1
|
Forró T, Manu DR, Barbu-Tudoran L, Bălașa R. Astrocyte Dysfunction Reflected in Ischemia-Induced Astrocyte-Derived Extracellular Vesicles: A Pilot Study on Acute Ischemic Stroke Patients. Int J Mol Sci 2024; 25:12471. [PMID: 39596535 PMCID: PMC11594292 DOI: 10.3390/ijms252212471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) secreted by astrocytes (ADEVs) mediate numerous biological processes, providing insights into damage, repair, and protection following ischemic stroke (IS). This pilot study aimed to broaden the current knowledge on the astrocyte response to ischemia by dynamically assessing the aquaporin-4 (AQP4) and glial cell line-derived neurotrophic factor (GDNF) as cargo proteins of these vesicles in eighteen acute IS patients and nine controls. EV proteins were detected by Western blotting and followed 24 h (D1), 7 days (D7), and one month (M1) after symptoms onset. The post-ischemic ADEV AQP4 and GDNF levels were higher at D1 compared to the control group (p = 0.006 and p = 0.023). Significant differences were observed in ADEV AQP4 during the three evaluated time points (n = 12, p = 0.013) and between D1 and D7 (z = 2.858, p = 0.012), but not in EV GDNF. There was a positive relationship between the severity of stroke at D1 according to the National Institutes of Health Stroke Scale, and ADEV AQP4 at D1 (r = 0.50, p = 0.031), as well as ADEV GDNF at D1 and D7 (r = 0.49, p = 0.035 and r = 0.53, p = 0.021, respectively). The release of EVs with distinct protein profiles can be an attractive platform for the development of biomarkers in IS.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Bălașa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
2
|
Kumar M, Leekha A, Nandy S, Kulkarni R, Martinez-Paniagua M, Rahman Sefat KMS, Willson RC, Varadarajan N. Enzymatic depletion of circulating glutamine is immunosuppressive in cancers. iScience 2024; 27:109817. [PMID: 38770139 PMCID: PMC11103382 DOI: 10.1016/j.isci.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Collapse
Affiliation(s)
- Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - K. M. Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Forró T, Manu DR, Băjenaru OL, Bălașa R. GFAP as Astrocyte-Derived Extracellular Vesicle Cargo in Acute Ischemic Stroke Patients-A Pilot Study. Int J Mol Sci 2024; 25:5726. [PMID: 38891912 PMCID: PMC11172178 DOI: 10.3390/ijms25115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The utility of serum glial fibrillary acidic protein (GFAP) in acute ischemic stroke (AIS) has been extensively studied in recent years. Here, we aimed to assess its potential role as a cargo protein of extracellular vesicles (EVs) secreted by astrocytes (ADEVs) in response to brain ischemia. Plasma samples from eighteen AIS patients at 24 h (D1), 7 days (D7), and one month (M1) post-symptoms onset, and nine age, sex, and cardiovascular risk factor-matched healthy controls were obtained to isolate EVs using the Exoquick ULTRA EV kit. Subsets of presumed ADEVs were identified further by the expression of the glutamate aspartate transporter (GLAST) as a specific marker of astrocytes with the Basic Exo-Flow Capture kit. Western blotting has tested the presence of GFAP in ADEV cargo. Post-stroke ADEV GFAP levels were elevated at D1 and D7 but not M1 compared to controls (p = 0.007, p = 0.019, and p = 0.344, respectively). Significant differences were highlighted in ADEV GFAP content at the three time points studied (n = 12, p = 0.027) and between D1 and M1 (z = 2.65, p = 0.023). A positive correlation was observed between the modified Rankin Scale (mRS) at D7 and ADEV GFAP at D1 (r = 0.58, p = 0.010) and D7 (r = 0.57, p = 0.013), respectively. ADEV GFAP may dynamically reflect changes during the first month post-ischemia. Profiling ADEVs from peripheral blood could provide a new way to assess the central nervous system pathology.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu-Lucian Băjenaru
- Discipline of Geriatrics and Gerontology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- National Institute of Gerontology and Geriatrics “Ana Aslan”, 11241 Bucharest, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Shao L, Yang M, Sun T, Xia H, Du D, Li X, Jie Z. Role of solute carrier transporters in regulating dendritic cell maturation and function. Eur J Immunol 2024; 54:e2350385. [PMID: 38073515 DOI: 10.1002/eji.202350385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that initiate and regulate innate and adaptive immune responses. Solute carrier (SLC) transporters mediate diverse physiological functions and maintain cellular metabolite homeostasis. Recent studies have highlighted the significance of SLCs in immune processes. Notably, upon activation, immune cells undergo rapid and robust metabolic reprogramming, largely dependent on SLCs to modulate diverse immunological responses. In this review, we explore the central roles of SLC proteins and their transported substrates in shaping DC functions. We provide a comprehensive overview of recent studies on amino acid transporters, metal ion transporters, and glucose transporters, emphasizing their essential contributions to DC homeostasis under varying pathological conditions. Finally, we propose potential strategies for targeting SLCs in DCs to bolster immunotherapy for a spectrum of human diseases.
Collapse
Affiliation(s)
- Lin Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mengxin Yang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Tao Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haotang Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Song Q, Ruiz J, Xing F, Lo HW, Craddock L, Pullikuth AK, Miller LD, Soike MH, O'Neill SS, Watabe K, Chan MD, Su J. Single-cell sequencing reveals the landscape of the human brain metastatic microenvironment. Commun Biol 2023; 6:760. [PMID: 37479733 PMCID: PMC10362065 DOI: 10.1038/s42003-023-05124-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Brain metastases is the most common intracranial tumor and account for approximately 20% of all systematic cancer cases. It is a leading cause of death in advanced-stage cancer, resulting in a five-year overall survival rate below 10%. Therefore, there is a critical need to identify effective biomarkers that can support frequent surveillance and promote efficient drug guidance in brain metastasis. Recently, the remarkable breakthroughs in single-cell RNA-sequencing (scRNA-seq) technology have advanced our insights into the tumor microenvironment (TME) at single-cell resolution, which offers the potential to unravel the metastasis-related cellular crosstalk and provides the potential for improving therapeutic effects mediated by multifaceted cellular interactions within TME. In this study, we have applied scRNA-seq and profiled 10,896 cells collected from five brain tumor tissue samples originating from breast and lung cancers. Our analysis reveals the presence of various intratumoral components, including tumor cells, fibroblasts, myeloid cells, stromal cells expressing neural stem cell markers, as well as minor populations of oligodendrocytes and T cells. Interestingly, distinct cellular compositions are observed across different samples, indicating the influence of diverse cellular interactions on the infiltration patterns within the TME. Importantly, we identify tumor-associated fibroblasts in both our in-house dataset and external scRNA-seq datasets. These fibroblasts exhibit high expression of type I collagen genes, dominate cell-cell interactions within the TME via the type I collagen signaling axis, and facilitate the remodeling of the TME to a collagen-I-rich extracellular matrix similar to the original TME at primary sites. Additionally, we observe M1 activation in native microglial cells and infiltrated macrophages, which may contribute to a proinflammatory TME and the upregulation of collagen type I expression in fibroblasts. Furthermore, tumor cell-specific receptors exhibit a significant association with patient survival in both brain metastasis and native glioblastoma cases. Taken together, our comprehensive analyses identify type I collagen-secreting tumor-associated fibroblasts as key mediators in metastatic brain tumors and uncover tumor receptors that are potentially associated with patient survival. These discoveries provide potential biomarkers for effective therapeutic targets and intervention strategies.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jimmy Ruiz
- Hematology & Oncology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- W.G. (Bill) Hefner Department of Veteran Affairs Medical Center, Salisbury, NC, USA.
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lou Craddock
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael H Soike
- Hazlerig-Salter Department of Radiation Oncology, University of Alabama-Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Stacey S O'Neill
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Alotaibi G, Khan A, Ronan PJ, Lutfy K, Rahman S. Glial Glutamate Transporter Modulation Prevents Development of Complete Freund's Adjuvant-Induced Hyperalgesia and Allodynia in Mice. Brain Sci 2023; 13:807. [PMID: 37239279 PMCID: PMC10216248 DOI: 10.3390/brainsci13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete Freund's adjuvant (CFA) in a mouse model of inflammatory pain. Furthermore, the effects of LDN-212320 on the protein expression of glial markers, such as ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation molecule 11b (CD11b), mitogen-activated protein kinases (p38), astroglial GLT-1, and connexin 43 (CX43), were measured in the hippocampus and ACC following CFA injection using the Western blot analysis and immunofluorescence assay. The effects of LDN-212320 on the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus and ACC were also assessed using an enzyme-linked immunosorbent assay. Pretreatment with LDN-212320 (20 mg/kg) significantly reduced the CFA-induced tactile allodynia and thermal hyperalgesia. The anti-hyperalgesic and anti-allodynic effects of LDN-212320 were reversed by the GLT-1 antagonist DHK (10 mg/kg). Pretreatment with LDN-212320 significantly reduced CFA-induced microglial Iba1, CD11b, and p38 expression in the hippocampus and ACC. LDN-212320 markedly modulated astroglial GLT-1, CX43, and, IL-1β expression in the hippocampus and ACC. Overall, these results suggest that LDN-212320 prevents CFA-induced allodynia and hyperalgesia by upregulating astroglial GLT-1 and CX43 expression and decreasing microglial activation in the hippocampus and ACC. Therefore, LDN-212320 could be developed as a novel therapeutic drug candidate for chronic inflammatory pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Amna Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Patrick J. Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| |
Collapse
|
7
|
Horie T, Takagi W, Aburatani N, Yamazaki M, Inokuchi M, Tachizawa M, Okubo K, Ohtani-Kaneko R, Tokunaga K, Wong MKS, Hyodo S. Segment-Dependent Gene Expression Profiling of the Cartilaginous Fish Nephron Using Laser Microdissection for Functional Characterization of Nephron at Segment Levels. Zoolog Sci 2023; 40:91-104. [PMID: 37042689 DOI: 10.2108/zs220092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
For adaptation to a high salinity marine environment, cartilaginous fishes have evolved a ureosmotic strategy. They have a highly elaborate "four-loop nephron" in the kidney, which is considered to be important for reabsorption of urea from the glomerular filtrate to maintain a high concentration of urea in the body. However, the function and regulation, generally, of the "four-loop nephron" are still largely unknown due to the complicated configuration of the nephron and its many subdivided segments. Laser microdissection (LMD) followed by RNA-sequencing (RNA-seq) analysis is a powerful technique to obtain segment-dependent gene expression profiles. In the present study, using the kidney of cloudy catshark, Scyliorhinus torazame, we tested several formaldehyde-free and formaldehyde-based fixatives to optimize the fixation methods. Fixation by 1% neutral buffered formalin for 15 min resulted in sufficient RNA and structural integrities, which allowed LMD clipping of specific nephron segments and subsequent RNA-seq analysis. RNA-seq from the LMD samples of the second-loop, the fourth-loop, and the five tubular segments in the bundle zone revealed a number of specific membrane transporter genes that can characterize each segment. Among them, we examined expressions of the Na + -coupled cotransporters abundantly expressed in the second loop samples. Although the proximal II segment of the second loop is known for the elimination of excess solutes, the present results imply that the PII segment is also crucial for reabsorption of valuable solutes. Looking ahead to future studies, the segment-dependent gene expression profiling will be a powerful technique for unraveling the renal mechanisms and regulation in euryhaline elasmobranchs.
Collapse
Affiliation(s)
- Takashi Horie
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Naotaka Aburatani
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Manabu Yamazaki
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Masaya Tachizawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan
| | - Marty Kwok-Sing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
8
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Isabel Méndez
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
9
|
Adant I, Bird M, Decru B, Windmolders P, Wallays M, de Witte P, Rymen D, Witters P, Vermeersch P, Cassiman D, Ghesquière B. Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction. Mol Metab 2022; 63:101537. [PMID: 35772644 PMCID: PMC9287363 DOI: 10.1016/j.molmet.2022.101537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Primary mitochondrial diseases (PMD) are a large, heterogeneous group of genetic disorders affecting mitochondrial function, mostly by disrupting the oxidative phosphorylation (OXPHOS) system. Understanding the cellular metabolic re-wiring occurring in PMD is crucial for the development of novel diagnostic tools and treatments, as PMD are often complex to diagnose and most of them currently have no effective therapy. Objectives To characterize the cellular metabolic consequences of OXPHOS dysfunction and based on the metabolic signature, to design new diagnostic and therapeutic strategies. Methods In vitro assays were performed in skin-derived fibroblasts obtained from patients with diverse PMD and validated in pharmacological models of OXPHOS dysfunction. Proliferation was assessed using the Incucyte technology. Steady-state glucose and glutamine tracing studies were performed with LC-MS quantification of cellular metabolites. The therapeutic potential of nutritional supplements was evaluated by assessing their effect on proliferation and on the metabolomics profile. Successful therapies were then tested in a in vivo lethal rotenone model in zebrafish. Results OXPHOS dysfunction has a unique metabolic signature linked to an NAD+/NADH imbalance including depletion of TCA intermediates and aspartate, and increased levels of glycerol-3-phosphate. Supplementation with pyruvate and uridine fully rescues this altered metabolic profile and the subsequent proliferation deficit. Additionally, in zebrafish, the same nutritional treatment increases the survival after rotenone exposure. Conclusions Our findings reinforce the importance of the NAD+/NADH imbalance following OXPHOS dysfunction in PMD and open the door to new diagnostic and therapeutic tools for PMD. OXPHOS deficiency causes a distinct metabolic profile linked to a NAD+/NADH imbalance. Depleted intracellular aspartic acid is a potential biomarker for OXPHOS dysfunction. Therapy with pyruvate and uridine corrects the metabolic profile of OXPHOS deficiency. Pyruvate and uridine treatment increases survival in a lethal rotenone zebrafish model.
Collapse
Affiliation(s)
- Isabelle Adant
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Matthew Bird
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Bram Decru
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Daisy Rymen
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Witters
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, 3000, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
10
|
Ding J, He L, Li T, Yin Y. Research progress on the function of the amino acid transporter gene <italic>SLC1A3</italic> and its regulation mechanism of action in the nervous system and mitochondria. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lee A, Klinkradt S, McCombe P, Pow D. Cloning of a new form of EAAT2/GLT-1 from human and rodent brains. Neurosci Lett 2022; 780:136637. [DOI: 10.1016/j.neulet.2022.136637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022]
|
12
|
Yoshikawa M, Kan T, Shirose K, Watanabe M, Matsuda M, Ito K, Kawaguchi M. Free d-Amino Acids in Salivary Gland in Rat. BIOLOGY 2022; 11:390. [PMID: 35336764 PMCID: PMC8944958 DOI: 10.3390/biology11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Free d-amino acids, which are enantiomers of l-amino acids, are found in mammals, including humans, and play an important role in a range of physiological functions in the central nervous system and peripheral tissues. Several d-amino acids have been observed in saliva, but their origin and the enzymes involved in their metabolism and catabolism remain to be clarified. In the present study, large amounts of d-aspartic acid and small amounts of d-serine and d-alanine were detected in all three major salivary glands in rat. No other d-enantiomers were detected. Protein expression of d-amino acid oxidase and d-aspartate oxidase, the enzymes responsible for the oxidative deamination of neutral and dicarboxylic d-amino acids, respectively, were detected in all three types of salivary gland. Furthermore, protein expression of the d-serine metabolic enzyme, serine racemase, in parotid glands amounted to approximately 40% of that observed in the cerebral cortex. The N-methyl-d-aspartic acid subunit proteins NR1 and NR2D were detected in all three major salivary glands. The results of the present study suggest that d-amino acids play a physiological role in a range of endocrine and exocrine function in salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | | |
Collapse
|
13
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
14
|
Jiménez-Torres C, El-Kehdy H, Hernández-Kelly LC, Sokal E, Ortega A, Najimi M. Acute Liver Toxicity Modifies Protein Expression of Glutamate Transporters in Liver and Cerebellar Tissue. Front Neurosci 2021; 14:613225. [PMID: 33488353 PMCID: PMC7815688 DOI: 10.3389/fnins.2020.613225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Glutamate is the main excitatory amino acid acting at the level of pre and postsynaptic neurons, as well as in glial cells. It is involved in the coordinated modulation of energy metabolism, glutamine synthesis, and ammonia detoxification. The relationship between the functional status of liver and brain has been known for many years. The most widely recognized aspect of this relation is the brain dysfunction caused by acute liver injury that manifests a wide spectrum of neurologic and psychiatric abnormalities. Inflammation, circulating neurotoxins, and impaired neurotransmission have been reported in this pathophysiology. In the present contribution, we report the effect of a hepatotoxic compound like CCl4 on the expression of key proteins involved in glutamate uptake and metabolism as glutamate transporters and glutamine synthetase in mice liver, brain, and cerebellum. Our findings highlight a differential expression pattern of glutamate transporters in cerebellum. A significant Purkinje cells loss, in parallel to an up-regulation of glutamine synthetase, and astrogliosis in the brain have also been noticed. In the intoxicated liver, glutamate transporter 1 expression is up-regulated, in contrast to glutamine synthetase which is reduced in a time-dependent manner. Taken together our results demonstrate that the exposure to an acute CCl4 insult, leads to the disruption of glutamate transporters expression in the liver-brain axis and therefore a severe alteration in glutamate-mediated neurotransmission might be present in the central nervous system.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| |
Collapse
|
15
|
Ishii R, Yanagisawa H, Sada A. Defining compartmentalized stem cell populations with distinct cell division dynamics in the ocular surface epithelium. Development 2020; 147:dev197590. [PMID: 33199446 PMCID: PMC7758628 DOI: 10.1242/dev.197590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Adult tissues contain label-retaining cells (LRCs), which are relatively slow-cycling and considered to represent a property of tissue stem cells (SCs). In the ocular surface epithelium, LRCs are present in the limbus and conjunctival fornix; however, the character of these LRCs remains unclear, owing to lack of appropriate molecular markers. Using three CreER transgenic mouse lines, we demonstrate that the ocular surface epithelium accommodates spatially distinct populations with different cell division dynamics. In the limbus, long-lived Slc1a3CreER-labeled SCs either migrate centripetally toward the central cornea or slowly expand their clones laterally within the limbal region. In the central cornea, non-LRCs labeled with Dlx1CreER and K14CreER behave as short-lived progenitor cells. The conjunctival epithelium in the bulbar, fornix and palpebral compartment is regenerated by regionally unique SC populations. Severe damage to the cornea leads to the cancellation of SC compartments and conjunctivalization, whereas milder limbal injury induces a rapid increase of laterally expanding clones in the limbus. Taken together, our work defines compartmentalized multiple SC/progenitor populations of the mouse eye in homeostasis and their behavioral changes in response to injury.
Collapse
Affiliation(s)
- Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
16
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
17
|
Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y. Induction of in vitro Metabolic Zonation in Primary Hepatocytes Requires Both Near-Physiological Oxygen Concentration and Flux. Front Bioeng Biotechnol 2020; 8:524. [PMID: 32656187 PMCID: PMC7325921 DOI: 10.3389/fbioe.2020.00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-clinical drug screening is an important step in assessing the metabolic effects and hepatic toxicity of new pharmaceutical compounds. However, due to the complexity of the liver microarchitecture, simplified in vitro models do not adequately reflect in vivo situations. Especially spatial heterogeneity, known as metabolic zonation, is often lost due to limitations introduced by typical culture conditions. By culturing primary rat hepatocytes in varied ambient oxygen levels on either gas-permeable or non-permeable culture plates, we highlight the importance of biomimetic oxygen supply for the targeted induction of zonation-like phenotypes. Resulting cellular profiles illustrate the effect of pericellular oxygen concentration and consumption rates on hepatic functionality in terms of zone-specific metabolism and β-catenin signaling. We show that modulation of ambient oxygen tension can partially induce metabolic zonation in vitro when considering high supply rates, leading to in vivo-like drug metabolism. However, when oxygen supply is limited, similar modulation instead triggers an ischemic reprogramming, resembling metabolic profiles of hepatocellular carcinoma and increasing susceptibility toward drug-induced injury. Application of this knowledge will allow for the development of more accurate drug screening models to better identify adverse effects in hepatic drug metabolism.
Collapse
Affiliation(s)
| | - Marie Shinohara
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Mathieu Danoy
- CNRS UMI 2820, LIMMS, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Koll R, Martorell Ribera J, Brunner RM, Rebl A, Goldammer T. Gene Profiling in the Adipose Fin of Salmonid Fishes Supports its Function as a Flow Sensor. Genes (Basel) 2019; 11:E21. [PMID: 31878086 PMCID: PMC7016824 DOI: 10.3390/genes11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
In stock enhancement and sea-ranching procedures, the adipose fin of hundreds of millions of salmonids is removed for marking purposes annually. However, recent studies proved the significance of the adipose fin as a flow sensor and attraction feature. In the present study, we profiled the specific expression of 20 neuron- and glial cell-marker genes in the adipose fin and seven other tissues (including dorsal and pectoral fin, brain, skin, muscle, head kidney, and liver) of the salmonid species rainbow trout Oncorhynchus mykiss and maraena whitefish Coregonusmaraena. Moreover, we measured the transcript abundance of genes coding for 15 mechanoreceptive channel proteins from a variety of mechanoreceptors known in vertebrates. The overall expression patterns indicate the presence of the entire repertoire of neurons, glial cells and receptor proteins on the RNA level. This quantification suggests that the adipose fin contains considerable amounts of small nerve fibers with unmyelinated or slightly myelinated axons and most likely mechanoreceptive potential. The findings are consistent for both rainbow trout and maraena whitefish and support a previous hypothesis about the innervation and potential flow sensory function of the adipose fin. Moreover, our data suggest that the resection of the adipose fin has a stronger impact on the welfare of salmonid fish than previously assumed.
Collapse
Affiliation(s)
- Raphael Koll
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Joan Martorell Ribera
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Ronald M. Brunner
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Alexander Rebl
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Tom Goldammer
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
- Professorship for Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
19
|
Abstract
Astrocytes are the most abundant cell type in the brain and are a crucial part of solving its mysteries. Originally assumed to be passive supporting cells, astrocyte's functions are now recognized to include active modulation and information processing at the neural synapse. The full extent of the astrocyte contribution to neural processing remains unknown. This is, in part, due to the lack of methods available for astrocyte identification and analysis. Existing strategies employ genetic tools like the astrocyte specific promoters glial fibrillary acidic protein (GFAP) or Aldh1L1 to create transgenic animals with fluorescently labeled astrocytes. Recently, small molecule targeting moieties have enabled the delivery of bright fluorescent dyes to astrocytes. Here, we review methods for targeting astrocytes, with a focus on a recently developed methylpyridinium targeting moiety's development, chemical synthesis, and elaboration to provide new features like light-based spatiotemporal control of cell labeling.
Collapse
Affiliation(s)
- Alyssa N Preston
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Danielle A Cervasio
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
20
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin‐induced pain behaviour in mice. Eur J Pain 2018. [DOI: https://doi.org/10.1002/ejp.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| |
Collapse
|
21
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin-induced pain behaviour in mice. Eur J Pain 2018; 23:765-783. [PMID: 30427564 DOI: 10.1002/ejp.1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nociceptive pain remains a prevalent clinical problem and often poorly responsive to the currently available analgesics. Previous studies have shown that astroglial glutamate transporter-1 (GLT-1) in the hippocampus and anterior cingulate cortex (ACC) is critically involved in pain processing and modulation. However, the role of astroglial GLT-1 in nociceptive pain involving the hippocampus and ACC remains unknown. We investigated the role of 3-[[(2-Methylphenyl) methyl]thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, in nociceptive pain model and hippocampal-dependent behavioural tasks in mice. METHODS We evaluated the effects of LDN-212320 in formalin-induced nociceptive pain model. In addition, formalin-induced impaired hippocampal-dependent behaviours were measured using Y-maze and object recognition test. Furthermore, GLT-1 expression and extracellular signal-regulated kinase phosphorylation (pERK1/2) were measured in the hippocampus and ACC using Western blot analysis and immunohistochemistry. RESULTS The LDN-212320 (10 or 20 mg/kg, i.p) significantly attenuated formalin-evoked nociceptive behaviour. The antinociceptive effects of LDN-212320 were reversed by systemic administration of DHK (10 mg/kg, i.p), a GLT-1 antagonist. Moreover, LDN-212320 (10 or 20 mg/kg, i.p) significantly reversed formalin-induced impaired hippocampal-dependent behaviour. In addition, LDN-212320 (10 or 20 mg/kg, i.p) increased GLT-1 expressions in the hippocampus and ACC. On the other hand, LDN-212320 (20 mg/kg, i.p) significantly reduced formalin induced-ERK phosphorylation, a marker of nociception, in the hippocampus and ACC. CONCLUSION These results suggest that the GLT-1 activator LDN-212320 prevents nociceptive pain by upregulating astroglial GLT-1 expression in the hippocampus and ACC. Therefore, GLT-1 activator could be a novel drug candidate for nociceptive pain. SIGNIFICANCE The present study provides new insights and evaluates the role of GLT-1 activator in the modulation of nociceptive pain involving hippocampus and ACC. Here, we provide evidence that GLT-1 activator could be a potential therapeutic utility for the treatment of nociceptive pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
22
|
Hu QX, Ottestad-Hansen S, Holmseth S, Hassel B, Danbolt NC, Zhou Y. Expression of Glutamate Transporters in Mouse Liver, Kidney, and Intestine. J Histochem Cytochem 2018; 66:189-202. [PMID: 29303644 DOI: 10.1369/0022155417749828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glutamate transport activities have been identified not only in the brain, but also in the liver, kidney, and intestine. Although glutamate transporter distributions in the central nervous system are fairly well known, there are still uncertainties with respect to the distribution of these transporters in peripheral organs. Quantitative information is mostly lacking, and few of the studies have included genetically modified animals as specificity controls. The present study provides validated qualitative and semi-quantitative data on the excitatory amino acid transporter (EAAT)1-3 subtypes in the mouse liver, kidney, and intestine. In agreement with the current view, we found high EAAT3 protein levels in the brush borders of both the distal small intestine and the renal proximal tubules. Neither EAAT1 nor EAAT2 was detected at significant levels in murine kidney or intestine. In contrast, the liver only expressed EAAT2 (but 2 C-terminal splice variants). EAAT2 was detected in the plasma membranes of perivenous hepatocytes. These cells also expressed glutamine synthetase. Conditional deletion of hepatic EAAT2 did neither lead to overt neurological disturbances nor development of fatty liver.
Collapse
Affiliation(s)
- Qiu Xiang Hu
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sigrid Ottestad-Hansen
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Silvia Holmseth
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Capri M, Olivieri F, Lanzarini C, Remondini D, Borelli V, Lazzarini R, Graciotti L, Albertini MC, Bellavista E, Santoro A, Biondi F, Tagliafico E, Tenedini E, Morsiani C, Pizza G, Vasuri F, D'Errico A, Dazzi A, Pellegrini S, Magenta A, D'Agostino M, Capogrossi MC, Cescon M, Rippo MR, Procopio AD, Franceschi C, Grazi GL. Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell 2017; 16:262-272. [PMID: 27995756 PMCID: PMC5334540 DOI: 10.1111/acel.12549] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12–92 years before transplants and in 11 biopsies after transplants with high donor–recipient age‐mismatch. We also assessed liver function in 36 age‐mismatched recipients. The major findings were the following: (i) miR‐31‐5p, miR‐141‐3p, and miR‐200c‐3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT–qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age‐dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR‐31‐5p and miR‐200c‐3p, and both its mRNA (RT–qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR‐31‐5p, miR‐141‐3p and miR‐200c‐3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor–recipient extreme age‐mismatch; (v) the analysis of recipients plasma by N‐glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age‐mismatch, and recipients apparently ‘rejuvenated’ according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor–recipient age‐mismatches in transplantation, and offered positive evidence for the use of organs from old donors.
Collapse
Affiliation(s)
- Miriam Capri
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
- Center of Clinical Pathology and Innovative Therapy; INRCA-IRCCS National Institute; Via S. Margherita 5; 60124 Ancona Italy
| | - Catia Lanzarini
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Daniel Remondini
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
- Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna; Alma Mater Studiorum; Via Berti Pichat 9/2 Bologna Italy
| | - Vincenzo Borelli
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | | | - Elena Bellavista
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Aurelia Santoro
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Fiammetta Biondi
- CIG, Interdepartmental Center ‘L. Galvani’; Alma Mater Studiorum; Pzza Porta S. Donato, 1 Bologna Italy
| | - Enrico Tagliafico
- Center for Genome Research; Life Sciences Department; University of Modena and Reggio Emilia; Via Campi 287 Modena Italy
| | - Elena Tenedini
- Center for Genome Research; Life Sciences Department; University of Modena and Reggio Emilia; Via Campi 287 Modena Italy
| | - Cristina Morsiani
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Grazia Pizza
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine; Alma Mater Studiorum; Via S. Giacomo12 Bologna Italy
| | - Francesco Vasuri
- ’F. Addarii’ Institute of Oncology and Transplant Pathology at DIMES; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Antonietta D'Errico
- ’F. Addarii’ Institute of Oncology and Transplant Pathology at DIMES; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Alessandro Dazzi
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Sara Pellegrini
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Alessandra Magenta
- Istituto Dermopatico dell'Immacolata-IRCCS; FLMM; Vascular Pathology Laboratory; Via dei Monti di Creta 104 Rome 00167 Italy
| | - Marco D'Agostino
- Department of Experimental Medicine; Sapienza; University of Rome; Viale Regina Elena 324 Rome 00161 Italy
| | - Maurizio C. Capogrossi
- Istituto Dermopatico dell'Immacolata-IRCCS; FLMM; Vascular Pathology Laboratory; Via dei Monti di Creta 104 Rome 00167 Italy
| | - Matteo Cescon
- DIMEC-Department of General Surgery and Medicine Sciences; S. Orsola-Malpighi Hospital; 40138 Bologna Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Via Tronto 10/A Ancona Italy
- Center of Clinical Pathology and Innovative Therapy; INRCA-IRCCS National Institute; Via S. Margherita 5; 60124 Ancona Italy
| | - Claudio Franceschi
- IRCCS; Institute of Neurological Sciences of Bologna; Bologna 40139 Italy
| | - Gian Luca Grazi
- Istituto Nazionale Tumori ‘Regina Elena’; Via Elio Chianesi 53 Roma 00144 Italy
| |
Collapse
|
24
|
Krycer JR, Fazakerley DJ, Cater RJ, C Thomas K, Naghiloo S, Burchfield JG, Humphrey SJ, Vandenberg RJ, Ryan RM, James DE. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett 2017; 591:322-330. [PMID: 28032905 DOI: 10.1002/1873-3468.12549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
The hormone insulin coordinates the catabolism of nutrients by protein phosphorylation. Phosphoproteomic analysis identified insulin-responsive phosphorylation of the Glu/Asp transporter SLC1A3/EAAT1 in adipocytes. The role of SLC1A3 in adipocytes is not well-understood. We show that SLC1A3 is localised to the plasma membrane and the major regulator of acidic amino acid uptake in adipocytes. However, its localisation and activity were unaffected by insulin or mutation of the insulin-regulated phosphosite. The latter was also observed using a heterologous expression system in Xenopus laevis oocytes. Thus, SLC1A3 maintains a constant import of acidic amino acids independently of nutritional status in adipocytes.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Rosemary J Cater
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Kristen C Thomas
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sheyda Naghiloo
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Renae M Ryan
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| |
Collapse
|
25
|
Jensen CJ, Demol F, Bauwens R, Kooijman R, Massie A, Villers A, Ris L, De Keyser J. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice. PLoS One 2016; 11:e0164721. [PMID: 27776147 PMCID: PMC5077086 DOI: 10.1371/journal.pone.0164721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function.
Collapse
Affiliation(s)
- Cathy Joanna Jensen
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurobiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- * E-mail:
| | - Frauke Demol
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Romy Bauwens
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Kooijman
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Agnès Villers
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Jacques De Keyser
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Banday VS, Lejon K. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis. Immunology 2016; 150:162-171. [PMID: 27649685 DOI: 10.1111/imm.12674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2-/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy.
Collapse
Affiliation(s)
- Viqar Showkat Banday
- Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Shimada A, Castrillon EE, Baad-Hansen L, Ghafouri B, Gerdle B, Wåhlén K, Ernberg M, Cairns BE, Svensson P. Increased pain and muscle glutamate concentration after single ingestion of monosodium glutamate by myofascial temporomandibular disorders patients. Eur J Pain 2016; 20:1502-12. [PMID: 27091318 DOI: 10.1002/ejp.874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND A randomized, double-blinded, placebo-controlled study was conducted to investigate if single monosodium glutamate (MSG) administration would elevate muscle/serum glutamate concentrations and affect muscle pain sensitivity in myofascial temporomandibular disorders (TMD) patients more than in healthy individuals. METHODS Twelve myofascial TMD patients and 12 sex- and age-matched healthy controls participated in two sessions. Participants drank MSG (150 mg/kg) or NaCl (24 mg/kg; control) diluted in 400 mL of soda. The concentration of glutamate in the masseter muscle, blood plasma and saliva was determined before and after the ingestion of MSG or control. At baseline and every 15 min after the ingestion, pain intensity was scored on a 0-10 numeric rating scale. Pressure pain threshold, pressure pain tolerance (PPTol) and autonomic parameters were measured. All participants were asked to report adverse effects after the ingestion. RESULTS In TMD, interstitial glutamate concentration was significantly greater after the MSG ingestion when compared with healthy controls. TMD reported a mean pain intensity of 2.8/10 at baseline, which significantly increased by 40% 30 min post MSG ingestion. At baseline, TMD showed lower PPTols in the masseter and trapezius, and higher diastolic blood pressure and heart rate than healthy controls. The MSG ingestion resulted in reports of headache by half of the TMD and healthy controls, respectively. CONCLUSION These findings suggest that myofascial TMD patients may be particularly sensitive to the effects of ingested MSG. WHAT DOES THIS STUDY ADD?': Elevation of interstitial glutamate concentration in the masseter muscle caused by monosodium glutamate (MSG) ingestion was significantly greater in myofascial myofascial temporomandibular disorders (TMD) patients than healthy individuals. This elevation of interstitial glutamate concentration in the masseter muscle significantly increased the intensity of spontaneous pain in myofascial TMD patients.
Collapse
Affiliation(s)
- A Shimada
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Faculty of Health Sciences, Aarhus University, Denmark. .,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.
| | - E E Castrillon
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Faculty of Health Sciences, Aarhus University, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - L Baad-Hansen
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Faculty of Health Sciences, Aarhus University, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - B Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, County Council of Östergötland, Linköping University, Sweden
| | - B Gerdle
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, County Council of Östergötland, Linköping University, Sweden
| | - K Wåhlén
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, County Council of Östergötland, Linköping University, Sweden
| | - M Ernberg
- Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,Section of Orofacial Pain and Jaw Function, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - B E Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - P Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Faculty of Health Sciences, Aarhus University, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| |
Collapse
|
29
|
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:103-45. [PMID: 27288076 DOI: 10.1016/bs.apha.2016.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to developmental, neurologic, and psychiatric diseases. Extracellular glutamate is cleared by a family of five Na(+)-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by neurons throughout the nervous system. Expression of the last two members of this family (EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in cerebellum and retina, respectively. In this review, we will discuss our current understanding of the mechanisms that control transcriptional regulation of the different members of this family. Over the last two decades, our understanding of the mechanisms that regulate expression of GLT-1 and GLAST has advanced considerably; several specific transcription factors, cis-elements, and epigenetic mechanisms have been identified. For the other members of the family, little or nothing is known about the mechanisms that control their transcription. It is assumed that by defining the mechanisms involved, we will advance our understanding of the events that result in cell-specific expression of these transporters and perhaps begin to define the mechanisms by which neurologic diseases are changing the biology of the cells that express these transporters. This approach might provide a pathway for developing new therapies for a wide range of essentially untreatable and devastating diseases that kill neurons by an excitotoxic mechanism.
Collapse
Affiliation(s)
- Z Martinez-Lozada
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - A M Guillem
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - M B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
30
|
Meeker KD, Meabon JS, Cook DG. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:509-20. [PMID: 25589729 DOI: 10.3233/jad-142304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.
Collapse
Affiliation(s)
- Kole D Meeker
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
| | - James S Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David G Cook
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Division of Gerontology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
31
|
Effects of 17 α-methyltestosterone on transcriptome, gonadal histology and sex steroid hormones in rare minnow Gobiocypris rarus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:20-7. [PMID: 26070167 DOI: 10.1016/j.cbd.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/23/2022]
Abstract
The 17α-methyltestosterone (MT), a synthetic androgen, is known for its interference effects on the endocrine system. Aiming to investigate the transcriptome profiling of gonads induced by MT and to understand the molecular mechanism by which MT causes adverse effects in fish, transcriptome profiling of gonads, gonadal histology and the sex steroid hormones in response to MT were analyzed in Gobiocypris rarus. Eight libraries, 4 from the ovary and 4 from the testis, were constructed and sequenced and then a total number of clean reads per sample ranging from 7.03 to 9.99 million were obtained. In females, a total of 191 transcripts were differentially regulated by MT, consisting of 102 up-regulated transcripts and 89 down-regulated transcripts. In males, 268 differentially expressed genes with 108 up-regulated and 160 down-regulated were detected upon MT exposure. Testosterone serves as the major sex steroid hormone content in G. rarus of both sexes. The concentrations of 17β-estradiol, testosterone and 11-ketotestosterone were significantly increased in females and decreased in males after MT exposure. Interestingly, MT caused a decreased number of vitellogenic oocytes in the ovary and spermatozoa in the testis. After MT exposure, four differentially expressed genes (ndufa4, slc1a3a, caskin-2 and rpt3) were found in G. rarus of both sexes. Overall, we suggest that MT seemed to affect genes involved in pathways related to physiological processes in the gonads of G. rarus. These processes include the electron transfer of Complex IV, endothelial cell activation, axon growth and guidance, and proteasome assembly and glutamate transport metabolic.
Collapse
|
32
|
Šerý O, Sultana N, Kashem MA, Pow DV, Balcar VJ. GLAST But Not Least--Distribution, Function, Genetics and Epigenetics of L-Glutamate Transport in Brain--Focus on GLAST/EAAT1. Neurochem Res 2015; 40:2461-72. [PMID: 25972039 DOI: 10.1007/s11064-015-1605-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Synaptically released L-glutamate, the most important excitatory neurotransmitter in the CNS, is removed from extracellular space by fast and efficient transport mediated by several transporters; the most abundant ones are EAAT1/GLAST and EAAT2/GLT1. The review first summarizes their location, functions and basic characteristics. We then look at genetics and epigenetics of EAAT1/GLAST and EAAT2/GLT1 and perform in silico analyses of their promoter regions. There is one CpG island in SLC1A2 (EAAT2/GLT1) gene and none in SLC1A3 (EAAT1/GLAST) suggesting that DNA methylation is not the most important epigenetic mechanism regulating EAAT1/GLAST levels in brain. There are targets for specific miRNA in SLC1A2 (EAAT2/GLT1) gene. We also note that while defects in EAAT2/GLT1 have been associated with various pathological states including chronic neurodegenerative diseases, very little is known on possible contributions of defective or dysfunctional EAAT1/GLAST to any specific brain disease. Finally, we review evidence of EAAT1/GLAST involvement in mechanisms of brain response to alcoholism and present some preliminary data showing that ethanol, at concentrations which may be reached following heavy drinking, can have an effect on the distribution of EAAT1/GLAST in cultured astrocytes; the effect is blocked by baclofen, a GABA-B receptor agonist and a drug potentially useful in the treatment of alcoholism. We argue that more research effort should be focused on EAAT1/GLAST, particularly in relation to alcoholism and drug addiction.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Nilufa Sultana
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mohammed Abul Kashem
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David V Pow
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Vladimir J Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
33
|
Price CTD, Abu Kwaik Y. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages. PLoS One 2014; 9:e114914. [PMID: 25485627 PMCID: PMC4259488 DOI: 10.1371/journal.pone.0114914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/15/2014] [Indexed: 11/19/2022] Open
Abstract
Background Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs) to actively replicating L. pneumophila. Methodology/Principal Findings Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression. Conclusion/Significance Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- Center for Predictive Medicine, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| |
Collapse
|
34
|
Shennan DB, Boyd CAR. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J Mammary Gland Biol Neoplasia 2014; 19:19-33. [PMID: 24158403 DOI: 10.1007/s10911-013-9305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
This review describes the properties and regulation of the membrane transport proteins which supply the mammary gland with aminonitrogen to support metabolism under different physiological conditions (i.e. pregnancy, lactation and involution). Early studies focussed on characterising amino acid and peptide transport pathways with respect to substrate specificity, kinetics and hormonal regulation to allow a broad picture of the systems within the gland to be established. Recent investigations have concentrated on identifying the individual transporters at the molecular level (i.e. mRNA and protein). Many of the latter studies have identified the molecular correlates of the transport systems uncovered in the earlier functional investigations but in turn have also highlighted the need for more amino acid transport studies to be performed. The transporters function as either cotransporters and exchangers (or both) and act in a coordinated and regulated fashion to support the metabolic needs of the gland. However, it is apparent that a physiological role for a number of the transport proteins has yet to be elucidated. This article highlights the many gaps in our knowledge regarding the precise cellular location of a number of amino acid transporters within the gland. We also describe the role of amino acid transport in mammary cell volume regulation. Finally, the important role that individual mammary transport proteins may have in the growth and proliferation of mammary tumours is discussed.
Collapse
Affiliation(s)
- D B Shennan
- Brasenose College, 39 Caerlaverock Road, Prestwick, UK,
| | | |
Collapse
|
35
|
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC. Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 2013; 289:1329-44. [PMID: 24280215 DOI: 10.1074/jbc.m113.529065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.
Collapse
Affiliation(s)
- Yun Zhou
- From The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 2013; 34:108-20. [PMID: 23506861 DOI: 10.1016/j.mam.2013.01.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023]
Abstract
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565 0871, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 2013; 4:27. [PMID: 23899038 PMCID: PMC3750756 DOI: 10.1186/2049-1891-4-27] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
Abstract
The intestine and the gut-associated lymphoid tissue (GALT) are essential components of whole body immune defense, protecting the body from foreign antigens and pathogens, while allowing tolerance to commensal bacteria and dietary antigens. The requirement for protein to support the immune system is well established. Less is known regarding the immune modifying properties of individual amino acids, particularly on the GALT. Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake, but the availability of specific dietary amino acids (in particular glutamine, glutamate, and arginine, and perhaps methionine, cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells. These amino acids each have unique properties that include, maintaining the integrity, growth and function of the intestine, as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers, specific T cell functions, and the secretion of IgA by lamina propria cells. Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters. Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.
Collapse
Affiliation(s)
- Megan R Ruth
- Department of Agricultural, Food and Nutritional Science, 4-126A Li Ka Shing Health Research Innovation Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
38
|
Kan L, Peng CY, McGuire TL, Kessler JA. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone 2013; 53:194-203. [PMID: 23262027 PMCID: PMC3793345 DOI: 10.1016/j.bone.2012.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/09/2012] [Indexed: 01/15/2023]
Abstract
Heterotopic ossification (HO), acquired or hereditary, is the formation of true bone outside the normal skeleton. Although the lineages of cells contributing to bone formation during normal development are well defined, the precise lineages of cells that contribute to HO are not clear. This study utilized Cre-lox based genetic lineage tracing to examine the contribution to HO of cells that expressed either FoxD1 or Glast. Both lineages contributed broadly to different normal tissues, and FoxD1-cre labeled cells contributed to normal bone formation. Despite the similarity in labeling patterns of normal tissues, and the significant contribution of FoxD1-cre labeled cells to normal bone, only Glast-creERT labeled progenitors contributed significantly to HO at all stages, suggesting that the cell populations that normally contribute to physiological bone formation, such as the Foxd1-cre labeled cells, may not participate in pathological HO. Further, identification of Glast-expressing cells as precursors that give rise to HO should help with the molecular targeting of this population both for the prevention and for the treatment of HO.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The mammalian genome contains four genes encoding GABA transporters (GAT1, slc6a1; GAT2, slc6a13; GAT3, slc6a11; BGT1, slc6a12) and five glutamate transporter genes (EAAT1, slc1a3; EAAT2, slc1a2; EAAT3, slc1a1; EAAT4, slc1a6; EAAT5, slc1a7). These transporters keep the extracellular levels of GABA and excitatory amino acids low and provide amino acids for metabolic purposes. The various transporters have different properties both with respect to their transport functions and with respect to their ability to act as ion channels. Further, they are differentially regulated. To understand the physiological roles of the individual transporter subtypes, it is necessary to obtain information on their distributions and expression levels. Quantitative data are important as the functional capacity is limited by the number of transporter molecules. The most important and most abundant transporters for removal of transmitter glutamate in the brain are EAAT2 (GLT-1) and EAAT1 (GLAST), while GAT1 and GAT3 are the major GABA transporters in the brain. EAAT3 (EAAC1) does not appear to play a role in signal transduction, but plays other roles. Due to their high uncoupled anion conductance, EAAT4 and EAAT5 seem to be acting more like inhibitory glutamate receptors than as glutamate transporters. GAT2 and BGT1 are primarily expressed in the liver and kidney, but are also found in the leptomeninges, while the levels in brain tissue proper are too low to have any impact on GABA removal, at least in normal young adult mice. The present review will provide summary of what is currently known and will also discuss some methodological pitfalls.
Collapse
Affiliation(s)
- Yun Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Niels Christian Danbolt, The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, Oslo N-0317, Norway e-mail:
| |
Collapse
|
40
|
Roman K, Yang M, Stephens RL. Characterization of the Visceral Antinociceptive Effect of Glial Glutamate Transporter GLT-1 Upregulation by Ceftriaxone. ISRN PAIN 2012; 2013:726891. [PMID: 27335870 PMCID: PMC4893408 DOI: 10.1155/2013/726891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 10/31/2012] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrate that glial glutamate transporter-1 (GLT-1) upregulation attenuates visceral nociception. The present work further characterized the effect of ceftriaxone- (CTX-) mediated GLT-1 upregulation on visceral hyperalgesia. Intrathecal pretreatment with dihydrokainate, a selective GLT-1 antagonist, produced a reversal of the antinociceptive response to bladder distension produced by CTX. The hyperalgesic response to urinary bladder distension caused by intravesicular acrolein was also attenuated by CTX treatment as was the enhanced time spent licking of abdominal area due to intravesicular acrolein. Bladder inflammation via cyclophosphamide injections enhanced the nociceptive to bladder distension; cohorts administered CTX and concomitant cyclophosphamide showed reduced hyperalgesic response. Cyclophosphamide-induced bladder hyperalgesia correlated with a significant 22% increase in GluR1 AMPA receptor subunit expression in the membrane fraction of the lumbosacral spinal cord, which was attenuated by CTX coadministration. Finally, neonatal colon insult-induced hyperalgesia caused by intracolonic mustard oil (2%) administration at P9 and P11 was attenuated by CTX. These studies suggest that GLT-1 upregulation (1) attenuates the hyperalgesia caused by bladder irritation/inflammation or by neonatal colonic insult, (2) acts at a spinal site, and (3) may produce antinociceptive effects by attenuating GluR1 membrane trafficking. These findings support further consideration of this FDA-approved drug to treat chronic pelvic pain syndromes.
Collapse
Affiliation(s)
- K. Roman
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - M. Yang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert L. Stephens
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Schewe B, Blenau W, Walz B. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity. J Exp Biol 2012; 215:1337-45. [DOI: 10.1242/jeb.063172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H+-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pHi) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pHi regulation microfluorometrically and show that: (1) under resting conditions, the application of Na+-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na+-dependent glutamate transporter; (2) the maintenance of resting pHi is Na+, Cl–, concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na+ sensitive and requires V-ATPase activity; (4) the Na+/H+ antiporter is not involved in pHi recovery after a NH4Cl prepulse; and (5) at least one Na+-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na+-dependent transporter maintain normal pHi values of pH 7.5. We have also detected the presence of a Na+-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pHi-regulating transporter, its activity affects steady-state pHi in C. vicina salivary gland cells.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Nutrition Science, Department of Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Blenau
- Oberursel Bee Research Institute, Goethe-University Frankfurt/Main, Department of Life Science, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
42
|
Pfrieger FW, Slezak M. Genetic approaches to study glial cells in the rodent brain. Glia 2011; 60:681-701. [PMID: 22162024 DOI: 10.1002/glia.22283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/18/2011] [Indexed: 01/02/2023]
Abstract
The development, function, and pathology of the brain depend on interactions of neurons and different types of glial cells, namely astrocytes, oligodendrocytes, microglia, and ependymal cells. Understanding neuron-glia interactions in vivo requires dedicated experimental approaches to manipulate each cell type independently. In this review, we first summarize techniques that allow for cell-specific gene modification including targeted mutagenesis and viral transduction. In the second part, we describe the genetic models that allow to target the main glial cell types in the central nervous system. The existing arsenal of approaches to study glial cells in vivo and its expansion in the future are key to understand neuron-glia interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg, France.
| | | |
Collapse
|
43
|
Meabon JS, Lee A, Meeker KD, Bekris LM, Fujimura RK, Yu CE, Watson GS, Pow DV, Sweet IR, Cook DG. Differential expression of the glutamate transporter GLT-1 in pancreas. J Histochem Cytochem 2011; 60:139-51. [PMID: 22114258 DOI: 10.1369/0022155411430095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glutamate uptake transporter GLT-1 is best understood for its critical role in preventing brain seizures. Increasing evidence argues that GLT-1 also modulates, and is modulated by, metabolic processes that influence glucose homeostasis. To investigate further the potential role of GLT-1 in these regards, the authors examined GLT-1 expression in pancreas and found that mature multimeric GLT-1 protein is stably expressed in the pancreas of wild-type, but not GLT-1 knockout, mice. There are three primary functional carboxyl-terminus GLT-1 splice variants, called GLT-1a, b, and c. Brain and liver express all three variants; however, the pancreas expresses GLT-1a and GLT-1b but not GLT-1c. Quantitative real time-PCR further revealed that while GLT-1a is the predominant GLT-1 splice variant in brain and liver, GLT-1b is the most abundant splice variant expressed in pancreas. Confocal microscopy and immunohistochemistry showed that GLT-1a and GLT-1b are expressed in both islet β- and α-cells. GLT-1b was also expressed in exocrine ductal domains. Finally, glutamine synthetase was coexpressed with GLT-1 in islets, which suggests that, as with liver and brain, one possible role of GLT-1 in the pancreas is to support glutamine synthesis.
Collapse
Affiliation(s)
- James S Meabon
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sattler R, Ayukawa Y, Coddington L, Sawa A, Block D, Chipkin R, Rothstein JD. Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol 2011; 232:203-11. [PMID: 21945230 DOI: 10.1016/j.expneurol.2011.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/12/2011] [Accepted: 09/04/2011] [Indexed: 12/22/2022]
Abstract
Discovery of new central nervous system (CNS) acting therapeutics has been slowed down by the lack of useful applicable biomarkers of disease or drug action often due to inaccessibility of relevant human CNS tissue and cell types. In recent years, non-neuronal cells, such as astrocytes, have been reported to play a highly significant role in neurodegenerative diseases, CNS trauma, as well as psychiatric disease and have become a target for small molecule and biologic therapies. We report the development of a method for measuring pharmacodynamic changes induced by potential CNS therapeutics using nasal olfactory neural tissue biopsy. We validated this approach using a potential astrocyte-targeted therapeutic, thiamphenicol, in a pre-clinical rodent study as well as a phase 1 human trial. In both settings, analysis of the olfactory epithelial tissue revealed biological activity of thiamphenicol at the drug target, the excitatory amino acid transporter 2 (EAAT2). Therefore, this biomarker approach may provide a reliable evaluation of CNS glial-directed therapies and hopefully improve throughput for nervous system drug discovery.
Collapse
Affiliation(s)
- Rita Sattler
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Yang M, Roman K, Chen DF, Wang ZG, Lin Y, Stephens RL. GLT-1 overexpression attenuates bladder nociception and local/cross-organ sensitization of bladder nociception. Am J Physiol Renal Physiol 2011; 300:F1353-9. [PMID: 21429971 DOI: 10.1152/ajprenal.00009.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamatergic pathways mediate transmission of pain. Strategies to reduce glutamatergic neurotransmission may have beneficial effects to mitigate nociception. Recent work revealed that overexpression of the astrocytic glutamate transporter (GLT-1) by transgenic or pharmacologic approaches produced a diminished visceral nociceptive response to colonic distension. The purpose of this study was to determine the effect of GLT-1 overexpression on the visceromotor response to bladder distension. Increased glutamate uptake activity produced by 1-wk ceftriaxone (CTX) treatment attenuated 60-64% the visceromotor response to graded bladder distension compared with vehicle-treated mice. One-hour pretreatment with selective GLT-1 antagonist dihydrokainate reversed the blunted visceromotor response to bladder distension produced by 1-wk CTX, suggesting that GLT-1 overexpression mediated the analgesic effect of CTX. Moreover, sensitization of the visceromotor response to bladder distension produced by local bladder irritation (acrolein) was also attenuated by 1-wk CTX treatment. A model of cross-organ sensitization of bladder visceromotor response to distension was next studied to determine whether increased expression of GLT-1 can mitigate colon to bladder sensitization. Intracolonic trinitrobenzene sulfonic acid (TNBS) administered 1 h before eliciting the visceromotor response to graded bladder distension produced a 75-138% increase in visceromotor response compared with animals receiving intracolonic vehicle. In marked contrast, animals treated with 1-wk CTX + intracolonic TNBS showed no enhanced visceromotor response compared with the 1-wk vehicle + intracolonic vehicle group. The study suggests that GLT-1 overexpression attenuates the visceromotor response to bladder distension and both local irritant-induced and cross-organ-sensitized visceromotor response to bladder distension.
Collapse
Affiliation(s)
- M Yang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
46
|
Haas HS, Linecker A, Pfragner R, Sadjak A. Peripheral glutamate signaling in head and neck areas. Head Neck 2011; 32:1554-72. [PMID: 20848447 DOI: 10.1002/hed.21438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The major excitatory neurotransmitter glutamate is also found in the periphery in an increasing number of nonexcitable cells. In line with this it became apparent that glutamate can regulate a broad array of peripheral biological responses, as well. Of particular interest is the discovery that glutamate receptor reactive reagents can influence tumor biology. However, the knowledge of glutamate signaling in peripheral tissues is still incomplete and, in the case of head and neck areas, is almost lacking. The roles of glutamate signaling pathways in these regions are manifold and include orofacial pain, periodontal bone production, skin and airway inflammation, as well as salivation. Furthermore, the interrelations between glutamate and cancers in the oral cavity, thyroid gland, and other regions are discussed. In summary, this review shall strengthen the view that glutamate receptor reagents may also be promising targets for novel therapeutic concepts suitable for a number of diseases in peripheral tissues. The contents of this review cover the following sections: Introduction; The "Glutamate System"; The Taste of Glutamate; Glutamate Signaling in Dental Regions; Glutamate Signaling in Head and Neck Areas; Glutamate Signaling in Head and Neck Cancer; A Brief Overview of Glutamate Signaling in Other Cancers; and Conclusion.
Collapse
Affiliation(s)
- Helga Susanne Haas
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria.
| | | | | | | |
Collapse
|
47
|
Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Simone C, Falcone M, Riboldi G, Govoni A, Bresolin N, Comi GP. Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 2010; 19:3782-96. [DOI: 10.1093/hmg/ddq293] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
48
|
|
49
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
50
|
Shao L, Vawter MP. Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry 2008; 64:89-97. [PMID: 18191109 PMCID: PMC3098561 DOI: 10.1016/j.biopsych.2007.11.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Schizophrenia and bipolar disorder together affect approximately 2.5% of the world population, and their etiologies are thought to involve multiple genetic variants and environmental influences. The analysis of gene expression patterns in brain may provide a characteristic signature for each disorder. METHODS RNA samples from the dorsolateral prefrontal cortex (Brodmann area 46) consisting of individuals with schizophrenia (SZ), bipolar disorder (BPD), and control subjects were tested on the Codelink Human 20K Bioarray platform. Selected transcripts were validated by quantitative real-time polymerase chain reaction (PCR). The strong effects of age, gender, and pH in the analysis of differential gene expression were controlled by analysis of covariance (ANCOVA). Criteria for differential gene expression were 1) a gene was significantly dysregulated in both BPD and SZ compared with control subjects and 2) significant in ANCOVA analysis with samples that have a pH above the median of the sample. RESULTS A list of 78 candidate genes passed these two criteria in BPD and SZ and was overrepresented for functional categories of nervous system development, immune system development and response, and cell death. Five dysregulated genes were confirmed with quantitative Q-PCR in both BPD and SZ. Three genes were highly enriched in brain expression (AGXT2L1, SLC1A2, and TU3A). The distribution of AGXT2L1 expression in control subjects versus BPD and SZ was highly significant (Fisher's Exact Test, p < 10(-06)). CONCLUSIONS These results suggest a partially shared molecular profile for both disorders and offer a window into discovery of common pathophysiology that might lead to core treatments.
Collapse
Affiliation(s)
- Ling Shao
- Department of Psychiatry and Human Behavior, Functional Genomics Laboratory, School of Medicine, University of California, Irvine, California 92697-4260, USA.
| | | |
Collapse
|