1
|
Wang F, Wen E, Huang Y, Wen Z, Liu Z. Association of IL-27 gene rs153109 and rs17855750 polymorphisms with preeclampsia susceptibility and severity: Meta-analysis and trial sequential analysis. Medicine (Baltimore) 2023; 102:e33578. [PMID: 37083793 PMCID: PMC10118315 DOI: 10.1097/md.0000000000033578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The aim of this meta-analysis is to evaluate the association of interleukin-27 gene rs153109 and rs17855750 polymorphisms with preeclampsia susceptibility and severity. METHODS Web of Science, PubMed, Embase, CBM, WanFang Data, CNKI, and VIP database were used for retrieving. After screening with our inclusion and exclusion criteria, data extraction and quantity evaluation were performed by 2 independent authors. Included case-control studies were used for meta-analysis by RevMan 5.4, and sensitivity analysis was carried out through 1-by-1 exclusion procedure. If heterogeneity exists, then random effects model was used; otherwise, fixed effect model was used. Publication bias analysis was performed using Begg test and Egger test. Trial sequential analysis was performed using trial sequential analysis 0.9.5.10 Beta. RESULTS A total of 5 articles were included. The heterogeneity was high across most models during the meta-analysis. Meta-analysis results related to preeclampsia susceptibility showed that P values of all the models were higher than .05, while for meta-analysis results related to preeclampsia severity showed that P values of all the models were higher than .05 except for TT versus TG + GG and TT versus TG models of rs17855750 group. The sensitivity of the meta-analysis was high, and trial sequential analysis showed the possibility of false negative results. No obvious publication bias was found. CONCLUSIONS There is no obvious association between interleukin-27 gene rs153109 and rs17855750 polymorphisms and preeclampsia susceptibility or severity. However, more multi-center and large sample case-control studies are expected to be carried out to verify our conclusion in the future.
Collapse
Affiliation(s)
- Fengzhen Wang
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ersheng Wen
- Department of Physiology, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuyang Huang
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhenyin Wen
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Shahzad K, Zhang X, Zhang M, Guo L, Qi T, Tang H, Wang H, Mubeen I, Qiao X, Peng R, Wu J, Xing C. Homoeolog gene expression analysis reveals novel expression biases in upland hybrid cotton under intraspecific hybridization. Funct Integr Genomics 2022; 22:757-768. [PMID: 35771309 DOI: 10.1007/s10142-022-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton. Investigation results of homoeolog gene pairs between two contrasting hybrids and their respective inbred parents identified 36853 homoeolog genes in hybrids. It was observed both high and low hybrids had similar trends in homoeolog gene expression patterns in each tissue under study. An average of 96% of homoeolog genes had no biased expression and their expressions were derived from the equal contribution of both parents. Besides, very few homoeolog genes (an average of 1%) showed no biased or novel expression in both hybrids. The functional analysis described secondary metabolic pathways had a majority of novel biased homoeolog genes in hybrids. These results contribute preliminary knowledge about how hybridization affects expression patterns of homoeolog gene pairs in upland cotton hybrids. Our study also highlights the functional genomics of metabolic genes to explore the genetic mechanism of heterosis in cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China. .,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
3
|
Li W, Yu Y, Chen X, Fang Q, Yang A, Chen X, Wu L, Wang C, Wu D, Ye S, Wu D, Sun G. N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. PLANTA 2022; 255:125. [PMID: 35567638 DOI: 10.1007/s00425-022-03893-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
More methylation changes occur in late interval than in early interval of wheat seed development with protein and the starch synthesis-related pathway enriched in the later stages. Wheat seed development is a critical process to determining wheat yield and quality, which is controlled by genetics, epigenetics and environments. The N6-methyladenosine (m6A) modification is a reversible and dynamic process and plays regulatory role in plant development and stress responses. To better understand the role of m6A in wheat grain development, we characterized the m6A modification at 10 day post-anthesis (DPA), 20 DPA and 30 DPA in wheat grain development. m6A-seq identified 30,615, 30,326, 27,676 high confidence m6A peaks from the 10DPA, 20DPA, and 30DPA, respectively, and enriched at 3'UTR. There were 29,964, 29,542 and 26,834 unique peaks identified in AN0942_10d, AN0942_20d and AN0942_30d. One hundred and forty-two genes were methylated by m6A throughout seed development, 940 genes methylated in early grain development (AN0942_20d vs AN0942_10d), 1542 genes in late grain development (AN0942_30d vs AN0942_20d), and 1190 genes between early and late development stage (AN0942_30d vs AN0942_10d). KEGG enrichment analysis found that protein-related pathways and the starch synthesis-related pathway were significantly enriched in the later stages of seed development. Our results provide novel knowledge on m6A dynamic changes and its roles in wheat grain development.
Collapse
Affiliation(s)
- Wenxiang Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yi Yu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xuanrong Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qian Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Anqi Yang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinyu Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lei Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chengyu Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, China
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Sihong Ye
- Cotton Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China.
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| |
Collapse
|
4
|
Zappe K, Pirker C, Miedl H, Schreiber M, Heffeter P, Pfeiler G, Hacker S, Haslik W, Spiegl-Kreinecker S, Cichna-Markl M. Discrimination between 34 of 36 Possible Combinations of Three C>T SNP Genotypes in the MGMT Promoter by High Resolution Melting Analysis Coupled with Pyrosequencing Using A Single Primer Set. Int J Mol Sci 2021; 22:ijms222212527. [PMID: 34830407 PMCID: PMC8621402 DOI: 10.3390/ijms222212527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Due to its cost-efficiency, high resolution melting (HRM) analysis plays an important role in genotyping of candidate single nucleotide polymorphisms (SNPs). Studies indicate that HRM analysis is not only suitable for genotyping individual SNPs, but also allows genotyping of multiple SNPs in one and the same amplicon, although with limited discrimination power. By targeting the three C>T SNPs rs527559815, rs547832288, and rs16906252, located in the promoter of the O6-methylguanine-DNA methyltransferase (MGMT) gene within a distance of 45 bp, we investigated whether the discrimination power can be increased by coupling HRM analysis with pyrosequencing (PSQ). After optimizing polymerase chain reaction (PCR) conditions, PCR products subjected to HRM analysis could directly be used for PSQ. By analyzing oligodeoxynucleotide controls, representing the 36 theoretically possible variant combinations for diploid human cells (8 triple-homozygous, 12 double-homozygous, 12 double-heterozygous and 4 triple-heterozygous combinations), 34 out of the 36 variant combinations could be genotyped unambiguously by combined analysis of HRM and PSQ data, compared to 22 variant combinations by HRM analysis and 16 variant combinations by PSQ. Our approach was successfully applied to genotype stable cell lines of different origin, primary human tumor cell lines from glioma patients, and breast tissue samples.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.P.); (P.H.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
| | - Heidi Miedl
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.P.); (P.H.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.P.); (W.H.)
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Plastic, Reconstructive and Aesthetic Surgery, Landesklinikum Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Werner Haslik
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.P.); (W.H.)
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Medical Faculty, Kepler University Hospital GmbH, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
5
|
Jiang Y, Chen X, Chai S, Sheng H, Sha L, Fan X, Zeng J, Kang H, Zhang H, Xiao X, Zhou Y, Vatamaniuk OK, Wang Y. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111058. [PMID: 34620452 DOI: 10.1016/j.plantsci.2021.111058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Uptake and internal transport of micronutrients are essential for plant growth, development, and yield. In this regard, Iron Regulated Transporters (IRTs) from the Zinc Regulated Transporter (ZRT)/IRT-related protein (ZIP) family play an important role in transition metal uptake. Most studies have been focused on IRT1-like proteins in diploid species. Information on IRT1-like proteins in polyploids is limited. Here, we studied the function of TpIRT1A and TpIRT1B homoeologs in a tetraploid crop, Polish wheat (Triticum polonicum L.). Our results highlighted the importance of TpIRT1 in mediating the uptake and translocation of Fe, Mn, Co, and Cd with direct implications for wheat yield potential. Both TpIRT1A and TpIRT1B were located at the plasma membrane and internal vesicle-like organelle in protoplasts of Arabidopsis thaliana L. and increased Cd and Co sensitivity in yeast. The over-expression of TpIRT1B in A. thaliana increased Fe, Mn, Co, and Cd concentration in its tissues and improved plant growth under Fe, Mn, and Co deficiencies, while increased the sensitivity to Cd compared to wild type. Functional analysis of IRT1 homoeologs from tetraploid and diploid ancestral wheat species in yeast disclosed four distinct amino acid residues in TdiIRT1B (T. dicoccum L. (Schrank)) and TtuIRT1B (T. turgidum L.). Together, our results increase the knowledge of IRT1 function in a globally important crop, wheat.
Collapse
Affiliation(s)
- Yulin Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA; Global Institute for Food Security, University of Saskatchewan, Saskatoon, S7N0W9, SK, Canada
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
6
|
Azizi MMF, Lau HY, Abu-Bakar N. Integration of advanced technologies for plant variety and cultivar identification. J Biosci 2021. [DOI: 10.1007/s12038-021-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Gou X, Lv R, Wang C, Fu T, Sha Y, Gong L, Zhang H, Liu B. Balanced Genome Triplication in Wheat Causes Premature Growth Arrest and an Upheaval of Genome-Wide Gene Regulation. Front Genet 2020; 11:687. [PMID: 32733539 PMCID: PMC7360807 DOI: 10.3389/fgene.2020.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Polyploidy, or whole genome duplication (WGD), is a driving evolutionary force across the tree of life and has played a pervasive role in the evolution of the plant kingdom. It is generally believed that a major genetic attribute contributing to the success of polyploidy is increased gene and genome dosage. The evolution of polyploid wheat has lent support to this scenario. Wheat has evolved at three ploidal levels: diploidy, tetraploidy, and hexaploidy. Ample evidence testifies that the evolutionary success, be it with respect to evolvability, natural adaptability, or domestication has dramatically increased with each elevation of the ploidal levels. A long-standing question is what would be the outcome if a further elevation of ploidy is superimposed on hexaploid wheat? Here, we characterized a spontaneously occurring nonaploid wheat individual in selfed progenies of synthetic hexaploid wheat and compared it with its isogenic hexaploid siblings at the phenotypic, cytological, and genome-wide gene-expression levels. The nonaploid manifested severe defects in growth and development, albeit with a balanced triplication of the three wheat subgenomes. Transcriptomic profiling of the second leaf of nonaploid, taken at a stage when phenotypic abnormality was not yet discernible, already revealed significant dysregulation in global-scale gene expression with ca. 25.2% of the 49,436 expressed genes being differentially expressed genes (DEGs) at a twofold change cutoff relative to the hexaploid counterpart. Both up- and downregulated DEGs were identified in the nonaploid vs. hexaploid, including 457 genes showing qualitative alteration, i.e., silencing or activation. Impaired functionality at both cellular and organismal levels was inferred from gene ontology analysis of the DEGs. Homoeologous expression analysis of 9,574 sets of syntenic triads indicated that, compared with hexaploid, the proportions showing various homeologous expression patterns were highly conserved in the nonaploid although gene identity showed moderate reshuffling among some of the patterns in the nonaploid. Together, our results suggest hexaploidy is likely the upper limit of ploidy level in wheat; crossing this threshold incurs severe ploidy syndrome that is preceded by disruptive dysregulation of global gene expression.
Collapse
Affiliation(s)
- Xiaowan Gou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, China
- *Correspondence: Bao Liu,
| |
Collapse
|
8
|
Single-Nucleotide Polymorphisms in XPO5 are Associated with Noise-Induced Hearing Loss in a Chinese Population. Biochem Res Int 2020; 2020:9589310. [PMID: 32148964 PMCID: PMC7048908 DOI: 10.1155/2020/9589310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives The purpose of this study was to investigate the correlation between single-nucleotide polymorphism (SNP) in 3′UTR of XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Methods We conducted a case-control study involving 1040 cases and 1060 controls. The effects of SNPs on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on Results We genotyped four SNPs (rs2257082, rs11077, rs7755135, and rs1106841) in the XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on XPO5. Conclusion. The genetic polymorphism, rs11077, within XPO5 is associated with the risk of noise-induced hearing loss in a Chinese population.XPO5 gene and the occurrence of noise-induced hearing loss (NIHL), and to further explore the regulatory mechanism of miRNAs in NIHL on
Collapse
|
9
|
Pascual L, Ruiz M, López-Fernández M, Pérez-Peña H, Benavente E, Vázquez JF, Sansaloni C, Giraldo P. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genomics 2020; 21:122. [PMID: 32019507 PMCID: PMC7001277 DOI: 10.1186/s12864-020-6536-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background One of the main goals of the plant breeding in the twenty-first century is the development of crop cultivars that can maintain current yields in unfavorable environments. Landraces that have been grown under varying local conditions include genetic diversity that will be essential to achieve this objective. The Center of Plant Genetic Resources of the Spanish Institute for Agriculture Research maintains a broad collection of wheat landraces. These accessions, which are locally adapted to diverse eco-climatic conditions, represent highly valuable materials for breeding. However, their efficient use requires an exhaustive genetic characterization. The overall aim of this study was to assess the diversity and population structure of a selected set of 380 Spanish landraces and 52 reference varieties of bread and durum wheat by high-throughput genotyping. Results The DArTseq GBS approach generated 10 K SNPs and 40 K high-quality DArT markers, which were located against the currently available bread and durum wheat reference genomes. The markers with known locations were distributed across all chromosomes with relatively well-balanced genome-wide coverage. The genetic analysis showed that the Spanish wheat landraces were clustered in different groups, thus representing genetic pools providing a range of allelic variation. The subspecies had a major impact on the population structure of the durum wheat landraces, with three distinct clusters that corresponded to subsp. durum, turgidum and dicoccon being identified. The population structure of bread wheat landraces was mainly biased by geographic origin. Conclusions The results showed broader genetic diversity in the landraces compared to a reference set that included commercial varieties, and higher divergence between the landraces and the reference set in durum wheat than in bread wheat. The analyses revealed genomic regions whose patterns of variation were markedly different in the landraces and reference varieties, indicating loci that have been under selection during crop improvement, which could help to target breeding efforts. The results obtained from this work will provide a basis for future genome-wide association studies.
Collapse
Affiliation(s)
- Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Magdalena Ruiz
- National Plant Genetic Resources Centre, National Institute for Agricultural and Food Research and Technology, Alcalá de Henares, Spain
| | - Matilde López-Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Helena Pérez-Peña
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Francisco Vázquez
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carolina Sansaloni
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Texcoco, Mexico
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Wei J, Cao H, Liu JD, Zuo JH, Fang Y, Lin CT, Sun RZ, Li WL, Liu YX. Insights into transcriptional characteristics and homoeolog expression bias of embryo and de-embryonated kernels in developing grain through RNA-Seq and Iso-Seq. Funct Integr Genomics 2019; 19:919-932. [PMID: 31168755 DOI: 10.1007/s10142-019-00693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022]
Abstract
Bread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels. The differential regulation between the embryo and de-embryonated kernels was found to be greater than the difference between the two time points for each tissue. Exactly 2264 and 4790 tissue-specific genes were found at 14 days post-anthesis (DPA), while 5166 and 3784 genes were found at 25 DPA in the embryo and de-embryonated kernels, respectively. Genes expressed in the embryo were more likely to be related to nucleic acid and enzyme regulation. In de-embryonated kernels, genes were rich in substance metabolism and enzyme activity functions. Moreover, 4351, 4641, 4516, and 4453 genes with the A, B, and D homoeoloci were detected for each of the four tissues. Expression characteristics suggested that the D genome may be the largest contributor to the transcriptome in developing grain. Among these, 48, 66, and 38 silenced genes emerged in the A, B, and D genomes, respectively. Gene ontology analysis showed that silenced genes could be inclined to different functions in different genomes. Our study provided specific gene pools of the embryo and de-embryonated kernels and a homoeolog expression bias model on a large scale. This is helpful for providing new insights into the molecular physiology of wheat.
Collapse
Affiliation(s)
- Jun Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing-Dong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing-Hong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Fang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Run-Ze Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wen-Long Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,Science and Technology Daily, Beijing, 100093, China
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
11
|
Wang R, Li M, Wu X, Wang J. The Gene Structure and Expression Level Changes of the GH3 Gene Family in Brassica napus Relative to Its Diploid Ancestors. Genes (Basel) 2019; 10:genes10010058. [PMID: 30658516 PMCID: PMC6356818 DOI: 10.3390/genes10010058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
The GH3 gene family plays a vital role in the phytohormone-related growth and developmental processes. The effects of allopolyploidization on GH3 gene structures and expression levels have not been reported. In this study, a total of 38, 25, and 66 GH3 genes were identified in Brassica rapa (ArAr), Brassica oleracea (CoCo), and Brassica napus (AnACnCn), respectively. BnaGH3 genes were unevenly distributed on chromosomes with 39 on An and 27 on Cn, in which six BnaGH3 genes may appear as new genes. The whole genome triplication allowed the GH3 gene family to expand in diploid ancestors, and allopolyploidization made the GH3 gene family re-expand in B. napus. For most BnaGH3 genes, the exon-intron compositions were similar to diploid ancestors, while the cis-element distributions were obviously different from its ancestors. After allopolyploidization, the expression patterns of GH3 genes from ancestor species changed greatly in B. napus, and the orthologous gene pairs between An/Ar and Cn/Co had diverged expression patterns across four tissues. Our study provides a comprehensive analysis of the GH3 gene family in B. napus, and these results could contribute to identifying genes with vital roles in phytohormone-related growth and developmental processes.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430072, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Ryan PR, Dong D, Teuber F, Wendler N, Mühling KH, Liu J, Xu M, Salvador Moreno N, You J, Maurer HP, Horst WJ, Delhaize E. Assessing How the Aluminum-Resistance Traits in Wheat and Rye Transfer to Hexaploid and Octoploid Triticale. FRONTIERS IN PLANT SCIENCE 2018; 9:1334. [PMID: 30374359 PMCID: PMC6196275 DOI: 10.3389/fpls.2018.01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of aluminum (Al) resistance in wheat and rye involve the release of citrate and malate anions from the root apices. Many of the genes controlling these processes have been identified and their responses to Al treatment described in detail. This study investigated how the major Al resistance traits of wheat and rye are transferred to triticale (x Tritosecale Wittmack) which is a hybrid between wheat and rye. We generated octoploid and hexaploid triticale lines and compared them with the parental lines for their relative resistance to Al, organic anion efflux and expression of some of the genes encoding the transporters involved. We report that the strong Al resistance of rye was incompletely transferred to octoploid and hexaploid triticale. The wheat and rye parents contributed to the Al-resistance of octoploid triticale but the phenotypes were not additive. The Al resistance genes of hexaploid wheat, TaALMT1, and TaMATE1B, were more successfully expressed in octoploid triticale than the Al resistance genes in rye tested, ScALMT1 and ScFRDL2. This study demonstrates that an important stress-tolerance trait derived from hexaploid wheat was expressed in octoploid triticale. Since most commercial triticale lines are largely hexaploid types it would be beneficial to develop techniques to generate genetically-stable octoploid triticale material. This would enable other useful traits that are present in hexaploid but not tetraploid wheat, to be transferred to triticale.
Collapse
Affiliation(s)
- Peter R. Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dengfeng Dong
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- College of Agriculture, Guangxi University, Nanning, China
| | - Felix Teuber
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Neele Wendler
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Jie Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Muyun Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Naike Salvador Moreno
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Department of Genetics, Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Jiangfeng You
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun, China
| | - Hans-Peter Maurer
- State Plant Breeding Institute, Universitaet Hohenheim, Stuttgart, Germany
| | - Walter J. Horst
- Institute for Plant Nutrition, Leibniz University Hanover, Hanover, Germany
| | | |
Collapse
|
13
|
Henry RJ, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:231-236. [PMID: 29779965 DOI: 10.1016/j.pbi.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 05/23/2023]
Abstract
Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| | - Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| |
Collapse
|
14
|
Garcia-Oliveira AL, Benito C, Guedes-Pinto H, Martins-Lopes P. Molecular cloning of TaMATE2 homoeologues potentially related to aluminium tolerance in bread wheat (Triticum aestivum L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:817-824. [PMID: 29908003 DOI: 10.1111/plb.12864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Recently, members of the MATE family have been implicated in aluminium (Al) tolerance by facilitating citrate efflux in plants. The aim of the present work was to perform a molecular characterisation of the MATE2 gene in bread wheat. Here, we cloned a member of the MATE gene family in bread wheat and named it TaMATE2, which showed the typical secondary structure of MATE-type transporters maintaining all the 12 transmembrane domains. Amplification in Chinese Spring nulli-tetrasomic and ditelosomic lines revealed that TaMATE2 is located on the long arm of homoeologous group 1 chromosomes. The transcript expression of TaMATE2 homoeologues in two diverse bread wheat genotypes, Barbela 7/72/92 (Al-tolerant) and Anahuac (Al-sensitive), suggested that TaMATE2 is expressed in both root and shoot tissues of bread wheat, but mainly confined to root rather than shoot tissues. A time-course analysis of TaMATE2 homoeologue transcript expression revealed the Al responsive expression of TaMATE2 in root apices of the Al-tolerant genotype, Barbela 7/72/92. Considering the high similarity of TaMATE2 together with similar Al responsive expression pattern as of ScFRDL2 from rye and OsFRDL2 from rice, it is likely that TaMATE2 also encodes a citrate transporter. Furthermore, the TaMATE2-D homoeologue appears to be near the previously reported locus (wPt0077) on chromosome 1D for Al tolerance. In conclusion, molecular cloning of TaMATE2 homoeologues, particularly TaMATE2-D, provides a plausible candidate for Al tolerance in bread wheat that can be used for the development of more Al-tolerant cultivars in this staple crop.
Collapse
Affiliation(s)
- A L Garcia-Oliveira
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Benito
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - H Guedes-Pinto
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - P Martins-Lopes
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
15
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
16
|
Takahagi K, Inoue K, Mochida K. Gene Co-expression Network Analysis Suggests the Existence of Transcriptional Modules Containing a High Proportion of Transcriptionally Differentiated Homoeologs in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1163. [PMID: 30135697 PMCID: PMC6092485 DOI: 10.3389/fpls.2018.01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/23/2018] [Indexed: 05/20/2023]
Abstract
Genome duplications aid in the formation of novel molecular networks through regulatory differentiation of the duplicated genes and facilitate adaptation to environmental change. Hexaploid wheat, Triticum aestivum, contains three homoeologous chromosome sets, the A-, B-, and D-subgenomes, which evolved through interspecific hybridization and subsequent whole-genome duplication. The divergent expression patterns of the homoeologs in hexaploid wheat suggest that they have undergone transcriptional and/or functional differentiation during wheat evolution. However, the distribution of transcriptionally differentiated homoeologs in gene regulatory networks and their related biological functions in hexaploid wheat are still largely unexplored. Therefore, we retrieved 727 publicly available wheat RNA-sequencing (RNA-seq) datasets from various tissues, developmental stages, and conditions, and identified 10,415 expressed homoeologous triplets. Examining the co-expression modules in the wheat transcriptome, we found that 66% of the expressed homoeologous triplets possess all three homoeologs grouped in the same co-expression modules. Among these, 15 triplets contain co-expressed homoeologs with differential expression levels between homoeoalleles across ≥ 95% of the 727 RNA-seq datasets, suggesting a consistent trend of homoeolog expression bias. In addition, we identified 2,831 differentiated homoeologs that showed gene expression patterns that deviated from those of the other two homoeologs. We found that seven co-expression modules contained a high proportion of such differentiated homoeologs, which accounted for ≥ 20% of the genes in each module. We also found that five of the co-expression modules are abundantly composed of genes involved in biological processes such as chloroplast biogenesis, RNA metabolism, putative defense response, putative posttranscriptional modification, and lipid metabolism, thereby suggesting that, the differentiated homoeologs might highly contribute to these biological functions in the gene network of hexaploid wheat.
Collapse
Affiliation(s)
- Kotaro Takahagi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- *Correspondence: Keiichi Mochida,
| |
Collapse
|
17
|
Zhu F, Schlupp I, Tiedemann R. Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa). PLoS One 2017; 12:e0186411. [PMID: 29023530 PMCID: PMC5638567 DOI: 10.1371/journal.pone.0186411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
The all-female Amazon molly (Poecilia formosa) is the result of a hybridization of the Atlantic molly (P. mexicana) and the sailfin molly (P. latipinna) approximately 120,000 years ago. As a gynogenetic species, P. formosa needs to copulate with heterospecific males including males from one of its bisexual ancestral species. However, the sperm only triggers embryogenesis of the diploid eggs. The genetic information of the sperm donor typically will not contribute to the next generation of P. formosa. Hence, P. formosa possesses generally one allele from each of its ancestral species at any genetic locus. This raises the question whether both ancestral alleles are equally expressed in P. formosa. Allele-specific expression (ASE) has been previously assessed in various organisms, e.g., human and fish, and ASE was found to be important in the context of phenotypic variability and disease. In this study, we utilized Real-Time PCR techniques to estimate ASE of the androgen receptor alpha (arα) gene in several distinct tissues of Amazon mollies. We found an allelic bias favoring the maternal ancestor (P. mexicana) allele in ovarian tissue. This allelic bias was not observed in the gill or the brain tissue. Sequencing of the promoter regions of both alleles revealed an association between an Indel in a known CpG island and differential expression. Future studies may reveal whether our observed cis-regulatory divergence is caused by an ovary-specific trans-regulatory element, preferentially activating the allele of the maternal ancestor.
Collapse
Affiliation(s)
- Fangjun Zhu
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ralph Tiedemann
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
18
|
Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S. Major genes determining yield-related traits in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1081-1098. [PMID: 28314933 PMCID: PMC5440550 DOI: 10.1007/s00122-017-2880-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 02/17/2017] [Indexed: 05/20/2023]
Abstract
Current development of advanced biotechnology tools allows us to characterize the role of key genes in plant productivity. The implementation of this knowledge in breeding strategies might accelerate the progress in obtaining high-yielding cultivars. The achievements of the Green Revolution were based on a specific plant ideotype, determined by a single gene involved in gibberellin signaling or metabolism. Compared with the 1950s, an enormous increase in our knowledge about the biological basis of plant productivity has opened new avenues for novel breeding strategies. The large and complex genomes of diploid barley and hexaploid wheat represent a great challenge, but they also offer a large reservoir of genes that can be targeted for breeding. We summarize examples of productivity-related genes/mutants in wheat and barley, identified or characterized by means of modern biology. The genes are classified functionally into several groups, including the following: (1) transcription factors, regulating spike development, which mainly affect grain number; (2) genes involved in metabolism or signaling of growth regulators-cytokinins, gibberellins, and brassinosteroids-which control plant architecture and in consequence stem hardiness and grain yield; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism having an impact on plant architecture and grain yield. The implementation of selected genes in breeding programs is discussed, considering specific genotypes, agronomic and climate conditions, and taking into account that many of the genes are members of multigene families.
Collapse
Affiliation(s)
- Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland.
| | - Izabela K Rajchel
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
19
|
Zang X, Geng X, Liu K, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Hu Z, Yao Y, Ni Z, Xin M, Sun Q, Peng H. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:1-11. [PMID: 28330552 DOI: 10.1016/j.plantsci.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 05/11/2023]
Abstract
Abiotic stresses, such as heat and drought, are major environmental factors restricting crop productivity and quality worldwide. A plastid outer envelope protein gene, TaOEP16-2, was identified from our previous transcriptome analysis [1,2]. In this study, the isolation and functional characterization of the TaOEP16-2 gene was reported. Three homoeologous sequences of TaOEP16-2 were isolated from hexaploid wheat, which were localized on the chromosomes 5A, 5B and 5D, respectively. These three homoeologues exhibited different expression patterns under heat stress conditions, TaOEP16-2-5B was the dominant one, and TaOEP16-2-5B was selected for further analysis. Compared with wild type (WT) plants, transgenic Arabidopsis plants overexpressing the TaOEP16-2-5B gene exhibited enhanced tolerance to heat stress, which was supported by improved survival rate, strengthened cell membrane stability and increased sucrose content. It was also found that TaOEP16-2 was induced by drought stress and involved in drought stress tolerance. TaOEP16-2-5B has the same function in ABA-controlled seed germination as AtOEP16-2. Our results suggest that TaOEP16-2-5B plays an important role in heat and drought stress tolerance, and could be utilized in transgenic breeding of wheat and other crop plants.
Collapse
Affiliation(s)
- Xinshan Zang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Geng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kelu Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xuejun Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Mutti JS, Bhullar RK, Gill KS. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids. G3 (BETHESDA, MD.) 2017; 7:1225-1237. [PMID: 28193629 PMCID: PMC5386871 DOI: 10.1534/g3.116.038711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/11/2017] [Indexed: 11/18/2022]
Abstract
Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76-87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.
Collapse
Affiliation(s)
- Jasdeep S Mutti
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Ramanjot K Bhullar
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| |
Collapse
|
21
|
Sun S, Wu Y, Lin X, Wang J, Yu J, Sun Y, Miao Y, Li Q, Sanguinet KA, Liu B. Hybrid weakness in a rice interspecific hybrid is nitrogen-dependent, and accompanied by changes in gene expression at both total transcript level and parental allele partitioning. PLoS One 2017; 12:e0172919. [PMID: 28248994 PMCID: PMC5332110 DOI: 10.1371/journal.pone.0172919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/11/2017] [Indexed: 01/31/2023] Open
Abstract
Background Hybrid weakness, a phenomenon opposite to heterosis, refers to inferior growth and development in a hybrid relative to its pure-line parents. Little attention has been paid to the phenomenological or mechanistic aspect of hybrid weakness, probably due to its rare occurrence. Methodology/Principal findings Here, using a set of interspecific triploid F1 hybrids between Oryza sativa, ssp. japonica (genome AA) and a tetraploid wild rice species, O. alta (genome, CCDD), we investigated the phenotypic and physiological differences between the F1 hybrids and their parents under normal and nitrogen-limiting conditions. We quantified the expression levels of 21 key genes involved in three important pathways pertinent to the assayed phenotypic and physiological traits by real-time qRT-PCR. Further, we assayed expression partitioning of parental alleles for eight genes in the F1 hybrids relative to the in silico “hybrids” (parental cDNA mixture) under both normal and N-limiting conditions by using locus-specific cDNA pyrosequencing. Conclusions/Significance We report that the F1 hybrids showed weakness in several phenotypic traits at the final seedling-stage compared with their corresponding mid-parent values (MPVs). Nine of the 21 studied genes showed contrasted expression levels between hybrids and parents (MPVs) under normal vs. N-limiting conditions. Interestingly, under N-limiting conditions, the overtly enhanced partitioning of maternal allele expression in the hybrids for eight assayed genes echo their attenuated hybrid weakness in phenotypes, an observation further bolstered by more resemblance of hybrids to the maternal parent under N-limiting conditions compared to normal conditions in a suite of measured physiological traits. Our observations suggest that both overall expression level and differential partitioning of parental alleles of critical genes contribute to condition-specific hybrid weakness.
Collapse
Affiliation(s)
- Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
| | - Jiamiao Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yiling Miao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
| | - Qiuping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail: (KS); (BL)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun China
- * E-mail: (KS); (BL)
| |
Collapse
|
22
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
23
|
Spannagl M, Bader K, Pfeifer M, Nussbaumer T, Mayer KFX. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes. Methods Mol Biol 2016; 1374:165-86. [PMID: 26519405 DOI: 10.1007/978-1-4939-3167-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.
Collapse
Affiliation(s)
- Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Kai Bader
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany. .,School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
24
|
Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Sci Rep 2016; 6:26363. [PMID: 27198893 PMCID: PMC4873831 DOI: 10.1038/srep26363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 11/08/2022] Open
Abstract
Allopolyploidy often triggers phenotypic novelty and gene expression remolding in the resulting polyploids. In this study, we employed multiple phenotypic and genetic approaches to investigate the nature and consequences of allotetraploidization between A- and S-subgenome of tetraploid wheat. Results showed that karyotype of the nascent allopolyploid plants (AT2) is stable but they showed clear novelty in multiple morphological traits which might have positively contributed to the initial establishment of the tetraploids. Further microarray-based transcriptome profiling and gene-specific cDNA-pyrosequencing have documented that transcriptome shock was exceptionally strong in AT2, but a substantial proportion of the induced expression changes was rapidly stabilized in early generations. Meanwhile, both additive and nonadditive expression genes showed extensive homeolog expression remodeling and which have led to the subgenome expression dominance in leaf and young inflorescence of AT2. Through comparing the homeolog-expressing patterns between synthetic and natural tetraploid wheats, it appears that the shock-induced expression changes at both the total expression level and subgenome homeolog partitioning are evolutionarily persistent. Together, our study shed new light on how gene expression changes have rapidly occurred at the initial stage following allotetraploidization, as well as their evolutionary relevance, which may have implications for wheat improvements.
Collapse
|
25
|
Kaur S, Dhugga KS, Gill K, Singh J. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.). PLoS One 2016; 11:e0147046. [PMID: 26771740 PMCID: PMC4714848 DOI: 10.1371/journal.pone.0147046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.
Collapse
Affiliation(s)
- Simerjeet Kaur
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Kanwarpal S. Dhugga
- Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America
| | - Kulvinder Gill
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
- * E-mail:
| |
Collapse
|
26
|
Tanaka M, Tanaka H, Shitsukawa N, Kitagawa S, Takumi S, Murai K. Homoeologous copy-specific expression patterns of MADS-box genes for floral formation in allopolyploid wheat. Genes Genet Syst 2015; 90:217-29. [PMID: 26616759 DOI: 10.1266/ggs.15-00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The consensus model for floral organ formation in higher plants, the so-called ABCDE model, proposes that floral whorl-specific combinations of class A, B, C, D, and E genes specify floral organ identity. Class A, B, C, D and E genes encode MADS-box transcription factors; the single exception being the class A gene APETALA2. Bread wheat (Triticum aestivum) is a hexaploid species with a genome constitution AABBDD; the hexaploid originated from a cross between tetraploid T. turgidum (AABB) and diploid Aegilops tauschii (DD). Tetraploid wheat is thought to have originated from a cross between the diploid species T. urartu (AA) and Ae. speltoides (BB). Consequently, the hexaploid wheat genome contains triplicated homoeologous copies (homoeologs) of each gene derived from the different ancestral diploid species. In this study, we examined the expression patterns of homoeologs of class B, C and D MADS-box genes during floral development. For the class B gene wheat PISTILLATA2 (WPI2), the homoeologs from the A and D genomes were expressed, while expression of the B genome homoeolog was suppressed. For the class C gene wheat AGAMOUS1 (WAG1), the homoeologs on the A and B genomes were expressed, while expression of the D genome homoeolog was suppressed. For the class D gene wheat SEEDSTICK (WSTK), the B genome homoeolog was preferentially expressed. These differential patterns of homoeolog expression were consistently observed among different hexaploid wheat varieties and synthetic hexaploid wheat lines developed by artificial crosses between tetraploid wheat and Ae. tauschii. These results suggest that homoeolog-specific regulation of the floral MADS-box genes occurs in allopolyploid wheat.
Collapse
Affiliation(s)
- Miku Tanaka
- Department of Bioscience, Fukui Prefectural University
| | | | | | | | | | | |
Collapse
|
27
|
Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Genet Genomics 2015; 291:323-36. [PMID: 26334613 DOI: 10.1007/s00438-015-1111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.
Collapse
|
28
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
29
|
Li AL, Geng SF, Zhang LQ, Liu DC, Mao L. Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. MOLECULAR PLANT 2015; 8:847-59. [PMID: 25747845 DOI: 10.1016/j.molp.2015.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 05/27/2023]
Abstract
Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgrass Aegilops tauschii (DD, 2n = 2x = 14). Polyploidization provided niches for rigorous genome modification at cytogenetic, genetic, and epigenetic levels, rendering a broader spread than its progenitors. This review summarizes the latest advances in understanding gene regulation mechanisms in newly synthesized allohexaploid wheat and possible correlation with polyploid growth vigor and adaptation. Cytogenetic studies reveal persistent association of whole-chromosome aneuploidy with nascent allopolyploids, in contrast to the genetic stability in common wheat. Transcriptome analysis of the euploid wheat shows that small RNAs are driving forces for homoeo-allele expression regulation via genetic and epigenetic mechanisms. The ensuing non-additively expressed genes and those with expression level dominance to the respective progenitor may play distinct functions in growth vigor and adaptation in nascent allohexaploid wheat. Further genetic diploidization of allohexaploid wheat is not random. Regional asymmetrical gene distribution, rather than subgenome dominance, is observed in both synthetic and natural allohexaploid wheats. The combinatorial effects of diverged genomes, subsequent selection of specific gene categories, and subgenome-specific traits are essential for the successful establishment of common wheat.
Collapse
Affiliation(s)
- Ai-li Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai-Feng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lian-quan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deng-cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
Wang X, Bennetzen JL. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics 2015; 290:11-21. [PMID: 25582664 DOI: 10.1007/s00438-015-0989-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
Abstract
Nicotiana, a member of the Solanaceae family, is one of the most important research model plants, and of high agricultural and economic value worldwide. To better understand the substantial and rapid research progress with Nicotiana in recent years, its genomics, genetics, and nicotine gene studies are summarized, with useful web links. Several important genetic maps, including a high-density map of N. tabacum consisting of ~2,000 markers published in 2012, provide tools for genetics research. Four whole genome sequences are from allotetraploid species, including N. benthamiana in 2012, and three N. tabacum cultivars (TN90, K326, and BX) in 2014. Three whole genome sequences are from diploids, including progenitors N. sylvestris and N. tomentosiformis in 2013 and N. otophora in 2014. These and additional studies provide numerous insights into genome evolution after polyploidization, including changes in gene composition and transcriptome expression in N. tabacum. The major genes involved in the nicotine biosynthetic pathway have been identified and the genetic basis of the differences in nicotine levels among Nicotiana species has been revealed. In addition, other progress on chloroplast, mitochondrial, and NCBI-registered projects on Nicotiana are discussed. The challenges and prospects for genomic, genetic and application research are addressed. Hence, this review provides important resources and guidance for current and future research and application in Nicotiana.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, People's Republic of China,
| | | |
Collapse
|
31
|
Abstract
One late afternoon in the beginning of January 1986, bicycling from the lab over the hill to the small village of Fulbourn, the idea for an alternative DNA sequencing technique came to my mind. The basic concept was to follow the activity of DNA polymerase during nucleotide incorporation into a DNA strand by analyzing the pyrophosphate released during the process. Today, the technique is used in multidisciplinary fields in academic, clinical, and industrial settings all over the word. This technique can be used for both single-base sequencing and whole-genome sequencing, depending on the format used.In this chapter, I give my personal account of the development of Pyrosequencing(®)-beginning on a winter day in 1986, when I first envisioned the method-until today, nearly 30 years later.
Collapse
Affiliation(s)
- Pål Nyrén
- Department of Biotechnology, Royal Institute of Technology, Roslagstullsbacken 21, AlbaNova, SE-106 91, Stockholm, Sweden,
| |
Collapse
|
32
|
Wang X, Yu K, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M, Zhang J. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2015; 6:1164. [PMID: 26779193 PMCID: PMC4688392 DOI: 10.3389/fpls.2015.01164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 05/09/2023]
Abstract
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | - Kunjiang Yu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongge Li
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
- *Correspondence: Jiefu Zhang,
| |
Collapse
|
33
|
Garcia-Oliveira AL, Martins-Lopes P, Tolrá R, Poschenrieder C, Tarquis M, Guedes-Pinto H, Benito C. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum). PHYSIOLOGIA PLANTARUM 2014; 152:441-52. [PMID: 24588850 DOI: 10.1111/ppl.12179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 05/25/2023]
Abstract
In bread wheat, besides malate, the importance of citrate efflux for Al tolerance has also been reported. For better understanding the Al tolerance mechanism in bread wheat, here, we performed both a molecular characterization of the citrate transporter gene TaMATE1 and an investigation on the upstream variations in citrate and malate transporter genes. TaMATE1 belong to multidrug transporter protein family, which are located on the long arm of homoeologous group 4 chromosomes (TaMATE1-4A, TaMATE1-4B TaMATE1-4D). TaMATE1 homoeologues transcript expression study exhibited the preponderance of homoeologue TaMATE1-4B followed by TaMATE1-4D whereas homoeologue TaMATE1-4A seemed to be silenced. TaMATE1, particularly homoeologue TaMATE1-4B and TaALMT1 transcripts were much more expressed in the root apices than in shoots of Al tolerant genotype Barbela 7/72/92 under both control and Al stress conditions. In addition, in both tissues of Barbela 7/72/92, higher basal levels of these gene transcripts were observed than in Anahuac (Al sensitive). Noticeably, the presence of a transposon in the upstream of TaMATE1-4B in Barbela 7/72/92 seems to be responsible for its higher transcript expression where it may confer citrate efflux. Thus, promoter variations (transposon in TaMATE1-4B upstream and type VI promoter in TaALMT1) associated with higher basal transcript expression of TaMATE1-4B and TaALMT1 clearly show how different mechanisms for Al tolerance operate simultaneously in a single genotype. In conclusion, our results demonstrate that Barbela 7/72/92 has favorable alleles for these organic acids transporter genes which could be utilized through genomic assisted selection to develop improved cultivars for acidic soils.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Centro de Genómica e Biotecnologia, Instituto de Biotecnologia e Bioengenharia (CGB/IBB), Universidade de Trás-os-Montes e Alto Douro (UTAD), PO Box 1013, 5001-801, Vila Real, Portugal; Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
35
|
Novel method for analysis of allele specific expression in triploid Oryzias latipes reveals consistent pattern of allele exclusion. PLoS One 2014; 9:e100250. [PMID: 24945156 PMCID: PMC4063754 DOI: 10.1371/journal.pone.0100250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022] Open
Abstract
Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18%) displayed a wide range of ASE levels. Interestingly the majority of genes (78%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.
Collapse
|
36
|
Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Genet Genomics 2014; 289:951-63. [PMID: 24861101 DOI: 10.1007/s00438-014-0864-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/06/2014] [Indexed: 01/10/2023]
Abstract
Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway.
Collapse
|
37
|
Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics 2014; 15:276. [PMID: 24726045 PMCID: PMC4023595 DOI: 10.1186/1471-2164-15-276] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
Collapse
|
38
|
The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: Structural characterization and expression in different parts of wheat plant. Gene 2014; 538:334-41. [DOI: 10.1016/j.gene.2014.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/27/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
39
|
Matsuoka Y, Takumi S, Nasuda S. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:199-258. [PMID: 24529724 DOI: 10.1016/b978-0-12-800255-1.00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
40
|
Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z. Classification and expression diversification of wheat dehydrin genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:113-20. [PMID: 24268169 DOI: 10.1016/j.plantsci.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs) are late embryonic abundant proteins characterized by the dehydrin domains that are involved in plant abiotic stress tolerance. In this study, fifty-four wheat DHN unigenes were identified in the expressed sequence tags database. These genes encode seven types of dehydrins (KS, SK3, YSK2, Y2SK2, Kn, Y2SK3, and YSK3) and separate in 32 homologous clusters. The gene amplification differed among the dehydrin types, and members of the YSK2- and Kn-type DHNs are more numerous in wheat than in other cereals. The relative expression of all of these DHN clusters was analyzed using an in silico method in seven tissue types (i.e. normal growing shoots, roots, and reproductive tissues; developing and germinating seeds; drought- and cold-stressed shoots) as well as semi-quantitative reverse transcription polymerase chain reaction in seedling leaves and roots treated by dehydration, cold, and salt, respectively. The role of the ABA pathway in wheat DHN expression regulation was analyzed. Transcripts of certain types of DHNs accumulated specifically according to tissue type and treatment, which suggests their differentiated roles in wheat abiotic stress tolerance.
Collapse
Affiliation(s)
- Yuezhi Wang
- The Applied Plant Genomics Lab, Crop Genomics and Bioinformatics Center & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021 China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mochida K, Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future. PLANT & CELL PHYSIOLOGY 2013; 54:1931-50. [PMID: 24204022 PMCID: PMC3856857 DOI: 10.1093/pcp/pct163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 05/23/2023]
Abstract
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species-barley, wheat, Tausch's goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)-have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae.
Collapse
Affiliation(s)
- Keiichi Mochida
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
42
|
Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. THE NEW PHYTOLOGIST 2013; 200:251-260. [PMID: 23790161 DOI: 10.1111/nph.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 05/02/2023]
Abstract
Polyploidy has occurred throughout the evolutionary history of plants and led to diversification and plant ecological adaptation. Functional plasticity of duplicate genes is believed to play a major role in the environmental adaptation of polyploids. In this context, we characterized genome-wide homoeologous gene expression in Coffea arabica, a recent allopolyploid combining two subgenomes that derive from two closely related diploid species, and investigated its variation in response to changing environment. The transcriptome of leaves of C. arabica cultivated at different growing temperatures suitable for one or the other parental species was examined using RNA-sequencing. The relative contribution of homoeologs to gene expression was estimated for 9959 and 10,628 genes in warm and cold conditions, respectively. Whatever the growing conditions, 65% of the genes showed equivalent levels of homoeologous gene expression. In 92% of the genes, relative homoeologous gene expression varied < 10% between growing temperatures. The subgenome contributions to the transcriptome appeared to be only marginally altered by the different conditions (involving intertwined regulations of homeologs) suggesting that C. arabica's ability to tolerate a broader range of growing temperatures than its diploid parents does not result from differential use of homoeologs.
Collapse
Affiliation(s)
- Marie-Christine Combes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Alexis Dereeper
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cédex 5, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| | - Philippe Lashermes
- IRD, UMR RPB (IRD, CIRAD, Université Montpellier II), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cédex 5, France
| |
Collapse
|
43
|
Garcia-Oliveira AL, Benito C, Prieto P, de Andrade Menezes R, Rodrigues-Pousada C, Guedes-Pinto H, Martins-Lopes P. Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H(+)) toxicity in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:134. [PMID: 24034075 PMCID: PMC3848728 DOI: 10.1186/1471-2229-13-134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/01/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aluminium (Al) toxicity is considered to be one of the major constraints affecting crop productivity on acid soils. Being a trait governed by multiple genes, the identification and characterization of novel transcription factors (TFs) regulating the expression of entire response networks is a very promising approach. Therefore, the aim of the present study was to clone, localize, and characterize the TaSTOP1 gene, which belongs to the zinc finger family (Cys2His2 type) transcription factor, at molecular level in bread wheat. RESULTS TaSTOP1 loci were cloned and localized on the long arm of homoeologous group 3 chromosomes [3AL (TaSTOP1-A), 3BL (TaSTOP1-B) and 3DL (TaSTOP1-D)] in bread wheat. TaSTOP1 showed four potential zinc finger domains and the homoeologue TaSTOP1-A exhibited transactivation activity in yeast. Expression profiling of TaSTOP1 transcripts identified the predominance of homoeologue TaSTOP1-A followed by TaSTOP1-D over TaSTOP1-B in root and only predominance of TaSTOP1-A in shoot tissues of two diverse bread wheat genotypes. Al and proton (H(+)) stress appeared to slightly modulate the transcript of TaSTOP1 homoeologues expression in both genotypes of bread wheat. CONCLUSIONS Physical localization of TaSTOP1 results indicated the presence of a single copy of TaSTOP1 on homoeologous group 3 chromosomes in bread wheat. The three homoeologues of TaSTOP1 have similar genomic structures, but showed biased transcript expression and different response to Al and proton (H(+)) toxicity. These results indicate that TaSTOP1 homoeologues may differentially contribute under Al or proton (H(+)) toxicity in bread wheat. Moreover, it seems that TaSTOP1-A transactivation potential is constitutive and may not depend on the presence/absence of Al at least in yeast. Finally, the localization of TaSTOP1 on long arm of homoeologous group 3 chromosomes and the previously reported major loci associated with Al resistance at chromosome 3BL, through QTL and genome wide association mapping studies suggests that TaSTOP1 could be a potential candidate gene for genomic assisted breeding for Al tolerance in bread wheat.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Centro de Genómica e Biotecnologia, Instituto de Biotecnologia e Bioengenharia (CGB/IBB), Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013, 5001-801 Vila Real, Portugal
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - César Benito
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain
| | - Pilar Prieto
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS, CSIC), Alameda del Obispo s/n., P.O. Box 4084, Córdoba 14080, Spain
| | | | | | - Henrique Guedes-Pinto
- Centro de Genómica e Biotecnologia, Instituto de Biotecnologia e Bioengenharia (CGB/IBB), Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula Martins-Lopes
- Centro de Genómica e Biotecnologia, Instituto de Biotecnologia e Bioengenharia (CGB/IBB), Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013, 5001-801 Vila Real, Portugal
| |
Collapse
|
44
|
Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I, Korol AB, Wight CP, Gardner KM, Hattori J, Beattie AD, Bjørnstad Å, Bonman JM, Jannink JL, Sorrells ME, Brown-Guedira GL, Mitchell Fetch JW, Harrison SA, Howarth CJ, Ibrahim A, Kolb FL, McMullen MS, Murphy JP, Ohm HW, Rossnagel BG, Yan W, Miclaus KJ, Hiller J, Maughan PJ, Redman Hulse RR, Anderson JM, Islamovic E, Jackson EW. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS One 2013; 8:e58068. [PMID: 23533580 PMCID: PMC3606164 DOI: 10.1371/journal.pone.0058068] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.
Collapse
Affiliation(s)
- Rebekah E. Oliver
- General Mills Crop Biosciences, Kannapolis, North Carolina, United States of America
| | - Nicholas A. Tinker
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- * E-mail:
| | - Gerard R. Lazo
- Western Regional Research Center, Genomics and Gene Discovery, United States Department of Agriculture - Agricultural Research Service, Albany, California, United States of America
| | - Shiaoman Chao
- Biosciences Research Lab, United States Department of Agriculture - Agricultural Research Service, Fargo, North Dakota, United States of America
| | - Eric N. Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Martin L. Carson
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service, Saint Paul, Minnesota, United States of America
| | - Howard W. Rines
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Donald E. Obert
- Limagrain Cereal Seeds, Lafayette, Indiana, United States of America
| | - Joseph D. Lutz
- General Mills Crop Biosciences, Kannapolis, North Carolina, United States of America
| | - Irene Shackelford
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service, Aberdeen, Idaho, United States of America
| | - Abraham B. Korol
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel
| | - Charlene P. Wight
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Kyle M. Gardner
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Jiro Hattori
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Aaron D. Beattie
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Åsmund Bjørnstad
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - J. Michael Bonman
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service, Aberdeen, Idaho, United States of America
| | - Jean-Luc Jannink
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture - Agricultural Research Service, Ithaca, New York, United States of America
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Gina L. Brown-Guedira
- Eastern Regional Small Grains Genotyping Laboratory, North Carolina State University, United States Department of Agriculture - Agricultural Research Service, Raleigh, North Carolina, United States of America
| | | | - Stephen A. Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Catherine J. Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Amir Ibrahim
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Frederic L. Kolb
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Michael S. McMullen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - J. Paul Murphy
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Herbert W. Ohm
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Brian G. Rossnagel
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Weikai Yan
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Kelci J. Miclaus
- JMP, SAS Institute Incorporated, Cary, North Carolina, United States of America
| | - Jordan Hiller
- JMP, SAS Institute Incorporated, Cary, North Carolina, United States of America
| | - Peter J. Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rachel R. Redman Hulse
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Joseph M. Anderson
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Emir Islamovic
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Eric W. Jackson
- General Mills Crop Biosciences, Kannapolis, North Carolina, United States of America
| |
Collapse
|
45
|
Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A 2013; 110:3447-52. [PMID: 23401544 DOI: 10.1073/pnas.1300153110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that whole-chromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S(1) to >S(20)) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.
Collapse
|
46
|
Crops that feed the world 9. Oats- a cereal crop for human and livestock feed with industrial applications. Food Secur 2013. [DOI: 10.1007/s12571-012-0232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploids. THE NEW PHYTOLOGIST 2012; 196:966-971. [PMID: 23033870 DOI: 10.1111/j.1469-8137.2012.04365.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - J P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - E P Szadkowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - M J Yoo
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - L E Flagel
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - J F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
48
|
Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U. Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics 2012; 13:492. [PMID: 22989011 PMCID: PMC3505470 DOI: 10.1186/1471-2164-13-492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023] Open
Abstract
Background Bread wheat is one of the world’s most important food crops and considerable efforts have been made to develop genomic resources for this species. This includes an on-going project by the International Wheat Genome Sequencing Consortium to assemble its large and complex genome, which is hexaploid and contains three closely related ‘homoeologous’ copies for each chromosome. This multi-national effort avoids the complications polyploidy entails for correct assembly of the genome by sequencing flow-sorted chromosome arms one at a time. Here we report on an alternate approach, a direct homoeolog-specific assembly of the expressed portion of the genome, the transcriptome. Results After assessment of the ability of various assemblers to generate homoeolog-specific assemblies, we employed a two-stage assembly process to produce a high-quality assembly of the transcriptome of hexaploid wheat from Roche-454 and Illumina GAIIx paired-end sequence reads. The assembly process made use of a rapid partitioning of expressed sequences into homoeologous clusters, followed by a parallel high-fidelity assembly of each cluster on a 1150-processor compute cloud. We assessed assembly quality through comparison to known wheat gene sequences and found that in ca. 98.5% of cases the assembly was sufficiently accurate for homoeologous triplets to be cleanly separated into either two or three separate contigs. Comparison to publicly available transcript collections suggests that the assembly covers ~75-80% of the complete transcriptome. Conclusions This work therefore describes the first homoeolog-specific sequence assembly of the wheat transcriptome and provides a reference transcriptome for future wheat research. Furthermore, our assembly methodology is transferable to other polyploid organisms.
Collapse
Affiliation(s)
- Andreas W Schreiber
- Australian Centre for Plant Functional Genomics, Univ. of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Shaw LM, Turner AS, Laurie DA. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:71-84. [PMID: 22372488 DOI: 10.1111/j.1365-313x.2012.04971.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering.
Collapse
Affiliation(s)
- Lindsay M Shaw
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
50
|
Song J, Jiang L, Jameson PE. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC PLANT BIOLOGY 2012; 12:78. [PMID: 22672647 PMCID: PMC3410795 DOI: 10.1186/1471-2229-12-78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 06/06/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. RESULTS The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. CONCLUSIONS Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.
Collapse
Affiliation(s)
- Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, 32 Qingquan Road, Yantai, 264005, China
| | - Lijun Jiang
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, 32 Qingquan Road, Yantai, 264005, China
| | - Paula Elizabeth Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|