1
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
3
|
Jacques F, Baratchart E, Pienta KJ, Hammarlund EU. Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. Med Oncol 2022; 39:160. [PMID: 35972622 PMCID: PMC9381480 DOI: 10.1007/s12032-022-01740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
The rise of animals represents a major but enigmatic event in the evolutionary history of life. In recent years, numerous studies have aimed at understanding the genetic basis of this transition. However, genome comparisons of diverse animal and protist lineages suggest that the appearance of gene families that were previously considered animal specific indeed preceded animals. Animals' unicellular relatives, such as choanoflagellates, ichthyosporeans, and filastereans, demonstrate complex life cycles including transient multicellularity as well as genetic toolkits for temporal cell differentiation, cell-to-cell communication, apoptosis, and cell adhesion. This has warranted further exploration of the genetic basis underlying transitions in cellular organization. An alternative model for the study of transitions in cellular organization is tumors, which exploit physiological programs that characterize both unicellularity and multicellularity. Tumor cells, for example, switch adhesion on and off, up- or downregulate specific cell differentiation states, downregulate apoptosis, and allow cell migration within tissues. Here, we use insights from both the fields of phylogenomics and tumor biology to review the evolutionary history of the regulatory systems of multicellularity and discuss their overlap. We claim that while evolutionary biology has contributed to an increased understanding of cancer, broad investigations into tissue-normal and transformed-can also contribute the framework for exploring animal evolution.
Collapse
Affiliation(s)
- Florian Jacques
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Etienne Baratchart
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenneth J Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Emma U Hammarlund
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
5
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
The evolution of multicellularity and cancer: views and paradigms. Biochem Soc Trans 2021; 48:1505-1518. [PMID: 32677677 DOI: 10.1042/bst20190992] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Conceptually and mechanistically, the evolution of multicellularity required the integration of single cells into new functionally, reproductively and evolutionary stable multicellular individuals. As part of this process, a change in levels of selection occurred, with selection at the multicellular level overriding selection at the cell level. The stability of multicellular individuals is dependent on a combination of mechanisms that supress within-group evolution, by both reducing the occurrence of somatic mutations as well as supressing somatic selection. Nevertheless, mutations that, in a particular microenvironment, confer mutant lineages a fitness advantage relative to normal somatic cells do occur, and can result in cancer. This minireview highlights several views and paradigms that relate the evolution of multicellularity to cancer. As a phenomenon, cancer is generally understood as a failure of multicellular systems to suppress somatic evolution. However, as a disease, cancer is interpreted in different frameworks: (i) a breakdown of cooperative behaviors underlying the evolution of multicellularity, (ii) a disruption of molecular networks established during the emergence of multicellularity to impose constraints on single-celled units, or (iii) an atavistic state resulting from reactivating primitive programs that originated in the earliest unicellular species. A number of assumptions are common in all the views relating cancer as a disease to the evolution of multicellularity. For instance, cancer is considered a reversal to unicellularity, and cancer cells are thought to both resemble unicellular organisms and benefit from ancestral-like traits. Nevertheless, potential limitations of current paradigms should be acknowledged as different perspectives can provide novel insights with potential therapeutic implications.
Collapse
|
7
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
8
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Jasti N, Sebagh D, Riaz M, Wang X, Koripella B, Palanisamy V, Mohammad N, Chen Q, Friedrich M. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 2020; 230:279-294. [PMID: 32623522 DOI: 10.1007/s00427-020-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95-85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.
Collapse
Affiliation(s)
- Naveen Jasti
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA.,Institute for Protein Design, Washington University, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dylan Sebagh
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Mohammed Riaz
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Xin Wang
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Bharat Koripella
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Vasanth Palanisamy
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Nabeel Mohammad
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA. .,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Bartas M, Brázda V, Červeň J, Pečinka P. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Int J Mol Sci 2019; 21:ijms21010006. [PMID: 31861340 PMCID: PMC6981761 DOI: 10.3390/ijms21010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
- Correspondence: ; Tel.: +420-553-46-2318
| |
Collapse
|
11
|
Biscotti MA, Barucca M, Carducci F, Forconi M, Canapa A. The p53 gene family in vertebrates: Evolutionary considerations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:171-178. [PMID: 31046194 DOI: 10.1002/jez.b.22856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/07/2018] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
Abstract
The origin of the p53 gene family predates multicellular life since TP53 members of this gene family have been found in unicellular eukaryotes. In invertebrates one or two genes attributable to a TP53-like or TP63/73-like gene are present. The radiation into three genes, TP53, TP63, and TP73, has been reported as a vertebrate invention. TP53 is considered the "guardian of the genome" given its role in protecting cells against the DNA damage and cellular stressors. TP63 and TP73 play a role in epithelial development and neurogenesis, respectively. The evolution of the p53 gene family has been the subject of considerable analyses even if several questions remain still open. In this study we addressed the evolutionary history of the p53 gene family in vertebrates performing an extended microsyntenic investigation coupled with a phylogenetic analysis, together with protein domain organization and structure assessment. On the basis of our results we discussed a possible evolutionary scenario according to which a TP53/63/73 ancestor form gave rise to the current TP53 and a TP63/73 form, which in turn independently duplicated into two genes in agnathe and gnathostome lineages.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
13
|
Åberg E, Saccoccia F, Grabherr M, Ore WYJ, Jemth P, Hultqvist G. Evolution of the p53-MDM2 pathway. BMC Evol Biol 2017; 17:177. [PMID: 28774266 PMCID: PMC5543598 DOI: 10.1186/s12862-017-1023-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The p53 signalling pathway, which controls cell fate, has been extensively studied due to its prominent role in tumor development. The pathway includes the tumor supressor protein p53, its vertebrate paralogs p63 and p73, and their negative regulators MDM2 and MDM4. The p53/p63/p73-MDM system is ancient and can be traced in all extant animal phyla. Despite this, correct phylogenetic trees including both vertebrate and invertebrate species of the p53/p63/p73 and MDM families have not been published. RESULTS Here, we have examined the evolution of the p53/p63/p73 protein family with particular focus on the p53/p63/p73 transactivation domain (TAD) and its co-evolution with the p53/p63/p73-binding domain (p53/p63/p73BD) of MDM2. We found that the TAD and p53/p63/p73BD share a strong evolutionary connection. If one of the domains of the protein is lost in a phylum, then it seems very likely to be followed by loss of function by the other domain as well, and due to the loss of function it is likely to eventually disappear. By focusing our phylogenetic analysis to p53/p63/p73 and MDM proteins from phyla that retain the interaction domains TAD and p53/p63/p73BD, we built phylogenetic trees of p53/p63/p73 and MDM based on both vertebrate and invertebrate species. The trees follow species evolution and contain a total number of 183 and 98 species for p53/p63/p73 and MDM, respectively. We also demonstrate that the p53/p63/p73 and MDM families result from whole genome duplications. CONCLUSIONS The signaling pathway of the TAD and p53/p63/p73BD in p53/p63/p73 and MDM, respectively, dates back to early metazoan time and has since then tightly co-evolved, or disappeared in distinct lineages.
Collapse
Affiliation(s)
- Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Fulvio Saccoccia
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Wai Ying Josefin Ore
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Greta Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, SE-75124, Uppsala, Sweden
| |
Collapse
|
14
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
15
|
Wichmann IA, Zavala K, Hoffmann FG, Vandewege MW, Corvalán AH, Amigo JD, Owen GI, Opazo JC. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage. Gene 2016; 591:245-254. [PMID: 27432065 DOI: 10.1016/j.gene.2016.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed.
Collapse
Affiliation(s)
- Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, MS, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Center UC for Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
16
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
17
|
dos Santos HG, Nunez-Castilla J, Siltberg-Liberles J. Functional Diversification after Gene Duplication: Paralog Specific Regions of Structural Disorder and Phosphorylation in p53, p63, and p73. PLoS One 2016; 11:e0151961. [PMID: 27003913 PMCID: PMC4803236 DOI: 10.1371/journal.pone.0151961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Conformational and functional flexibility promote protein evolvability. High evolvability allows related proteins to functionally diverge and perhaps to neostructuralize. p53 is a multifunctional protein frequently referred to as the Guardian of the Genome–a hub for e.g. incoming and outgoing signals in apoptosis and DNA repair. p53 has been found to be structurally disordered, an extreme form of conformational flexibility. Here, p53, and its paralogs p63 and p73, were studied for further insights into the evolutionary dynamics of structural disorder, secondary structure, and phosphorylation. This study is focused on the post gene duplication phase for the p53 family in vertebrates, but also visits the origin of the protein family and the early domain loss and gain events. Functional divergence, measured by rapid evolutionary dynamics of protein domains, structural properties, and phosphorylation propensity, is inferred across vertebrate p53 proteins, in p63 and p73 from fish, and between the three paralogs. In particular, structurally disordered regions are redistributed among paralogs, but within clades redistribution of structural disorder also appears to be an ongoing process. Despite its deemed importance as the Guardian of the Genome, p53 is indeed a protein with high evolvability as seen not only in rearranged structural disorder, but also in fluctuating domain sequence signatures among lineages.
Collapse
Affiliation(s)
- Helena G. dos Santos
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Janelle Nunez-Castilla
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Jessica Siltberg-Liberles
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Heering J, Jonker HRA, Löhr F, Schwalbe H, Dötsch V. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci 2015; 25:410-22. [PMID: 26473758 DOI: 10.1002/pro.2830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/09/2022]
Abstract
Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one β-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix.
Collapse
Affiliation(s)
- Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute of Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
19
|
Joerger AC, Wilcken R, Andreeva A. Tracing the evolution of the p53 tetramerization domain. Structure 2015; 22:1301-1310. [PMID: 25185827 PMCID: PMC4155161 DOI: 10.1016/j.str.2014.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/25/2022]
Abstract
The tetrameric transcription factors p53, p63, and p73 evolved from a common ancestor and play key roles in tumor suppression and development. Surprisingly, p63 and p73 require a second helix in their tetramerization domain for the formation of stable tetramers that is absent in human p53, raising questions about the evolutionary processes leading to diversification. Here we determined the crystal structure of the zebrafish p53 tetramerization domain, which contains a second helix, reminiscent of p63 and p73, combined with p53-like features. Through comprehensive phylogenetic analyses, we systematically traced the evolution of vertebrate p53 family oligomerization domains back to the beginning of multicellular life. We provide evidence that their last common ancestor also had an extended p63/p73-like domain and pinpoint evolutionary events that shaped this domain during vertebrate radiation. Domain compaction and transformation of a structured into a flexible, intrinsically disordered region may have contributed to the expansion of the human p53 interactome.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Rainer Wilcken
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
21
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
22
|
Huang Q, Yu L, Levine AJ, Nussinov R, Ma B. Dipeptide analysis of p53 mutations and evolution of p53 family proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:198-206. [PMID: 23583620 PMCID: PMC6429922 DOI: 10.1016/j.bbapap.2013.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 01/20/2023]
Abstract
p53 gain-of-function mutations are similar to driver mutations in cancer genes, with both promoting tumorigenesis. Most previous studies focused on residues lost by mutations, providing information related to a dominantly-negative effect. However, to understand gain-of-function mutations, it is also important to investigate what are the distributions of residues gained by mutations. We compile available p53/p63/p73 protein sequences and construct a non-redundant dataset. We analyze the amino acid and dipeptide composition of p53/p63/p73 proteins across evolution and compare them with the gain/loss of amino acids and dipeptides in human p53 following cancer-related somatic mutations. We find that the ratios of amino acids gained via somatic mutations during evolution to those lost through p53 cancer mutations correlate with the ratios found in single nucleotide polymorphisms in the human proteome. The dipeptide mutational gain/loss ratios are inversely correlated with those observed over p53 evolution but tend to follow the increasing p63/p73-like dipeptide propensities. We successfully simulated the p53 cancer mutation spectrum using the dipeptide composition across the p53 family accounting for the likelihood of mutations in p53 codons. The results revealed that the p53 mutation spectrum is dominated not only by p53 evolution but also by reversal of evolution to a certain degree. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Arnold J. Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Abstract
The TP53 gene, first described in 1979, was identified as a tumor suppressor gene in 1989, when it became clear that its product, the p53 nuclear phosphoprotein, was frequently inactivated in many different forms of cancers. Nicknamed "guardian of the genome", TP53 occupies a central node in stress response networks. The p53 protein has a key role as transcription factor in limiting oncogenesis through several growth suppressive functions, such as initiating apoptosis, senescence, or cell cycle arrest. The p53 protein is directly inactivated in about 50% of all tumors as a result of somatic gene mutations or deletions, and over 80% of tumors demonstrate dysfunctional p53 signaling. Beyond the undeniable importance of p53 as a tumor suppressor, an increasing number of new functions for p53 have been reported, including its ability to regulate energy metabolism, to control autophagy, and to participate in various aspects of differentiation and development. Recently, studies on genetic variations in TP53 among different populations have led to the notion that the p53 protein might play an important role in regulating fertility. This review summarizes current knowledge on the basic functions of different genes of the TP53 family and TP53 pathway with respect to fertility. We also provide original analyses based on genomic and genotype databases, providing further insights into the possible roles of the TP53 pathway in human reproduction.
Collapse
Affiliation(s)
- Diego d'Avila Paskulin
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. ; Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
24
|
Neira JL, Sevilla P, García-Blanco F. The C-terminal sterile alpha motif (SAM) domain of human p73 is a highly dynamic protein, which acquires high thermal stability through a decrease in backbone flexibility. Phys Chem Chem Phys 2012; 14:10308-23. [DOI: 10.1039/c2cp41179b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Abstract
The p53 family members, which consist of 3 transcription factors-p53, p63, and p73-are conserved during evolution. The p53 family proteins are involved in many important cellular functions, including tumor suppression (p53 and p73), the development of epithelial cell layers (p63), and the development of central nervous system and immune system (p73). Studies on p53-like proteins in low organisms have demonstrated that their primordial functions are to maintain the genomic integrity of germ cells and ensure faithful development and reproduction. In vertebrates, the p53 family proteins retain these functions in reproduction and at the same time have developed additional important functions in reproduction, such as the regulation of embryonic implantation (p53). p53 regulates embryonic implantation through transcriptional regulation of leukemia inhibitory factor (LIF). p63, in particular TAp63, is a main regulator to protect the fidelity of female germ cells during meiotic arrest. p73, in particular TAp73, regulates the ovary function and the quality of oocytes. Loss of p53, p63, or p73 genes in female mice leads to a significant decrease in fertility. These functions of the p53 family proteins in reproduction provide a plausible explanation for positive evolutionary selection observed in a group of single nucleotide polymorphisms and haplotypes in the p53 family genes. A better understanding of the functions of the p53 family proteins in reproduction may lead to new strategies for fertility treatment.
Collapse
Affiliation(s)
- Wenwei Hu
- Department of Pediatrics, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
26
|
Momand J, Villegas A, Belyi VA. The evolution of MDM2 family genes. Gene 2011; 486:23-30. [PMID: 21762762 DOI: 10.1016/j.gene.2011.06.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 01/09/2023]
Abstract
MDM2 and MDM4 are proto-oncoproteins that bind to and inhibit members of the p53 protein family, p53, p73 and possibly p63. p53 is a mammalian tumor suppressor and p63 and p73 are critical for development. With the sequencing of genomes from multiple organisms there is mounting evidence for a consensus scenario of p53 gene family evolution. A single p53/p63/p73 gene is in invertebrates and required for maintenance of germline DNA. Gene duplication occurred in an ancestor in common with cartilaginous fishes, giving rise to a separate p53 gene and at least one ancestral p63/p73 gene. In bony vertebrates, all three p53 gene family paralogs, p53, p63, and p73 are distinct genes. This raises the question of how MDM2 and MDM4 genes evolved. We show evidence that MDM2 and MDM4 arose from a gene duplication event prior to the emergence of bony vertebrates more than 440 millionyears ago. Comparative genome studies indicate that invertebrate organisms have only one MDM homolog. In jawed vertebrates, the p53-binding domains of MDM2 and MDM4 proteins evolved at a high rate, approaching the evolution rate of the MDM2-binding domain of p53. However, the MDM2-binding domain of p73 exhibits markedly stronger conservation suggesting novel p53-independent functions. The most conserved domain within all MDM2 family members is the RING domain of the MDM2 ortholog which is responsible for ubiquitination of p53 and heterodimerization with MDM4. We suggest a model where oligomerization is an ancient function of MDM and ubiquitination activity was acquired later near the MDM gene duplication event coinciding with the time of the emergence of p53 as a distinct gene.
Collapse
Affiliation(s)
- Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, 90032, USA.
| | | | | |
Collapse
|
27
|
Vilgelm AE, Zaika AI, Prassolov VS. Coordinated interaction of multifunctional members of the p53 family determines many key processes in multicellular organisms. Mol Biol 2011. [DOI: 10.1134/s002689331101016x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Walker CW, Van Beneden RJ, Muttray AF, Böttger SA, Kelley ML, Tucker AE, Thomas WK. p53 Superfamily proteins in marine bivalve cancer and stress biology. ADVANCES IN MARINE BIOLOGY 2011; 59:1-36. [PMID: 21724017 DOI: 10.1016/b978-0-12-385536-7.00001-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The human p53 tumour suppressor protein is inactivated in many cancers and is also a major player in apoptotic responses to cellular stress. The p53 protein and the two other members of this protein family (p63, p73) are encoded by distinct genes and their functions have been extensively documented for humans and some other vertebrates. The structure and relative expression levels for members of the p53 superfamily have also been reported for most major invertebrate taxa. The functions of homologous proteins have been investigated for only a few invertebrates (specifically, p53 in flies, nematodes and recently a sea anemone). These studies of classical model organisms all suggest that the gene family originally evolved to mediate apoptosis of damaged germ cells or to protect germ cells from genotoxic stress. Here, we have correlated data from a number of molluscan and other invertebrate sequencing projects to provide a framework for understanding p53 signalling pathways in marine bivalve cancer and stress biology. These data suggest that (a) the two identified p53 and p63/73-like proteins in soft shell clam (Mya arenaria), blue mussel (Mytilus edulis) and Northern European squid (Loligo forbesi) have identical core sequences and may be splice variants of a single gene, while some molluscs and most other invertebrates have two or more distinct genes expressing different p53 family members; (b) transcriptional activation domains (TADs) in bivalve p53 and p63/73-like protein sequences are 67-69% conserved with human p53, while those in ecdysozoan, cnidarian, placozoan and choanozoan eukaryotes are ≤33% conserved; (c) the Mdm2 binding site in the transcriptional activation domain is 100% conserved in all sequenced bivalve p53 proteins (e.g. Mya, Mytilus, Crassostrea and Spisula) but is not present in other non-deuterostome invertebrates; (d) an Mdm2 homologue has been cloned for Mytilus trossulus; (e) homologues for both human p53 upstream regulatory and transcriptional target genes exist in molluscan genomes (missing are ARF, CIP1 and BH3 only proteins) and (f) p53 is demonstrably involved in bivalve haemocyte and germinoma cancers. We usually do not know enough about the molecular biology of marine invertebrates to address molecular mechanisms that characterize particular diseases. Understanding the molecular basis of naturally occurring diseases in marine bivalves is a virtually unexplored aspect of toxicoproteomics and genomics and related drug discovery. Additionally, increases in coastal development and concomitant increases in aquatic pollutants have driven interest in developing models appropriate for evaluating potential hazardous compounds or conditions found in the aquatic environment. Data reviewed in this study are coupled with recent developments in our understanding the molecular biology of the marine bivalve p53 superfamily. Taken together, they suggest that both structurally and functionally, bivalve p53 family proteins are the most highly conserved members of this gene superfamily so far identified outside of higher vertebrates and invertebrate chordates. Marine bivalves provide some of the most relevant and best understood models currently available for experimental studies by biomedical and marine environmental researchers.
Collapse
Affiliation(s)
- Charles W Walker
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2010; 28:1241-1254. [PMID: 21087945 DOI: 10.1093/molbev/msq309] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How animals (metazoans) originated from their single-celled ancestors remains a major question in biology. As transcriptional regulation is crucial to animal development, deciphering the early evolution of associated transcription factors (TFs) is critical to understanding metazoan origins. In this study, we uncovered the repertoire of 17 metazoan TFs in the amoeboid holozoan Capsaspora owczarzaki, a representative of a unicellular lineage that is closely related to choanoflagellates and metazoans. Phylogenetic and comparative genomic analyses with the broadest possible taxonomic sampling allowed us to formulate new hypotheses regarding the origin and evolution of developmental metazoan TFs. We show that the complexity of the TF repertoire in C. owczarzaki is strikingly high, pushing back further the origin of some TFs formerly thought to be metazoan specific, such as T-box or Runx. Nonetheless, TF families whose beginnings antedate the origin of the animal kingdom, such as homeodomain or basic helix-loop-helix, underwent significant expansion and diversification along metazoan and eumetazoan stems.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - Alex de Mendoza
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - B Franz Lang
- Department of Biochemistry, Université de Montréal, H3C 3J7 Montréal, Canada
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Iñaki Ruiz-Trillo
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain.,Institució Catalana per a la Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Liu Y, Lu D, Zhang Y, Li S, Liu X, Lin H. The evolution of somatostatin in vertebrates. Gene 2010; 463:21-8. [DOI: 10.1016/j.gene.2010.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/23/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
|
31
|
Millau JF, Mai S, Bastien N, Drouin R. p53 functions and cell lines: have we learned the lessons from the past? Bioessays 2010; 32:392-400. [PMID: 20414897 DOI: 10.1002/bies.200900160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
p53 has a determinant role in cancer prevention and is among the most studied proteins in the world. The majority of studies devoted to this protein are carried out in cell lines because they are easy to use and have naturally emerged as the main research tool in laboratories. However, the p53 pathway is commonly deregulated in cancer cells, from which the experimental cell lines are generally derived. The fact that the pathway is deregulated challenges the relevance of using cancer-derived cell lines to study wild-type p53 activities, or, in a broader sense, to study any normal cellular process. In the present article, we identify and discuss a number of limitations of cell lines using examples related to p53. Finally, we point out the general limitations of cell lines and propose solutions as alternatives to these cells.
Collapse
Affiliation(s)
- Jean-François Millau
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
32
|
Vassilenko EI, Muttray AF, Schulte PM, Baldwin SA. Variations in p53-like cDNA sequence are correlated with mussel haemic neoplasia: A potential molecular-level tool for biomonitoring. Mutat Res 2010; 701:145-52. [PMID: 20541620 DOI: 10.1016/j.mrgentox.2010.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 02/07/2023]
Abstract
Several bivalve species, including mussels (Mytilus spp.) and clams (Mya spp.), are susceptible to a leukemia-like disease called haemic neoplasia that has been known to decimate whole populations. Previous studies of molecular processes associated with late stages of this disease have implicated analogs of the p53 tumour suppressor protein family in disease etiology. We detected synonymous single nucleotide polymorphisms (SNPs) in the coding region sequence of p53-like cDNA from Mytilus trossulus (bay mussel) that differ between normal and neoplastic haemolymph. SNPs were located at positions 182, 392 and 821 bp. Most (94%) of the late leukemic animals sampled from cages in Burrard Inlet (British Columbia, Canada) had the same p53-like genotype, C182T G392G C821T, whereas 75% of the healthy animals were homozygous at positions C182C and T821T, independent of the genotype at the 392 bp position. As well, we detected an increased number of allelic variants in the leukemic animals that may arise from separate somatic mutation events in haemocyte precursors or from additional p53-like gene copies in polyploidy. Therefore, detection of these SNPs may provide a useful genetic biomarker for efficient monitoring of mussel population health.
Collapse
Affiliation(s)
- Ekaterina I Vassilenko
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
33
|
Lu WJ, Chapo J, Roig I, Abrams JM. Meiotic recombination provokes functional activation of the p53 regulatory network. Science 2010; 328:1278-81. [PMID: 20522776 PMCID: PMC2917750 DOI: 10.1126/science.1185640] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The evolutionary appearance of p53 protein probably preceded its role in tumor suppression, suggesting that there may be unappreciated functions for this protein. Using genetic reporters as proxies to follow in vivo activation of the p53 network in Drosophila, we discovered that the process of meiotic recombination instigates programmed activation of p53 in the germ line. Specifically, double-stranded breaks in DNA generated by the topoisomerase Spo11 provoked functional p53 activity, which was prolonged in cells defective for meiotic DNA repair. This intrinsic stimulus for the p53 regulatory network is highly conserved because Spo11-dependent activation of p53 also occurs in mice. Our findings establish a physiological role for p53 in meiosis and suggest that tumor-suppressive functions may have been co-opted from primordial activities linked to recombination.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- DNA/genetics
- DNA/metabolism
- DNA Breaks, Double-Stranded
- DNA Damage
- DNA Helicases
- DNA Repair
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/metabolism
- Egg Proteins/genetics
- Egg Proteins/metabolism
- Embryo, Nonmammalian/metabolism
- Endodeoxyribonucleases
- Esterases/genetics
- Esterases/metabolism
- Female
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks
- Genes, Insect
- Genes, p53
- Germ Cells/metabolism
- Male
- Meiosis
- Mice
- Mice, Knockout
- Oogenesis
- Recombination, Genetic
- Spermatocytes/physiology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- Wan-Jin Lu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
34
|
Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2010; 2:a001131. [PMID: 20595397 DOI: 10.1101/cshperspect.a001131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.
Collapse
Affiliation(s)
- Rachael Rutkowski
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
35
|
Durand PM, Hazelhurst S, Coetzer TL. Evolutionary rates at codon sites may be used to align sequences and infer protein domain function. BMC Bioinformatics 2010; 11:151. [PMID: 20334658 PMCID: PMC2851608 DOI: 10.1186/1471-2105-11-151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 03/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background Sequence alignments form part of many investigations in molecular biology, including the determination of phylogenetic relationships, the prediction of protein structure and function, and the measurement of evolutionary rates. However, to obtain meaningful results, a significant degree of sequence similarity is required to ensure that the alignments are accurate and the inferences correct. Limitations arise when sequence similarity is low, which is particularly problematic when working with fast-evolving genes, evolutionary distant taxa, genomes with nucleotide biases, and cases of convergent evolution. Results A novel approach was conceptualized to address the "low sequence similarity" alignment problem. We developed an alignment algorithm termed FIRE (Functional Inference using the Rates of Evolution), which aligns sequences using the evolutionary rate at codon sites, as measured by the dN/dS ratio, rather than nucleotide or amino acid residues. FIRE was used to test the hypotheses that evolutionary rates can be used to align sequences and that the alignments may be used to infer protein domain function. Using a range of test data, we found that aligning domains based on evolutionary rates was possible even when sequence similarity was very low (for example, antibody variable regions). Furthermore, the alignment has the potential to infer protein domain function, indicating that domains with similar functions are subject to similar evolutionary constraints. These data suggest that an evolutionary rate-based approach to sequence analysis (particularly when combined with structural data) may be used to study cases of convergent evolution or when sequences have very low similarity. However, when aligning homologous gene sets with sequence similarity, FIRE did not perform as well as the best traditional alignment algorithms indicating that the conventional approach of aligning residues as opposed to evolutionary rates remains the method of choice in these cases. Conclusions FIRE provides proof of concept that it is possible to align sequences and infer domain function by using evolutionary rates rather than residue similarity. This represents a new approach to sequence analysis with a wide range of potential applications in molecular biology.
Collapse
Affiliation(s)
- Pierre M Durand
- Evolutionary Medicine Unit, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.
| | | | | |
Collapse
|
36
|
Cima F, Manni L, Basso G, Fortunato E, Accordi B, Schiavon F, Ballarin L. Hovering between death and life: natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:272-285. [PMID: 19837108 DOI: 10.1016/j.dci.2009.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
Colonies of the compound ascidian Botryllus schlosseri undergo recurrent generation changes during which massive, natural apoptosis occurs in zooid tissues: for this reason the species is emerging as an interesting model of invertebrate chordate, phylogenetically related to vertebrates, for studies of apoptosis during development. In the present work, we carried out a series of morphological, cytofluorimetrical and biochemical analyses, useful for a better characterization of Botryllus apoptosis. Results are consistent with the following viewpoints: (i) both intrinsic and extrinsic pathways, probably connected by the BH3-only protein Bid, are involved in cell death induction; (ii) phagocytes, once loaded with senescent cells, frequently undergo apoptosis, probably as a consequence of oxidative stress caused by prolonged respiratory burst, and (iii) senescent phagocytes are easily recognized and ingested by other phagocytes, responsible for their clearance. In addition, results suggest the conservation of apoptosis induction mechanisms throughout chordate evolution.
Collapse
Affiliation(s)
- Francesca Cima
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Marín I. Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evol Biol 2010; 10:56. [PMID: 20175895 PMCID: PMC2837046 DOI: 10.1186/1471-2148-10-56] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background HECT ubiquitin ligases (HECT E3s) are key components of the eukaryotic ubiquitin-proteasome system and are involved in the genesis of several human diseases. In this study, I analyze the patterns of diversification of HECT E3s since animals emerged in order to provide the right framework to understand the functional data available for proteins of this family. Results I show that the current classification of HECT E3s into three groups (NEDD4-like E3s, HERCs and single-HECT E3s) is fundamentally incorrect. First, the existence of a "Single-HECT E3s" group is not supported by phylogenetic analyses. Second, the HERC proteins must be divided into two subfamilies (Large HERCs, Small HERCs) that are evolutionarily very distant, their structural similarity being due to convergence and not to a common origin. Sequence and structural analyses show that animal HECT E3s can be naturally classified into 16 subfamilies. Almost all of them appeared either before animals originated or in early animal evolution. More recently, multiple gene losses have occurred independently in some lineages (nematodes, insects, urochordates), the same groups that have also lost genes of another type of E3s (RBR family). Interestingly, the emergence of some animal HECT E3s precedes the origin of key cellular systems that they regulate (TGF-β and EGF signal transduction pathways; p53 family of transcription factors) and it can be deduced that distantly related HECT proteins have been independently co-opted to perform similar roles. This may contribute to explain why distantly related HECT E3s are involved in the genesis of multiple types of cancer. Conclusions The complex evolutionary history of HECT ubiquitin ligases in animals has been deciphered. The most appropriate model animals to study them and new theoretical and experimental lines of research are suggested by these results.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.
| |
Collapse
|
38
|
Pearson BJ, Sánchez Alvarado A. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 2010; 137:213-21. [PMID: 20040488 DOI: 10.1242/dev.044297] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.
Collapse
Affiliation(s)
- Bret J Pearson
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
39
|
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2009; 2:a001198. [PMID: 20516129 DOI: 10.1101/cshperspect.a001198] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern-day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p63/p73 ancestor in cartilaginous fish. Bony fish contain all three genes, p53, p63, and p73, and the functions of these three transcription factors diversify in the higher vertebrates. Thus, this gene family has preserved its structural features and functional activities for over one billion years of evolution.
Collapse
|
40
|
Abstract
Cancers are rare because their evolution is actively restrained by a range of tumour suppressors. Of these p53 seems unusually crucial as either it or its attendant upstream or downstream pathways are inactivated in virtually all cancers. p53 is an evolutionarily ancient coordinator of metazoan stress responses. Its role in tumour suppression is likely to be a relatively recent adaptation, which is only necessary when large, long-lived organisms acquired the sufficient size and somatic regenerative capacity to necessitate specific mechanisms to reign in rogue proliferating cells. However, such evolutionary reappropriation of this venerable transcription factor entails compromises that restrict its efficacy as a tumour suppressor.
Collapse
Affiliation(s)
- Melissa R Junttila
- Department of Pathology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, 513 Parnassus Avenue, Room HSW-450A, UCSF Box 0502, San Francisco, California 94143-0502, USA
| | | |
Collapse
|
41
|
Abstract
The p53 family of genes (p53, p63, and p73) is conserved over evolutionary time scales. Although the functions of p53 gene and its protein as a tumor suppressor have been firmly established, the earliest functions for the p53 ancestral genes in worms and flies are to ensure germ-line genomic integrity and the fidelity of the developmental process. In vertebrates, the p53 family of genes retains those functions in germ-line genomic integrity but have added important functions in regulation of reproduction. Loss of the p53, p63, or p73 genes in female mice leads to a significant decrease of fertility. The p53 gene product regulates maternal reproduction at the implantation stage of the embryo. p63 and p73 play important roles in monitoring the genomic quality of oocytes. The p53 pathway appears to play a similar role in human fertility. In humans, certain alleles containing a functional single-nucleotide polymorphism (SNP) in the p53 pathway are under positive evolutionary selection. Selected alleles of these SNPs in the p53 pathway are associated with decreased fertility. This important function of the p53 pathway in reproduction provides a plausible explanation for the evolution of p53 as a tumor suppressor gene and the positive selection of some alleles in the p53 gene and its pathway. These observations provide a good possible example of antagonistic pleiotrophy for fertility, tumor suppression, and longevity.
Collapse
Affiliation(s)
- Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08903, USA.
| |
Collapse
|
42
|
Abstract
Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?
Collapse
Affiliation(s)
- Wan-Jin Lu
- Wan-Jin Lu and John M. Abrams are at the Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
43
|
Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 2009; 106:12843-8. [PMID: 19549833 DOI: 10.1073/pnas.0810304106] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Arabidopsis sog1-1 (suppressor of gamma response) mutant was originally isolated as a second-site suppressor of the radiosensitive phenotype of seeds defective in the repair endonuclease XPF. Here, we report that SOG1 encodes a putative transcription factor. This gene is a member of the NAC domain [petunia NAM (no apical meristem) and Arabidopsis ATAF1, 2 and CUC2] family (a family of proteins unique to land plants). Hundreds of genes are normally up-regulated in Arabidopsis within an hour of treatment with ionizing radiation; the induction of these genes requires the damage response protein kinase ATM, but not the related kinase ATR. Here, we find that SOG1 is also required for this transcriptional up-regulation. In contrast, the SOG1-dependent checkpoint response observed in xpf mutant seeds requires ATR, but does not require ATM. Thus, phenotype of the sog1-1 mutant mimics aspects of the phenotypes of both atr and atm mutants in Arabidopsis, suggesting that SOG1 participates in pathways governed by both of these sensor kinases. We propose that, in plants, signals related to genomic stress are processed through a single, central transcription factor, SOG1.
Collapse
|
44
|
Nedelcu AM. Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery. J Mol Evol 2009; 68:256-68. [DOI: 10.1007/s00239-009-9201-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
|
45
|
Vogt G. How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int J Cancer 2009; 123:2727-34. [PMID: 18823008 DOI: 10.1002/ijc.23947] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumours have only rarely been observed in the decapod crustaceans, a large animal group of more than 10,000 species that includes the commercially important and well investigated shrimp, lobsters, crayfish and crabs. Analysis of the literature and information from cancer and diseases data bases revealed a total of 15 incidences, some of them being questionable. Even in the long-lived species, which can reach life spans of almost 100 years, neoplasias are virtually unknown. The data published so far suggest that the strikingly different frequencies of carcinogenesis between decapods and other well investigated animal groups like mammals, fish, insects and molluscs is based on differences of the metabolic pathways for carcinogens, the immune systems, and the regulation of stem cells. Therefore, representatives of the Decapoda may serve as useful models to study how organisms can successfully prevent or control spontaneously and environmentally induced cell proliferation. A particularly promising candidate for in-depth investigation of these topics is the marbled crayfish, a rather new clonal lineage that is presently being introduced as a laboratory model in development and epigenetics.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
46
|
Abstract
p53 is a pivotal bulwark against cancer, but exactly how it suppresses tumors remains elusive, in part because it modulates such diverse biological processes via so many downstream pathways. In a recent issue of Cell, Godar et al. (2008) now identify another string to p53's anticancer bow-repression of the CD44 cell-surface glycoproteins that coordinate many attributes of tumor progression.
Collapse
Affiliation(s)
- Gerard I Evan
- Department of Pathology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143-0875, USA.
| |
Collapse
|
47
|
Sun S, Guo FJ, Tong YQ, Zhu JG, Li GC. Colorectal carcinoma-associated antigen Ca-Hb3 detected by one-dimensional SDS-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry. World J Gastroenterol 2008; 14:1588-91. [PMID: 18330953 PMCID: PMC2693757 DOI: 10.3748/wjg.14.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To comprehensively identify the proteins of tumor relative antigen Ca-Hb3 recognized by colorectal carcinoma monoclonal antibody Hb3.
METHODS: Ca-Hb3 was isolated by SDS-polyacrylamide gel electrophoresis (PAGE) followed by digestion with trypsin. Trypsin peptides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteins identified by mass spectrometry were analyzed using bioinformatics.
RESULTS: Ca-Hb3 was identified as a CKAP4-like protein by Nano HPLC tandem mass spectrometry analysis. The molecular weight of CKAP4-like protein was 62.02 kDa, including one hydrophobic region, one transmembrane domain, five coiled coils, four glycosylation sites and forty-nine phosphorylation sites. CKAP4-like protein had a high homogeneity with DeltaNp63α. The characteristic expression of DeltaNp63α that is considered a potential oncogene in the isoforms of p63 was similar to that of Ca-Hb3.
CONCLUSION: Ca-Hb3 is probably a CKAP4-like protein, belonging to DeltaNp63α isoform of p63 family.
Collapse
|