intoxication. Overall, these results demonstrate that nsLTPs are intrinsic members of the VOC emission network, which facilitate VOC diffusion across the cell wall.
Collapse
|
35
|
Li Q, Zhai W, Wei J, Jia Y. Rice lipid transfer protein, OsLTPL23, controls seed germination by regulating starch-sugar conversion and ABA homeostasis. Front Genet 2023; 14:1111318. [PMID: 36726806 PMCID: PMC9885049 DOI: 10.3389/fgene.2023.1111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Seed germination is vital for ensuring the continuity of life in spermatophyte. High-quality seed germination usually represents good seedling establishment and plant production. Here, we identified OsLTPL23, a putative rice non-specific lipid transport protein, as an important regulator responsible for seed germination. Subcellular localization analysis confirmed that OsLTPL23 is present in the plasma membrane and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-mediated genome editing, and osltpl23 lines significantly germinated slower and lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble sugar content may be a causal agent for the delayed seed germination of osltpl23 mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid (ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1, OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23 mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1, OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found that osltpl23 mutants displays weakened early seedling growth, with elevated gene expresssion of ABA catabolism genes and repressive transcription response of defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1. Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice seed germination and early seedling growth via modulating endogenous ABA homeostasis. Collectively, our study provides important insights into the roles of OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on seed germination and early seedling growth, which contributes to high-vigor seed production in rice breeding.
Collapse
Affiliation(s)
- Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yanfeng Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Yanfeng Jia,
| |
Collapse
|
36
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
37
|
Pollen Coat Proteomes of Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea Reveal Remarkable Diversity of Small Cysteine-Rich Proteins at the Pollen-Stigma Interface. Biomolecules 2023; 13:biom13010157. [PMID: 36671543 PMCID: PMC9856046 DOI: 10.3390/biom13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The pollen coat is the outermost domain of the pollen grain and is largely derived from the anther tapetum, which is a secretory tissue that degenerates late in pollen development. By being localised at the interface of the pollen-stigma interaction, the pollen coat plays a central role in mediating early pollination events, including molecular recognition. Amongst species of the Brassicaceae, a growing body of data has revealed that the pollen coat carries a range of proteins, with a number of small cysteine-rich proteins (CRPs) being identified as important regulators of the pollen-stigma interaction. By utilising a state-of-the-art liquid chromatography/tandem mass spectrometry (LC-MS/MS) approach, rich pollen coat proteomic profiles were obtained for Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea, which greatly extended previous datasets. All three proteomes revealed a strikingly large number of small CRPs that were not previously reported as pollen coat components. The profiling also uncovered a wide range of other protein families, many of which were enriched in the pollen coat proteomes and had functions associated with signal transduction, cell walls, lipid metabolism and defence. These proteomes provide an excellent source of molecular targets for future investigations into the pollen-stigma interaction and its potential evolutionary links to plant-pathogen interactions.
Collapse
|
38
|
Huang MD, Wu CW, Chou HY, Cheng SY, Chang HY. The revealing of a novel lipid transfer protein lineage in green algae. BMC PLANT BIOLOGY 2023; 23:21. [PMID: 36627558 PMCID: PMC9832785 DOI: 10.1186/s12870-023-04040-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-specific lipid transfer proteins (nsLTPs) are a group of small and basic proteins that can bind and transfer various lipid molecules to the apoplastic space. A typical nsLTP carries a conserved architecture termed eight-cysteine motif (8CM), a scaffold of loop-linked helices folding into a hydrophobic cavity for lipids binding. Encoded by a multigene family, nsLTPs are widely distributed in terrestrial plants from bryophytes to angiosperms with dozens of gene members in a single species. Although the nsLTPs in the most primitive plants such as Marchantia already reach 14 members and are divergent enough to form separate groups, so far none have been identified in any species of green algae. RESULTS By using a refined searching strategy, we identified putative nsLTP genes in more than ten species of green algae as one or two genes per haploid genome but not in red and brown algae. The analyses show that the algal nsLTPs carry unique characteristics, including the extended 8CM spacing, larger molecular mass, lower pI value and multiple introns in a gene, which suggests that they could be a novel nsLTP lineage. Moreover, the results of further investigation on the two Chlamydomonas nsLTPs using transcript and protein assays demonstrated their late zygotic stage expression patterns and the canonical nsLTP properties were also verified, such as the fatty acids binding and proteinase resistance activities. CONCLUSIONS In conclusion, a novel nsLTP lineage is identified in green algae, which carries some unique sequences and molecular features that are distinguishable from those in land plants. Combined with the results of further examinations of the Chlamydomonas nsLTPs in vitro, possible roles of the algal nsLTPs are also suggested. This study not only reveals the existence of the nsLTPs in green algae but also contributes to facilitating future studies on this enigmatic protein family.
Collapse
Affiliation(s)
- Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424.
| | - Chin-Wei Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Hong-Yun Chou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424.
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 11221.
| |
Collapse
|
39
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Karalija E, Šamec D, Dahija S, Ibragić S. Plants strike back: Plant volatiles and their role in indirect defence against aphids. PHYSIOLOGIA PLANTARUM 2023; 175:e13850. [PMID: 36628570 DOI: 10.1111/ppl.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants have evolved different strategies to defend themselves against various biotic stressors. An important aspect of the complex response of plants to biotic stress is the emission of volatile compounds (VOCs), which are involved in direct and indirect plant defence mechanisms. Indirect plant defences include a range of plant traits that mediate defence against herbivores and play an important ecological role by not only utilising plants' own capabilities, but also signalling and attracting natural enemies of herbivores. Often the combination of volatiles emitted is specific to herbivores; they are consequently recognised by parasites and other predators, providing a clear link between the volatile signature and the prey. In this review, we focus on indirect plant defence and summarise current knowledge and perspectives on relationships between plants, aphids and parasitic wasps.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Dunja Šamec
- Department of Food Technology, University North, Koprivnica, Croatia
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Saida Ibragić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
41
|
Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. PLANT MOLECULAR BIOLOGY 2023; 111:153-166. [PMID: 36255594 PMCID: PMC9849177 DOI: 10.1007/s11103-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
43
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
44
|
Gasser M, Alloisio N, Fournier P, Balmand S, Kharrat O, Tulumello J, Carro L, Heddi A, Da Silva P, Normand P, Pujic P, Boubakri H. A Nonspecific Lipid Transfer Protein with Potential Functions in Infection and Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1096-1108. [PMID: 36102948 DOI: 10.1094/mpmi-06-22-0131-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of Alnus glutinosa to Frankia alni ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to Frankia alni. Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots. Most of these genes encode proteins involved in biological processes induced during microbial infection, such as oxidative stress or response to stimuli, but a large number of them are not differentially modulated or downregulated later in the process of nodulation. In contrast, several of them remained upregulated in mature nodules, and this included the gene most upregulated, which encodes a nonspecific lipid transfer protein (nsLTP). Classified as an antimicrobial peptide, this nsLTP was immunolocalized on the deformed root-hair surfaces that are points of contact for Frankia spp. during infection. Later in nodules, it binds to the surface of F. alni ACN14a vesicles, which are the specialized cells for nitrogen fixation. This nsLTP, named AgLTP24, was biologically produced in a heterologous host and purified for assay on F. alni ACN14a to identify physiological effects. Thus, the activation of the plant immunity response occurs upon first contact, while the recognition of F. alni ACN14a genes switches off part of the defense system during nodulation. AgLTP24 constitutes a part of the defense system that is maintained all along the symbiosis, with potential functions such as the formation of infection threads or nodule primordia to the control of F. alni proliferation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mélanie Gasser
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Severine Balmand
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Ons Kharrat
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Joris Tulumello
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Lorena Carro
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Abdelaziz Heddi
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Pedro Da Silva
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
45
|
Chandran AKN, Sandhu J, Irvin L, Paul P, Dhatt BK, Hussain W, Gao T, Staswick P, Yu H, Morota G, Walia H. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1026472. [PMID: 36304400 PMCID: PMC9593041 DOI: 10.3389/fpls.2022.1026472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.
Collapse
Affiliation(s)
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Tian Gao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hongfeng Yu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
46
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|
47
|
Butassi E, Novello MA, Lara MV. Prunus persica apoplastic proteome analysis reveals candidate proteins involved in the resistance and defense against Taphrina deformans. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153780. [PMID: 35930825 DOI: 10.1016/j.jplph.2022.153780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Taphrina deformans is the fungus responsible for the peach leaf curl disease. To gain insight into the molecular mechanisms involved in plant resistance and response to the fungus, apoplastic differentially abundant proteins (DAPs) in a resistant (DR) and/or in a susceptible genotype (FL) were identified after 12 and 96 h post inoculation (hpi) and compared to those at 0 hpi. The Prunus persica apoplastic proteome was assessed by LC-MS/MS analysis. Altogether 332 proteins were identified, and their molecular and biological functions were classified. In both genotypes, major changes occurred at 96 hpi when the fungus had achieved the filamentous form. However, at 96 hpi, DR exhibited a greater number of increased proteins than FL. DAPs were enriched in biotic stress response, with most of the proteins belonging to the pathogenesis related (PR)-type. PRs exhibited the greatest fold changes of induction in DR. While PRs acting on pathogen cell wall (PR2, PR3 and PR4) were increased in both susceptible and resistant genotypes, others were exclusively induced in DR, such as some isoforms of PR5, defensin and PR17. Proteins exclusively induced in DR upon T.deformans inoculation such as four berberine bridge enzymes, two snakins and a GDS-lipase were identified. Moreover, upon inoculation cuticle was thickened to a greater extent in DR than in FL. This work reveals the active role of the apoplast against T. deformans and not only contributes to the elucidation of responses involved in resistance to leaf curl disease but also improves the knowledge on peach defenses against pathogens.
Collapse
Affiliation(s)
- Estefanía Butassi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
48
|
Yoo SH, Buratto J, Roy A, Morvan E, Pasco M, Pulka-Ziach K, Lombardo CM, Rosu F, Gabelica V, Mackereth CD, Collie GW, Guichard G. Adaptive Binding of Alkyl Glycosides by Nonpeptidic Helix Bundles in Water: Toward Artificial Glycolipid Binding Proteins. J Am Chem Soc 2022; 144:15988-15998. [PMID: 35998571 DOI: 10.1021/jacs.2c05234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphipathic water-soluble helices formed from synthetic peptides or foldamers are promising building blocks for the creation of self-assembled architectures with non-natural shapes and functions. While rationally designed artificial quaternary structures such as helix bundles have been shown to contain preformed cavities suitable for guest binding, there are no examples of adaptive binding of guest molecules by such assemblies in aqueous conditions. We have previously reported a foldamer 6-helix bundle that contains an internal nonpolar cavity able to bind primary alcohols as guest molecules. Here, we show that this 6-helix bundle can also interact with larger, more complex guests such as n-alkyl glycosides. X-ray diffraction analysis of co-crystals using a diverse set of guests together with solution and gas-phase studies reveals an adaptive binding mode whereby the apo form of the 6-helix bundle undergoes substantial conformational change to accommodate the hydrocarbon chain in a manner reminiscent of glycolipid transfer proteins in which the cavity forms upon lipid uptake. The dynamic nature of the self-assembling and molecular recognition processes reported here marks a step forward in the design of functional proteomimetic molecular assemblies.
Collapse
Affiliation(s)
- Sung Hyun Yoo
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Jérémie Buratto
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Arup Roy
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France
| | - Morgane Pasco
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | | | - Caterina M Lombardo
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR3033, US001, F-33600 Pessac, France.,Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Bordeaux, France
| | - Cameron D Mackereth
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, F-33600 Bordeaux, France
| | - Gavin W Collie
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France
| |
Collapse
|
49
|
Baindara P, Mandal SM. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022; 11:foods11162415. [PMID: 36010415 PMCID: PMC9407122 DOI: 10.3390/foods11162415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Food spoilage is a widespread issue brought on by the undesired growth of microbes in food products. Thousands of tons of usable food or food products are wasted every day due to rotting in different parts of the world. Several food preservation techniques are employed to prevent food from rotting, including the use of natural or manufactured chemicals or substances; however, the issue persists. One strategy for halting food deterioration is the use of plant-derived antimicrobial peptides (AMPs), which have been investigated for possible bioactivities against a range of human, plant, and food pathogens. The food industry may be able to benefit from the development of synthetic AMPs, produced from plants that have higher bioactivity, better stability, and decreased cytotoxicity as a means of food preservation. In order to exploit plant-derived AMPs in various food preservation techniques, in this review, we also outline the difficulties in developing AMPs for use as commercial food preservatives. Nevertheless, as technology advances, it will soon be possible to fully explore the promise of plant-derived AMPs as food preservatives.
Collapse
Affiliation(s)
- Piyush Baindara
- Departments of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
50
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|