1
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
2
|
Deng Y, Tu Y, Yang X, Liao X, Xia Z, Liao W. Anti-atherosclerosis effect of nobiletin via PINK1/Parkin-mediated mitophagy and NLRP3 inflammasome signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Yu S, Chen Y, Chen S, Ye N, Li Y, Sun Y. Regulation of angiotensin II-induced B-cell lymphoma-2-associated athanogene 3 expression in vascular smooth muscle cells. Mol Med Rep 2018; 17:6156-6162. [PMID: 29484407 DOI: 10.3892/mmr.2018.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that angiotensin II (Ang II) is involved in the process of atherosclerosis and vascular restenosis through its proinflammatory effect. Bcl‑2‑associated athanogene 3 (BAG3) had been suggested to be associated with proliferation, migration and invasion in many types of tumor. However, the role of BAG3 among the proliferative process of vascular smooth muscle cells (VSMCs) induced by Ang II, to the best of our knowledge, remains to be investigated. The present study demonstrated that in growth‑arrested VSMCs, Ang II‑induced VSMC proliferation, accompanied by increased BAG3 mRNA and protein expression levels in a dose‑ and time‑dependent manner. BAG3 expression levels were measured in VSMCs treated in the presence or absence of Ang II. The proliferation of VSMCs was assessed using manual cell counting and Cell Counting kit‑8 assays. mRNA and protein expression levels of BAG3, Toll‑like receptor 4 (TLR4), proliferating cell nuclear antigen, nuclear factor (NF)‑κB p65, smooth muscle protein 22α and phosphorylated NF‑κB p65 were assessed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In non‑transfected or scramble short hairpin RNA (shRNA)‑transfected VSMCs cells, Ang II significantly induced VSMC proliferation. However, this Ang II‑induce proliferation was attenuated when BAG3 was silenced, suggesting that inhibition of BAG3 may somehow reduce proliferation in Ang II‑induced VSMCs. Furthermore, the TLR4/NF‑κB p65 signaling pathway was involved in BAG3 gene upregulation. In conclusion, to the best of our knowledge, the present study demonstrated for the first time that inhibition of BAG3 attenuates cell proliferation. Furthermore, Ang II induced VSMCs proliferation through regulation of BAG3 expression via the TLR4/NF‑κB p65 signaling pathway.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yintao Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Liu G, Hu Y, Xiao J, Li X, Li Y, Tan H, Zhao Y, Cheng D, Shi H. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation. Sci Rep 2016; 6:20900. [PMID: 26877097 PMCID: PMC4753504 DOI: 10.1038/srep20900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/12/2016] [Indexed: 01/04/2023] Open
Abstract
It remains challenging to predict the risk of rupture for a specific atherosclerotic plaque timely, a thrombotic trigger tightly linked to inflammation. CD11b, is a biomarker abundant on inflammatory cells, not restricted to monocytes/macrophages. In this study, we fabricated a probe named as 99mTc-MAG3-anti-CD11b for detecting inflamed atherosclerotic plaques with single photon emission computed tomography/computed tomography (SPECT/CT). The ApoE-knockout (ApoE−/−) mice were selected to establish animal models, with C57BL/6J mice used for control. A higher CD11b+-cell recruitment with higher CD11b expression and more serious whole-body inflammatory status were identified in ApoE−/− mice. The probe showed high in vitro affinity and specificity to the Raw-264.7 macrophages, as well as inflammatory cells infiltrated in atherosclerotic plaques, either in ex vivo fluorescent imaging or in in vivo micro-SPECT/CT imaging, which were confirmed by ex vivo planar gamma imaging, Oil-Red-O staining and CD11b-immunohistochemistry staining. A significant positive relationship was identified between the radioactivity intensity on SPECT/CT images and the CD11b expression in plaques. In summary, this study demonstrates the feasibility of anti-CD11b antibody mediated noninvasive SPECT/CT imaging of inflammatory leukocytes in murine atherosclerotic plaques. This imaging strategy can identify inflammation-rich plaques at risk for rupture and evaluate the effectiveness of inflammation-targeted therapies in atheroma.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiao Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanli Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
5
|
Ousmaal MEF, Martínez MC, Andriantsitohaina R, Chabane K, Gaceb A, Mameri S, Giaimis J, Baz A. Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1β in dyslipidemic sand rat, Psammomys obesus. J Diabetes Complications 2016; 30:21-9. [PMID: 26597597 DOI: 10.1016/j.jdiacomp.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023]
Abstract
AIMS To compare the effects of a high-energy diet (HED) with those of a low-energy diet (LED) on biochemical parameters, microparticle (MP) subpopulations and endothelial caveolin-1 (cav-1) protein expression in Psammomys obesus (P. obesus). METHODS After 12weeks of feeding with either the HED or LED, fasting plasma glucose and lipid parameters were measured using an enzymatic colorimetric kit while serum insulin concentration was determined with radioimmunoassay kits. MP subpopulations and cav-1 protein expression were quantified using flow cytometry and western blot analysis, respectively. RESULTS We observed that the HED caused a marked increase in lipid parameters, even in normoglycemic P. obesus. The total number of circulating MPs and the numbers of platelet-, leukocyte-, and erythrocyte-derived MPs were unaltered in the HED group. However, the HED induced increases in the numbers of monocytes/neutrophils and procoagulant MPs and a decrease in the endothelial MP levels. Cav-1β protein expression and reactive oxygen species production were increased in the vascular endothelium of HED-treated P. obesus. CONCLUSION From these findings, it is indicated that the HED exerts deleterious effects on the vascular system by increasing the monocyte/neutrophil and procoagulant MP levels, which may lead to cav-1β protein overexpression in dyslipidemic P. obesus.
Collapse
Affiliation(s)
- Mohamed El Fadel Ousmaal
- Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria; Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| | - M Carmen Martínez
- INSERM U1063- Stress Oxydant et Pathologies Métaboliques, Université d'Angers, France.
| | | | - Kahina Chabane
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| | - Abderahim Gaceb
- INSERM U1063- Stress Oxydant et Pathologies Métaboliques, Université d'Angers, France.
| | - Saâdia Mameri
- Laboratory of Anatomopathology, Mustapha Bacha Hospital, Algiers, Algeria.
| | - Jean Giaimis
- UMR Qualisud- Faculty of Pharmacy, University of Montpellier I, Montpellier, France.
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| |
Collapse
|
6
|
Tong YF, Liu Y, Hu ZX, Li ZC, A A. Protocatechuic aldehyde inhibits TNF-α-induced fibronectin expression in human umbilical vein endothelial cells via a c-Jun N-terminal kinase dependent pathway. Exp Ther Med 2015; 11:277-282. [PMID: 26889254 DOI: 10.3892/etm.2015.2896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Fibronectin (FN) is one of the most important extracellular matrix proteins and plays an important role in the pathogenesis of atherosclerosis (AS). The aim of the present study was to evaluate the effect of a potent, water-soluble antioxidant, protocatechuic aldehyde (PA), which is derived from the Chinese herb Salvia miltiorrhiza, on the expression of FN in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-α (TNF-α). The pharmacological effects of PA on the production of FN were investigated using ELISA and western blot analysis. In addition, ELISA and western blot analysis were used to examine the activation and suppression of the mitogen-activated protein kinase (MAPK) pathways and nuclear factor (NF)-κB in TNF-α-stimulated HUVECs, in order to explore the underlying pharmacological mechanism of PA. The inhibitory effect of PA on the total generation of reactive oxygen species (ROS) in TNF-α-stimulated HUVECs was assessed using 2',7'-dichlorofluorescein diacetate. Pretreatment of HUVECs with PA (0.15, 0.45 and 1.35 mM) for 18 h markedly attenuated the TNF-α-stimulated FN surface expression and secretion in a dose-dependent manner. Intracellular ROS generation and the expression of extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) were significantly induced by TNF-α (2 ng/ml) in HUVECs. TNF-α-induced ROS generation and JNK activation were inhibited by PA in a concentration-dependent manner. By contrast, ERK1/2 and p38 activation was not significantly affected by PA. Pretreatment of HUVECs with PA for 18 h markedly attenuated TNF-α-stimulated NF-κB activation. In conclusion, the present findings suggest that PA inhibits TNF-α-induced FN expression in HUVECs through a mechanism that involves ROS/JNK and NF-κB.
Collapse
Affiliation(s)
- Yue-Feng Tong
- Division of Cardiology, The First Yongkang Municipal Hospital, Yongkang, Zhejiang 321300, P.R. China
| | - Yong Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zhi-Xing Hu
- Division of Cardiology, The First Yongkang Municipal Hospital, Yongkang, Zhejiang 321300, P.R. China
| | - Zhe-Cheng Li
- Division of Cardiology, The First Yongkang Municipal Hospital, Yongkang, Zhejiang 321300, P.R. China
| | - Agula A
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
7
|
Anti-atherosclerosis effect of pine nut oil in high-cholesterol and high-fat diet fed rats and its mechanism studies in human umbilical vein endothelial cells. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Goud BKM, Nayal B, Devi OS, Devaki RN, Avinash SS, Satisha TG, Raghuveer CV. Comparison of microalbuminuria with hs-CRP and low density lipoprotein levels in nondiabetic, nonhypertensive myocardial infarction patients. J Cardiovasc Dis Res 2012; 3:287-9. [PMID: 23233772 PMCID: PMC3516008 DOI: 10.4103/0975-3583.102702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Microalbuminuria (MA), defined as urine albumin to urine creatinine ratio (UACR) of 30 to 300 mg/G of creatinine, is an established risk factor for cardiovascular morbidity and mortality and for end-stage renal disease in individuals with an adverse cardiovascular risk profile such as those with hypertension or/and diabetes mellitus. MATERIALS AND METHODS Thirty five patients were included in the study and equal number of age- and sex-matched controls were also included. 2 ml of venous blood was collected for hs-CRP determination and early morning mid stream urine sample was collected under strict aseptic precautions. The lipid profile was estimated in cobas autoanalyzer. RESULTS There was significant increase in levels of Low density lipoprotein (LDL) cholesterol, microalbumin, and hs-CRP (P< 0.001) in patients with myocardial infarction compared to healthy controls. CONCLUSION Therefore, MA and hsCRP evaluation may have potential role in improving cardiovascular risk prediction, when used along with traditional lipid profiles.
Collapse
Affiliation(s)
- B. K. Manjunatha Goud
- Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, U.A.E
| | - Bhavna Nayal
- Department of Pathology, KMC, Manipal University, Manipal, India
| | - Oinam S. Devi
- Department of Nursing, Vidya Nursing College, Kapu, Udupi, India
| | - R. N. Devaki
- Department of Biochemistry, JSS Medical College, JSS University, Mysore, India
| | - S. S. Avinash
- Department of Biochemistry, Father Muller Medical College, Mangalore, India
| | - T. G. Satisha
- Department of Biochemistry, Siddartha Medical College, Tumkur, India
| | - C. V. Raghuveer
- Department of Pathology and Medical Director, SIMS, Mukka, Mangalore, India
| |
Collapse
|
9
|
Langheinrich AC, Paradowska A, Kilinski R, Kampschulte M, Steinfeld K, Altinkilic B, Steger K, Stieger P, Bergmann M, Weidner W. Mixed testicular atrophy related to atherosclerosis: first lessons from the ApoE−/−/ LDL receptor−/− double knockout mouse model. ACTA ACUST UNITED AC 2011; 35:562-71. [DOI: 10.1111/j.1365-2605.2011.01228.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, Torre RDL. Mononuclear Cell Transcriptome Response after Sustained Virgin Olive Oil Consumption in Humans: An Exploratory Nutrigenomics Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:7-19. [DOI: 10.1089/omi.2008.0079] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Olha Khymenets
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Montserat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - María-Isabel Covas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria-Antonia Pujadas
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Daniel Muñoz
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Valentini Konstantinidou
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
11
|
Hunter M, Wang Y, Eubank T, Baran C, Nana-Sinkam P, Marsh C. Survival of monocytes and macrophages and their role in health and disease. Front Biosci (Landmark Ed) 2009; 14:4079-102. [PMID: 19273336 DOI: 10.2741/3514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are versatile cells involved in health and disease. These cells act as scavengers to rid the body of apoptotic and senescent cells and debris through their phagocytic function. Although this is a primary function of these cells, macrophages play vital roles in inflammation and repair of damaged tissue. Macrophages secrete a large number of cytokines, chemokines and growth factors that recruit and activate a variety of cell types to inflamed tissue compartments. These cells are also critical in cell-mediated immunity and in the resolution of inflammation. Since macrophages, and their precursors, blood monocytes, are important in regulating and resolving inflammation, prolonged cellular survival in tissue compartments could be detrimental. Thus, factors that regulate the fate of monocyte and macrophage survival are important in cellular homeostasis. In this article, we will explore stimuli and the intracellular pathways important in regulating macrophage survival and implication in human disease.
Collapse
Affiliation(s)
- Melissa Hunter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
12
|
Langheinrich AC, Sedding DG, Kampschulte M, Moritz R, Wilhelm J, Haberbosch WG, Ritman EL, Bohle RM. 3-Deazaadenosine inhibits vasa vasorum neovascularization in aortas of ApoE−/−/LDL−/− double knockout mice. Atherosclerosis 2009; 202:103-10. [DOI: 10.1016/j.atherosclerosis.2008.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
13
|
Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-kappaB translocation. Toxicol Appl Pharmacol 2008; 230:187-96. [PMID: 18485437 DOI: 10.1016/j.taap.2008.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/20/2008] [Accepted: 03/15/2008] [Indexed: 02/06/2023]
Abstract
Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-kappaB plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-kappaB mediated gene expression, but conflicting results on 4-HNE's effect on NF-kappaB have been reported. We compared the effect of 4-HNE on iNOS and the NF-kappaB pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a alpha-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-kappaB (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS.
Collapse
|
14
|
Darabian S, Reza Amirzadegan A, Sadeghian H, Sadeghian S, Abbasi A, Raeesi M. Ostial Lesions of Left Main and Right Coronary Arteries: Demographic and Angiographic Features. Angiology 2008; 59:682-7. [DOI: 10.1177/0003319707310275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 258 patients with left main tract disease, the atherosclerotic risk factors were compared between patients with ostial and nonostial lesions of the left main coronary artery. Also, it was done for patients with ostial right coronary artery. Women were more likely to have ostial left main coronary artery and/or ostial right coronary artery. A multivariate logistic regression analysis revealed that the female sex (odds ratio: 2.336) and hypertriglyceridemia (odds ratio: 1.004) were independent risk factors of ostial left main coronary artery lesion. For ostial right coronary artery lesion, the female sex and family history of coronary artery disease were independent predictors. Ostial left main coronary artery and right coronary artery lesions were strongly correlated. The demographic and clinical profiles of ostial stenosis suggest that this group may represent a distinct entity, different from the more common atherosclerotic left main trunk stenosis (LMTD). The female sex and serum triglyceride level can be considered as independent predictors of ostial left main tract disease.
Collapse
Affiliation(s)
- Sirous Darabian
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran,
| | - Ali Reza Amirzadegan
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hakimeh Sadeghian
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Abbasi
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Raeesi
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 2007; 212:174-81. [PMID: 17299798 DOI: 10.1002/jcp.21013] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activated T lymphocytes release vesicles, termed exosomes, enriched in cholesterol and exposing phosphatidylserine (PS) at their outer membrane leaflet. Although CD4(+) activated T lymphocytes infiltrate an atherosclerotic plaque, the effects of T cell exosomes on the atheroma-associated cells are not known. We report here that exosomes isolated from the supernatants of activated human CD4(+) T cells enhance cholesterol accumulation in cultured human monocytes and THP-1 cells. Lipid droplets found in the cytosol of exosome-treated monocytes contained both cholesterol ester and free cholesterol. Anti-phosphatidylserine receptor antibodies recognized surface protein on the monocyte plasma membrane and prevented exosome-induced cholesterol accumulation, indicating that exosome internalization is mediated via endogenous phosphatidylserine receptor. The production of proinflammatory cytokine TNF-alpha enhanced in parallel with monocyte cholesterol accumulation. Our data strongly indicate that exosomes released by activated T cells may represent a powerful, previously unknown, atherogenic factor.
Collapse
Affiliation(s)
- Liudmila Zakharova
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
16
|
von Zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, Hofmann H, Bode C, Peter K. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 2006; 193:102-11. [PMID: 16997307 DOI: 10.1016/j.atherosclerosis.2006.08.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 07/23/2006] [Accepted: 08/23/2006] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Superparamagnetic iron oxide nanoparticles (SPIONs) have been successfully used for magnetic resonance imaging (MRI) of atherosclerotic plaques. Endocytosis into monocytes/macrophages has been proposed as the mechanism for SPION uptake, but a specific receptor has not been identified yet. A potential candidate is the versatile integrin Mac-1 (CD11b/CD18, alphaMbeta2), which is involved in leukocyte adhesion, complement activation and phagocytosis. METHODS AND RESULTS Intracellular SPION-accumulation was confirmed in cultured human monocytes using immunohistochemistry and iron staining. Recombinant cells expressing Mac-1 in different activation states as well as human monocytes with or without PMA stimulation were incubated either with an unspecific IgG or a CD11b-blocking antibody. Thereafter, cells were incubated with FITC-labeled amino-covered SPIONs or ferumoxtran-10 SPIONs and signal intensity was quantified by flow cytometry. Depending on the activation status of Mac-1, a significant increase in SPION binding/uptake was observed, independent on surface coating. Furthermore, SPION binding/uptake was significantly reduced after CD11b blockade. Results were confirmed in recombinant cells incubated with amino-PVA SPIONs and ferumoxtran-10, using T2(*)-weighted 3T MRI. CONCLUSION The integrin Mac-1 is directly involved in SPION binding/uptake. Thus, monocytes abundantly expressing Mac-1 and especially activated monocytes expressing activated Mac-1 may be useful vehicles for high resolution MRI labeling of atherosclerotic plaques.
Collapse
Affiliation(s)
- C von Zur Muhlen
- Department of Cardiology & Angiology, University Hospital of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To describe the background and assessment of inflammatory markers and endothelial function in atherosclerosis. RECENT FINDINGS Recent observations have related several inflammation markers, including cytokines and chemokines, soluble adhesion molecules, and acute-phase reactants, to the pathophysiology of atherosclerosis. Chronic inflammatory states such as rheumatoid arthritis and systemic lupus erythematosus have been identified as independent risk factors for early atherosclerosis. The role of endothelial function in atherosclerosis has been elucidated by clinical studies that have demonstrated that the status of vascular endothelium may modify the effects of risk factors on the development of atherosclerosis. These observations support the response-to-injury theory of atherosclerosis that emphasizes the role of endothelium in atherosclerosis. SUMMARY Inflammation and endothelial function play significant roles in the pathogenesis of atherosclerosis. Elevations in certain inflammatory mediators as well as evidence of endothelial dysfunction are related to increased risk of future cardiovascular morbidity. The value of measuring inflammatory markers and endothelial function in clinical practice remains to be defined.
Collapse
Affiliation(s)
- Mikko J Järvisalo
- The Centre of Applied and Preventive Cardiovascular Medicine, Department of Clinical Physiology, University of Turku, Turku, and Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| | | | | |
Collapse
|
18
|
Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL. Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE-/-/LDL-/- double knockout mice. Atherosclerosis 2006; 191:73-81. [PMID: 16806224 DOI: 10.1016/j.atherosclerosis.2006.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/25/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To increase understanding of the substantial variation in the incidence and distribution of atherosclerotic lesions among different vascular beds. In view of some evidence that there are different distributions of adventitial vasa vasorum (VV) in different vascular beds, and that this correlates with lesion formation, we explored this possible linkage in apoE-/-/LDL-/- double knockout mice, which develop VV at age beyond 16 weeks. METHODS AND RESULTS Samples from the aorta, coronary, pulmonary, carotid, and cerebral arteries in apoE-/-/LDL-/- double knockout mice at the age of 16-80 weeks (n=24) were scanned by micro-CT. Using those 3D images, we characterized plaque volume, vessel luminal diameter and VV luminal volume along the vessels. Results were complemented by histology. Advanced atherosclerotic lesions were found in the aorta, pulmonary artery and carotid artery. Occluded intramyocardial vessels (vessel diameter approximately 0.1mm) with concomitant myocardial infarctions were found without any evidence of adventitial VV neovascularization. VV luminal volume follows the order: aorta>pulmonary arteries>carotid arteries. VV were only observed in atherosclerotic diseased vessels with a lumen diameter>0.4mm. No atherosclerotic lesions, and no VV, were observed in cerebral arteries. CONCLUSION The spatial heterogeneity in the development of atherosclerotic lesions among different vascular beds is linked to appearance of VV and to vessel lumen diameter.
Collapse
Affiliation(s)
- Alexander C Langheinrich
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Alfred 2-409, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
19
|
Homo-Delarche F, Calderari S, Irminger JC, Gangnerau MN, Coulaud J, Rickenbach K, Dolz M, Halban P, Portha B, Serradas P. Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 2006; 55:1625-33. [PMID: 16731824 DOI: 10.2337/db05-1526] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular pathways leading to islet fibrosis in diabetes are unknown. Therefore, we studied gene expression in islets of 4-month-old Goto-Kakizaki (GK) and Wistar control rats. Of 71 genes found to be overexpressed in GK islets, 24% belong to extracellular matrix (ECM)/cell adhesion and 34% to inflammatory/immune response families. Based on gene data, we selected several antibodies to study fibrosis development during progression of hyperglycemia by immunohistochemistry. One-month-old GK and Wistar islets appeared to be similar. Two-month-old GK islets were strongly heterogenous in terms of ECM accumulation compared with Wistar islets. GK islet vascularization, labeled by von Willebrand factor, was altered after 1 month of mild hyperglycemia. Numerous macrophages (major histocompatibility complex class II(+) and CD68(+)) and granulocytes were found in/around GK islets. These data demonstrate that marked inflammatory reaction accompanies GK islet fibrosis and suggest that islet alterations in this nonobese model of type 2 diabetes develop in a way reminiscent of microangiopathy.
Collapse
Affiliation(s)
- Françoise Homo-Delarche
- Unité Mixte de Recherche 7059, National Center for Scientific Research, Diderot University, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zurgil N, Afrimzon E, Shafran Y, Shovman O, Gilburd B, Brikman H, Shoenfeld Y, Deutsch M. Lymphocyte resistance to lysophosphatidylcholine mediated apoptosis in atherosclerosis. Atherosclerosis 2006; 190:73-83. [PMID: 16564529 DOI: 10.1016/j.atherosclerosis.2006.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 01/08/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Apoptosis is being increasingly regarded as a key component in the development and progression of atherosclerosis. Since it has become apparent that the immune system plays a predominant role in mediating atherogenesis, there has been a growing recognition that the evaluation of lymphocyte apoptosis may contribute to understanding a persistent altered immune and inflammatory response. The aim of the present study was to evaluate the apoptotic effect of lysophosphatidylcholine (LPC) on peripheral blood lymphocytes (PBL) derived from unstable angina (UA) patients, as compared to healthy donors. METHODS PBL isolated from 27 healthy donors and 25 age matched UA patients were examined. Early apoptotic events induced by LPC in resting and phytohemagglutinin (PHA)-activated lymphocytes were evaluated by several apoptotic assays. The levels of intracellular reactive oxygen species (ROS) and the expression of apoptotic regulated proteins (Bcl-2 and Bax) were measured. RESULTS LPC was found to induce apoptosis in normal activated lymphocytes, in a dose- and time-dependent manner, in association with an increase in intracellular ROS. In UA patients, an exposure of PHA-activated PBL to LPC triggered neither an increase in ROS generation, nor in the apoptotic manifestations, and was associated with a significantly lower ratio of Bax/Bcl-2 expression. CONCLUSION Our results indicate that PBL isolated from UA patients may be resistant to apoptosis induction by LPC, resulting from oxidative stress challenge and dysregulation of apoptosis-related protein expression.
Collapse
Affiliation(s)
- Naomi Zurgil
- The Biophysical Interdisciplinary Schottenstein Center for the Research and the Technology of the Cellome, Department of Physics, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Using historical data from cohorts born before the 20th century in four northern European countries, we show that increasing longevity and declining mortality in the elderly occurred among the same birth cohorts that experienced a reduction in mortality at younger ages. Concurrently, these cohorts also experienced increasing adult height. We hypothesize that both the decline in old-age mortality and the increase in height were promoted by the reduced burden of infections and inflammation. Thus, early growth and cardiovascular diseases of old age may share infectious and inflammatory causes rooted in the external environment.
Collapse
Affiliation(s)
- Eileen M Crimmins
- Andrus Gerontology Center, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | | |
Collapse
|
22
|
Ferencík M, Stvrtinová V, Hulín I. Defects in regulation of local immune responses resulting in atherosclerosis. Clin Dev Immunol 2005; 12:225-34. [PMID: 16295529 PMCID: PMC2275422 DOI: 10.1080/17402520500182295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is nowadays generally accepted as an inflammatory disease
but the mechanism of its origin and development have not yet been fully clarified.
The present review focuses on the role of the local immune system as one of the
key players in the pathogenesis of the complex process. Its part represented by
vascular-associated lymphoid tissue (VALT) within the arterial wall participates
directly in the vascular wall's homeostatis. Its inordinate activation during
ontogenic development of an individual, this formerly defensive and physiologic
mechanism transform into a pathological process resulting in an impairing
inflammation. Hsp60, CRP and oxidized or otherwise modified LDL are serious
candidates for triggering these pathological changes. The principal role is played
by anti-Hsp60 antibodies and by shear stress originating on the surface of
endothelium due to blood flow. The experimental and clinical data
supporting this immunological hypothesis of atherosclerosis are discussed.
Collapse
Affiliation(s)
- Miroslav Ferencík
- Institute of Immunology, Faculty of Medicine, Comenius University, Bratislava, Slovak Repoublic.
| | | | | |
Collapse
|
23
|
Langheinrich AC, Michniewicz A, Sedding DG, Walker G, Beighley PE, Rau WS, Bohle RM, Ritman EL. Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arterioscler Thromb Vasc Biol 2005; 26:347-52. [PMID: 16293797 DOI: 10.1161/01.atv.0000196565.38679.6d] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We hypothesized that apolipoprotein E (apoE)(-/-)/low-density lipoprotein (LDL)(-/-) double knockout mice might develop vasa vasorum (VV) in association with advanced lesion formation. METHODS AND RESULTS Aortas from apoE(-/-)/LDL(-/-) mice aged 16, 18, 20, or 80 weeks were infused in situ with Microfil, harvested, and scanned with micro-computed tomography (CT). We characterized plaque volume and CT "density" as well as VV luminal volume along the aorta using Analyze 6.0 software. Results were complemented by a detailed histological plaque classification according to American Heart Association guidelines. From 16 to 80 weeks, plaque volume and VV opacified lumen volume increased with age (P<0.001). The 3-dimensional micro-CT images of arterial and venous VV trees allowed perfusion territories to be delineated. The spatial location and magnitude of VV density and adventitial inflammation were strongly correlated in advanced atherosclerotic lesions (r=0.91) and identified as an independent correlate to advanced lesions. At age 80 weeks, VV luminal volume was increased 20-fold compared with animals at age 16 weeks (P<0.001). Micro-CT showed that adventitial VV communicate with intraplaque microvessels. CONCLUSIONS Our results show that apoE(-/-)/LDL(-/-) double knockout mice develop VV and advanced atheromas along the aorta. Lesion volume was closely associated with amount of neovascularization in advanced atheromas.
Collapse
|