1
|
Pohlen L, García E, Martínez LM, Flores N, Büchs J, Gosset G, Lara AR. Sigma Factors as Potential Targets to Enhance Recombinant Protein Expression. Biotechnol Bioeng 2025; 122:1598-1607. [PMID: 39994955 PMCID: PMC12067039 DOI: 10.1002/bit.28958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
The transcriptional factors control the expression of many genes and represent an important layer of complexity in cell factories. However, the effect of individual sigma factor deletions from a biomanufacturing perspective has not been addressed. In this contribution, growth, green fluorescence protein (GFP) expression, and oxygen consumption of Escherichia coli BW25113 strains with individual inactivation of each sigma factor were characterized under various conditions. Specific growth rate, specific GFP fluorescence, and fluorescence emission rates were compared in a mineral media and in lysogeny broth at two temperatures. rpoD has been reported to be lethal for E. coli; however, the evaluated rpoD mutant did not exhibit major growth defects in the mineral medium. This is attributed to the presence of a second copy of rpoD in this strain. GFP was expressed at three different induction levels in a mineral and LB media. The fliA mutant was the best producer in the mineral medium, whereas the rpoD mutant overperformed the other strains in LB medium. This suggests that a lower rpoD gene dosage is positive for the performance of the cell factory in a complex medium. In cultures at 20°C, the rpoS mutant exhibited the greatest recombinant expression. To our knowledge, this is the first systematic study evaluating the potential of sigma factor deletion for improving recombinant protein production.
Collapse
Affiliation(s)
- Laura Pohlen
- Department of Chemistry and BiotechnologyFH Aachen University of Applied SciencesJülichGermany
| | - Emily García
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
| | - Luz María Martínez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
| | - Noemí Flores
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT)RWTH Aachen UniversityAachenGermany
| | - Guillermo Gosset
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
| | - Alvaro R. Lara
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| |
Collapse
|
2
|
Lisevich I, Colin R, Yang HY, Ni B, Sourjik V. Physics of swimming and its fitness cost determine strategies of bacterial investment in flagellar motility. Nat Commun 2025; 16:1731. [PMID: 39966405 PMCID: PMC11836070 DOI: 10.1038/s41467-025-56980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Microorganisms must distribute their limited resources among different physiological functions, including those that do not directly contribute to growth. In this study, we investigate the allocation of resources to flagellar swimming, the most prominent and biosynthetically costly of such cellular functions in bacteria. Although the growth-dependence of flagellar gene expression in peritrichously flagellated Escherichia coli is well known, the underlying physiological limitations and regulatory strategies are not fully understood. By characterizing the dependence of motile behavior on the activity of the flagellar regulon, we demonstrate that, beyond a critical number of filaments, the hydrodynamics of propulsion limits the ability of bacteria to increase their swimming by synthesizing additional flagella. In nutrient-rich conditions, E. coli apparently maximizes its motility until reaching this limit, while avoiding the excessive cost of flagella production. Conversely, during carbon-limited growth motility remains below maximal levels and inversely correlates with the growth rate. The physics of swimming may further explain the selection for bimodal resource allocation in motility at low average expression levels. Notwithstanding strain-specific variation, the expression of flagellar genes in all tested natural isolates of E. coli also falls within the same range defined by the physical limitations on swimming and its biosynthetic cost.
Collapse
Affiliation(s)
- Irina Lisevich
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Hao Yuan Yang
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green 8 Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing, China
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse 14, Marburg, Germany.
| |
Collapse
|
3
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. mBio 2025; 16:e0343324. [PMID: 39714184 PMCID: PMC11796348 DOI: 10.1128/mbio.03433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote pathogen fitness in stationary phase. We discovered that the maintenance of lipid asymmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type (WT) and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48 h stationary phase cultures. The mutant defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48 h. However, by 96 h the culturability of the WT and mutant strains were equivalent. By monitoring the abundances of genomically barcoded libraries of WT and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96 h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the defect of ∆mlaE. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for maintaining the culturability of V. cholerae because it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway. IMPORTANCE Bacteria regularly encounter conditions with nutrient scarcity, where cell growth and division are minimal. Knowledge of the pathways that enable re-growth following nutrient restriction is limited. Here, using the cholera pathogen, we uncovered a role for the Mla pathway, a system that enables phospholipid re-cycling, in promoting Vibrio cholerae re-expansion from stationary phase cultures. Cells labeled with DNA barcodes or fluorophores were useful to demonstrate that though the abundances of wild-type and Mla mutant cells were similar in stationary phase cultures, they had marked differences in their capacities to regrow on plates. Of note, Mla mutant cells lose cell envelope components including high-energy phospholipids due to OMV shedding. Our findings suggest that the defects in cellular energy homeostasis that emerge in the absence of the Mla pathway underlie its importance in maintaining V. cholerae culturability.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Leitner DR, Zingl FG, Morano AA, Zhang H, Waldor MK. The Mla pathway promotes Vibrio cholerae re-expansion from stationary phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622497. [PMID: 39574722 PMCID: PMC11580980 DOI: 10.1101/2024.11.07.622497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify Vibrio cholerae genes that promote the pathogen's fitness in stationary phase. We discovered that the Mla (maintenance of lipid asymmetry) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness. Competition experiments with barcoded and fluorophore labeled wild-type and mlaE mutant V. cholerae revealed that the Mla pathway promotes re-expansion from 48h stationary phase cultures. The mutant's defect in transitioning out of stationary phase into active growth (culturability) was also observed in monocultures at 48h. However, by 96h the culturability of the mutant and wild-type strains were equivalent. By monitoring the abundances of genomically barcoded libraries of wild-type and ∆mlaE strains, we observed that a few barcodes dominated the mutant culture at 96h, suggesting that the similarity of the population sizes at this time was caused by expansion of a subpopulation containing a mutation that suppressed the mlaE mutant's defect. Whole genome sequencing revealed that mlaE suppressors inactivated flagellar biosynthesis. Additional mechanistic studies support the idea that the Mla pathway is critical for the maintenance of V. cholerae's culturability as it promotes energy homeostasis, likely due to its role in regulating outer membrane vesicle shedding. Together our findings provide insights into the cellular processes that control re-expansion from stationary phase and demonstrate a previously undiscovered role for the Mla pathway.
Collapse
Affiliation(s)
- Deborah R. Leitner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz G. Zingl
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A. Morano
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hailong Zhang
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jiang Z, Chen A, Chen Z, Xu J, Gao X, Jiang Q, Zhang X. RpoS sigma factor mediates adaptation and virulence in Vibrio mimicus. Int J Biol Macromol 2024; 279:135307. [PMID: 39236940 DOI: 10.1016/j.ijbiomac.2024.135307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The alternative sigma factor RpoS functions as a regulator of stress and virulence response in numerous bacterial species. Vibrio mimicus is a critical opportunistic pathogen causing huge losses to aquaculture. However, the exact role of RpoS in V. mimicus remains unclear. In this study, rpoS deletion mutant of V. mimicus was constructed through allelic exchange and the phenotypic and transcriptional changes were investigated to determine the function of RpoS. The abilities of growth, motility, biofilm production, hemolytic activity and pathogenicity were significantly impaired in ΔrpoS strain. Stationary-phase cells of ΔrpoS strain showed lower tolerance to H2O2, heat, ethanol, and starvation stress than the wild-type strain. Transcriptome analyses revealed the involvement of rpoS in various cellular processes, notably bacterial-type flagellum synthesis and assembly, membrane synthesis and assembly and response to various stimuli. Phenotypic and RNA-seq analysis revealed that RpoS is required for biofilm formation, stress resistance, and pathogenicity in V. mimicus. Furthermore, β-galactosidase activity showed that rpoS is essential for optimal transcription of the flgK, fliA, cheA, mcpH mRNA. These results offer significant insight into the function and regulatory network of rpoS/RpoS, thereby improving our understanding and facilitating selection of molecular targets for future prevention strategies against V. mimicus.
Collapse
Affiliation(s)
- Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Anting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhen Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Chabhadiya S, Acharya D, Mangrola A, Shah R, Pithawala EA. Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:111-119. [PMID: 39416688 PMCID: PMC11446356 DOI: 10.1016/j.biotno.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/19/2024]
Abstract
Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering Pseudomonas aeruginosa for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like Escherichia coli. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.
Collapse
Affiliation(s)
- Sameer Chabhadiya
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - D.K. Acharya
- Department of Microbiology, Gandhinagar University, Kalol, Gujarat, India
| | - Amitsinh Mangrola
- Department of Biochemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, India
| | - Rupal Shah
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - Edwin A. Pithawala
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Okada K, Roobthaisong A, Hamada S. Flagella-related gene mutations in Vibrio cholerae during extended cultivation in nutrient-limited media impair cell motility and prolong culturability. mSystems 2023; 8:e0010923. [PMID: 37642466 PMCID: PMC10654082 DOI: 10.1128/msystems.00109-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Vibrio cholerae undergoes a transition to a viable but non-culturable (VNC) state when subjected to various environmental stresses. We showed here that flagellar motility was involved in the development of the VNC state of V. cholerae. In this study, motility-defective isolates with mutations in various flagella-related genes, but not motile isolates, were predominantly obtained under the stress of long-term batch culture. Other genomic regions were highly conserved, suggesting that the mutations were selective. During the stationary phase of long-term culture, V. cholerae isolates with mutations in the acetate kinase and flagella-related genes were predominant. This study suggests that genes involved in specific functions in V. cholerae undergo mutations under certain environmental conditions.
Collapse
Affiliation(s)
- Kazuhisa Okada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, National Institute of Health, Nonthaburi, Thailand
| | - Amonrattana Roobthaisong
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, National Institute of Health, Nonthaburi, Thailand
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Amrofell MB, Moon TS. Characterizing a Propionate Sensor in E. coli Nissle 1917. ACS Synth Biol 2023; 12:1868-1873. [PMID: 37220256 PMCID: PMC10865894 DOI: 10.1021/acssynbio.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Short-chain fatty acids (SCFAs) are commonly found in the large intestine, but generally not in the small intestine, and influence microbiome composition and host physiology. Thus, synthetic biologists are interested in developing engineered probiotics capable of in situ detection of SCFAs as biogeography or disease sensors. One SCFA, propionate, is both sensed and consumed by E. coli. Here, we utilize the E. coli transcription factor PrpR, sensitive to the propionate-derived metabolite (2S,3S)-2-methylcitrate, and its cognate promoter PprpBCDE to detect extracellular propionate with the probiotic chassis bacterium E. coli Nissle 1917. We identify that PrpR-PprpBCDE displays stationary phase leakiness and transient bimodality, and we explain these observations through evolutionary rationales and deterministic modeling, respectively. Our results will help researchers build biogeographically sensitive genetic circuits.
Collapse
Affiliation(s)
- Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
9
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
10
|
Bassey AP, Ye K, Li C, Zhou G. Transcriptomic-proteomic integration: A powerful synergy to elucidate the mechanisms of meat spoilage in the cold chain. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Arunima A, Swain SK, Ray S, Prusty BK, Suar M. RpoS-regulated SEN1538 gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence. Virulence 2020; 11:295-314. [PMID: 32193977 PMCID: PMC7161692 DOI: 10.1080/21505594.2020.1743540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis; wild type (WT)) is a major cause of foodborne illness globally. The ability of this pathogen to survive stress inside and outside the host, such as encountering antimicrobial peptides and heat stress, determines the efficiency of enteric infection. These stressors concertedly trigger virulence factors encoded on Salmonella pathogenicity islands (SPIs). Although RpoS is a well-known central transcriptional stress and virulence regulator, functional information regarding the genes of the regulon is currently limited. Here, we identified SEN1538 as a conserved RpoS-regulated gene belonging to the KGG protein superfamily. We further assessed its role in pathogenic stress responses and virulence. When SEN1538 was deleted (Δ1538), the pathogen showed reduced survival during antimicrobial peptide introduction and heat stress at 55°C compared to WT. The mutant displayed 70% reduced invasion in the HCT116 colon epithelial cell line, 5-fold attenuated phagocytic survival in RAW264.7 cells, and downregulation of several SPI-1 and SPI-2 genes encoding the three secretion system apparatus and effector proteins. Δ1538 also showed decreased virulence compared to WT, demonstrated by its reduced bacterial counts in the feces, mLN, spleen, and cecum of C57BL/6 mice. Comparative transcriptomic analysis of Δ1538 against WT revealed 111 differentially regulated genes, 103 of which were downregulated (fold change ≤ -1.5, P < 0.05). The majority of these genes were in clusters for metabolism, transporters, and pathogenesis, driving pathogenic stress responses and virulence. SEN1538 is, therefore, an important virulence determinant contributing to the resilience of S. Enteritidis to stress factors during infection.
Collapse
Affiliation(s)
- Aryashree Arunima
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sunil Kumar Swain
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
12
|
Quintero-Yanes A, Lee CM, Monson R, Salmond G. The FloR master regulator controls flotation, virulence and antibiotic production in Serratia sp. ATCC 39006. Environ Microbiol 2020; 22:2921-2938. [PMID: 32352190 DOI: 10.1111/1462-2920.15048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/26/2022]
Abstract
Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK.,Bacterial Cell cycle and Development (BCcD), University of Namur, 61 Rue de Bruxelles, Namur, 5000, Belgium
| | - Chin Mei Lee
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK.,Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300, Malaysia
| | - Rita Monson
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK
| | - George Salmond
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Cambridge, CB2 1QW, UK
| |
Collapse
|
13
|
Li J, Zhang X, Ashokkumar M, Liu D, Ding T. Molecular regulatory mechanisms of Escherichia coli O157:H7 in response to ultrasonic stress revealed by proteomic analysis. ULTRASONICS SONOCHEMISTRY 2020; 61:104835. [PMID: 31670254 DOI: 10.1016/j.ultsonch.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The antimicrobial effects of ultrasonic filed have been studied for years at the phenotypic level, but there is little research to reveal the molecular regulatory mechanisms underlying the phenotypes. In this study, isobaric tag for relative and absolute quantification (iTRAQ) proteome was applied to analyze the regulatory networks of Escherichia coli O157:H7 in response to ultrasonic stress in whole-genome scale. A total of 1856 differentially expressed proteins were identified, of which 1141 were significant up-regulated and 715 down-regulated compared with live control cells. The comprehensive proteome coverage analysis showed that ultrasonic filed influenced various metabolic pathways in Escherichia coli O157:H7 cells. The ultrasound-induced up-regulation of global stress response regulator RpoS, bacterial mechanosensitive channels and SOS response protein RecA were described from the molecular level for the first time. In addition, we proposed a possible action mechanism that the free radicals produced by acoustic cavitation might enter into cells via the activated mechanosensitive channels, leading to the elevated intracellular ROS level and subsequent cell death. Last but not the least, we illustrated the all-or-nothing phenomenon of power ultrasound might due to the destruction of crucial cell defensive systems, including heat shock proteins and oxidative response regulators. These new findings can let us understand the ultrasonic effects more deeply and will contribute to this area.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Kim W, Lee Y. Mechanism for coordinate regulation of rpoS by sRNA-sRNA interaction in Escherichia coli. RNA Biol 2019; 17:176-187. [PMID: 31552789 DOI: 10.1080/15476286.2019.1672514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RpoS is a key regulator of general stress responses in Escherichia coli. Its expression is post-transcriptionally up-regulated by the small RNAs (sRNAs), ArcZ, DsrA and RprA, through sRNA-rpoS mRNA interactions. Although overexpression of the sRNA, CyaR, was reported to down-regulate rpoS expression, how CyaR regulates rpoS has not been determined. Here, we report that CyaR represses rpoS expression by base-pairing with a region next to the ArcZ binding site in the 5' UTR of rpoS mRNA and that CyaR expression itself is down-regulated by ArcZ through sRNA-sRNA interaction. The short form of ArcZ, but not the full-length form, can base-pair with CyaR. This ArcZ-CyaR interaction triggers degradation of CyaR by RNase E, alleviating the CyaR-mediated rpoS repression. These results suggest that ArcZ not only participates in rpoS translation as an activator, but also acts as a regulator of the reciprocally acting CyaR, maximizing its rpoS-activating effect.
Collapse
|
16
|
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685-11700. [PMID: 31197038 DOI: 10.1074/jbc.rev119.005593] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can rapidly and reversibly respond to changing environments via complex transcriptional and post-transcriptional regulatory mechanisms. Many of these adaptations are specific, with the regulatory output tailored to the inducing signal (for instance, repairing damage to cell components or improving acquisition and use of growth-limiting nutrients). However, the general stress response, activated in bacterial cells entering stationary phase or subjected to nutrient depletion or cellular damage, is unique in that its common, broad output is induced in response to many different signals. In many different bacteria, the key regulator for the general stress response is a specialized sigma factor, the promoter specificity subunit of RNA polymerase. The availability or activity of the sigma factor is regulated by complex regulatory circuits, the majority of which are post-transcriptional. In Escherichia coli, multiple small regulatory RNAs, each made in response to a different signal, positively regulate translation of the general stress response sigma factor RpoS. Stability of RpoS is regulated by multiple anti-adaptor proteins that are also synthesized in response to different signals. In this review, the modes of signaling to and levels of regulation of the E. coli general stress response are discussed. They are also used as a basis for comparison with the general stress response in other bacteria with the aim of extracting key principles that are common among different species and highlighting important unanswered questions.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Santos-Zavaleta A, Pérez-Rueda E, Sánchez-Pérez M, Velázquez-Ramírez DA, Collado-Vides J. Tracing the phylogenetic history of the Crl regulon through the Bacteria and Archaea genomes. BMC Genomics 2019; 20:299. [PMID: 30991941 PMCID: PMC6469107 DOI: 10.1186/s12864-019-5619-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Background Crl, identified for curli production, is a small transcription factor that stimulates the association of the σS factor (RpoS) with the RNA polymerase core through direct and specific interactions, increasing the transcription rate of genes during the transition from exponential to stationary phase at low temperatures, using indole as an effector molecule. The lack of a comprehensive collection of information on the Crl regulon makes it difficult to identify a dominant function of Crl and to generate any hypotheses concerning its taxonomical distribution in archaeal and bacterial organisms. Results In this work, based on a systematic literature review, we identified the first comprehensive dataset of 86 genes under the control of Crl in the bacterium Escherichia coli K-12; those genes correspond to 40% of the σS regulon in this bacterium. Based on an analysis of orthologs in 18 archaeal and 69 bacterial taxonomical divisions and using E. coli K-12 as a framework, we suggest three main events that resulted in this regulon’s actual form: (i) in a first step, rpoS, a gene widely distributed in bacteria and archaea cellular domains, was recruited to regulate genes involved in ancient metabolic processes, such as those associated with glycolysis and the tricarboxylic acid cycle; (ii) in a second step, the regulon recruited those genes involved in metabolic processes, which are mainly taxonomically constrained to Proteobacteria, with some secondary losses, such as those genes involved in responses to stress or starvation and cell adhesion, among others; and (iii) in a posterior step, Crl might have been recruited in Enterobacteriaceae; because its taxonomical pattern constrained to this bacterial order, however further analysis are necessary. Conclusions Therefore, we suggest that the regulon Crl is highly flexible for phenotypic adaptation, probably as consequence of the diverse growth environments associated with all organisms in which members of this regulatory network are present. Electronic supplementary material The online version of this article (10.1186/s12864-019-5619-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - E Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Sede Mérida, Universidad Nacional Autónoma de México, Unidad Académica de Ciencias y Tecnología, 97302, Mérida, Yucatán, Mexico. .,Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - M Sánchez-Pérez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - D A Velázquez-Ramírez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - J Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| |
Collapse
|
18
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
19
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
20
|
Patange O, Schwall C, Jones M, Villava C, Griffith DA, Phillips A, Locke JCW. Escherichia coli can survive stress by noisy growth modulation. Nat Commun 2018; 9:5333. [PMID: 30559445 PMCID: PMC6297224 DOI: 10.1038/s41467-018-07702-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022] Open
Abstract
Gene expression can be noisy, as can the growth of single cells. Such cell-to-cell variation has been implicated in survival strategies for bacterial populations. However, it remains unclear how single cells couple gene expression with growth to implement these strategies. Here, we show how noisy expression of a key stress-response regulator, RpoS, allows E. coli to modulate its growth dynamics to survive future adverse environments. We reveal a dynamic positive feedback loop between RpoS and growth rate that produces multi-generation RpoS pulses. We do so experimentally using single-cell, time-lapse microscopy and microfluidics and theoretically with a stochastic model. Next, we demonstrate that E. coli prepares for sudden stress by entering prolonged periods of slow growth mediated by RpoS. This dynamic phenotype is captured by the RpoS-growth feedback model. Our synthesis of noisy gene expression, growth, and survival paves the way for further exploration of functional phenotypic variability. Noisy gene expression leading to phenotypic variability can help organisms to survive in changing environments. Here, Patange et al. show that noisy expression of a stress response regulator, RpoS, allows E. coli cells to modulate their growth rates to survive future adverse environments.
Collapse
Affiliation(s)
- Om Patange
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christian Schwall
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Matt Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Casandra Villava
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | | | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK. .,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK. .,Microsoft Research, Cambridge, CB1 2FB, UK.
| |
Collapse
|
21
|
Fröhlich KS, Gottesman S. Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0022-2018. [PMID: 29992897 PMCID: PMC10361636 DOI: 10.1128/microbiolspec.rwr-0022-2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
The ability of bacteria to thrive in diverse habitats and to adapt to ever-changing environmental conditions relies on the rapid and stringent modulation of gene expression. It has become evident in the past decade that small regulatory RNAs (sRNAs) are central components of networks controlling the bacterial responses to stress. Functioning at the posttranscriptional level, sRNAs base-pair with cognate mRNAs to alter translation, stability, or both to either repress or activate the targeted transcripts; the RNA chaperone Hfq participates in stabilizing sRNAs and in promoting pairing between target and sRNA. In particular, sRNAs act at the heart of crucial stress responses, including those dedicated to overcoming membrane damage and oxidative stress, discussed here. The bacterial cell envelope is the outermost protective barrier against the environment and thus is constantly monitored and remodeled. Here, we review the integration of sRNAs into the complex networks of several major envelope stress responses of Gram-negative bacteria, including the RpoE (σE), Cpx, and Rcs regulons. Oxidative stress, caused by bacterial respiratory activity or induced by toxic molecules, can lead to significant damage of cellular components. In Escherichia coli and related bacteria, sRNAs also contribute significantly to the function of the RpoS (σS)-dependent general stress response as well as the specific OxyR- and SoxR/S-mediated responses to oxidative damage. Their activities in gene regulation and crosstalk to other stress-induced regulons are highlighted.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Department of Biology I, Microbiology, LMU Munich, 82152 Martinsried, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
22
|
Shaw JA, Henard CA, Liu L, Dieckman LM, Vázquez-Torres A, Bourret TJ. Salmonella enterica serovar Typhimurium has three transketolase enzymes contributing to the pentose phosphate pathway. J Biol Chem 2018; 293:11271-11282. [PMID: 29848552 DOI: 10.1074/jbc.ra118.003661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
The genus Salmonella is responsible for many illnesses in humans and other vertebrate animals. We report here that Salmonella enterica serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, STM14_2885 and STM14_2886, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms. Assessing the mRNA and protein expression for each of the three transketolases, we determined that all are expressed in WT cells and regulated to varying extents by the alternative sigma factor RpoS. Enzyme assays with lysates from WT and transketolase-knockout strains established that TktA is responsible for >88% of the transketolase activity in WT cells. We purified recombinant forms of each isoenzyme to assess the kinetics for canonical transketolase reactions. TktA and TktB had comparable values for Vmax (539-1362 μm NADH consumed/s), Km (80-739 μm), and catalytic efficiency (1.02 × 108-1.06 × 109 m-1/s) for each substrate tested. The recombinant form of TktC had lower Km values (23-120 μm), whereas the Vmax (7.8-16 μm NADH consumed/s) and catalytic efficiency (5.58 × 106 to 6.07 × 108 m-1/s) were 10-100-fold lower. Using a murine model of Salmonella infection, we showed that a strain lacking all three transketolases is avirulent in C57BL/6 mice. These data provide evidence that S Typhimurium possesses three transketolases that contribute to pathogenesis.
Collapse
Affiliation(s)
- Jeff A Shaw
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Calvin A Henard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lynne M Dieckman
- Department of Chemistry, Creighton University, Omaha, Nebraska 68178
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80220
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178.
| |
Collapse
|
23
|
Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, Nyerges Á, Györkei Á, Kincses A, Dér A, Walter FR, Deli MA, Urbán E, Hegedűs Z, Olajos G, Méhi O, Bálint B, Nagy I, Martinek TA, Papp B, Pál C. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 2018; 3:718-731. [PMID: 29795541 DOI: 10.1038/s41564-018-0164-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Kincses
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Dér
- Biomolecular Electronics Research Group, Bionanoscience Unit, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Hegedűs
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Gábor Olajos
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - István Nagy
- SeqOmics Biotechnology Ltd, Mórahalom, Hungary.,Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
24
|
Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A, Motter AE, Crosson S. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018; 14:e1007284. [PMID: 29584733 PMCID: PMC5892946 DOI: 10.1371/journal.pgen.1007284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cell growth is determined by substrate availability and the cell’s metabolic capacity to assimilate substrates into building blocks. Metabolic genes that determine growth rate may interact synergistically or antagonistically, and can accelerate or slow growth, depending on genetic background and environmental conditions. We evolved a diverse set of Escherichia coli single-gene deletion mutants with a spectrum of growth rates and identified mutations that generally increase growth rate. Despite the metabolic differences between parent strains, mutations that enhanced growth largely mapped to core transcription machinery, including the β and β’ subunits of RNA polymerase (RNAP) and the transcription elongation factor, NusA. The structural segments of RNAP that determine enhanced growth have been previously implicated in antibiotic resistance and in the control of transcription elongation and pausing. We further developed a computational framework to characterize how the transcriptional changes that occur upon acquisition of these mutations affect growth rate across strains. Our experimental and computational results provide evidence for cases in which RNAP mutations shift the competitive balance between active transcription and gene silencing. This study demonstrates that mutations in specific regions of RNAP are a convergent adaptive solution that can enhance the growth rate of cells from distinct metabolic states. The loss of a metabolic function caused by gene deletion can be compensated, in certain cases, by the concurrent mutation of a second gene. Whether such gene pairs share a local chemical or regulatory relationship or interact via a non-local mechanism has implications for the co-evolution of genetic changes, development of alternatives to gene therapy, and the design of combination antimicrobial therapies that select against resistance. Yet, we lack a comprehensive knowledge of adaptive responses to metabolic mutations, and our understanding of the mechanisms underlying genetic rescue remains limited. We present results of a laboratory evolution approach that has the potential to address both challenges, showing that mutations in specific regions of RNA polymerase enhance growth rates of distinct mutant strains of Escherichia coli with a spectrum of growth defects. Several of these adaptive mutations are deleterious when engineered directly into the original wild-type strain under alternative cultivation conditions, and thus have epistatic rescue properties when paired with the corresponding primary metabolic gene deletions. Our combination of adaptive evolution, directed genetic engineering, and mathematical analysis of transcription and growth rate distinguishes between rescue interactions that are specific or non-specific to a particular deletion. Our study further supports a model for RNA polymerase as a locus of convergent adaptive evolution from different sub-optimal metabolic starting points.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan W. Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aleksandra Fergin
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AEM); (SC)
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AEM); (SC)
| |
Collapse
|
25
|
Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism. Proc Natl Acad Sci U S A 2018; 115:3538-3546. [PMID: 29555759 PMCID: PMC5889684 DOI: 10.1073/pnas.1802191115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We constructed an Escherichia coli strain that does not use glycolysis for sugar catabolism. Instead, it uses the synthetic nonoxidative glycolysis cycle to directly synthesize stoichiometric amounts of the two-carbon building block (acetyl-CoA), which is then converted to three-carbon metabolites to support growth. The resulting strain grows aerobically in glucose minimal medium and can achieve near-complete carbon conservation in the production of acetyl-CoA–derived products during anaerobic fermentation. This strain improves the theoretical carbon yield from 66.7% to 100% in acetyl-CoA–derived product formation. The Embden–Meyerhoff–Parnas (EMP) pathway, commonly known as glycolysis, represents the fundamental biochemical infrastructure for sugar catabolism in almost all organisms, as it provides key components for biosynthesis, energy metabolism, and global regulation. EMP-based metabolism synthesizes three-carbon (C3) metabolites before two-carbon (C2) metabolites and must emit one CO2 in the synthesis of the C2 building block, acetyl-CoA, a precursor for many industrially important products. Using rational design, genome editing, and evolution, here we replaced the native glycolytic pathways in Escherichia coli with the previously designed nonoxidative glycolysis (NOG), which bypasses initial C3 formation and directly generates stoichiometric amounts of C2 metabolites. The resulting strain, which contains 11 gene overexpressions, 10 gene deletions by design, and more than 50 genomic mutations (including 3 global regulators) through evolution, grows aerobically in glucose minimal medium but can ferment anaerobically to products with nearly complete carbon conservation. We confirmed that the strain metabolizes glucose through NOG by 13C tracer experiments. This redesigned E. coli strain represents a different approach for carbon catabolism and may serve as a useful platform for bioproduction.
Collapse
|
26
|
Investigation of Polyaniline and a Functionalised Derivative as Antimicrobial Additives to Create Contamination Resistant Surfaces. MATERIALS 2018; 11:ma11030436. [PMID: 29547572 PMCID: PMC5873015 DOI: 10.3390/ma11030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Antimicrobial surfaces can be applied to break transmission pathways in hospitals. Polyaniline (PANI) and poly(3-aminobenzoic acid) (P3ABA) are novel antimicrobial agents with potential as non-leaching additives to provide contamination resistant surfaces. The activity of PANI and P3ABA were investigated in suspension and as part of absorbent and non-absorbent surfaces. The effect of inoculum size and the presence of organic matter on surface activity was determined. PANI and P3ABA both demonstrated bactericidal activity against Escherichia coli and Staphylococcus aureus in suspension and as part of an absorbent surface. Only P3ABA showed antimicrobial activity in non-absorbent films. The results that are presented in this work support the use of P3ABA to create contamination resistant surfaces.
Collapse
|
27
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
28
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Markova JA, Anganova EV, Turskaya AL, Bybin VA, Savilov ED. Regulation of Escherichia coli Biofilm Formation (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
31
|
Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00755-16. [PMID: 28115545 DOI: 10.1128/jb.00755-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/12/2017] [Indexed: 01/31/2023] Open
Abstract
The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS ("sensitive" genes), and genes whose expression changes very little with the production of a little RpoS ("insensitive"). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS.IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.
Collapse
|
32
|
Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J, Gottesman S, Schroeder R, Nudler E. sRNA-Mediated Control of Transcription Termination in E. coli. Cell 2016; 167:111-121.e13. [PMID: 27662085 DOI: 10.1016/j.cell.2016.09.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation.
Collapse
Affiliation(s)
- Nadezda Sedlyarova
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Renée Schroeder
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
33
|
Song S, Xue Y, Liu E, Wang K, Zhang Y, Wu H, Zhang H. Comparative analysis of sigma factors RpoS, FliA, and RpoN in Edwardsiella tarda. Can J Microbiol 2016; 62:861-869. [DOI: 10.1139/cjm-2016-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sigma factors are important regulators that bacteria employ to cope with environmental changes. Studies on the functions of sigma factors have uncovered their roles in many important cellular activities, such as growth, stress tolerance, motility, biofilm formation, and virulence. However, comparative analyses of sigma factors that examine their common and unique features or elucidate their cross-regulatory relationships have rarely been conducted for Edwardsiella tarda. Here, we characterized and compared motility and resistance to oxidative stress of E. tarda strains complemented with rpoS, fliA, and rpoN mutants. The results suggest that the sigma factors FliA and RpoN regulated motility, whereas RpoS exhibited no such function. RpoS and RpoN were essential for oxidative stress resistance, whereas FliA had no obvious impact under oxidative stress conditions. Furthermore, 2-dimensional gel electrophoresis based proteomics analysis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed 12 differentially expressed protein spots that represented 11 proteins between the mutant and wild-type strains. Quantification of the expression of target genes by quantitative reverse transcription PCR confirmed the results of our proteomics analysis. Collectively, these results suggest that these sigma factors are multifunctional mediators involved in controlling the expression of many metabolic pathway genes.
Collapse
Affiliation(s)
- ShanShan Song
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yuanyuan Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Enfu Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Keping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
34
|
Effects of σ factor competition are promoter initiation kinetics dependent. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1281-8. [DOI: 10.1016/j.bbagrm.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/29/2023]
|
35
|
RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167:168-77. [DOI: 10.1016/j.resmic.2015.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
|
36
|
Baumstark R, Hänzelmann S, Tsuru S, Schaerli Y, Francesconi M, Mancuso FM, Castelo R, Isalan M. The propagation of perturbations in rewired bacterial gene networks. Nat Commun 2015; 6:10105. [PMID: 26670742 DOI: 10.1038/ncomms10105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/04/2015] [Indexed: 11/09/2022] Open
Abstract
What happens to gene expression when you add new links to a gene regulatory network? To answer this question, we profile 85 network rewirings in E. coli. Here we report that concerted patterns of differential expression propagate from reconnected hub genes. The rewirings link promoter regions to different transcription factor and σ-factor genes, resulting in perturbations that span four orders of magnitude, changing up to ∼ 70% of the transcriptome. Importantly, factor connectivity and promoter activity both associate with perturbation size. Perturbations from related rewirings have more similar transcription profiles and a statistical analysis reveals ∼ 20 underlying states of the system, associating particular gene groups with rewiring constructs. We examine two large clusters (ribosomal and flagellar genes) in detail. These represent alternative global outcomes from different rewirings because of antagonism between these major cell states. This data set of systematically related perturbations enables reverse engineering and discovery of underlying network interactions.
Collapse
Affiliation(s)
- Rebecca Baumstark
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Sonja Hänzelmann
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Saburo Tsuru
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yolanda Schaerli
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Mirko Francesconi
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Francesco M Mancuso
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Genomics Cancer Group, Vall d 'Hebron Institute of Oncology (VHIO), Carrer Natzaret 15-17, 08035 Barcelona, Spain
| | - Robert Castelo
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Mark Isalan
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain.,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
37
|
Bongers M, Chrysanthopoulos PK, Behrendorff JBYH, Hodson MP, Vickers CE, Nielsen LK. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite. Microb Cell Fact 2015; 14:193. [PMID: 26610700 PMCID: PMC4662018 DOI: 10.1186/s12934-015-0381-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background High-throughput screening methods assume that the output measured is representative of changes in metabolic flux toward the desired product and is not affected by secondary phenotypes. However, metabolic engineering can result in unintended phenotypes that may go unnoticed in initial screening. The red pigment lycopene, a carotenoid with antioxidant properties, has been used as a reporter of isoprenoid pathway flux in metabolic engineering for over a decade. Lycopene production is known to vary between wild-type Escherichia coli hosts, but the reasons behind this variation have never been fully elucidated. Results In an examination of six E. coli strains we observed that strains also differ in their capacity for increased lycopene production in response to metabolic engineering. A combination of genetic complementation, quantitative SWATH proteomics, and biochemical analysis in closely-related strains was used to examine the mechanistic reasons for variation in lycopene accumulation. This study revealed that rpoS, a gene previously identified in lycopene production association studies, exerts its effect on lycopene accumulation not through modulation of pathway flux, but through alteration of cellular oxidative status. Specifically, absence of rpoS results in increased accumulation of reactive oxygen species during late log and stationary phases. This change in cellular redox has no effect on isoprenoid pathway flux, despite the presence of oxygen-sensitive iron-sulphur cluster enzymes and the heavy redox requirements of the methylerythritol phosphate pathway. Instead, decreased cellular lycopene in the ΔrpoS strain is caused by degradation of lycopene in the presence of excess reactive oxygen species. Conclusions Our results demonstrate that lycopene is not a reliable indicator of isoprenoid pathway flux in the presence of oxidative stress, and suggest that caution should be exercised when using lycopene as a screening tool in genome-wide metabolic engineering studies. More extensive use of systems biology for strain analysis will help elucidate such unpredictable side-effects in metabolic engineering projects. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0381-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Bongers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Panagiotis K Chrysanthopoulos
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - James B Y H Behrendorff
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
38
|
Fu H, Yuan J, Gao H. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Arch Biochem Biophys 2015; 584:28-35. [DOI: 10.1016/j.abb.2015.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/03/2023]
|
39
|
Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol 2015; 53:633-42. [DOI: 10.1007/s12275-015-0099-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022]
|
40
|
Franchini AG, Ihssen J, Egli T. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth. PLoS One 2015. [PMID: 26204448 PMCID: PMC4512719 DOI: 10.1371/journal.pone.0133793] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For heterotrophic microbes, limited availability of carbon and energy sources is one of the major nutritional factors restricting the rate of growth in most ecosystems. Physiological adaptation to this hunger state requires metabolic versatility which usually involves expression of a wide range of different catabolic pathways and of high-affinity carbon transporters; together, this allows for simultaneous utilization of mixtures of carbonaceous compounds at low concentrations. In Escherichia coli the stationary phase sigma factor RpoS and the signal molecule cAMP are the major players in the regulation of transcription under such conditions; however, their interaction is still not fully understood. Therefore, during growth of E. coli in carbon-limited chemostat culture at different dilution rates, the transcriptomes, expression of periplasmic proteins and catabolomes of strains lacking one of these global regulators, either rpoS or adenylate cyclase (cya), were compared to those of the wild-type strain. The inability to synthesize cAMP exerted a strong negative influence on the expression of alternative carbon source uptake and degradation systems. In contrast, absence of RpoS increased the transcription of genes belonging to high-affinity uptake systems and central metabolism, presumably due to reduced competition of σD with σS. Phenotypical analysis confirmed this observation: The ability to respire alternative carbon substrates and to express periplasmic high-affinity binding proteins was eliminated in cya and crp mutants, while these properties were not affected in the rpoS mutant. As expected, transcription of numerous stress defence genes was negatively affected by the rpoS knock-out mutation. Interestingly, several genes of the RpoS stress response regulon were also down-regulated in the cAMP-negative strain indicating a coordinated global regulation. The results demonstrate that cAMP is crucial for catabolic flexibility during slow, carbon-limited growth, whereas RpoS is primarily involved in the regulation of stress response systems necessary for the survival of this bacterium under hunger conditions.
Collapse
Affiliation(s)
- Alessandro G. Franchini
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Julian Ihssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Thomas Egli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Peano C, Wolf J, Demol J, Rossi E, Petiti L, De Bellis G, Geiselmann J, Egli T, Lacour S, Landini P. Characterization of the Escherichia coli σ(S) core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis. Sci Rep 2015; 5:10469. [PMID: 26020590 PMCID: PMC4447067 DOI: 10.1038/srep10469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022] Open
Abstract
In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase “core enzyme” (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σS-associated RNA polymerase form (EσS) during transition from exponential to stationary phase. We identified 63 binding sites for EσS overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σS-encoding rpoS gene. EσS binding did not always correlate with an increase in transcription level, suggesting that, at some σS-dependent promoters, EσS might remain poised in a pre-initiation state upon binding. A large fraction of EσS-binding sites corresponded to promoters recognized by RNA polymerase associated with σ70 or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, EσS appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of EσS in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.
Collapse
Affiliation(s)
- Clelia Peano
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Wolf
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Julien Demol
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate (MI), Italy
| | - Johannes Geiselmann
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Thomas Egli
- EAWAG, Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | - Stephan Lacour
- Lab. Adaptation et Pathogénie des Micro-organismes (LAPM), Univ. Grenoble Alpes, F-38000 Grenoble, France.,UMR 5163, Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Salvador M, Argandoña M, Pastor JM, Bernal V, Cánovas M, Csonka LN, Nieto JJ, Vargas C. Contribution of RpoS to metabolic efficiency and ectoines synthesis during the osmo- and heat-stress response in the halophilic bacterium Chromohalobacter salexigens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:301-311. [PMID: 25417903 DOI: 10.1111/1758-2229.12249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Chromohalobacter salexigens is a halophilic γ-proteobacterium that responds to osmotic and heat stresses by accumulating ectoine and hydroxyectoine respectively. Evolution has optimized its metabolism to support high production of ectoines. We analysed the effect of an rpoS mutation in C. salexigens metabolism and ectoines synthesis. In long-term adapted cells, the rpoS strain was osmosensitive but not thermosensitive and showed unaltered ectoines content, suggesting that RpoS regulates ectoine(s)-independent osmoadaptive mechanisms. RpoS is involved in the regulation of C. salexigens metabolic adaptation to stress, as early steps of glucose oxidation through the Entner-Doudoroff pathway were deregulated in the rpoS mutant, leading to improved metabolic efficiency at low salinity. Moreover, a reduced pyruvate (but not acetate) overflow was displayed by the rpoS strain at low salt, probably linked to a slowdown in gluconate production and/or subsequent metabolism. Interestingly, RpoS does not seem to be the main regulator triggering the immediate transcriptional response of ectoine synthesis to osmotic or thermal upshifts. However, it contributed to the expression of the ect genes in cells previously adapted to low or high salinity.
Collapse
Affiliation(s)
- Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim M, Zorraquino V, Tagkopoulos I. Microbial forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles. PLoS Comput Biol 2015; 11:e1004127. [PMID: 25774498 PMCID: PMC4361189 DOI: 10.1371/journal.pcbi.1004127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/14/2015] [Indexed: 01/13/2023] Open
Abstract
A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications. The transcriptional profile of an organism contains clues about the environmental context in which it has evolved and currently lives, its behavior and cellular state. It is yet unclear, however, how much information can be efficiently extracted and how it can be used to classify new samples with respect to their environmental and genetic characteristics. Here, we have constructed an extensive transcriptome compendium of Escherichia coli that we have further enriched via an iterative learning approach. We then apply an ensemble of various machine learning algorithms to infer environmental and cellular information such as strain, growth phase, medium, oxygen level, antibiotic and carbon source. Functional analysis of the most informative genes provides mechanistic insights and palpable hypotheses regarding their role in each environmental or genetic context. Our work argues that genome-scale gene expression can be a multi-purpose marker for identifying latent, heterogeneous cellular and environmental states and that optimal classification can be achieved with a feature set of a couple hundred genes that might not necessarily have the most pronounced differential expression in the respective conditions.
Collapse
Affiliation(s)
- Minseung Kim
- Department of Computer Science, University of California, Davis, Davis, California, United States of America
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Violeta Zorraquino
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Davis, California, United States of America
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
45
|
Fu X, Liang W, Du P, Yan M, Kan B. Transcript changes in Vibrio cholerae in response to salt stress. Gut Pathog 2014; 6:47. [PMID: 25589902 PMCID: PMC4293811 DOI: 10.1186/s13099-014-0047-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/13/2014] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na+ exclusion, K+ uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Meiying Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155, Changbai Road, Changping, Beijing 102206 China ; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310006 China
| |
Collapse
|
46
|
Heroven AK, Böhme K, Dersch P. The Csr/Rsm system of Yersinia and related pathogens. RNA Biol 2014; 9:379-91. [DOI: 10.4161/rna.19333] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
48
|
Mika F, Hengge R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 2014; 11:494-507. [PMID: 25028968 PMCID: PMC4152358 DOI: 10.4161/rna.28867] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid curli fibers and cellulose are extracellular matrix components produced in the stationary phase top layer of E. coli macrocolonies, which confer physical protection, strong cohesion, elasticity, and wrinkled morphology to these biofilms. Curli and cellulose synthesis is controlled by a three-level transcription factor (TF) cascade with the RpoS sigma subunit of RNA polymerase at the top, the MerR-like TF MlrA, and the biofilm regulator CsgD, with two c-di-GMP control modules acting as key switching devices. Additional signal input and fine-tuning is provided by an entire series of small RNAs-ArcZ, DsrA, RprA, McaS, OmrA/OmrB, GcvB, and RydC--that differentially control all three TF modules by direct mRNA interaction. This review not only summarizes the mechanisms of action of these sRNAs, but also addresses the question of how these sRNAs and the regulators they target contribute to building the intriguing three-dimensional microarchitecture and macromorphology of these biofilms.
Collapse
Affiliation(s)
- Franziska Mika
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| |
Collapse
|
49
|
Li Z, Nimtz M, Rinas U. The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 2014; 13:45. [PMID: 24656150 PMCID: PMC4021462 DOI: 10.1186/1475-2859-13-45] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proteome reflects the available cellular machinery to deal with nutrients and environmental challenges. The most common E. coli strain BL21 growing in different, commonly employed media was evaluated using a detailed quantitative proteome analysis. RESULTS The presence of preformed biomass precursor molecules in rich media such as Luria Bertani supported rapid growth concomitant to acetate formation and apparently unbalanced abundances of central metabolic pathway enzymes, e.g. high levels of lower glycolytic pathway enzymes as well as pyruvate dehydrogenase, and low levels of TCA cycle and high levels of the acetate forming enzymes Pta and AckA. The proteome of cells growing exponentially in glucose-supplemented mineral salt medium was dominated by enzymes of amino acid synthesis pathways, contained more balanced abundances of central metabolic pathway enzymes, and a lower portion of ribosomal and other translational proteins. Entry into stationary phase led to a reconstruction of the bacterial proteome by increasing e.g. the portion of proteins required for scavenging rare nutrients and general cell protection. This proteomic reconstruction during entry into stationary phase was more noticeable in cells growing in rich medium as they have a greater reservoir of recyclable proteins from the translational machinery. CONCLUSIONS The proteomic comparison of cells growing exponentially in different media reflected the antagonistic and competitive regulation of central metabolic pathways through the global transcriptional regulators Cra, Crp, and ArcA. For example, the proteome of cells growing exponentially in rich medium was consistent with a dominating role of phosphorylated ArcA most likely a result from limitations in reoxidizing reduced quinones in the respiratory chain under these growth conditions. The proteomic alterations of exponentially growing cells into stationary phase cells were consistent with stringent-like and stationary phase responses and a dominating control through DksA-ppGpp and RpoS.
Collapse
Affiliation(s)
| | | | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany.
| |
Collapse
|
50
|
Landini P, Egli T, Wolf J, Lacour S. sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:1-13. [PMID: 24596257 DOI: 10.1111/1758-2229.12112] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 06/03/2023]
Abstract
Bacterial cells often face hostile environmental conditions, to which they adapt by activation of stress responses. In Escherichia coli, environmental stresses resulting in significant reduction in growth rate stimulate the expression of the rpoS gene, encoding the alternative σ factor σ(S). The σ(S) protein associates with RNA polymerase, and through transcription of genes belonging to the rpoS regulon allows the activation of a 'general stress response', which protects the bacterial cell from harmful environmental conditions. Each step of this process is finely tuned in order to cater to the needs of the bacterial cell: in particular, selective promoter recognition by σ(S) is achieved through small deviations from a common consensus DNA sequence for both σ(S) and the housekeeping σ(70). Recognition of specific DNA elements by σ(S) is integrated with the effects of environmental signals and the interaction with regulatory proteins, in what represents a fascinating example of multifactorial regulation of gene expression. In this report, we discuss the function of the rpoS gene in the general stress response, and review the current knowledge on regulation of rpoS expression and on promoter recognition by σ(S).
Collapse
Affiliation(s)
- Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|