1
|
Li F, Zhou Y, Liao Z, Huang D, Zhang Z, Chen G. IGF2BPs-regulated TIN2 confers the malignant biological behaviors of gastric cancer cells. Tissue Cell 2025; 93:102716. [PMID: 39765136 DOI: 10.1016/j.tice.2024.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 03/05/2025]
Abstract
BACKGROUND Telomere maintenance is an important feature of tumor cells. Telomeric-repeat binding factor 1 interaction nuclear protein 2 (TIN2), a key member of the shelterin proteins, functions in regulating telomere structure, length and function. Our work sought to investigate the role of TIN2 in controlling gastric cancer (GC) malignant biological behaviors. METHODS The mRNA and protein expressions were examined by qRT-PCR, western blot and immunofluorescence assays. The relative telomerase activity and telomere length were detected using the corresponding kit and qRT-PCR, respectively. The proliferation, migration and invasion abilities were detected by CCK8 and transwell assays, respectively. Cellular oxidative stress level and Fe2 + content were assessed by DCFH-DA staining and ELISA assays, respectively. The interaction between IGF2BP1/2/3 and TIN2 was analyzed by RIP and RNA pull down assays. RESULTS TIN2 expression was significantly increased in GC cells compared with it in gastric mucosal epithelial cells. TIN2 knockdown could impair telomerase function and induce DNA injury in GC cells. Moreover, silencing of TIN2 greatly repressed cell proliferation, metastasis, and autophagy in GC cells. Likewise, the antioxidant capacity and Fe2+ content were enhanced after TIN2 depletion, leading to the activation of cellular ferroptosis. In terms of mechanism, TIN2 mRNA could be recognized by IGF2BP1/2/3, and its mRNA expression and stability were decreased upon IGF2BP1/2/3 was knocked down. CONCLUSION Knockdown of TIN2 could restrained telomerase function and the malignant abilities of proliferation, metastasis and autophagy but induced ferroptosis of GC cells, which suggested that targeting TIN2 might be a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China
| | - Yadong Zhou
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China
| | - Zhiming Liao
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China
| | - Da Huang
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China
| | - Ziqing Zhang
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China
| | - Guoqun Chen
- Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China.
| |
Collapse
|
2
|
Wolf SE, Woodruff MJ, Chang van Oordt DA, Clotfelter ED, Cristol DA, Derryberry EP, Ferguson SM, Stanback MT, Taff CC, Vitousek MN, Westneat DF, Rosvall KA. Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history. J Anim Ecol 2025; 94:303-315. [PMID: 38509838 PMCID: PMC11415550 DOI: 10.1111/1365-2656.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024]
Abstract
Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.
Collapse
Affiliation(s)
- Sarah E. Wolf
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | | | - David A. Chang van Oordt
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Cornell Lab of OrnithologyIthacaNew YorkUSA
| | | | | | | | - Stephen M. Ferguson
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of BiologyUniversity of RichmondRichmondVirginiaUSA
| | | | - Conor C. Taff
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Cornell Lab of OrnithologyIthacaNew YorkUSA
| | - Maren N. Vitousek
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Cornell Lab of OrnithologyIthacaNew YorkUSA
| | | | | |
Collapse
|
3
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Chakraborty S, Banerjee S. Combatting cellular immortality in cancers by targeting the shelterin protein complex. Biol Direct 2024; 19:120. [PMID: 39578854 PMCID: PMC11585132 DOI: 10.1186/s13062-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Shelterin proteins (TERF1, TERF2, TPP1, TINF2, POT1) protect telomeres, prevent unwarranted repair activation, and regulate telomerase activity. Alterations in these proteins can lead to cancer progression. This study uses an in-silico approach to examine shelterin in tumour samples across various cancers, employing mutation plots, phylogenetic trees, and sequence alignments. Network pharmacology identified TERF1 as an essential shelterin protein and transcription factors RUNX1, CTCF, and KDM2B as potential biomarkers due to their interactions with miRNAs and shelterin proteins. We performed MCODE analysis to identify subnetworks of ncRNAs interacting with the shelterin proteins. Shelterin expression predicted patient survival in 24 cancer types, with TERF1, TERF2, TINF2, and POT1 significantly expressed in testicular, AML, prostate, breast and renal cancers, respectively, and TPP1 in AML and skin cancer. Spearman and Pearson's analyses showed significant correlations of TERF1 across cancers, with near-significant correlations for all five proteins in different cancer datasets like breast cancer, kidney renal papillary and lung squamous cell carcinoma, skin cutaneous melanoma, etc.,. Shelterin expression correlated with patient survival in breast, renal, lung, skin, uterine, and gastric cancers. Insights into TPP1-associated glycans highlighted glycosylated sites contributing to tumorigenesis. This study provides molecular signatures for further functional and therapeutic research on shelterin, highlighting its potential as a target for anti-cancer therapies and promising prospects for cancer prognosis and prediction.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Yao L, Wang X, Wang Z, Wang X, Guo X. Expression and functional analyses of TERF2 in esophageal carcinoma. Heliyon 2024; 10:e38040. [PMID: 39328506 PMCID: PMC11425175 DOI: 10.1016/j.heliyon.2024.e38040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background Esophageal cancer (ESCA) is a prevalent malignancy with a high incidence of morbidity and mortality, particularly in Asia. Telomeric Repeat-binding Factor 2 (TERF2) is a crucial component of the telomere-binding protein complex that maintains telomere stability. Aberrant TERF2 expression has been implicated in tumorigenesis, however, its specific role in ESCA remains largely unexplored. Methods The expression levels of TERF2 were assessed in esophageal squamous cell carcinoma (ESCC) samples using RT-PCR, IHC, and Western blotting (WB). Serum tumor marker concentrations were determined via electrochemiluminescence immunoassay (ECLIA) and chemiluminescent microparticle immunoassay (CMIA). Bioinformatics analyses were employed to elucidate TERF2's function in EC. The impact of TERF2 on ESCC cell proliferation was evaluated through cell counting kit-8 (CCK8) assays and flow cytometry. Results TERF2 protein and mRNA expression were elevated in ESCC tissues and correlated with age, sex, cancer stage, tumor grade, lymph node metastasis (LNM), and tumor histology. Univariate Cox regression analysis indicated TERF2 was an independent prognostic factor for overall survival (OS). TERF2 mRNA levels were associated with serum levels of carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and tissue polypeptide antigen (TPA) in patients with ESCC. Immune infiltration and chemokine profiles were linked to TERF2 expression in ESCA. TERF2 is involved in regulating ESCC cell proliferation may through the DDR/P53 signaling way. Conclusions TERF2 is overexpressed in ESCA and contributes to ESCC cell proliferation may via DDR/TP53 signaling pathway. These results suggest that TERF2 may serve as a potential target for developing treatments and diagnostic biomarker for ESCA.
Collapse
Affiliation(s)
- Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xinlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Zihao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
6
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
7
|
Huang Y, Chen F, Sun H, Zhong C. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation. BMC Bioinformatics 2024; 25:34. [PMID: 38254011 PMCID: PMC10804660 DOI: 10.1186/s12859-024-05662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Driver genes play a vital role in the development of cancer. Identifying driver genes is critical for diagnosing and understanding cancer. However, challenges remain in identifying personalized driver genes due to tumor heterogeneity of cancer. Although many computational methods have been developed to solve this problem, few efforts have been undertaken to explore gene-patient associations to identify personalized driver genes. RESULTS Here we propose a method called LPDriver to identify personalized cancer driver genes by employing linear neighborhood propagation model on individual genetic data. LPDriver builds personalized gene network based on the genetic data of individual patients, extracts the gene-patient associations from the bipartite graph of the personalized gene network and utilizes a linear neighborhood propagation model to mine gene-patient associations to detect personalized driver genes. The experimental results demonstrate that as compared to the existing methods, our method shows competitive performance and can predict cancer driver genes in a more accurate way. Furthermore, these results also show that besides revealing novel driver genes that have been reported to be related with cancer, LPDriver is also able to identify personalized cancer driver genes for individual patients by their network characteristics even if the mutation data of genes are hidden. CONCLUSIONS LPDriver can provide an effective approach to predict personalized cancer driver genes, which could promote the diagnosis and treatment of cancer. The source code and data are freely available at https://github.com/hyr0771/LPDriver .
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, 530004, China
| | - Fuhao Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Hongtao Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Hassanpour H, Mirshokraei P, Salehpour M, Amiri K, Ghareghani P, Nasiri L. Canine sperm motility is associated with telomere shortening and changes in expression of shelterin genes. BMC Vet Res 2023; 19:236. [PMID: 37950187 PMCID: PMC10637008 DOI: 10.1186/s12917-023-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Motion quality is a critical property for essential functions. Several endogenous and exogenous factors are involved in sperm motility. Here, we measured the relative telomere length and evaluated the gene expression of its binding-proteins, shelterin complex (TRF1, TRF2, RAP1, POT1, TIN2, and TPP1) in sperm of dogs using relative quantitative real-time PCR. We compared them between two sperm subpopulations with poor and good motion qualities (separated by swim-up method). Telomere shortening and alterations of shelterin gene expression result from ROS, genotoxic insults, and genetic predisposition. RESULTS Sperm kinematic parameters were measured in two subpopulations and then telomeric index of each parameter was calculated. Telomeric index for linearity, VSL, VCL, STR, BCF, and ALH were significantly higher in sperms with good motion quality than in sperms with poor quality. We demonstrated that poor motion quality is associated with shorter telomere, higher expression of TRF2, POT1, and TIN2 genes, and lower expression of the RAP1 gene in dog sperm. The levels of TRF1 and TPP1 gene expression remained consistent despite variations in sperm quality and telomere length. CONCLUSION Data provided evidence that there are considerable changes in gene expression of many shelterin components (TRF2, TIN2, POT1and RAP1) associated with shortening telomere in the spermatozoa with poor motion quality. Possibly, the poor motion quality is the result of defects in the shelterin complex and telomere length. Our data suggests a new approach in the semen assessment and etiologic investigations of subfertility or infertility in male animals.
Collapse
Affiliation(s)
- Hossein Hassanpour
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marzieh Salehpour
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Khadije Amiri
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Parvin Ghareghani
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Leila Nasiri
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
9
|
Sirichoat A, Kaewseekhao B, Nithichanon A, Roytrakul S, Faksri K. Proteomic Profiles and Protein Network Analysis of Primary Human Leukocytes Revealed Possible Clearance Biomarkers for Staphylococcus aureus Infection. Curr Microbiol 2023; 80:335. [PMID: 37665379 DOI: 10.1007/s00284-023-03450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Staphylococcus aureus is a serious pathogen that can survive within host cells after a typical course of treatment completion, leading to chronic infection. Knowledge of host proteomic patterns after clearance of this pathogen from cells is limited. Here, we looked for S. aureus clearance biomarkers produced by in vitro-infected leukocytes. Extracellular proteins from primary human leukocytes infected with S. aureus ATCC 25923 were investigated as possible treatment-monitoring clearance biomarkers by applying a proteomics approach combining liquid chromatography with tandem mass spectrometry (LC-MS/MS) and protein interaction network analysis. It was found that the expression patterns of proteins secreted by S. aureus-infected leukocytes differed among stages of infection. Proteomic profiles showed that an ATPase, aminophospholipid transporter-like, Class I, type 8A, member 2 (ATP8A2) was expressed in the clearance stage and was not detected at any earlier stage or in uninfected controls. Protein network analysis showed that TERF2 (telomeric repeat-binding factor 2), ZNF440 (zinc finger protein 440), and PPP1R14A (phosphatase 1 regulatory subunit 14A) were up-regulated, while GLE1, an essential RNA-export mediator, was suppressed in both infection and clearance stages, suggesting their potential roles in S. aureus infection and clearance. These findings are the first to report that the ATP8A2 has potential as a clearance biomarker for S. aureus infection.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
10
|
Karaviti E, Kontogiannis A, Anastopoulos A, Kotteas E, Gomatou G. An overview of the role of telomeres and telomerase in pre‑neoplastic lesions (Review). Mol Clin Oncol 2023; 19:61. [PMID: 37424625 PMCID: PMC10326563 DOI: 10.3892/mco.2023.2657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Telomeres are tandem repeats of DNA sequences protecting the end of linear chromosomes. Replicative senescence due to telomere attrition is considered a tumor-preventing mechanism in differentiated somatic cells. However, telomere shortening is associated with genome instability and several disease entities. During carcinogenesis, the development of a telomere maintenance mechanism, predominately through the activation of the telomerase enzyme, represents a hallmark of cancer, since it enables cancer cells to avert senescence and divide indefinitely. Although research of the involvement of telomeres and telomerase in various malignant neoplasms has gained a large amount of interest, the timing and relevance of their role in pre-neoplastic lesions remain to be determined. The present narrative review aims to summarize the evidence regarding the role of telomeres and telomerase in pre-neoplasia across different types of tissues.
Collapse
Affiliation(s)
- Eleftheria Karaviti
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios Kontogiannis
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Aristotelis Anastopoulos
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgia Gomatou
- Oncology Unit, Third Department of Medicine, ‘Sotiria’ General Hospital of Diseases of The Chest, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
11
|
Das R, Ghosh Chowdhury M, Raundal S, Jadhav J, Kumar N, Patel S, Shard A. Objective assessment of adrenocortical carcinoma driver genes and their correlation with tumor pyruvate kinase M2. Gene 2022; 822:146354. [PMID: 35189247 DOI: 10.1016/j.gene.2022.146354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Glandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs. Out of these, the most prominent genetic alterations (PRKAR-1A, CTNNB1, ZNRF3, TP53, CCNE1 and TERF2 genes) are linked with a glycolytic enzyme pyruvate kinase M2 (PKM2), which converts phosphoenolpyruvate (PEP) to pyruvate in the glycolytic pathway. The involvementof PKM2 renders a cumulative effect through different pathways that may result in the onset of ACCs. Thus, this review aims to establish a link between ACCs, alterations of specific genes and PKM2.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sonal Raundal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Jyotika Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Navin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India.
| |
Collapse
|
12
|
Ravi S, Alencar AM, Arakelyan J, Xu W, Stauber R, Wang CCI, Papyan R, Ghazaryan N, Pereira RM. An Update to Hallmarks of Cancer. Cureus 2022; 14:e24803. [PMID: 35686268 PMCID: PMC9169686 DOI: 10.7759/cureus.24803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
In the last decade, there has been remarkable progress in research toward understanding and refining the hallmarks of cancer. In this review, we propose a new hallmark - "pro-survival autophagy." The importance of pro-survival autophagy is well established in tumorigenesis, as it is related to multiple steps in cancer progression and vital for some cancers. Autophagy is a potential anti-cancer therapeutic target. For this reason, autophagy is a good candidate as a new hallmark of cancer. We describe two enabling characteristics that play a major role in enabling cells to acquire the hallmarks of cancer - "tumor-promoting microenvironment and macroenvironment" and "cancer epigenetics, genome instability and mutation." We also discuss the recent updates, therapeutic and prognostic implications of the eight hallmarks of cancer described by Hanahan et al. in 2011. Understanding these hallmarks and enabling characteristics is key not only to developing new ways to treat cancer efficiently but also to exploring options to overcome cancer resistance to treatment.
Collapse
Affiliation(s)
- Swapna Ravi
- Department of Medicine, St. Luke's Hospital, Duluth, USA
| | - Antonio M Alencar
- Department of Medical Oncology, Hospital Universitário da Universidade Federal do Maranhão, Hospital São Domingos, São Luís, BRA
| | - Jemma Arakelyan
- Department of Oncology/Solid Tumors, Yerevan State Medical University, Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Weihao Xu
- Department of Business Development, Harbour BioMed, Boston, USA
| | - Roberta Stauber
- Department of Oncology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | - Cheng-Chi I Wang
- Department of Research and Development, Beltie Bio, Inc, San Diego, USA
| | - Ruzanna Papyan
- Department of Pediatric Oncology and Hematology, Yerevan State Medical University, Pediatric Center and Blood Disorders Center of Armenia, Yerevan, ARM
| | - Narine Ghazaryan
- Department of Molecular Biology, L.A. Orbeli Institute of Physiology National Academy of Sciences, Republic of Armenia (NAS RA) Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Rosalina M Pereira
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
13
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
14
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
15
|
Fonsêca TC, Abrantes TC, Fernandes PV, de Andrade BAB, Cabral MG, Romañach MJ, Agostini M, Abrahão AC. Immunohistochemical analysis of BRCA1 and acetyl-histone H3 in squamous cell carcinoma of the mobile tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:320-326. [PMID: 34030994 DOI: 10.1016/j.oooo.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the immunoexpression profiles of breast cancer 1 (BRCA1) and acetyl-histone H3 (AcH3) in squamous cell carcinoma of the mobile tongue (SCC-MT) and their correlation with epidemiologic data and the histopathological grade of tumors. STUDY DESIGN Incisional biopsies of 43 SCC-MT were submitted to immunohistochemistry for AcH3 and BRCA1. Samples were microscopically graded as well differentiated (n = 21) or poorly differentiated (n = 22). Both groups were submitted to statistical analysis (P < .05) regarding the percentage of positive cells. RESULTS Thirty-nine cases were positive for AcH3 (91%), but no difference was observed for the histologic grading (P = .27). Positivity for BRCA1 was observed in all samples regardless of their cellular locations. Most cases in the poorly differentiated group presented with less than 10% nuclear staining (P < .01) and a predominance of cytoplasmic staining (P = .034). The well-differentiated group showed nuclear staining in most of the cases, with more than 50% of cells staining positive (P < .01). CONCLUSION AcH3 and BRCA1 were expressed in all samples. There was a significant decrease in cytoplasmic BRCA1 expression in the poorly differentiated group, suggesting BRCA1 as a possible prognostic marker for SCC-MT.
Collapse
Affiliation(s)
- T C Fonsêca
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T C Abrantes
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P V Fernandes
- Pathology Division, National Cancer Institute José Alencar Gomes da Silva (DIPAT/INCA), Rio de Janeiro, Brazil
| | - B A B de Andrade
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M G Cabral
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M J Romañach
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Agostini
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Abrahão
- Oral Pathology, Department of Oral Diagnosis and Pathology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
17
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
18
|
Luo Z, Liu W, Sun P, Wang F, Feng X. Pan-cancer analyses reveal regulation and clinical outcome association of the shelterin complex in cancer. Brief Bioinform 2021; 22:6120315. [PMID: 33497432 DOI: 10.1093/bib/bbaa441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Shelterin, a protective complex at telomeres, plays essential roles in cancer. In addition to maintain telomere integrity, shelterin functions in various survival pathways. However, the detailed mechanisms of shelterin regulation in cancer remain elusive. Here, we perform a comprehensive analysis of shelterin in 9125 tumor samples across 33 cancer types using multi-omic data from The Cancer Genome Atlas, and validate some findings in Chinese Glioma Genome Atlas and cancer cell lines from Cancer Cell Line Encyclopedia. In the genomic landscape, we identify the amplification of TRF1 and POT1, co-amplification/deletion of TRF2-RAP1-TPP1 as the dominant alteration events. Clustering analysis based on shelterin expression reveals three cancer clusters with different degree of genome instability. To measure overall shelterin activity in cancer, we derive a shelterin score based on shelterin expression. Pathway analysis shows shelterin is positively correlated with E2F targets, while is negatively correlated with p53 pathway. Importantly, shelterin links to tumor immunity and predicts response to PD-1 blockade immune therapy. In-depth miRNA analysis reveals a miRNA-shelterin interaction network, with p53 regulated miRNAs targeting multiple shelterin components. We also identify a significant amount of lncRNAs regulating shelterin expression. In addition, we find shelterin expression could be used to predict patient survival in 24 cancer types. Finally, by mining the connective map database, we discover a number of potential drugs that might target shelterin. In summary, this study provides broad molecular signatures for further functional and therapeutic studies of shelterin, and also represents a systemic approach to characterize key protein complex in cancer.
Collapse
Affiliation(s)
- Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Weijin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Panpan Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Feng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuyang Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
19
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
20
|
Shi Y, Zhang Y, Zhang L, Ma JL, Zhou T, Li ZX, Liu WD, Li WQ, Deng DJ, You WC, Pan KF. Telomere Length of Circulating Cell-Free DNA and Gastric Cancer in a Chinese Population at High-Risk. Front Oncol 2019; 9:1434. [PMID: 31921685 PMCID: PMC6928050 DOI: 10.3389/fonc.2019.01434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Telomeres have long been found to be involved in cancer development, while little was known about the dynamic changes of telomere length in carcinogenesis process. Methods: The present study longitudinally investigated telomere alterations of cell-free DNA (cfDNA) in 86 gastric cancer (GC) subjects recruited through a 16-year prospective cohort with 2–4 serums collected before each GC-diagnosis from baseline and three follow-up time-points (a total of 276 samples). As the control, 86 individual-matched cancer-free subjects were enrolled with 276 serums from the matched calendar year. Results: In the 73 pairs of baseline serums from GC and control subjects, shortened telomeres showed increased subsequent GC risk [odds ratio (OR) = 9.17, 95% CI: 2.72–31.25 for 1 unit shortening]. In each baseline gastric lesion category, higher risks of GC progression were also found with shortened cfDNA telomeres; ORs per 1 unit shortening were 6.99 (95% CI: 1.63–30.30) for mild gastric lesions, 6.06 (95% CI: 1.89–19.61) for intestinal metaplasia and 15.63 (95% CI: 1.91–125.00) for dysplasia. With all measurements from baseline and follow-up time-points, shortened telomeres also showed significant association with GC risk (OR = 7.37, 95% CI: 2.06–26.32 for 1 unit shortening). In temporal trend analysis, shortened telomeres were found in GC subjects compared to corresponding controls more than 3 years ahead of GC-diagnosis (most P < 0.05), while no significant difference was found between two groups within 3 years approaching to GC-diagnosis. Conclusion: Our findings suggest that telomere shortening may be associated with gastric carcinogenesis, which supports further etiological study and potential biomarker for risk stratification.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhe-Xuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Wen-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Da-Jun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
21
|
Fan HN, Chen W, Peng SQ, Chen XY, Zhang R, Liang R, Liu H, Zhu JS, Zhang J. Sanguinarine inhibits the tumorigenesis of gastric cancer by regulating the TOX/DNA-PKcs/ KU70/80 pathway. Pathol Res Pract 2019; 215:152677. [DOI: 10.1016/j.prp.2019.152677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023]
|
22
|
Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun 2019; 10:4723. [PMID: 31624261 PMCID: PMC6797762 DOI: 10.1038/s41467-019-12664-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Short telomeres trigger age-related pathologies and shorter lifespans in mice and humans. In the past, we generated mouse embryonic (ES) cells with longer telomeres than normal (hyper-long telomeres) in the absence of genetic manipulations, which contributed to all mouse tissues. To address whether hyper-long telomeres have deleterious effects, we generated mice in which 100% of their cells are derived from hyper-long telomere ES cells. We observe that these mice have longer telomeres and less DNA damage with aging. Hyper-long telomere mice are lean and show low cholesterol and LDL levels, as well as improved glucose and insulin tolerance. Hyper-long telomere mice also have less incidence of cancer and an increased longevity. These findings demonstrate that longer telomeres than normal in a given species are not deleterious but instead, show beneficial effects.
Collapse
Affiliation(s)
- Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Alba C Cano-Martin
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
23
|
Bejarano L, Louzame J, Montero JJ, Megías D, Flores JM, Blasco MA. Safety of Whole-Body Abrogation of the TRF1 Shelterin Protein in Wild-Type and Cancer-Prone Mouse Models. iScience 2019; 19:572-585. [PMID: 31446222 PMCID: PMC6713815 DOI: 10.1016/j.isci.2019.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Telomeres are considered potential anti-cancer targets. Most studies have focused on telomerase inhibition, but this strategy has largely failed in clinical trials. Direct disruption of the shelterin complex through TRF1 inhibition can block tumorigenesis in cancer mouse models by a mechanism that involves DNA damage induction and reduction of proliferation and stemness. Any anti-cancer target, however, must fulfill the requisite of not showing deleterious effects in healthy tissues. Here, we show that Trf1 genetic deletion in wild-type and cancer-prone p53- and Ink4Arf-deficient mice does not affect organismal viability and only induces mild phenotypes like decreased body weight and hair graying or hair loss, the skin being the most affected tissue. Importantly, we found that Trf1 is essential for tumorigenesis in p53- and Ink4Arf-deficient mice, as we did not find a single tumor originating from Trf1-deleted cells. These findings indicate a therapeutic window for targeting Trf1 in cancer treatment. Trf1 deletion does not affect organism viability in WT and cancer-prone mouse models Trf1 deletion only induces mild phenotypes in adult tissues, especially in the skin No tumors originate from Trf1-deleted cells
Collapse
Affiliation(s)
- Leire Bejarano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Jessica Louzame
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juán José Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
24
|
Zheng GQ, Zhang GH, Wu HT, Tu YT, Tian W, Fang Y, Lu Y, Gong SY, Zhang YN, Yu LB, Zhang H, Shao H, Brandt-Rauf P, Xia ZL. Relative telomere length and gene expression of shelterin complex proteins among vinyl chloride monomer-exposed workers in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:361-367. [PMID: 30578676 DOI: 10.1002/em.22270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Vinyl chloride monomer (VCM) is a confirmed carcinogen. The effects of VCM on telomeres and the gene expression of telomere complex proteins, shelterin, have not been well studied but could be of potential relevance to the carcinogenic mechanism of VCM and the health surveillance of VCM-exposed workers. A group of 241 VCM-exposed workers and 101 internal controls from the same plant in Shandong, China were recruited and quantitative polymerase chain reaction was preformed to measure relative telomere length (RTL) and gene expression of shelterin proteins. VCM cumulative exposure dose (CED) was estimated for the exposed workers. The differences in RTL and gene expression between groups were compared by Wald test fitted with robust regression. Shorter RTL was observed in VCM-exposed workers than in the controls (P < 0.001) and was related to CED of VCM. Shortened RTL was also significantly related to increasing age (P = 0.012) and high blood pressure (P = 0.056). Levels of gene expression of shelterin components in exposed workers were all lower than in controls except increased TIN2 expression, and the gene expression differences in TIN2 and POT1 among exposed and control groups were significant (P = 0.014 for TIN2 and P < 0.001 for POT1, respectively). VCM exposure is found associated with altered telomere length and gene expression of shelterin components. This provides new insights into the potential carcinogenic mechanisms of VCM and could be helpful for the health surveillance for VCM-exposed workers. Environ. Mol. Mutagen. 60:361-367, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guo-Qiao Zheng
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Guang-Hui Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
- School of Public Health, He'nan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China
| | - Han-Tian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu-Ting Tu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Wei Tian
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yan Fang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ye Lu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Shi-Yang Gong
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ya-Nan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Li-Bo Yu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Hong Zhang
- Institute of Occupational Health and Occupational Diseases, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hua Shao
- Institute of Occupational Health and Occupational Diseases, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Paul Brandt-Rauf
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 718, Philadelphia, Pennsylvania
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
25
|
Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. Cells 2019; 8:cells8020107. [PMID: 30709063 PMCID: PMC6406355 DOI: 10.3390/cells8020107] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Telomeres, the protective structures of chromosome ends are gradually shortened by each cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found in the normal tissues. In this review, we summarize the latest knowledge about telomere length alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere length as a prognostic biomarker.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
26
|
Targeting the DNA-PK complex: Its rationale use in cancer and HIV-1 infection. Biochem Pharmacol 2018; 160:80-91. [PMID: 30529192 DOI: 10.1016/j.bcp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
The DNA-PK complex is the major component of the predominant mechanism of DSB repair in humans. In addition, this complex is involved in many other processes such as DNA recombination, genome maintenance, apoptosis and transcription regulation. Several studies have linked the decrease of the DNA-PK activity with cancer initiation, due to defects in the repair. On another hand, higher DNA-PK expression and activity have been observed in various other tumor cells and have been linked with a decrease of the efficiency of anti-tumor drugs. It has also been shown that DNA-PK is critical for the integration of the HIV-1 DNA into the cell host genome and promotes replication and transcription of the virus. Targeting this complex makes therefore sense to treat these two pathologies. However, according to the status of HIV-1 replication (active versus latent replication) or to the tumor grade cells (initiation versus metastasis), the way to target this DNA-PK complex might be rather different. In this review, we discuss the importance of DNA-PK complex in two major pathologies i.e. HIV-1 infection and cancer, and the rationale use of therapies aiming to target this complex.
Collapse
|
27
|
Fu F, Hu H, Yang S, Liang X. Effects of TIN2 on telomeres and chromosomes in the human gastric epithelial cell line GES-1. Oncol Lett 2018; 15:5161-5166. [PMID: 29552152 DOI: 10.3892/ol.2018.7927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2017] [Indexed: 01/13/2023] Open
Abstract
TERF1-interacting nuclear factor 2 (TIN2) is a key member of the protein complexes that protect telomeres. TIN2 contributes an important role in biological processes. In a previous study by the present authors, an association was reported between high TIN2 protein expression and gastric cancer. Therefore, it was hypothesized that abnormal TIN2 expression may cause the development of malignancies, including, gastric carcinomas. To investigate this hypothesis, the present study employed peptide nucleic acid fluorescence in situ hybridization technology to analyze the human gastric epithelial GES-1 cells with high TIN2 expression or inhibited TIN2 expression. The results indicated that GES-1 cell lines with high TIN2 expression exhibited greater telomere dysfunction-induced damage compared with GES-1 cell lines with inhibited TIN2 expression. Chromosome analysis indicated that GES-1 cells with high TIN2 expression exhibited 2.48±1.30 aberrant chromosomal changes per 100 cells, that may contribute to telomere DNA damage. Therefore, aberrant chromosomal alterations may provide a novel perspective for the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Fan Fu
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, P.R. China
| | - Hua Hu
- Department of Pathology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuai Yang
- Department of Pathology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
28
|
Benhamou Y, Picco V, Raybaud H, Sudaka A, Chamorey E, Brolih S, Monteverde M, Merlano M, Lo Nigro C, Ambrosetti D, Pagès G. Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma. Oncotarget 2018; 7:44236-44251. [PMID: 27329590 PMCID: PMC5190092 DOI: 10.18632/oncotarget.10005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common oral cancer worldwide. Treatments including surgery, radio- and chemo-therapies mostly result in debilitating side effects. Thus, a more accurate evaluation of patients at risk of recurrence after radio/chemo treatment is important for preserving their quality of life. We assessed whether the Telomeric Repeat-binding Factor 2 (TERF2) influences tumor aggressiveness and treatment response. TERF2 is over-expressed in many cancers but its correlation to patient outcome remains controversial in OSCC. Our retrospective study on sixty-two patients showed that TERF2 overexpression has a negative impact on survival time. TERF2-dependent survival time was independent of tumor size in a multivariate analysis. In vitro, TERF2 knockdown by RNA interference had no effect on cell proliferation, migration, senescence and apoptosis. Instead, TERF2 knockdown increased the expression of cytokines implicated in inflammation and angiogenesis, except for vascular endothelial growth factor. TERF2 knockdown resulted in a decrease vascularization and growth of xenograft tumors. Finally, response to erlotinib/Tarceva and cetuximab/Erbitux treatment was increased in TRF2 knocked-down cells. Hence, TERF2 may represent an independent marker of survival for OSCC and a predictive marker for cetuximab/Erbitux and erlotinib/Tarceva efficacy.
Collapse
Affiliation(s)
- Yordan Benhamou
- CNRS UMR 7284/INSERM U1081, Institute for Research on Cancer and Aging of Nice, University of Nice Sophia Antipolis, Nice, France.,Odontology Department, Nice University Hospital, University of Nice Sophia Antipolis, Nice, France
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Hélène Raybaud
- Central Laboratory of Pathology, University of Nice Sophia Antipolis, Nice, France
| | - Anne Sudaka
- Department of Pathology, Research and Statistics, Centre Antoine Lacassagne, Nice, France
| | - Emmanuel Chamorey
- Department of Pathology, Research and Statistics, Centre Antoine Lacassagne, Nice, France
| | - Sanja Brolih
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Martino Monteverde
- Cancer Genetics and Translational Oncology Laboratory, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Cristiana Lo Nigro
- Cancer Genetics and Translational Oncology Laboratory, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Damien Ambrosetti
- Central Laboratory of Pathology, University of Nice Sophia Antipolis, Nice, France
| | - Gilles Pagès
- CNRS UMR 7284/INSERM U1081, Institute for Research on Cancer and Aging of Nice, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
29
|
Pilyugin M, André PA, Ratajska M, Kuzniacka A, Limon J, Tournier BB, Colas J, Laurent G, Irminger-Finger I. Antagonizing functions of BARD1 and its alternatively spliced variant BARD1δ in telomere stability. Oncotarget 2018; 8:9339-9353. [PMID: 28030839 PMCID: PMC5354735 DOI: 10.18632/oncotarget.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Previous reports have shown that expression of BARD1δ, a deletion-bearing isoform of BARD1, correlates with tumor aggressiveness and progression. We show that expression of BARD1δ induces cell cycle arrest in vitro and in vivo in non-malignant cells. We investigated the mechanism that leads to proliferation arrest and found that BARD1δ overexpression induced mitotic arrest with chromosome and telomere aberrations in cell cultures, in transgenic mice, and in cells from human breast and ovarian cancer patients with BARD1 mutations. BARD1δ binds more efficiently than BARD1 to telomere binding proteins and causes their depletion from telomeres, leading to telomere and chromosomal instability. While this induces cell cycle arrest, cancer cells lacking G2/M checkpoint controls might continue to proliferate despite the BARD1δ-induced chromosomal instability. These features of BARD1δ may make it a genome permutator and a driver of continuous uncontrolled proliferation of cancer cells.
Collapse
Affiliation(s)
- Maxim Pilyugin
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Pierre-Alain André
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Poland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Alina Kuzniacka
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Benjamin B Tournier
- Department of Neuropsychiatry, Vulnerability Biomarkers Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Julien Colas
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Geoff Laurent
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Irmgard Irminger-Finger
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
30
|
Picco V, Coste I, Giraud-Panis MJ, Renno T, Gilson E, Pagès G. ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Oncotarget 2018; 7:46615-46627. [PMID: 27366950 PMCID: PMC5216822 DOI: 10.18632/oncotarget.10316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Picco
- Centre Scientifique de Monaco, Biomedical Department, MC-98000 Monaco, Principality of Monaco
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Marie-Josèphe Giraud-Panis
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Eric Gilson
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06200 Nice, France
| | - Gilles Pagès
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| |
Collapse
|
31
|
Houck AL, Seddighi S, Driver JA. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr Aging Sci 2018; 11:77-89. [PMID: 29552989 PMCID: PMC6519136 DOI: 10.2174/1874609811666180223154436] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND A growing body of epidemiologic evidence suggests that neurodegenerative diseases occur less frequently in cancer survivors, and vice versa. While unusual, this inverse comorbidity is biologically plausible and could be explained, in part, by the evolutionary tradeoffs made by neurons and cycling cells to optimize the performance of their very different functions. The two cell types utilize the same proteins and pathways in different, and sometimes opposite, ways. However, cancer and neurodegeneration also share many pathophysiological features. OBJECTIVE In this review, we compare three overlapping aspects of neurodegeneration and cancer. METHOD First, we contrast the priorities and tradeoffs of dividing cells and neurons and how these manifest in disease. Second, we consider the hallmarks of biological aging that underlie both neurodegeneration and cancer. Finally, we utilize information from genetic databases to outline specific genes and pathways common to both diseases. CONCLUSION We argue that a detailed understanding of the biologic and genetic relationships between cancer and neurodegeneration can guide future efforts in designing disease-modifying therapeutic interventions. Lastly, strategies that target aging may prevent or delay both conditions.
Collapse
Affiliation(s)
- Alexander L. Houck
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahba Seddighi
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jane A. Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women ‘s Hospital, Harvard Medical School (J.A.D.), Boston, MA, USA
| |
Collapse
|
32
|
Bejarano L, Schuhmacher AJ, Méndez M, Megías D, Blanco-Aparicio C, Martínez S, Pastor J, Squatrito M, Blasco MA. Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts. Cancer Cell 2017; 32:590-607.e4. [PMID: 29136505 DOI: 10.1016/j.ccell.2017.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 10/07/2017] [Indexed: 01/18/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and common brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity, including glioma stem cells (GSCs). Telomere genes are frequently mutated. The telomere binding protein TRF1 is essential for telomere protection, and for adult and pluripotent stem cells. Here, we find TRF1 upregulation in mouse and human GBM. Brain-specific Trf1 genetic deletion in GBM mouse models inhibited GBM initiation and progression, increasing survival. Trf1 deletion increased telomeric DNA damage and reduced proliferation and stemness. TRF1 chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor sphere formation and tumor growth in xenografts from patient-derived primary GSCs. Thus, targeting telomeres throughout TRF1 inhibition is an effective therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Leire Bejarano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Alberto J Schuhmacher
- Seve-Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Marinela Méndez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029 Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Sonia Martínez
- Experimental Therapeutics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Joaquín Pastor
- Experimental Therapeutics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Massimo Squatrito
- Seve-Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
33
|
Kumar R, Khan R, Gupta N, Seth T, Sharma A, Kalaivani M, Sharma A. Identifying the biomarker potential of telomerase activity and shelterin complex molecule, telomeric repeat binding factor 2 (TERF2), in multiple myeloma. Leuk Lymphoma 2017; 59:1677-1689. [PMID: 29043869 DOI: 10.1080/10428194.2017.1387915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomere length (TL) is maintained by telomere capping protein complex called shelterin complex. We studied the possible involvement and biomarker potential of shelterin complex molecules in naive multiple myeloma (MM) patients and controls. TL, relative telomerase activity (RTA), real-time PCR and Western blotting were performed in bonemarrow sample of 70 study subjects (patients = 50; controls = 20). Significantly lowered mean TL, increased RTA and higher mRNA expression of shelterin molecules were observed in patients, while PIN2/TERF1 interacting telomerase inhibitor 1 (PINX1) showed lower mRNA expression. Significantly increased protein expression of telomeric repeat binding factor 2 (TERF2), protection of telomeres 1, adrenocortical dysplasia homolog, Tankyrase 1 and telomere reverse transcriptase were observed in MM patients. Significant correlation was observed among genes and of genes with clinical parameters. In conclusion, our findings showed alteration of these molecules at mRNA and protein levels suggested their involvement in disease progression. Optimal sensitivity and specificity of TERF2 and RTA on receiver operating characteristics curve analysis and univariate analysis demonstrated their biomarkers potential in better prediction of disease course.
Collapse
Affiliation(s)
- Raman Kumar
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Rehan Khan
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Nidhi Gupta
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Tulika Seth
- b Department of Hematology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Atul Sharma
- c Department of Medical Oncology , BRA-IRCH, All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Mani Kalaivani
- d Department of Biostatistics , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Alpana Sharma
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| |
Collapse
|
34
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
35
|
Robinson NJ, Schiemann WP. Means to the ends: The role of telomeres and telomere processing machinery in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:320-329. [PMID: 27768860 PMCID: PMC5138103 DOI: 10.1016/j.bbcan.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 12/29/2022]
Abstract
Despite significant clinical advancements, cancer remains a leading cause of mortality throughout the world due largely to the process of metastasis and the dissemination of cancer cells from their primary tumor of origin to distant secondary sites. The clinical burden imposed by metastasis is further compounded by a paucity of information regarding the factors that mediate metastatic progression. Linear chromosomes are capped by structures known as telomeres, which dictate cellular lifespan in humans by shortening progressively during successive cell divisions. Although telomere shortening occurs in nearly all somatic cells, telomeres may be elongated via two seemingly disjoint pathways: (i) telomerase-mediated extension, and (ii) homologous recombination-based alternative lengthening of telomeres (ALT). Both telomerase and ALT are activated in various human cancers, with more recent evidence implicating both pathways as potential mediators of metastasis. Here we review the known roles of telomere homeostasis in metastasis and posit a mechanism whereby metastatic activity is determined by a dynamic fluctuation between ALT and telomerase, as opposed to the mere activation of a generic telomere elongation program. Additionally, the pleiotropic nature of the telomere processing machinery makes it an attractive therapeutic target for metastasis, and as such, we also explore the therapeutic implications of our proposed mechanism.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
36
|
Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:171-187. [DOI: 10.1007/s00249-016-1157-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
|
37
|
Benhamou Y, Picco V, Pagès G. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol 2016; 57:46-53. [PMID: 27208844 DOI: 10.1016/j.oraloncology.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
The "Hallmarks of Cancer" describe the ways by which cancer cells bypass homeostasis. Escape from replicative senescence is one of the earliest features of cancer cells. Maintenance of the telomeres through reactivation of telomerase was initially associated with replicative immortality in various cancers. The shelterin complex, a telomeric hexaprotein association, plays a key role in telomere maintenance and in the hallmarks of cancer. Some shelterin proteins are overexpressed in diverse cancers and can promote tumorigenesis in animal models. Shelterin can also have an impact on tumor size, tumor growth and resistance to treatment. Studies into the expression level of shelterin in oral squamous cell carcinoma (OSCC) report contradictory results. Moreover, the exact role of these proteins in OSCC tumorigenesis remains uncertain. In this review, we examined the data linking telomeres and hallmarks of OSCC. Furthermore, we examined the literature concerning telomeres and the clinical outcome of OSCC. Finally, we propose a model encompassing the role of shelterin proteins in oral tumorigenesis and treatment outcome.
Collapse
Affiliation(s)
- Y Benhamou
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France; University of Nice Sophia Antipolis, Nice University Hospital, Odontology Department, Nice, France
| | - V Picco
- Centre Scientifique de Monaco, Biomedical Department, 8 Quai Antoine Ier, MC-98000 Monaco, Monaco
| | - G Pagès
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France
| |
Collapse
|
38
|
Patel TN, Vasan R, Gupta D, Patel J, Trivedi M. Shelterin proteins and cancer. Asian Pac J Cancer Prev 2016; 16:3085-90. [PMID: 25921101 DOI: 10.7314/apjcp.2015.16.8.3085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The telomeric end structures of the DNA are known to contain tandem repeats of TTAGGG sequence bound with specialised protein complex called the "shelterin complex". It comprises six proteins, namely TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. All of these assemble together to form a complex with double strand and single strand DNA repeats at the telomere. Such an association contributes to telomere stability and its protection from undesirable DNA damage control-specific responses. However, any alteration in the structure and function of any of these proteins may lead to undesirable DNA damage responses and thus cellular senescence and death. In our review, we throw light on how mutations in the proteins belonging to the shelterin complex may lead to various malfunctions and ultimately have a role in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Trupti Nv Patel
- Department of Medical Biotechnology, Vellore Institute of Technology, Vellore, Tamilnadu, India E-mail : ,
| | | | | | | | | |
Collapse
|
39
|
Uziel O, Yerushalmi R, Zuriano L, Naser S, Beery E, Nordenberg J, Lubin I, Adel Y, Shepshelovich D, Yavin H, Aharon IB, Pery S, Rizel S, Pasmanik-Chor M, Frumkin D, Lahav M. BRCA1/2 mutations perturb telomere biology: characterization of structural and functional abnormalities in vitro and in vivo. Oncotarget 2016; 7:2433-54. [PMID: 26515461 PMCID: PMC4823046 DOI: 10.18632/oncotarget.5693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023] Open
Abstract
BRCA1 mutation is associated with carcinogenesis, especially of breast tissue. Telomere maintenance is crucial for malignant transformation. Being a part of the DNA repair machinery, BRCA1 may be implicated in telomere biology. We explored the role of BRCA1 in telomere maintenance in lymphocytes of BRCA1/2 mutation carriers and in in vitro system by knocking down its expression in non-malignant breast epithelial cells.The results in both systems were similar. BRCA1/2 mutation caused perturbation of telomere homeostasis, shortening of the single stranded telomere overhang and increased the intercellular telomere length variability as well as the number of telomere free chromosomal ends and telomeric circles. These changes resulted in an increased DNA damage status. Telomerase activity, inducibility and expression remained unchanged. BRCA1 mutation resulted also in changes in the binding of shelterin proteins to telomeres. DNMT-1 levels were markedly reduced both in the carriers and in in vitro system. The methylation pattern of the sub-telomeric regions in carriers suggested hypomethylation in chromosome 10. The expression of a distinct set of genes was also changed, some of which may relate to pre-disposition to malignancy.These results show that BRCA gene products have a role in telomere length homeostasis. It is plausible that these perturbations contribute to malignant transformation in BRCA mutants.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Yerushalmi
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Lital Zuriano
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shaden Naser
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Jardena Nordenberg
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Lubin
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yonatan Adel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Daniel Shepshelovich
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Hagai Yavin
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Internal Medicine A, Beilinson Medical Center, Petah Tikva, Israel
| | - Irit Ben Aharon
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Pery
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Shulamit Rizel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Oncology, Davidoff Cancer Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Meir Lahav
- The Felsenstein Medical Research Center, Beilinson Medical Center, Tel-Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Beilinson Medical Center, Petah Tikva, Israel
| |
Collapse
|
40
|
Zhou L, Shang Y, Jin Z, Zhang W, Lv C, Zhao X, Liu Y, Li N, Liang J. UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation. Cancer Biol Ther 2015; 16:1241-51. [PMID: 26147747 DOI: 10.1080/15384047.2015.1056411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes play significant roles in cancer development. UHRF1, an epigenetic regulator, has been shown to be overexpressed and to coordinate tumor suppressor gene (TSG) silencing in several cancers. In a previous study, we found that UHRF1 promoted gastric cancer (GC) invasion and metastasis. However, the role and underlying mechanism of UHRF1 in GC carcinogenesis remain largely unknown. In the present study, we investigated UHRF1 expression and function in GC proliferation and explored its downstream regulatory mechanism. The results demonstrated that UHRF1 overexpression was an independent and significant predictor of GC prognosis. Downregulation of UHRF1 suppressed GC proliferation and growth in vitro and in vivo, and UHRF1 upregulation showed opposite effects. Furthermore, downregulation of UHRF1 reactivated 7 TSGs, including CDX2, CDKN2A, RUNX3, FOXO4, PPARG, BRCA1 and PML, via promoter demethylation. These results provide insight into the GC proliferation process, and suggest that targeting UHRF1 represents a new therapeutic approach to block GC development.
Collapse
Key Words
- BRCA, breast cancer
- CDH4, cadherin 4
- CDKN2A, cyclin-dependent kinase inhibitor 2A
- CDX2, caudal type homeobox 2
- DNA methylation
- DNMT, DNA methyltransferase
- FOXO, forkhead box O
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GC, gastric cancer
- GO, gene ontology
- MSP, methylation-specific PCR
- NC, negative control
- PBS, phosphate buffered saline
- PI, propidium iodide
- PLA, Chinese People's Liberation Army
- PML, promyelocytic leukemia
- PPARG,peroxisome proliferator-activated receptor gamma
- RB, retinoblastoma protein
- RUNX3, runt-related transcription factor 3
- TSG, tumor suppressor gene
- UHRF1
- UHRF1, ubiquitin-like containing PHD ring finger 1
- gastric cancer
- mRNA, messenger RNA
- proliferation
- qRT-PCR, quantitative reverse transcription–polymerase chain reaction
- shRNA, short hairpin RNA
- tumor suppressor gene
Collapse
Affiliation(s)
- Lin Zhou
- a Department of Medical Affairs ; The 88th Hospital of PLA ; Tai'an , China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Prognostic value of telomere function in gastric cancers with and without microsatellite instability. Eur J Gastroenterol Hepatol 2015; 27:162-9. [PMID: 25486025 DOI: 10.1097/meg.0000000000000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To identify molecular markers that may be useful in the selection of gastric cancer patients with different prognoses, we investigated telomere function in gastric cancers with and without microsatellite instability (MSI). MATERIALS AND METHODS We analyzed 83 gastric cancers and its paired-normal tissues to investigate MSI and telomere function. MSI was established using five polymorphic human repeat DNA markers. Telomere function was evaluated by determining telomerase activity, telomere length, and telomere-repeat factors 1 and 2 (TRF1 and TRF2) expression. RESULTS Patients with high microsatellite instability (MSI-H) gastric cancers showed a significantly better prognosis than those affected by microsatellite stable or low microsatellite instability (MSS/MSI-L) tumors (P = 0.03). The lowest expression levels of TRF1 and TRF2 were associated with MSI-H gastric cancers (P = 0.008 and 0.006, respectively). Moreover, a clear trend toward a worse prognosis was found in the group of patients who had tumors with the shortest telomeres (P = 0.01). Cox multivariate analysis showed that MSI emerged as a protective prognostic factor; MSS/MSI-L tumors conferred a significantly poor prognosis in patients (relative risk = 4.862-fold greater than the MSI-H group) (P = 0.033). Telomere length of gastric tumors less than 2.86 kbp was a factor that led to a poor prognosis (relative risk = 4.420, with respect to tumors showing telomere length ≥ 2.86 kbp) (P = 0.002). CONCLUSION We propose telomere status as a potential molecular marker with usefulness in the establishment of the prognosis of gastric cancers both for the mutator phenotype and for the suppressor pathway.
Collapse
|
42
|
Qu F, Li R, He X, Li Q, Xie S, Gong L, Ji G, Lu J, Bao G. Short telomere length in peripheral blood leukocyte predicts poor prognosis and indicates an immunosuppressive phenotype in gastric cancer patients. Mol Oncol 2014; 9:727-39. [PMID: 25515040 DOI: 10.1016/j.molonc.2014.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/01/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022] Open
Abstract
Compelling evidences indicate that relative telomere length (RTL) in peripheral blood leukocytes (PBLs) can predict the clinical outcome of several cancers. However, to date, the prognostic value of leukocyte RTL in gastric cancer (GC) patients has not been explored. In this study, relative telomere length (RTL) in peripheral blood leukocytes (PBLs) was measured using a real-time PCR-based method in a total of 693 GC patients receiving surgical resection. The prognostic value of leukocyte RTL was first explored in the training set (112 patients) using Kaplan-Meier and Cox proportional hazards regression analyses. Then an independent cohort of 581 patients was used as a validation set. To explore potential mechanism, we detected the immunophenotypes of peripheral blood mononuclear cells and plasma concentrations of several cytokines in GC patients. Patients with short RTL showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with long RTL in all patient sets. Furthermore, leukocyte RTL and TNM stage exhibited a notable joint effect in prognosis prediction. Integration of TNM stage and leukocyte RTL significantly improved the prognosis prediction efficacy for GC. In addition, we found that patients with short RTL had a higher CD4(+) T cell percentage in PBMCs, CD19(+)IL-10(+) Breg percentage in B cells and plasma IL-10 concentration, indicating an enhanced immunosuppressive status with short leukocyte RTL. In conclusion, our study for the first time demonstrates that leukocyte RTL is an independent prognostic marker complementing TNM stage and associated with an immunosuppressive phenotype in the peripheral blood lymphocytes in GC patients.
Collapse
Affiliation(s)
- Falin Qu
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Renli Li
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiucheng Li
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuang Xie
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gang Ji
- Xijing Hospital of Digestive Disease, The Fourth Military Medical University, Xi'an 710032, China
| | - Jianguo Lu
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
43
|
Ozden S, Tiber PM, Ozgen Z, Ozyurt H, Serakinci N, Orun O. Expression of TRF2 and its prognostic relevance in advanced stage cervical cancer patients. Biol Res 2014; 47:61. [PMID: 25654471 PMCID: PMC4335779 DOI: 10.1186/0717-6287-47-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/13/2014] [Indexed: 12/01/2022] Open
Abstract
Background Telomeres are protective caps consisted of specific tandem repeats (5′-TTAGGG-3′). Shortening of telomeres at each cell division is known as “mitotic clock” of the cells, which renders telomeres as important regulators of lifespan. TRF2 is one of the critical members of shelterin complex, which is a protein complex responsible from the preservation of cap structure, and loss or mutation of TRF2 results in DNA damage, senescence or apoptosis. Since cancer is frequently associated with aberrant cell cycle progression, defective DNA repair or apoptosis pathways, TRF2 could be one likely candidate for cancer therapy. Here we investigated the prognostic role of TRF2 levels in cervical cancer patients. Fold-induction rates were evaluated with respect to median values after real-time PCR analysis. Overall survival, distant disease-free and local recurrence-free survival rates were calculated using Kaplan-Meier long rank test. Results Both five year overall- and disease-free survival rates were longer in patients with higher TRF2 expression compared to lower expression, but results were not statistically significant (69.2% vs 28.9%, respectively). Mean local recurrence-free survivals (LRF) were very close ( 58.6, CI: 44.3-72.9 vs 54.5, CI: 32.1-76.9 months) for high and low expressions, respectively. Cumulative proportion of LRF at the end of five year period was 76.9% for high and 57.1% for low TRF2 expression (P = 0.75). Statistically significant difference was found between survival ratios and Bcl-xL and p53 gene expressions, but not with TRF2. A respectable correlation between TRF2 expression and apoptosis along with distant metastasis was noted (P = 0.045 and 0.036, respectively). Additionally, high TRF2 expression levels had a positive impact in five year survival rate of stage IIIB-IVA patients (P = 0.04). Conclusions Our results support the role of TRF2 in apoptosis and imply a positive relation with distant metastases and survival in advanced stage patients. The remarkable difference in survival periods of patients with different TRF2 expressions suggest that TRF2 may be a candidate factor to estimate survival for cervical cancer, a preliminary observation which should further be verified with a larger cohort.
Collapse
Affiliation(s)
- Sevgi Ozden
- Clinic of Radiation Oncology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Semsi Denizer Street, Istanbul, 34890, Turkey.
| | - Pinar Mega Tiber
- Biophysics Department, Marmara University School of Medicine, Maltepe Basibuyuk Yolu Street, Istanbul, 34854, Turkey.
| | - Zerrin Ozgen
- Department of Radiation Oncology,School of Medicine, Marmara University, Muhsin Yazicioglu Street, Istanbul, 34890, Turkey.
| | - Hazan Ozyurt
- Clinic of Radiation Oncology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Semsi Denizer Street, Istanbul, 34890, Turkey.
| | - Nedime Serakinci
- Faculty of Medicine, Medical Genetics, Near East University, KKTC Mersin 10, Lefkosa, 922022, Turkey.
| | - Oya Orun
- Biophysics Department, Marmara University School of Medicine, Maltepe Basibuyuk Yolu Street, Istanbul, 34854, Turkey.
| |
Collapse
|
44
|
The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines. Breast Cancer Res Treat 2014; 145:581-91. [PMID: 24807106 PMCID: PMC4031391 DOI: 10.1007/s10549-014-2975-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability.
Collapse
|
45
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
46
|
Killick E, Tymrakiewicz M, Cieza-Borrella C, Smith P, Thompson DJ, Pooley KA, Easton DF, Bancroft E, Page E, Leongamornlert D, Kote-Jarai Z, Eeles RA. Telomere length shows no association with BRCA1 and BRCA2 mutation status. PLoS One 2014; 9:e86659. [PMID: 24489760 PMCID: PMC3906069 DOI: 10.1371/journal.pone.0086659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/11/2013] [Indexed: 01/17/2023] Open
Abstract
This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrollment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrollment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don't support the previous finding of association between hereditary breast cancer and shorter TL.
Collapse
Affiliation(s)
- Emma Killick
- Division of Medical Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Oncogentics, Institute of Cancer Research, Surrey, United Kingdom
| | | | | | - Paula Smith
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Deborah J. Thompson
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Karen A. Pooley
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Doug F. Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Bancroft
- Cancer Genetics, Royal Marsden Hospital NHS Trust, London, United Kingdom
| | - Elizabeth Page
- Oncogentics, Institute of Cancer Research, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Panero J, Stanganelli C, Arbelbide J, Fantl DB, Kohan D, García Rivello H, Rabinovich GA, Slavutsky I. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol Dis 2013; 52:134-9. [PMID: 24239198 DOI: 10.1016/j.bcmd.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/08/2023]
Abstract
The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene expression. TL was evaluated by Terminal Restriction Fragments. Our data showed increased expression of POT1, TPP1, TIN2 and RAP1 in MM with respect to MGUS patients, with significant differences for POT1 gene (p=0.002). In MM, the correlation of gene expression profiles with clinical characteristics highlighted POT1 for its significant association with advanced clinical stages, high calcium and β2-microglobulin levels (p=0.02) and bone lesions (p=0.009). In multivariate analysis, POT1 expression (p=0.04) was a significant independent prognostic factor for overall survival as well as the staging system (ISS) (p<0.02). Our findings suggest for the first time the participation of POT1 in the transformation process from MGUS to MM, and provide evidence of this gene as a useful prognostic factor in MM as well as a possible molecular target to design new therapeutic strategies.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Arbelbide
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dana Kohan
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Argentina
| | | | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
48
|
Li W, Xie C, Yang Z, Chen J, Lu NH. Abnormal DNA-PKcs and Ku 70/80 expression may promote malignant pathological processes in gastric carcinoma. World J Gastroenterol 2013; 19:6894-901. [PMID: 24187467 PMCID: PMC3812491 DOI: 10.3748/wjg.v19.i40.6894] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/04/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the expression of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and the Ku70/Ku80 heterodimer (Ku 70/80) in gastric carcinoma. METHODS Gastric biopsies were obtained from 146 gastric carcinoma patients [Helicobacter pylori (H. pylori)-negative: 89 and H. pylori-positive: 57] and 34 from normal subjects (H. pylori-negative: 16 and H. pylori-positive: 18) via surgery and endoscopic detection from April 2011 to August 2012 at the First Affiliated Hospital of Nanchang University. Pathological diagnosis and classification were made according to the criteria of the World Health Organization and the updated Sydney system. An ''in-house'' rapid urease test and modified Giemsa staining were employed to detect H. pylori infection. The expression of DNA-PKcs and the Ku 70/80 protein was detected by immunohistochemistry. RESULTS Overall, the positive rates of both DNA-PKcs and Ku 70/80 were significantly increased in gastric cancer (χ(2) = 133.04, P < 0.001 for DNA-PKcs and χ(2) = 13.06, P < 0.01 for Ku) compared with normal gastric mucosa. There was hardly any detectable expression of DNA-PKcs in normal gastric mucosa, and the positive rate of DNA-PKcs protein expression in patients with a normal gastric mucosa was 0% (0/34), whereas the rate in gastric cancer (GC) was 93.8% (137/146). The difference between the two groups was statistically significant. Additionally, the positive rate of Ku 70/80 was 79.4% (27/34) in normal gastric mucosa and 96.6% (141/146) in gastric cancer. The DNA-PKcs protein level was significantly increased in gastric cancer (Mann-Whitney U = 39.00, P < 0.001), compared with normal gastric mucosa. In addition, there was a significant difference in the expression of Ku 70/80 (Mann-Whitney U = 1117.00, P < 0.001) between gastric cancer and normal gastric mucosa. There was also a significant difference in Ku70/80 protein expression between GC patients with and without H. pylori infection (P < 0.05). Spearman analysis showed a negative correlation between tumor differentiation and DNA-PKcs expression (r = -0.447, P < 0.05). Moreover, Ku70/80 expression was negatively correlated with both clinical stage (r = -0.189, P < 0.05) and H. pylori colonization (r = -0.168, P < 0.05). CONCLUSION Overall, this research demonstrated that enhanced DNA-PKcs and Ku 70/80 expression may be closely associated with gastric carcinoma.
Collapse
|
49
|
Abstract
Chemotherapy occupies an important position in the treatment of gastric cancer. Platinum drugs are commonly chemotherapy drugs for gastric cancer; however, sensitivity to these drugs varies among different patients. The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene that is associated with sensitivity to platinum drugs. At present, the research on the BRCA1 gene is mainly focused on breast cancer, and there have been fewer studies on gastric cancer. This paper will give an overview of the structure and function of the BRCA1 gene and the relationship between BRCA1 and gastric cancer.
Collapse
|
50
|
TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 2013; 15:818-28. [PMID: 23792691 DOI: 10.1038/ncb2774] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/01/2013] [Indexed: 12/15/2022]
Abstract
Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4--a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4--was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.
Collapse
|