1
|
Zhang C, Zeng J, Xie W, Liu C, Niu L, Wang Y, Wang Y, Shi M, Shao J, Wang W, Schiefelbein J, Yu F, An L. SPIRRIG is required for BRICK1 stability and salt stress induced root hair developmental plasticity in Arabidopsis. STRESS BIOLOGY 2024; 4:48. [PMID: 39585540 PMCID: PMC11589064 DOI: 10.1007/s44154-024-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1-1 (som1-1), also exhibiting root hair developmental defects. Map-based cloning and allelic analyses confirmed that som1-1 is a new mutant allele of SPIRRIG (SPI), which encodes a Beige and Chediak Higashi (BEACH) domain-containing protein. SPI has been reported to facilitate actin dependent root hair development by temporally and spatially regulating the expression of BRICK1 (BRK1), a subunit of the SCAR/WAVE actin nucleating promoting complex. Our living cell imaging examinations revealed that salt stress induces an altered actin organization in root hair that mimics those in the spi mutant, implying SPI may respond to salt stress induced root hair plasticity by modulating actin cytoskeleton organization. Furthermore, we found BRK1 is also involved in root hair developmental change under salt stress, and overexpression of BRK1 resulted in root hairs over-sensitive to salt stress as those in spi mutant. Moreover, based on biochemical analyses, we found BRK1 is unstable and SPI mediates BRK1 stability. Functional loss of SPI results in the accumulation of steady-state of BRK1.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Jingyu Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Wenjuan Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Chuanseng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Linyu Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Yanling Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Muyang Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Niu L, Xie W, Li Q, Wang Y, Zhang X, Shi M, Zeng J, Li M, Wang Y, Shao J, Yu F, An L. BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis. PLANTA 2024; 260:115. [PMID: 39400709 DOI: 10.1007/s00425-024-04545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
MAIN CONCLUSION Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.
Collapse
Affiliation(s)
- Linyu Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Wenjuan Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Qian Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yali Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Xuanyu Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Muyang Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Jingyu Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Mengxiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yanling Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|
3
|
Liu L, Wang Y, Cao W, Yang L, Zhang C, Yuan L, Wang D, Wang W, Zhang H, Schiefelbein J, Yu F, An L. TRANSPARENT TESTA GLABRA2 defines trichome cell shape by modulating actin cytoskeleton in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:1256-1276. [PMID: 38391271 DOI: 10.1093/plphys/kiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott-Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weihua Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lanxin Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
6
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
7
|
Lebecq A, Fangain A, Boussaroque A, Caillaud MC. Dynamic apico-basal enrichment of the F-actin during cytokinesis in Arabidopsis cells embedded in their tissues. QUANTITATIVE PLANT BIOLOGY 2022; 3:e4. [PMID: 37077960 PMCID: PMC10095810 DOI: 10.1017/qpb.2022.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Cell division is a tightly regulated mechanism, notably in tissues where malfunctions can lead to tumour formation or developmental defects. This is particularly true in land plants, where cells cannot relocate and therefore cytokinesis determines tissue topology. In plants, cell division is executed in radically different manners than in animals, with the appearance of new structures and the disappearance of ancestral mechanisms. Whilst F-actin and microtubules closely co-exist, recent studies mainly focused on the involvement of microtubules in this key process. Here, we used a root tracking system to image the spatio-temporal dynamics of both F-actin reporters and cell division markers in dividing cells embedded in their tissues. In addition to the F-actin accumulation at the phragmoplast, we observed and quantified a dynamic apico-basal enrichment of F-actin from the prophase/metaphase transition until the end of the cytokinesis.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Alice Boussaroque
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
- Author for correspondence: M.-C. Caillaud, E-mail:
| |
Collapse
|
8
|
Chin S, Kwon T, Khan BR, Sparks JA, Mallery EL, Szymanski DB, Blancaflor EB. Spatial and temporal localization of SPIRRIG and WAVE/SCAR reveal roles for these proteins in actin-mediated root hair development. THE PLANT CELL 2021; 33:2131-2148. [PMID: 33881536 PMCID: PMC8364238 DOI: 10.1093/plcell/koab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.
Collapse
Affiliation(s)
- Sabrina Chin
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Taegun Kwon
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - J. Alan Sparks
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Eileen L. Mallery
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel B. Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elison B. Blancaflor
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
9
|
Gupta A, Jaiswal V, Sawant SV, Yadav HK. Mapping QTLs for 15 morpho-metric traits in Arabidopsis thaliana using Col-0 × Don-0 population. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1021-1034. [PMID: 32377050 PMCID: PMC7196571 DOI: 10.1007/s12298-020-00800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/24/2020] [Accepted: 03/17/2020] [Indexed: 05/13/2023]
Abstract
Genome wide quantitative trait loci (QTL) mapping was conducted in Arabidopsis thaliana using F2 mapping population (Col-0 × Don-0) and SNPs markers. A total of five linkage groups were obtained with number of SNPs varying from 45 to 59 per linkage group. The composite interval mapping detected a total of 36 QTLs for 15 traits and the number of QTLs ranged from one (root length, root dry biomass, cauline leaf width, number of internodes and internode distance) to seven (for bolting days). The range of phenotypic variance explained (PVE) and logarithm of the odds ratio of these 36 QTLs was found be 0.19-38.17% and 3.0-6.26 respectively. Further, the epistatic interaction detected one main effect QTL and four epistatic QTLs. Five major QTLs viz. Qbd.nbri.4.3, Qfd.nbri.4.2, Qrdm.nbri.5.1, Qncl.nbri.2.2, Qtd.nbri.4.1 with PVE > 15.0% might be useful for fine mapping to identify genes associated with respective traits, and also for development of specialized population through marker assisted selection. The identification of additive and dominant effect QTLs and desirable alleles of each of above mentioned traits would also be important for future research.
Collapse
Affiliation(s)
- Astha Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
- Department of Botany, University of Delhi, New Delhi, 110 007 India
| | - Vandana Jaiswal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
| | - Samir V. Sawant
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
| | - Hemant Kumar Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
| |
Collapse
|
10
|
García-González J, Kebrlová Š, Semerák M, Lacek J, Kotannal Baby I, Petrášek J, Schwarzerová K. Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:486. [PMID: 32425966 PMCID: PMC7212389 DOI: 10.3389/fpls.2020.00486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 05/29/2023]
Abstract
The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Štépánka Kebrlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Matěj Semerák
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jozef Lacek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Innu Kotannal Baby
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Stephan L, Jakoby M, Hülskamp M. Evolutionary Comparison of the Developmental/Physiological Phenotype and the Molecular Behavior of SPIRRIG Between Arabidopsis thaliana and Arabis alpina. FRONTIERS IN PLANT SCIENCE 2020; 11:596065. [PMID: 33584744 PMCID: PMC7874212 DOI: 10.3389/fpls.2020.596065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain proteins mediate membrane-dependent processes in eukaryotic cells. The plant BEACH domain protein SPIRRIG in A. thaliana (AtSPI) was shown to display a similar molecular behavior as its yeast and animal homologs, along with a range of cell morphological defects. In addition, AtSPI was shown to interact with the P-body component DCP1, to differentially effect RNA levels and to be involved in the regulation of RNA stability in the context of salt stress responses. To determine, whether the dual function of SPI in apparently unrelated molecular pathways and traits is evolutionary conserved, we analyzed three Aaspi alleles in Arabis alpina. We show that the molecular behavior of the SPI protein and the role in cell morphogenesis and salt stress response are similar in the two species, though we observed distinct deviations in the phenotypic spectrum.
Collapse
|
12
|
Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F. Division of Labor Between Two Actin Nucleators-the Formin FH1 and the ARP2/3 Complex-in Arabidopsis Epidermal Cell Morphogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:148. [PMID: 32194585 PMCID: PMC7061858 DOI: 10.3389/fpls.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/11/2023]
Abstract
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
Collapse
Affiliation(s)
- Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Fatima Cvrčková,
| |
Collapse
|
13
|
Li J, Kim T, Szymanski DB. Multi-scale regulation of cell branching: Modeling morphogenesis. Dev Biol 2018; 451:40-52. [PMID: 30529250 DOI: 10.1016/j.ydbio.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/05/2023]
Abstract
Plant growth and development are driven by extended phases of irreversible cell expansion generating cells that increase in volume from 10- to 100-fold. Some specialized cell types define cortical sites that reinitiate polarized growth and generate branched cell morphology. This structural specialization of individual cells has a major importance for plant adaptation to diverse environments and practical importance in agricultural contexts. The patterns of cell shape are defined by highly integrated cytoskeletal and cell wall systems. Microtubules and actin filaments locally define the material properties of a tough outer cell wall to generate complex shapes. Forward genetics, powerful live cell imaging experiments, and computational modeling have provided insights into understanding of mechanisms of cell shape control. In particular, finite element modeling of the cell wall provides a new way to discover which cell wall heterogeneities generate complex cell shapes, and how cell shape and cell wall stress can feedback on the cytoskeleton to maintain growth patterns. This review focuses on cytoskeleton-dependent cell wall patterning during cell branching, and how combinations of multi-scale imaging experiments and computational modeling are being used to unravel systems-level control of morphogenesis.
Collapse
Affiliation(s)
- Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States; Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
14
|
Pratap Sahi V, Cifrová P, García-González J, Kotannal Baby I, Mouillé G, Gineau E, Müller K, Baluška F, Soukup A, Petrášek J, Schwarzerová K. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. ANNALS OF BOTANY 2018; 122:777-789. [PMID: 29293873 PMCID: PMC6215044 DOI: 10.1093/aob/mcx178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/10/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIM The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. METHODS In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. KEY RESULTS ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. CONCLUSIONS The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport.
Collapse
Affiliation(s)
- Vaidurya Pratap Sahi
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
| | - Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
| | - Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
| | | | - Gregory Mouillé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Emilie Gineau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Karel Müller
- Institute of Experimental Botany, AS CR, Rozvojová, Czech Republic
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee, Bonn, Germany
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- Institute of Experimental Botany, AS CR, Rozvojová, Czech Republic
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
| |
Collapse
|
15
|
Elsner J, Lipowczan M, Kwiatkowska D. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling. AMERICAN JOURNAL OF BOTANY 2018; 105:257-265. [PMID: 29578288 DOI: 10.1002/ajb2.1021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. METHODS Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. KEY RESULTS We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. CONCLUSIONS Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth.
Collapse
Affiliation(s)
- Joanna Elsner
- Department of Biophysics and Morphogenesis of Plants, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Marcin Lipowczan
- Department of Biophysics and Morphogenesis of Plants, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Dorota Kwiatkowska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
16
|
Tian N, Liu F, Wang P, Zhang X, Li X, Wu G. The molecular basis of glandular trichome development and secondary metabolism in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Zupanska AK, Schultz ER, Yao J, Sng NJ, Zhou M, Callaham JB, Ferl RJ, Paul AL. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. ASTROBIOLOGY 2017; 17:1077-1111. [PMID: 29088549 PMCID: PMC8024390 DOI: 10.1089/ast.2016.1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.
Collapse
Affiliation(s)
- Agata K. Zupanska
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Eric R. Schultz
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - JiQiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
- Present address: Moffitt Cancer Center, Tampa, Florida
| | - Natasha J. Sng
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Mingqi Zhou
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Jordan B. Callaham
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Robert J. Ferl
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Anna-Lisa Paul
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Steffens A, Jakoby M, Hülskamp M. Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1969. [PMID: 29209342 PMCID: PMC5701936 DOI: 10.3389/fpls.2017.01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain-containing proteins (BDCPs) are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI) has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore aimed to analyze, whether SPI has also a role in membrane-dependent processes. In this study, we show that SPI physically interacts with endosomal sorting complex required for transport associated ATPase Suppressor of K+-transport growth defect1 (SKD1) and its positive regulator, LYST Interacting Protein 5 (LIP5) and report genetic interactions between SPI and SKD1 and LIP5. We further show that the endosomal transport route of soluble proteins to the lytic vacuole is disturbed in spi lip5 double mutants but not in the single mutants. These vacuolar transport defects were suppressed by additional expression of SKD1. Our results indicate that the BEACH domain protein SPI has in addition to a role in P-bodies a function in endosomal transport routes.
Collapse
|
19
|
Armour W, Barton D, Overall R. Visualising Differential Growth of Arabidopsis Epidermal Pavement Cells Using Thin Plate Spline Analysis. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Havelková L, Nanda G, Martinek J, Bellinvia E, Sikorová L, Šlajcherová K, Seifertová D, Fischer L, Fišerová J, Petrášek J, Schwarzerová K. Arp2/3 complex subunit ARPC2 binds to microtubules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:96-108. [PMID: 26706062 DOI: 10.1016/j.plantsci.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 05/03/2023]
Abstract
Arp2/3 complex plays a fundamental role in the nucleation of actin filaments (AFs) in yeasts, plants, and animals. In plants, the aberrant shaping and elongation of several types of epidermal cells observed in Arp2/3 complex knockout plant mutants suggest the importance of Arp2/3-mediated actin nucleation for various morphogenetic processes. Here we show that ARPC2, a core Arp2/3 complex subunit, interacts with both actin filaments (AFs) and microtubules (MTs). Plant GFP-ARPC2 expressed in Nicotiana tabacum BY-2 cells, leaf epidermal cells of Nicotiana benthamiana and root epidermal cells of Arabidopsis thaliana decorated MTs. The interaction with MTs was demonstrated by pharmacological approach selectively interfering with either AFs or MTs dynamics as well as by the in vitro co-sedimentation assays. A putative MT-binding domain of tobacco NtARPC2 protein was identified using the co-sedimentation of several truncated NtARPC2 proteins with MTs. Newly identified MT-binding ability of ARPC2 subunit of Arp2/3 complex may represent a new molecular mechanism of AFs and MTs interaction.
Collapse
Affiliation(s)
- Lenka Havelková
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gitanjali Nanda
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jan Martinek
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Erica Bellinvia
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lenka Sikorová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Šlajcherová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Daniela Seifertová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lukáš Fischer
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jindřiška Fišerová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jan Petrášek
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Schwarzerová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Tian J, Han L, Feng Z, Wang G, Liu W, Ma Y, Yu Y, Kong Z. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 2015; 4. [PMID: 26287478 PMCID: PMC4574192 DOI: 10.7554/elife.09351] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution conferred novel functions. The MyTH4 domain and the FERM domain in the N-terminal tail of KCBP physically bind to MTs and F-actin, respectively. During trichome morphogenesis, KCBP distributes in a specific cortical gradient and concentrates at the branching sites and the apexes of elongating branches, which lack MTs but have cortical F-actin. Further, live-cell imaging and genetic analyses revealed that KCBP acts as a hub integrating MTs and actin filaments to assemble the required cytoskeletal configuration for the unique, polarized diffuse growth pattern during trichome cell morphogenesis. Our findings provide significant insights into the mechanisms underlying cytoskeletal regulation of cell shape determination.
Collapse
Affiliation(s)
- Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhidi Feng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinping Ma
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Yanagisawa M, Desyatova AS, Belteton SA, Mallery EL, Turner JA, Szymanski DB. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. NATURE PLANTS 2015; 1:15014. [PMID: 27246881 DOI: 10.1038/nplants.2015.14] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
The plant actin cytoskeleton is an unstable network of filaments that influences polarized growth through poorly understood mechanisms. Here, we used a combination of live cell imaging and finite element computational modelling of Arabidopsis trichome morphogenesis to determine how the actin and microtubule cytoskeletons cooperate to pattern the cell wall and growth. The actin-related protein (ARP)2/3 complex generates an actin meshwork that operates within a tip-localized, microtubule-depleted zone to modulate cell wall anisotropy locally. The actin meshwork also positions an actin bundle network that organizes organelle flow patterns. This activity is required to maintain cell wall thickness gradients that enable tip-biased diffuse growth. These newly discovered couplings between cytoskeletal patterns and wall textures provide important insights into the cellular mechanism of growth control in plants.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Anastasia S Desyatova
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Eileen L Mallery
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Joseph A Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
23
|
Gachomo EW, Jno Baptiste L, Kefela T, Saidel WM, Kotchoni SO. The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC PLANT BIOLOGY 2014; 14:221. [PMID: 25158860 PMCID: PMC4244047 DOI: 10.1186/s12870-014-0221-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/05/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND A molecular-level understanding of the loss of CURVY1 (CVY1) gene expression (which encodes a member of the receptor-like protein kinase family) was investigated to gain insights into the mechanisms controlling cell morphogenesis and development in Arabidopsis thaliana. RESULTS Using a reverse genetic and cell biology approaches, we demonstrate that CVY1 is a new DISTORTED gene with similar phenotypic characterization to previously characterized ARP2/3 distorted mutants. Compared to the wild type, cvy1 mutant displayed a strong distorted trichome and altered pavement cell phenotypes. In addition, cvy1 null-mutant flowers earlier, grows faster and produces more siliques than WT and the arp2/3 mutants. The CVY1 gene is ubiquitously expressed in all tissues and seems to negatively regulate growth and yield in higher plants. CONCLUSIONS Our results suggest that CURVY1 gene participates in several biochemical pathways in Arabidopsis thaliana including (i) cell morphogenesis regulation through actin cytoskeleton functional networks, (ii) the transition of vegetative to the reproductive stage and (iii) the production of seeds.
Collapse
Affiliation(s)
- Emma W Gachomo
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| | - Lyla Jno Baptiste
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
| | - Timnit Kefela
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
| | - William M Saidel
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| | - Simeon O Kotchoni
- />Department of Biology, Rutgers University, 315 Penn St, Camden, NJ 08102 USA
- />Center for Computational and Integrative Biology, 315 Penn St, Camden, NJ 08102 USA
| |
Collapse
|
24
|
Sambade A, Findlay K, Schäffner AR, Lloyd CW, Buschmann H. Actin-Dependent and -Independent Functions of Cortical Microtubules in the Differentiation of Arabidopsis Leaf Trichomes. THE PLANT CELL 2014; 26:1629-1644. [PMID: 24714762 PMCID: PMC4036576 DOI: 10.1105/tpc.113.118273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis thaliana tortifolía2 carries a point mutation in α-tubulin 4 and shows aberrant cortical microtubule dynamics. The microtubule defect of tortifolia2 leads to overbranching and right-handed helical growth in the single-celled leaf trichomes. Here, we use tortifolia2 to further our understanding of microtubules in plant cell differentiation. Trichomes at the branching stage show an apical ring of cortical microtubules, and our analyses support that this ring is involved in marking the prospective branch site. tortifolia2 showed ectopic microtubule bundles at this stage, consistent with a function for microtubules in selecting new branch sites. Overbranching of tortifolia2 required the C-terminal binding protein/brefeldin A-ADP ribosylated substrate protein ANGUSTIFOLIA1, and our results indicate that the angustifolia1 mutant is hypersensitive to alterations in microtubule dynamics. To analyze whether actin and microtubules cooperate in the trichome cell expansion process, we generated double mutants of tortifolia2 with distorted1, a mutant that is defective in the actin-related ARP2/3 complex. The double mutant trichomes showed a complete loss of growth anisotropy, suggesting a genetic interaction of actin and microtubules. Green fluorescent protein labeling of F-actin or microtubules in tortifolia2 distorted1 double mutants indicated that F-actin enhances microtubule dynamics and enables reorientation. Together, our results suggest actin-dependent and -independent functions of cortical microtubules in trichome differentiation.
Collapse
Affiliation(s)
- Adrian Sambade
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Clive W Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
25
|
No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 2014; 15:5094-114. [PMID: 24663059 PMCID: PMC3975442 DOI: 10.3390/ijms15035094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022] Open
Abstract
The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes) and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes.
Collapse
|
26
|
Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. ANNALS OF BOTANY 2013; 112:1209-21. [PMID: 24085482 PMCID: PMC3806534 DOI: 10.1093/aob/mct205] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/22/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. SCOPE AND CONCLUSIONS This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
27
|
Singh MK, Ren F, Giesemann T, Dal Bosco C, Pasternak TP, Blein T, Ruperti B, Schmidt G, Aktories K, Molendijk AJ, Palme K. Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:314-24. [PMID: 23020817 DOI: 10.1111/tpj.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
Bacterial protein toxins which modify Rho GTPase are useful for the analysis of Rho signalling in animal cells, but these toxins cannot be taken up by plant cells. We demonstrate in vitro deamidation of Arabidopsis Rop4 by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and glucosylation by Clostridium difficile toxin B. Expression of the catalytic domain of CNF1 caused modification and activation of co-expressed Arabidopsis Rop4 GTPase in tobacco leaves, resulting in hypersensitive-like cell death. By contrast, the catalytic domain of toxin B modified and inactivated co-expressed constitutively active Rop4, blocking the hypersensitive response caused by over-expression of active Rops. In transgenic Arabidopsis, both CNF1 and toxin B inhibited Rop-dependent polar morphogenesis of leaf epidermal cells. Toxin B expression also inhibited Rop-dependent morphogenesis of root hairs and trichome branching, and resulted in root meristem enlargement and dwarf growth. Our results show that CNF1 and toxin B transgenes are effective tools in Rop GTPase signalling studies.
Collapse
Affiliation(s)
- Manoj K Singh
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Fugang Ren
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Torsten Giesemann
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Cristina Dal Bosco
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Taras P Pasternak
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Thomas Blein
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benedetto Ruperti
- Department of Environmental Agronomy and Crop Science, University of Padova, Via Romea, 16, Agripolis, 35020, Legnaro, Padova, Italy
| | - Gudula Schmidt
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Arthur J Molendijk
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| |
Collapse
|
28
|
Hossain MS, Liao J, James EK, Sato S, Tabata S, Jurkiewicz A, Madsen LH, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus ARPC1 is required for rhizobial infection. PLANT PHYSIOLOGY 2012; 160:917-28. [PMID: 22864583 PMCID: PMC3461565 DOI: 10.1104/pp.112.202572] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Remodeling of the plant cell cytoskeleton precedes symbiotic entry of nitrogen-fixing bacteria within the host plant roots. Here we identify a Lotus japonicus gene encoding a predicted ACTIN-RELATED PROTEIN COMPONENT1 (ARPC1) as essential for rhizobial infection but not for arbuscular mycorrhiza symbiosis. In other organisms ARPC1 constitutes a subunit of the ARP2/3 complex, the major nucleator of Y-branched actin filaments. The L. japonicus arpc1 mutant showed a distorted trichome phenotype and was defective in epidermal infection thread formation, producing mostly empty nodules. A few partially colonized nodules that did form in arpc1 contained abnormal infections. Together with previously described L. japonicus Nck-associated protein1 and 121F-specific p53 inducible RNA mutants, which are also impaired in the accommodation of rhizobia, our data indicate that ARPC1 and, by inference a suppressor of cAMP receptor/WASP-family verpolin homologous protein-ARP2/3 pathway, must have been coopted during evolution of nitrogen-fixing symbiosis to specifically mediate bacterial entry.
Collapse
MESH Headings
- Actin Cytoskeleton/genetics
- Actin Cytoskeleton/metabolism
- Actin-Related Protein 2-3 Complex/genetics
- Actin-Related Protein 2-3 Complex/metabolism
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Genetic Loci
- Lotus/genetics
- Lotus/growth & development
- Lotus/metabolism
- Lotus/microbiology
- Mesorhizobium/growth & development
- Mutation
- Mycorrhizae/growth & development
- Phenotype
- Plant Epidermis/metabolism
- Plant Epidermis/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Seeds/genetics
- Seeds/metabolism
- Symbiosis
Collapse
|
29
|
Cvrčková F. Formins: emerging players in the dynamic plant cell cortex. SCIENTIFICA 2012; 2012:712605. [PMID: 24278734 PMCID: PMC3820618 DOI: 10.6064/2012/712605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/16/2012] [Indexed: 05/11/2023]
Abstract
Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague, Czech Republic
| |
Collapse
|
30
|
Ojangu EL, Tanner K, Pata P, Järve K, Holweg CL, Truve E, Paves H. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC PLANT BIOLOGY 2012; 12:81. [PMID: 22672737 PMCID: PMC3424107 DOI: 10.1186/1471-2229-12-81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/28/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. RESULTS Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. CONCLUSIONS We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Krista Tanner
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Pille Pata
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kristel Järve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Carola L Holweg
- Nachhaltigkeits-Projekte, Alte Str. 13, 79249, Merzhausen, Germany
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Heiti Paves
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
31
|
Hall H, Ellis B. Developmentally equivalent tissue sampling based on growth kinematic profiling of Arabidopsis inflorescence stems. THE NEW PHYTOLOGIST 2012; 194:287-296. [PMID: 22313381 DOI: 10.1111/j.1469-8137.2012.04060.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Directional growth in Arabidopsis thaliana during bolting of the inflorescence stem makes this an attractive system for study of the underlying processes of tissue elongation and cell wall extension. Analysis of local molecular events accompanying Arabidopsis inflorescence stem elongation is hampered by difficulties in isolating developmentally matched tissue samples from different plants. • Here, we present a novel sampling approach in which specific developmental stages along the developing stem are defined nonintrusively in terms of their relative elemental growth rate by use of time-lapse imagery and subsequent derivation of growth kinematic profiles for individual plants. • Growth kinematic profiling reveals that key developmental transitions such as the point of maximum elongation rate and the point of cessation of elongation occur over broad and overlapping ranges across individuals within a population of the Columbia (Col-0) ecotype. The position of these transitions is only weakly correlated with overall plant height, which undermines the common assumption that physically similar plants have closely matched growth profiles. • This kinematic profiling approach provides high-resolution growth phenotyping of the developing stem and thereby enables the harvest, pooling and analysis of developmentally matched tissue samples from multiple Arabidopsis plants.
Collapse
Affiliation(s)
- Hardy Hall
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Brian Ellis
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
32
|
Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E. Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. THE NEW PHYTOLOGIST 2011; 192:378-92. [PMID: 21770946 DOI: 10.1111/j.1469-8137.2011.03823.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The present study investigates the genetic determinism of bud phenological traits using two segregating F(1) apple (Malus × domestica) progenies. Phenological trait variability was dissected into genetic and climatic components using mixed linear modeling, and estimated best linear unbiased predictors were used for quantitative trait locus (QTL) detection. For flowering dates, year effects were decomposed into chilling and heat requirements based on a previously developed model. QTL analysis permitted the identification of two major and population-specific genomic regions on LG08 and LG09. Both 'chilling requirement' and 'heat requirement' periods influenced flowering dates, although their relative impact was dependent on the genetic background. Using the apple genome sequence data, putative candidate genes underlying one major QTL were investigated. Numerous key genes involved in cell cycle control were identified in clusters within the confidence interval of the major QTL on LG09. Our results contribute towards a better understanding of the interaction between QTLs and climatic conditions, and provide a basis for the identification of genes involved in bud growth resumption.
Collapse
Affiliation(s)
- J-M Celton
- Montpellier SupAgro, UMR AGAP, Equipe AFEF, Avenue Agropolis, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Tominaga-Wada R, Ishida T, Wada T. New insights into the mechanism of development of Arabidopsis root hairs and trichomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:67-106. [PMID: 21199780 DOI: 10.1016/b978-0-12-385859-7.00002-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the mechanisms leading to the developmental end state of plant cells. Both root hairs and trichomes differentiate from epidermal cells and molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of root hairs and trichomes is regulated by similar molecular mechanisms. Molecular-genetic approaches have led to the identification of many genes that are involved in epidermal cell differentiation, most of which encode transcription factors that induce the expression of genes active in both root hair and trichome development. Control of cell growth after fate determination has also been studied using Arabidopsis mutants.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, Gakuen Kibanadai-nishi, Miyazaki, Japan
| | | | | |
Collapse
|
34
|
Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. THE PLANT CELL 2010; 22:2710-26. [PMID: 20709814 PMCID: PMC2947165 DOI: 10.1105/tpc.110.075507] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/17/2010] [Accepted: 07/28/2010] [Indexed: 05/18/2023]
Abstract
Formins have long been known to regulate microfilaments but have also recently been shown to associate with microtubules. In this study, Arabidopsis thaliana FORMIN14 (AFH14), a type II formin, was found to regulate both microtubule and microfilament arrays. AFH14 expressed in BY-2 cells was shown to decorate preprophase bands, spindles, and phragmoplasts and to induce coalignment of microtubules with microfilaments. These effects perturbed the process of cell division. Localization of AFH14 to microtubule-based structures was confirmed in Arabidopsis suspension cells. Knockdown of AFH14 in mitotic cells altered interactions between microtubules and microfilaments, resulting in the formation of an abnormal mitotic apparatus. In Arabidopsis afh14 T-DNA insertion mutants, microtubule arrays displayed abnormalities during the meiosis-associated process of microspore formation, which corresponded to altered phenotypes during tetrad formation. In vitro biochemical experiments showed that AFH14 bound directly to either microtubules or microfilaments and that the FH2 domain was essential for cytoskeleton binding and bundling. However, in the presence of both microtubules and microfilaments, AFH14 promoted interactions between microtubules and microfilaments. These results demonstrate that AFH14 is a unique plant formin that functions as a linking protein between microtubules and microfilaments and thus plays important roles in the process of plant cell division.
Collapse
Affiliation(s)
- Yanhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chao Cai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chenchun Zhong
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094, People's Republic of China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094, People's Republic of China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
35
|
Jörgens CI, Grünewald N, Hülskamp M, Uhrig JF. A role for ABIL3 in plant cell morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:925-35. [PMID: 20345606 DOI: 10.1111/j.1365-313x.2010.04210.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI-like proteins (ABIL), however, which constitute a small four-member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock-down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3-activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock-down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI-like proteins have a function in linking SCAR/WAVE-dependent actin nucleation with organization of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Cordula I Jörgens
- Botanical Institute III, University of Köln, Gyrhofstr. 15, 50931 Köln, Germany
| | | | | | | |
Collapse
|
36
|
Szymanski DB, Cosgrove DJ. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 2010; 19:R800-11. [PMID: 19906582 DOI: 10.1016/j.cub.2009.07.056] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Underlying the architectural complexity of plants are diverse cell types that, under the microscope, easily reveal relationships between cell structure and specialized functions. Much less obvious are the mechanisms by which the cellular growth machinery and mechanical properties of the cell interact to dictate cell shape. The recent combined use of mutants, genomic analyses, sophisticated spectroscopies, and live cell imaging is providing new insight into how cytoskeletal systems and cell wall biosynthetic activities are integrated during morphogenesis. The purpose of this review is to discuss the unique geometric properties and physical processes that regulate plant cell expansion, then to overlay on this mechanical system some of the recent discoveries about the protein machines and cellular polymers that regulate cell shape. In the end, we hope to make clear that there are many interesting opportunities to develop testable mathematical models that improve our understanding of how subcellular structures, protein motors, and extracellular polymers can exert effects at spatial scales that span cells, tissues, and organs.
Collapse
Affiliation(s)
- Daniel B Szymanski
- Department of Agronomy, Lily Hall of Life Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
37
|
Kang JH, Shi F, Jones AD, Marks MD, Howe GA. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1053-64. [PMID: 20018901 PMCID: PMC2826649 DOI: 10.1093/jxb/erp370] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 05/19/2023]
Abstract
Trichomes are specialized epidermal structures that function as physical and chemical deterrents against arthropod herbivores. Aerial tissues of cultivated tomato (Solanum lycopersicum) are populated by several morphologically distinct trichome types, the most abundant of which is the type VI glandular trichome that produces various specialized metabolites. Here, the effect of the hairless (hl) mutation on trichome density and morphology, chemical composition, and resistance to a natural insect herbivore of tomato was investigated. The results show that the major effect of hl on pubescence results from structural distortion (bending and swelling) of all trichome types in aerial tissues. Leaf surface extracts and isolated type VI glands from hl plants contained wild-type levels of monoterpenes, glycoalkaloids, and acyl sugars, but were deficient in sesquiterpene and polyphenolic compounds implicated in anti-insect defence. No-choice bioassays showed that hl plants are compromised in resistance to the specialist herbivore Manduca sexta. These results establish a link between the morphology and chemical composition of glandular trichomes in cultivated tomato, and show that hl-mediated changes in these leaf surface traits correlate with decreased resistance to insect herbivory.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Shi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - A. Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - M. David Marks
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108-1095, USA
| | - Gregg A. Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SED, Szymanski DB. The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. PLANT PHYSIOLOGY 2009; 151:2095-109. [PMID: 19801398 PMCID: PMC2785977 DOI: 10.1104/pp.109.143859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) "distorted group" mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.
Collapse
|
39
|
Qian P, Hou S, Guo G. Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. PLANT CELL REPORTS 2009; 28:1147-57. [PMID: 19529941 DOI: 10.1007/s00299-009-0729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 05/24/2023]
Abstract
Pavement cells have an interlocking jigsaw puzzle-shaped leaf surface pattern. Twenty-three genes involved in the pavement cell morphogenesis were discovered until now. The mutations of these genes through various means lead to pavement cell shape defects, such as loss or lack of interdigitation, the reduction of lobing, gaps between lobe and neck regions in pavement cells, and distorted trichomes. These phenotypes are affected by the organization of microtubules and microfilaments. Microtubule bands are considered corresponding with the neck regions of the cell, while lobe formation depends on patches of microfilaments. The pathway of Rho of plant (ROP) GTPase signaling cascades regulates overall activity of the cytoskeleton in pavement cells. Some other proteins, in addition to the ROPs, SCAR/WAVE, and ARP2/3 complexes, are also involved in the pavement cell morphogenesis.
Collapse
Affiliation(s)
- Pingping Qian
- Key Laboratory of Arid and Grassland Ecology, Ministry of Education, School of Life Science, Lanzhou University, 730000, Gansu, China
| | | | | |
Collapse
|
40
|
Saedler R, Jakoby M, Marin B, Galiana-Jaime E, Hülskamp M. The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:612-21. [PMID: 19392685 DOI: 10.1111/j.1365-313x.2009.03900.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WD40/BEACH domain proteins have been implicated in membrane trafficking and membrane composition events in Dictyostelium and Drosophila. In this paper, we show that the Arabidopsis SPIRRIG (SPI) gene encodes a WD40/BEACH domain protein. The cellular analysis revealed fragmented vacuoles in root hairs similar to those found in the corresponding Dictyostelium mutants, suggesting a related cellular function. The phenotypic analysis revealed that spi mutants share all phenotypic aspects of mutants in the actin polymerization-regulating ARP2/3 pathway, including distorted trichomes, less lobing of epidermal pavement cells, disconnected epidermal cells on various organs, and shorter root hairs. This complete phenotypic overlap suggests that this WD40/BEACH domain protein and the actin-regulating ARP2/3 pathway are involved in similar growth processes.
Collapse
Affiliation(s)
- Rainer Saedler
- University of Cologne, Botanical Institute, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
41
|
Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 2009; 583:983-91. [PMID: 19223001 DOI: 10.1016/j.febslet.2009.02.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.
Collapse
Affiliation(s)
- Veena Prabhakar
- Universität zu Köln, Botanisches Institut, Köln (Cologne), Germany
| | | | | | | | | | | |
Collapse
|
42
|
Sinclair A, Schenkel M, Mathur J. Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. MOLECULAR PLANT 2008; 1:990-1006. [PMID: 19825598 DOI: 10.1093/mp/ssn059] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We demonstrate that putative SCAR complex subunits BRK1 and SCAR1 are localized to the plasma membrane at sites of cell growth and wall deposition in expanding cells of leaves and roots. BRK1 localization is SCAR-dependent, providing further evidence of an association between these proteins in vivo. Consistent with plasma membrane localization of SCAR complex subunits, cortical F-actin accumulation in root tip cells is reduced in brk1 mutants. Moreover, mutations disrupting the SCAR or ARP2/3 complex reduce the growth rate of roots and their ability to penetrate semi-solid medium, suggesting reduced rigidity. Cell walls of mutant roots exhibit abnormal structure and composition at intercellular junctions where BRK1 and SCAR1 are enriched in the adjacent plasma membrane. Taken together, our results suggest that SCAR and ARP2/3 complex-dependent actin polymerization promotes processes at the plasma membrane that are important for normal growth and wall assembly.
Collapse
Affiliation(s)
- Julia Dyachok
- University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:365-86. [PMID: 18257710 DOI: 10.1146/annurev.arplant.59.032607.092949] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichomes and root hairs differentiate from epidermal cells in the aerial tissues and roots, respectively. Because trichomes and root hairs are easily accessible, particularly in the model plant Arabidopsis, their development has become a well-studied model of cell differentiation and growth. Molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of trichomes and root hair/hairless cells is regulated by similar molecular mechanisms. Transcriptional complexes regulate differentiation into trichome cells and root hairless cells, and formation of the transcriptional complexes is inhibited in neighboring cells. Control of cell growth after fate determination has also been analyzed using Arabidopsis mutants. The progression of endoreduplication cycles, reorientation of microtubules, and organization of the actin cytoskeleton play important roles in trichome growth. Various cellular components such as ion channels, the actin cytoskeleton, microtubules and cell wall materials, and intracellular signal transduction act to establish and maintain root hair tip growth.
Collapse
Affiliation(s)
- Tetsuya Ishida
- Plant Science Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | |
Collapse
|
45
|
Deeks MJ, Rodrigues C, Dimmock S, Ketelaar T, Maciver SK, Malhó R, Hussey PJ. Arabidopsis CAP1 - a key regulator of actin organisation and development. J Cell Sci 2007; 120:2609-18. [PMID: 17635992 DOI: 10.1242/jcs.007302] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of F-actin turnover is essential for plant cell morphogenesis. Actin-binding protein mutants reveal that plants place emphasis on particular aspects of actin biochemistry distinct from animals and fungi. Here we show that mutants in CAP1, an A. thaliana member of the cyclase-associated protein family, display a phenotype that establishes CAP1 as a fundamental facilitator of actin dynamics over a wide range of plant tissues. Plants homozygous for cap1 alleles show a reduction in stature and morphogenetic disruption of multiple cell types. Pollen grains exhibit reduced germination efficiency, and cap1 pollen tubes and root hairs grow at a decreased rate and to a reduced length. Live cell imaging of growing root hairs reveals actin filament disruption and cytoplasmic disorganisation in the tip growth zone. Mutant cap1 alleles also show synthetic phenotypes when combined with mutants of the Arp2/3 complex pathway, which further suggests a contribution of CAP1 to in planta actin dynamics. In yeast, CAP interacts with adenylate cyclase in a Ras signalling cascade; but plants do not have Ras. Surprisingly, cap1 plants show disruption in plant signalling pathways required for co-ordinated organ expansion suggesting that plant CAP has evolved to attain plant-specific signalling functions.
Collapse
Affiliation(s)
- Michael J Deeks
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hülskamp M. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 2007; 134:967-77. [PMID: 17267444 DOI: 10.1242/dev.02792] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The actin-nucleating ARP2-ARP3 complex controls cell shape in plants in many different cell types. Its activity is controlled by a multimeric complex containing BRK1 (also known as HSPC300), NAP1, SRA1, ABI and SCAR/WAVE. In this study, we focus on the function of the five putative SCAR homologues in Arabidopsis and we provide biochemical evidence that AtSCAR2 can activate the ARP2-ARP3 complex in vitro. Among the single mutants, mutations in only AtSCAR2 result in a subtle or weak phenotype similar to ARP2, ARP3 and other ;distorted' mutants. Double-mutant analysis revealed a redundancy with AtSCAR4. Systematic application of the yeast two-hybrid system and Bimolecular Fluorescence Complementation (BiFC) revealed a complex protein-interaction network between the ARP2-ARP3 complex and its genetically defined regulators. In addition to protein interactions known in other systems, we identified several new interactions, suggesting that SPIKE1 may be an integral component of the SCAR/WAVE complex and that SCAR proteins in plants might act as direct effectors of ROP GTPases.
Collapse
Affiliation(s)
- Joachim F Uhrig
- University of Köln, Botanical Institute III, Gyrhofstr. 15, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hamada T. Microtubule-associated proteins in higher plants. JOURNAL OF PLANT RESEARCH 2007; 120:79-98. [PMID: 17285404 DOI: 10.1007/s10265-006-0057-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/09/2006] [Indexed: 05/09/2023]
Abstract
A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the gamma-tubulin complex (gammaTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components--actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| |
Collapse
|
48
|
Guimil S, Dunand C. Cell growth and differentiation in Arabidopsis epidermal cells. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3829-40. [PMID: 18162628 DOI: 10.1093/jxb/erm253] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant epidermal cells are morphologically diverse, differing in size, shape, and function. Their unique morphologies reflect the integral function each cell performs in the organ to which it belongs. Cell morphogenesis involves multiple cellular processes acting in concert to create specialized shapes. The Arabidopsis epidermis contains numerous cell types greatly differing in shape, size, and function. Work on three types of epidermal cells, namely trichomes, root hairs, and pavement cells, has made significant progress towards understanding how plant cells reach their final morphology. These three cell types have highly distinct morphologies and each has become a model cell for the study of morphological processes. A growing body of knowledge is creating a picture of how endoreduplication, cytoskeletal dynamics, vesicle transport, and small GTPase signalling, work in concert to create specialized shapes. Similar mechanisms that determine cell shape and polarity are shared between these cell types, while certain mechanisms remain specific to each.
Collapse
Affiliation(s)
- Sonia Guimil
- Laboratory of Plant Physiology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
49
|
Mathur J. Trichome cell morphogenesis inArabidopsis: a continuum of cellular decisionsThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In keeping with the myriad functions carried out by plants, their component cells display an amazing diversity of shapes and sizes. How is a precise cell form achieved? In recent years, the single-celled, branched, aerial epidermal trichome of Arabidopsis thaliana L. (Heynh) has emerged as a model cell for understanding the cell biological and molecular basis underlying the development of cell shape in plants. Here, I critique the recent information gleaned from dissecting trichome cell morphogenesis in Arabidopsis and identify areas and questions that can be further addressed using this unique cell type.
Collapse
Affiliation(s)
- Jaideep Mathur
- Department of Molecular and Cell Biology, Axelrod Building, 50 Stone Road East, University of Guelph, Guelph, ON N1G 2W1, Canada (e-mail: )
| |
Collapse
|
50
|
Kotzer A, Wasteneys G. Mechanisms behind the puzzle: microtubule–microfilament cross-talk in pavement cell formationThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies are revealing plausible mechanisms that help explain how the two major cytoskeletal systems of plant cells interact to co-ordinate morphogenesis in diffusely expanding cells. In this article, we focus on the development of pavement cells typically found in the leaf epidermis, and highlight work that provides insights into the mechanisms that generate their complex morphology. Pavement cells interdigitate with adjacent cells, forming narrow neck regions interspersed with lobe-like projections. Earlier analysis demonstrated that distinct banding of cortical microtubules and associated accumulation of cell wall material was responsible for maintaining the neck regions during expansion. More recently, it has been determined that patches of fine actin microfilaments regulate the formation of lobing regions. This zonation into microtubule-rich bands and actin patches is coordinated by the activity of Rops, small GTPases that control a wide range of signalling pathways including ones that remodel both actin microfilament and microtubule arrays. Moreover, the formation of microtubule bands and actin patches seems to be self-reinforcing. Loss of microtubule polymers by drug treatment or mutation broadens actin patch formation, apparently by enhancing Rop interactions with a positive regulator of actin polymerization. Thus, cross-talk between microtubule and actin microfilament networks is essential for coordinating and reinforcing pavement cell morphogenesis.
Collapse
Affiliation(s)
- A.M. Kotzer
- Department of Botany, University of British Columbia, 3529–6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - G.O. Wasteneys
- Department of Botany, University of British Columbia, 3529–6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|