1
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
2
|
Feng X, Jiang N, Zheng J, Zhu Z, Chen J, Duan L, Song P, Sun J, Zhang X, Hang L, Liu Y, Zhang R, Feng T, Xie B, Wu X, Hou Z, Chen M, Jiang J, Li S. Advancing knowledge of One Health in China: lessons for One Health from China's dengue control and prevention programs. SCIENCE IN ONE HEALTH 2024; 3:100087. [PMID: 39641122 PMCID: PMC11617290 DOI: 10.1016/j.soh.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Background The emergence of dengue fever has prompted significant public health responses, highlighting the need for a comprehensive understanding of One Health in addressing vector-borne diseases. China's experience in dengue control and prevention programs offers valuable insights into the successful integration of multidisciplinary strategies. Aims The review aims to: (1) systematically analyze lessons from China's dengue control and prevention programs, focusing on the integration of these efforts with the One Health approach; (2) underscore the reasons of optimizing the dengue control and prevention program; (3) highlight the alignment of China's dengue control strategies with the One Health framework; (4) contribute to global efforts in combating dengue, providing scientific evidence and strategic recommendations for other regions facing similar challenges. Results Through a comprehensive literature review and expert interviews, this study found China's approach to dengue control and prevention implemented through a hierarchical system led by the government, with collaborative efforts across multiple departments. This multi-sectoral collaboration mechanism enables the technical interventions well executed by health and disease control institutions, optimizing the integration of multiple cost-effeteness approaches, such as case management, early detection and outbreak response, reducing local transmission, and minimizing severe cases and fatalities. It was found that community participation and public health education have played a vital role in raising awareness, promoting personal protective measures, and enhancing the overall effectiveness of control efforts. The implementation of these integrated interventions has resulted in reduced dengue cases and improved capacity of outbreak response. China's dengue control strategies under the One Health framework, with focus on interdisciplinary collaboration, incorporated environmental and ecological interventions, which reduced mosquito breeding sites and improved sanitation. The findings of the review underscore the need for continuous improvement in early warning systems, scientific research, and the adoption of the One Health approach to address emerging challenges posed by climate change and the cross-border spread of infectious diseases. Conclusion China's dengue control and prevention programs provide a compelling case study for the effective application of the One Health approach. By systematically analyzing the integration of multidisciplinary strategies, this review reveals valuable lessons on optimizing public health responses to vector-borne diseases. The alignment of these strategies with One Health principles not only enhances the effectiveness of dengue control efforts in China but also offers a framework that can be adapted by other regions facing similar challenges. Ultimately, the insights gained from this analysis contribute to the global fight against dengue, emphasizing the need for collaborative and holistic approaches in public health initiatives.
Collapse
Affiliation(s)
- Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
| | - Na Jiang
- College of Life Sciences, Inner Mongolia University, Hohhot Inner Mongolia 010021, China
| | - Jinxin Zheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
| | - Zelin Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Junhu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Lei Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Life Science, Fudan University, Shanghai 200438, China
| | - Peng Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jiahui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Xiaoxi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
| | - Lefei Hang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
| | - Yang Liu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, Sichuan, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, Guangdong, China
| | - Tiejian Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, Guangdong, China
| | - Binbin Xie
- Hainan Tropical Disease Research Center, Haikou 570100, Hainan, China
| | - Xiaonen Wu
- Hainan Tropical Disease Research Center, Haikou 570100, Hainan, China
| | - Zhiying Hou
- Hainan Tropical Disease Research Center, Haikou 570100, Hainan, China
| | - Muxin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jinyong Jiang
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er 665000, Yunan, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- NHC Key Laboratory for Parasitology and Vector Biology, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| |
Collapse
|
3
|
Zhang DJ, Sun Y, Yamada H, Wu Y, Wang G, Feng QD, Paerhande D, Maiga H, Bouyer J, Qian J, Wu ZD, Zheng XY. Effects of radiation on the fitness, sterility and arbovirus susceptibility of a Wolbachia-free Aedes albopictus strain for use in the sterile insect technique. PEST MANAGEMENT SCIENCE 2023; 79:4186-4196. [PMID: 37318795 DOI: 10.1002/ps.7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The sterile insect technique (SIT) is a green and species-specific insect pest control technique that suppresses target populations by releasing factory-reared, radiosterilized males into the wild. Once released, it is important to be able to distinguish the released males from the wild males for monitoring purposes. Several methods to mark the sterile males exist. However, most have limitations due to monetary, process efficiency, or insect quality. Aedes albopictus is naturally infected with Wolbachia at a high prevalence, therefore the elimination of Wolbachia can serve as a biomarker to distinguish factory-reared male mosquitoes from wild conspecifics. RESULTS In this study, a Wolbachia-free Ae. albopictus GT strain was developed and its fitness evaluated, which was found to be comparable to the wild GUA strain. In addition, GT male mosquitoes were irradiated at the adult stage and a dose of 20 Gy or more induced over 99% sterility. Moreover, a dose of 30 Gy (almost completely sterilizing male and female mosquitoes) had limited effects on the mating competitiveness of GT males and the vector competence of GT females, respectively. However, radiation reduced mosquito longevity, regardless of sex. CONCLUSION Our results indicate that the Ae. albopictus GT strain can be distinguished from wild mosquitoes based on Wolbachia status and shows similar fitness, radio-sensitivity and arbovirus susceptibility to the GUA strain, indicating that it is feasible to use the GT strain to suppress Ae. albopictus populations for SIT programmes. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Dong-Jing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- SYSU Nuclear and Insect Biotechnology Co., Ltd, Dongguan, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Yan Sun
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- SYSU Nuclear and Insect Biotechnology Co., Ltd, Dongguan, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Gang Wang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Qing-Deng Feng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Dilinuer Paerhande
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jun Qian
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Dao Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- International Atomic Energy Agency Collaborating Centre, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Li Y, Sun Y, Zou J, Zhong D, Liu R, Zhu C, Li W, Zhou Y, Cui L, Zhou G, Lu G, Li T. Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China. Parasit Vectors 2023; 16:128. [PMID: 37060070 PMCID: PMC10103416 DOI: 10.1186/s13071-023-05719-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.
Collapse
Affiliation(s)
- Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Sun
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Jiaquan Zou
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Yanhe Zhou
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China.
- The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Academician Workstation of Hainan Province, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
5
|
Yang Q, Chung J, Robinson KL, Schmidt TL, Ross PA, Liang J, Hoffmann AA. Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Negl Trop Dis 2022; 16:e0010139. [PMID: 35417447 PMCID: PMC9037918 DOI: 10.1371/journal.pntd.0010139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
The arbovirus vector Aedes albopictus (Asian tiger mosquito) is common throughout the Indo-Pacific region, where most global dengue transmission occurs. We analysed population genomic data and tested for cryptic species in 160 Ae. albopictus sampled from 16 locations across this region. We found no evidence of cryptic Ae. albopictus but found multiple intraspecific COI haplotypes partitioned into groups representing three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea (PNG), Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used a machine learning trained on morphologically sexed samples to classify sexes using multiple genetic features and then characterized the wAlbA and wAlbB Wolbachia infections in 664 other samples. The wAlbA and wAlbB infections as detected by qPCR showed markedly different patterns in the sexes. For females, most populations had a very high double infection incidence, with 67% being the lowest value (from Timor-Leste). For males, the incidence of double infections ranged from 100% (PNG) to 0% (Vanuatu). Only 6 females were infected solely by the wAlbA infection, while rare uninfected mosquitoes were found in both sexes. The wAlbA and wAlbB densities varied significantly among populations. For mosquitoes from Torres Strait and Vietnam, the wAlbB density was similar in single-infected and superinfected (wAlbA and wAlbB) mosquitoes. There was a positive association between wAlbA and wAlbB infection densities in superinfected Ae. albopictus. Our findings provide no evidence of cryptic species of Ae. albopictus in the region and suggest site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of ddRAD tag depths as sex-specific mosquito markers. The results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility (CI) in dengue control. The mosquito Aedes albopictus transmits dengue and other arboviruses. This study investigates the genetics of these mosquitoes and their endosymbiont Wolbachia in the Indo-Pacific region, where 70% of global dengue transmission occurs. The analysis of mitochondrial DNA sequences showed no evidence of cryptic Ae. albopictus but suggested three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea, Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used bioinformatics to classify sexes and then characterized the wAlbA and wAlbB Wolbachia infections via both bioinformatics and quantitative PCR. We found markedly different patterns of wAlbA and wAlbB infections in the sexes. The wAlbA and wAlbB densities varied significantly among populations, suggesting site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of next generation sequencing data in developing molecular markers that can be repeatedly reanalysed to investigate new issues as these arise. These results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility in dengue control.
Collapse
Affiliation(s)
- Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- * E-mail: (QY); (AAH)
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia
| | - Katie L. Robinson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Thomas L. Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jiaxin Liang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- * E-mail: (QY); (AAH)
| |
Collapse
|
6
|
Alonso AC, Stein M, Matías Hisgen C, Micieli MV. Abiotic factors affecting the prevalence of Wolbachia (Rickettsiaceae) in immature Aedes albopictus (Skuse) (Culicidae). J Invertebr Pathol 2022; 189:107730. [DOI: 10.1016/j.jip.2022.107730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
|
7
|
Kupritz J, Martin J, Fischer K, Curtis KC, Fauver JR, Huang Y, Choi YJ, Beatty WL, Mitreva M, Fischer PU. Isolation and characterization of a novel bacteriophage WO from Allonemobius socius crickets in Missouri. PLoS One 2021; 16:e0250051. [PMID: 34197460 PMCID: PMC8248633 DOI: 10.1371/journal.pone.0250051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are endosymbionts of numerous arthropod and some nematode species, are important for their development and if present can cause distinct phenotypes of their hosts. Prophage DNA has been frequently detected in Wolbachia, but particles of Wolbachia bacteriophages (phage WO) have been only occasionally isolated. Here, we report the characterization and isolation of a phage WO of the southern ground cricket, Allonemobius socius, and provided the first whole-genome sequence of phage WO from this arthropod family outside of Asia. We screened A. socius abdomen DNA extracts from a cricket population in eastern Missouri by quantitative PCR for Wolbachia surface protein and phage WO capsid protein and found a prevalence of 55% and 50%, respectively, with many crickets positive for both. Immunohistochemistry using antibodies against Wolbachia surface protein showed many Wolbachia clusters in the reproductive system of female crickets. Whole-genome sequencing using Oxford Nanopore MinION and Illumina technology allowed for the assembly of a high-quality, 55 kb phage genome containing 63 open reading frames (ORF) encoding for phage WO structural proteins and host lysis and transcriptional manipulation. Taxonomically important regions of the assembled phage genome were validated by Sanger sequencing of PCR amplicons. Analysis of the nucleotides sequences of the ORFs encoding the large terminase subunit (ORF2) and minor capsid (ORF7) frequently used for phage WO phylogenetics showed highest homology to phage WOAu of Drosophila simulans (94.46% identity) and WOCin2USA1 of the cherry fruit fly, Rhagoletis cingulata (99.33% identity), respectively. Transmission electron microscopy examination of cricket ovaries showed a high density of phage particles within Wolbachia cells. Isolation of phage WO revealed particles characterized by 40–62 nm diameter heads and up to 190 nm long tails. This study provides the first detailed description and genomic characterization of phage WO from North America that is easily accessible in a widely distributed cricket species.
Collapse
Affiliation(s)
- Jonah Kupritz
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Martin
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerstin Fischer
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt C. Curtis
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph R. Fauver
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuefang Huang
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Young-Jun Choi
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
8
|
Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021; 10:39. [PMID: 33419044 PMCID: PMC7825316 DOI: 10.3390/pathogens10010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.
Collapse
Affiliation(s)
- Luísa Maria Inácio da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| |
Collapse
|
9
|
Lau MJ, Ross PA, Endersby-Harshman NM, Hoffmann AA. Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1567-1574. [PMID: 32307514 PMCID: PMC7566743 DOI: 10.1093/jme/tjaa074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 05/10/2023]
Abstract
In recent decades, the occurrence and distribution of arboviral diseases transmitted by Aedes aegypti mosquitoes has increased. In a new control strategy, populations of mosquitoes infected with Wolbachia are being released to replace existing populations and suppress arboviral disease transmission. The success of this strategy can be affected by high temperature exposure, but the impact of low temperatures on Wolbachia-infected Ae. aegypti is unclear, even though low temperatures restrict the abundance and distribution of this species. In this study, we considered low temperature cycles relevant to the spring season that are close to the distribution limits of Ae. aegypti, and tested the effects of these temperature cycles on Ae. aegypti, Wolbachia strains wMel and wAlbB, and Wolbachia phage WO. Low temperatures influenced Ae. aegypti life-history traits, including pupation, adult eclosion, and fertility. The Wolbachia-infected mosquitoes, especially wAlbB, performed better than uninfected mosquitoes. Temperature shift experiments revealed that low temperature effects on life history and Wolbachia density depended on the life stage of exposure. Wolbachia density was suppressed at low temperatures but densities recovered with adult age. In wMel Wolbachia there were no low temperature effects specific to Wolbachia phage WO. The findings suggest that Wolbachia-infected Ae. aegypti are not adversely affected by low temperatures, indicating that the Wolbachia replacement strategy is suitable for areas experiencing cool temperatures seasonally.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nancy M Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Puerta-Guardo H, Contreras-Perera Y, Perez-Carrillo S, Che-Mendoza A, Ayora-Talavera G, Vazquez-Prokopec G, Martin-Park A, Zhang D, Manrique-Saide P, UCBE-LCB Team
Palacio-VargasJorgePérez-OjedaJavierNavarrete-CarballoJuanMarinWilbert BibianoBarreiroAnuar Medina. Wolbachia in Native Populations of Aedes albopictus (Diptera: Culicidae) From Yucatan Peninsula, Mexico. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5919928. [PMID: 33034342 PMCID: PMC7583270 DOI: 10.1093/jisesa/ieaa096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 05/10/2023]
Abstract
This study reports the results of a molecular screening for Wolbachia (Wb) infection in Aedes albopictus (Skuse) populations recently established in the Yucatan Peninsula, Mexico. To do so, collections of free-flying adults with BG traps and emerged adults from eggs after ovitrap field collections were performed in three suburban localities of the city of Merida, Yucatan. Overall, local populations of Ae. albopictus present a natural Wb infection rate of ~40% (18 of 45). Wb infection was detected in both field-collected adults (76.5%, 13 of 17) and eggs reared (17.8%, 5 of 28) and in 37.9% (11/29) of females and 43.7% (7/16) of male Ae. albopictus mosquitoes. An initial screening for Wolbachia strain typing showed that native Ae. albopictus were naturally coinfected with both wAlbA and wAlbB strains. The knowledge of the prevalence and diversity of Wolbachia strains in local populations of Aedes mosquitoes is part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Mexico.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Yamili Contreras-Perera
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Silvia Perez-Carrillo
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Azael Che-Mendoza
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Guadalupe Ayora-Talavera
- Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Universidad Autonoma de Yucatán (UADY), Merida, Yucatan, Mexico
| | | | - Abdiel Martin-Park
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pablo Manrique-Saide
- Unidad Colaborativa de Bioensayos Entomológicos (UCBE) y del Laboratorio de Control Biológico (LCB) para Ae. aegypti, Universidad Autónoma de Yucatán (UADY), Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
- Corresponding author, e-mail:
| | | |
Collapse
|
11
|
Hu Y, Xi Z, Liu X, Wang J, Guo Y, Ren D, Wu H, Wang X, Chen B, Liu Q. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasit Vectors 2020; 13:28. [PMID: 31937373 PMCID: PMC6961339 DOI: 10.1186/s13071-020-3899-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aedes albopictus is naturally infected with Wolbachia spp., maternally transmitted bacteria that influence the reproduction of hosts. However, little is known regarding the prevalence of infection, multiple infection status, and the relationship between Wolbachia density and dengue outbreaks in different regions. Here, we assessed Wolbachia infection in natural populations of Ae. albopictus in China and compared Wolbachia density between regions with similar climates, without dengue and with either imported or local dengue. RESULTS To explore the prevalence of Wolbachia infection, Wolbachia DNA was detected in mosquito samples via PCR amplification of the 16S rRNA gene and the surface protein gene wsp. We found that 93.36% of Ae. albopictus in China were positive for Wolbachia. After sequencing gatB, coxA, hcpA, ftsZ, fbpA and wsp genes of Wolbachia strains, we identified a new sequence type (ST) of wAlbB (464/465). Phylogenetic analysis indicated that wAlbA and wAlbB strains formed a cluster with strains from other mosquitoes in a wsp-based maximum likelihood (ML) tree. However, in a ML tree based on multilocus sequence typing (MLST), wAlbB STs (464/465) did not form a cluster with Wolbachia strains from other mosquitoes. To better understand the association between Wolbachia spp. and dengue infection, the prevalence of Wolbachia in Ae. albopictus from different regions (containing local dengue cases, imported dengue cases and no dengue cases) was determined. We found that the prevalence of Wolbachia was lower in regions with only imported dengue cases. CONCLUSIONS The natural prevalence of Wolbachia infections in China was much lower than in other countries or regions. The phylogenetic relationships among Wolbachia spp. isolated from field-collected Ae. albopictus reflected the presence of dominant and stable strains. However, wAlbB (464/465) and Wolbachia strains did not form a clade with Wolbachia strains from other mosquitoes. Moreover, lower densities of Wolbachia in regions with only imported dengue cases suggest a relationship between fluctuations in Wolbachia density in field-collected Ae. albopictus and the potential for dengue invasion into these regions.
Collapse
Affiliation(s)
- Yaping Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China. .,Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China. .,Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China.
| | - Zhiyong Xi
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yuhong Guo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Dongsheng Ren
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xiaohua Wang
- Haikou Center for Disease Control and Prevention, Haikou, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China.
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
12
|
Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: implications for arbovirus transmission. Sci Rep 2018; 8:5041. [PMID: 29568046 PMCID: PMC5864732 DOI: 10.1038/s41598-018-23401-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses.
Collapse
|
13
|
Schmidt TL, Rašić G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Negl Trop Dis 2017; 11:e0006009. [PMID: 29045401 PMCID: PMC5662242 DOI: 10.1371/journal.pntd.0006009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations. Aedes albopictus, the Asian Tiger Mosquito, is a highly invasive disease vector with a growing global distribution. Designing strategies to prevent invasion and to control Ae. albopictus populations in invaded regions requires knowledge of how Ae. albopictus disperses. Studies comparing Ae. albopictus populations have found little evidence of genetic structure even between distant populations, suggesting that dispersal along human transportation networks is common. However, a more specific understanding of dispersal processes has been unavailable due to an absence of studies using high-resolution genetic markers. Here we present a study using high-resolution markers, which investigates genetic structure among 152 Ae. albopictus from Guangzhou, China. We found that human transportation networks, particularly shipping terminals, had an influence on genetic structure. We also found genetic distance was correlated with geographical distance, the first such observation in this species. This study demonstrates how high-resolution markers can be used to investigate ecological processes that may otherwise escape detection. We conclude that strategies for controlling Ae. albopictus will have to consider both passive reinvasion along human transportation networks and active reinvasion from neighbouring regions.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Gordana Rašić
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Zhiyong Xi
- Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Li H, Lydy MJ, You J. Pyrethroids in indoor air during application of various mosquito repellents: Occurrence, dissipation and potential exposure risk. CHEMOSPHERE 2016; 144:2427-2435. [PMID: 26615491 DOI: 10.1016/j.chemosphere.2015.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Commercial mosquito repellents (MRs) are generally applied as mosquito coils, electric vaporizers (liquid and solid) or aerosol spray, with pyrethroids often being the active ingredients. Four types of MRs were applied individually in a 13-m(2) bedroom to study the occurrence, dissipation and risk of pyrethroids in indoor environments. Total air concentrations (in gas and particle phases) of allethrin, cypermethrin, dimefluthrin and tetramethrin during MR applications were three to six orders of magnitude higher than indoor levels before the applications, and allethrin emitted from a vaporizing mat reached the highest concentration measured during the current study (18,600 ± 4980 ng m(-3)). The fate of airborne pyrethroids was different when the four MRs were applied. Particle-associated allethrin accounted for 95% of its total concentration from the aerosol spray, and was significantly higher than the vaporizing mat (67%), suggesting that the released phase of MRs and size distribution of pyrethroid-carrying particles played important roles in the gas-particle partitioning process. In addition, air exchange through open windows more effectively reduced the levels of indoor pyrethroids than ventilation using an air conditioner. The inhalation risk quotients (RQ) for allethrin derived from application of the vaporizing mat ranged from 1.04 ± 0.40 to 1.98 ± 0.75 for different age-subgroups of the population, suggesting potential exposure risk. Special attention should be given concerning indoor exposure of pyrethroids to these vulnerable groups.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, 171 Life Science II, Southern Illinois University, Carbondale, IL 62901, United States
| | - Jing You
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
15
|
Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II--A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release. PLoS One 2015; 10:e0135194. [PMID: 26252474 PMCID: PMC4529199 DOI: 10.1371/journal.pone.0135194] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/19/2015] [Indexed: 01/17/2023] Open
Abstract
Due to the absence of a perfect method for mosquito sex separation, the combination of the sterile insect technique and the incompatible insect technique is now being considered as a potentially effective method to control Aedes albopictus. In this present study first we examine the minimum pupal irradiation dose required to induce complete sterility in Wolbachia triple-infected (HC), double-infected (GUA) and uninfected (GT) female Ae. albopictus. The HC line is a candidate for Ae. albopictus population suppression programmes, but due to the risk of population replacement which characterizes this triple infected line, the individuals to be released need to be additionally irradiated. After determining the minimum irradiation dose required for complete female sterility, we test whether sterilization is sufficient to prevent invasion of the triple infection from the HC females into double-infected (GUA) populations. Our results indicate that irradiated Ae. albopictus HC, GUA and GT strain females have decreased fecundity and egg hatch rate when irradiated, inversely proportional to the dose, and the complete sterilization of females can be acquired by pupal irradiation with doses above 28 Gy. PCR-based analysis of F1 and F2 progeny indicate that the irradiated HC females, cannot spread the new Wolbachia wPip strain into a small cage GUA population, released at a 1:5 ratio. Considering the above results, we conclude that irradiation can be used to reduce the risk of population replacement caused by an unintentional release of Wolbachia triple-infected Ae. albopictus HC strain females during male release for population suppression.
Collapse
|
16
|
Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae). Folia Microbiol (Praha) 2015; 60:497-503. [PMID: 25903547 DOI: 10.1007/s12223-015-0393-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.
Collapse
|