1
|
Li Q, Wang H, Yu J, Zhang W, Guo W, Liu Y. Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1751. [PMID: 38999592 PMCID: PMC11244151 DOI: 10.3390/plants13131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
The evolved resistance of Bromus japonicus Houtt. to ALS-inhibiting herbicides is well established. Previous studies have primarily focused on target-site resistance; however, non-target-site resistance has not been well characterized. This investigation demonstrated that ALS gene sequencing did not detect any previously known resistance mutations in a mesosulfuron-methyl-resistant (MR) population, and notably, treatment with the P450 monooxygenase (P450) inhibitor malathion markedly heightened susceptibility to mesosulfuron-methyl. Utilizing UPLC-MS/MS analysis confirmed elevated mesosulfuron-methyl metabolism in MR plants. The integration of Isoform Sequencing (Iso-Seq) and RNA Sequencing (RNA-Seq) facilitated the identification of candidate genes associated with non-target sites in a subpopulation with two generations of herbicide selection. Through qRT-PCR analysis, 21 differentially expressed genes were characterized, and among these, 10 genes (comprising three P450s, two glutathione S-transferases, one glycosyltransferase, two ATP-binding cassette transporters, one oxidase, and one hydrolase) exhibited constitutive upregulation in resistant plants. Our findings substantiated that increased herbicide metabolism is a driving force behind mesosulfuron-methyl resistance in this B. japonicus population.
Collapse
Affiliation(s)
- Qi Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Hengzhi Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jinping Yu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wei Zhang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wenlei Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yixue Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
2
|
Valencia-Quintana R, Bahena-Ocampo IU, González-Castañeda G, Bonilla E, Milić M, Bonassi S, Sánchez-Alarcón J. miRNAs: A potentially valuable tool in pesticide toxicology assessment-current experimental and epidemiological data review. CHEMOSPHERE 2022; 295:133792. [PMID: 35104543 DOI: 10.1016/j.chemosphere.2022.133792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
miRNAs are responsible for the regulation of many cellular processes such as development, cell differentiation, proliferation, apoptosis, and tumor growth. Several studies showed that they can also serve as specific, stable, and sensitive markers of chemical exposure. In this review, current experimental and epidemiological data evidencing deregulation in miRNA expression in response to fungicides, insecticides or herbicides were analyzed. As shown by Venn's diagrams, miR-363 and miR-9 deregulation is associated with fungicide exposure in vitro and in vivo, while let-7, miR-155, miR-181 and miR-21 were found to be commonly deregulated by at least three different insecticides. Furthermore, let-7, miR-30, miR-126, miR-181 and miR-320 were commonly deregulated by 3 different herbicides. Notably, these 5 miRNAs were also found to be deregulated by one or more insecticides, suggesting their participation in the cellular response to pesticides, regardless of their chemical structure. All these miRNAs have been proposed as potential biomarkers for fungicide, insecticide, or herbicide exposure. These results allow us to improve our understanding of the molecular mechanisms of toxicity upon pesticide exposure, although further studies are needed to confirm these miRNAs as definitive (not potential) biomarkers of pesticide exposure.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| | | | | | - Edmundo Bonilla
- Departamento de Ciencias de La Salud, UAM-Iztapalapa, Mexico.
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, 10000, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, 00166, Italy; Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, Rome, 00166, Italy.
| | - Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| |
Collapse
|
3
|
Mohammad VH, Osborne CP, Freckleton RP. Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides. Ecol Evol 2022; 12:e8563. [PMID: 35222951 PMCID: PMC8848470 DOI: 10.1002/ece3.8563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, herbicide resistance in weeds poses a threat to food security. Resistance evolves rapidly through the co-option of a suite of physiological mechanisms that evolved to allow plants to survive environmental stress. Consequently, we hypothesize that stress tolerance and herbicide resistance are functionally linked. We address two questions: (i) does exposure to stress in a parental generation promote the evolution of resistance in the offspring? (ii) Is such evolution mediated through non-genetic mechanisms? We exposed individuals of a grass weed to drought, and tested whether this resulted in herbicide resistance in the first generation. In terms of both survival and dry mass, we find enhanced resistance to herbicide in the offspring of parents that had been exposed to drought. Our results suggest that exposure of weeds to drought can confer herbicide resistance in subsequent generations, and that the mechanism conferring heritability of herbicide resistance is non-genetic.
Collapse
Affiliation(s)
- Vian H. Mohammad
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | - Colin P. Osborne
- Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
4
|
Identification of Structural Variants in Two Novel Genomes of Maize Inbred Lines Possibly Related to Glyphosate Tolerance. PLANTS 2020; 9:plants9040523. [PMID: 32325671 PMCID: PMC7238182 DOI: 10.3390/plants9040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
To study genetic variations between genomes of plants that are naturally tolerant and sensitive to glyphosate, we used two Zea mays L. lines traditionally bred in Poland. To overcome the complexity of the maize genome, two sequencing technologies were employed: Illumina and Single Molecule Real-Time (SMRT) PacBio. Eleven thousand structural variants, 4 million SNPs and approximately 800 thousand indels differentiating the two genomes were identified. Detailed analyses allowed to identify 20 variations within the EPSPS gene, but all of them were predicted to have moderate or unknown effects on gene expression. Other genes of the shikimate pathway encoding bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase and chorismate synthase were altered by variants predicted to have a high impact on gene expression. Additionally, high-impact variants located within the genes involved in the active transport of glyphosate through the cell membrane encoding phosphate transporters as well as multidrug and toxic compound extrusion have been identified.
Collapse
|
5
|
Zhai R, Ye S, Zhu G, Lu Y, Ye J, Yu F, Chu Q, Zhang X. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing. BMC Genomics 2020; 21:238. [PMID: 32183693 PMCID: PMC7076996 DOI: 10.1186/s12864-020-6637-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new varieties of glyphosate-tolerant crops is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire other glyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. RESULTS Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg·ml- 1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L + 1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L + 1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). CONCLUSION Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate in rice by regulating transcription and metal ions binding. These findings provide a theoretical basis for breeding glyphosate-tolerant rice varieties and for further research on the biogenesis of glyphosate- tolerance in rice.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Yanting Lu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | | | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
6
|
Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC PLANT BIOLOGY 2018; 18:308. [PMID: 30486778 PMCID: PMC6263057 DOI: 10.1186/s12870-018-1483-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Chongqing Normal University, Daxuecheng Middle Rd, Chongqing, Shapingba Qu China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
7
|
Liu W, Bai S, Zhao N, Jia S, Li W, Zhang L, Wang J. Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC PLANT BIOLOGY 2018; 18:225. [PMID: 30305027 PMCID: PMC6180388 DOI: 10.1186/s12870-018-1451-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/27/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Water chickweed (Myosoton aquaticum (L.)) is a dicot broadleaf weed that is widespread in winter fields in China, and has evolved serious resistance to acetolactate synthase (ALS) inhibiting herbicides. RESULTS We identified a M. aquaticum population exhibiting moderate (6.15-fold) resistance to tribenuron-methyl (TM). Target-site ALS gene sequencing revealed no known resistance mutations in these plants, and the in vitro ALS activity assays showed no differences in enzyme sensitivity between susceptible and resistant populations; however, resistance was reversed by pretreatment with the cytochrome P450 (CYP) monooxygenase inhibitor malathion. An RNA sequencing transcriptome analysis was performed to identify candidate genes involved in metabolic resistance, and the unigenes obtained by de novo transcriptome assembly were annotated across seven databases. In total, 34 differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time (qRT)-PCR. Ten consistently overexpressed contigs, including four for CYP, four for ATP-binding cassette (ABC) transporter, and two for peroxidase were further validated by qRT-PCR using additional plants from resistant and susceptible populations. Three CYP genes (with homology to CYP734A1, CYP76C1, and CYP86B1) and one ABC transporter gene (with homology to ABCC10) were highly expressed in all resistant plants. CONCLUSION The mechanism of TM resistance in M. aquaticum is controlled by NTSR rather than TSR. Four genes, CYP734A1, CYP76C1, CYP86B1, and ABCC10 could play essential role in metabolic resistance to TM and justify further functional studies. To our knowledge, this is the first large-scale transcriptome analysis of genes associated with NTSR in M. aquaticum using the Illumina platform. Our data provide resource for M. aquaticum biology, and will facilitate the study of herbicide resistance mechanism at the molecular level in this species as well as in other weeds.
Collapse
Affiliation(s)
- Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Sisi Jia
- Taian Customs, Taian, 271000 Shandong China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Lele Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
8
|
Dyer WE. Stress-induced evolution of herbicide resistance and related pleiotropic effects. PEST MANAGEMENT SCIENCE 2018; 74:1759-1768. [PMID: 29688592 DOI: 10.1002/ps.5043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 05/11/2023]
Abstract
Herbicide-resistant weeds, especially those with resistance to multiple herbicides, represent a growing worldwide threat to agriculture and food security. Natural selection for resistant genotypes may act on standing genetic variation, or on a genetic and physiological background that is fundamentally altered because of stress responses to sublethal herbicide exposure. Stress-induced changes include DNA mutations, epigenetic alterations, transcriptional remodeling, and protein modifications, all of which can lead to herbicide resistance and a wide range of pleiotropic effects. Resistance selected in this manner is termed systemic acquired herbicide resistance, and the associated pleiotropic effects are manifested as a suite of constitutive transcriptional and post-translational changes related to biotic and abiotic stress adaptation, representing the evolutionary signature of selection. This phenotype is being investigated in two multiple herbicide-resistant populations of the hexaploid, self-pollinating weedy monocot Avena fatua that display such changes as well as constitutive reductions in certain heat shock proteins and their transcripts, which are well known as global regulators of diverse stress adaptation pathways. Herbicide-resistant populations of most weedy plant species exhibit pleiotropic effects, and their association with resistance genes presents a fertile area of investigation. This review proposes that more detailed studies of resistant A. fatua and other species through the lens of plant evolution under stress will inform improved resistant weed prevention and management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- William Edward Dyer
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
9
|
Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:105-114. [PMID: 29169105 DOI: 10.1016/j.jplph.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.
Collapse
Affiliation(s)
- Erin E Burns
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Barbara K Keith
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Mohammed Y Refai
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - William E Dyer
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
10
|
Lindemann IDS, Lang GH, Hoffmann JF, Rombaldi CV, de Oliveira M, Elias MC, Vanier NL. Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6771-6778. [PMID: 28731694 DOI: 10.1021/acs.jafc.7b01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of the use of glyphosate (GLY), glyphosate plus carfentrazone (GLY/CAR), and paraquat (PAR) as plant desiccators on the technological and chemical properties of cowpea grains were investigated. All studied desiccants provided lower cooking time to freshly harvested cowpea. However, the coat color of PAR- and GLY/CAR-treated cowpea was reddish in comparison to the control treatment. Principal component analysis (PCA) from liquid chromatography-mass spectrometry (LC-MS) data sets showed a clear distinction among cowpea from the different treatments. Catechin-3-glucoside and epicatechin significantly contributed for discriminating GLY-treated cowpea, while citric acid was responsible for discriminating GLY/CAR-treated cowpea. Quercetin derivative and gluconic acid were responsible for discriminating control treatment. Residual glyphosate and paraquat content was higher than the maximum limits allowed by Codex Alimentarius and the European Union Commission. Improvements in the technological and chemical properties of cowpea may not be overlapped by the risks that those desiccants exhibit when exceeding the maximum limits of tolerance in food.
Collapse
Affiliation(s)
- Igor da Silva Lindemann
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Gustavo Heinrich Lang
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Jessica Fernanda Hoffmann
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Cesar Valmor Rombaldi
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Maurício de Oliveira
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Moacir Cardoso Elias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Nathan Levien Vanier
- Department of Agroindustrial Science and Technology, Federal University of Pelotas , 96010-900, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:958. [PMID: 28638398 PMCID: PMC5461349 DOI: 10.3389/fpls.2017.00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Background: Chickpea (Cicer arietinum L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea. Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr). Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs), of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM), 13,778 genic Single Nucleotide Polymorphism (SNP) putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST) were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance. Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS) for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.
Collapse
Affiliation(s)
- Mir A. Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Khela R. Soren
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Priyanka Gangwar
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - P. S. Shanmugavadivel
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - K. Aravind
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Rahul S. Jasrotia
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sushil K. Chaturvedi
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Narendra P. Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Rajeev K. Varshney
- Genetic Gains, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| |
Collapse
|
12
|
Li H, Hu T, Amombo E, Fu J. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:157-165. [PMID: 28388488 DOI: 10.1016/j.jplph.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan City, Hubei 430074, PR China.
| |
Collapse
|
13
|
Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D. Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2399-2412. [PMID: 28407080 PMCID: PMC5447883 DOI: 10.1093/jxb/erx111] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are known to regulate expression of genes under stress. We report here the deep sequencing of small RNAs expressed during control, short and prolonged heat stress and recovery. Genome-wide identification of miRNAs in tolerant (Nagina 22) and susceptible (Vandana) rice cultivars was performed in 16 samples representing root and shoot of 13-day-old seedlings. The expression profile of miRNAs was analysed in 36 pairwise combinations to identify the genotype-, treatment- and tissue-dependent expression of miRNAs. Small-RNA sequencing of 16 libraries yielded ~271 million high-quality raw sequences; 162 miRNA families were identified. The highly expressed miRNAs in rice tissues were miR166, miR168, miR1425, miR529, mR162, miR1876, and miR1862. Expression of osa-miR1436, osa-miR5076, osa-miR5161, and osa-miR6253 was observed only in stressed tissue of both genotypes indicating their general role in heat stress response. Expression of osa-miR1439, osa-miR1848, osa-miR2096, osa-miR2106, osa-miR2875, osa-miR3981, osa-miR5079, osa-miR5151, osa-miR5484, osa-miR5792, and osa-miR5812 was observed only in Nagina 22 during high temperature, suggesting a specific role of these miRNAs in heat stress tolerance. This study provides details of the repertoire of miRNAs expressed in root and shoot of heat susceptible and tolerant rice genotypes under heat stress and recovery.
Collapse
Affiliation(s)
| | | | - Surekha Agarwal
- ICAR-Indian Institute of Rice Research, Hyderabad 500030,India
| | | | - S R Voleti
- ICAR-Indian Institute of Rice Research, Hyderabad 500030,India
| | | | | |
Collapse
|
14
|
Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families. Funct Integr Genomics 2017; 17:503-512. [DOI: 10.1007/s10142-017-0553-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
|
15
|
Zhao N, Li W, Bai S, Guo W, Yuan G, Wang F, Liu W, Wang J. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis. FRONTIERS IN PLANT SCIENCE 2017; 8:1391. [PMID: 28848590 PMCID: PMC5552757 DOI: 10.3389/fpls.2017.01391] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 05/04/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol.) population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length) that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK), water-only control (WCK), and mesosulfuron-methyl treatment (T) of R and susceptible (S). Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR) validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450) genes, two glutathione S-transferase (GST) genes, two glucosyltransferase (GT) genes, two ATP-binding cassette (ABC) transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence they deserve further functional study. This is the first large-scale transcriptome-sequencing study to identify NTSR genes in A. aequalis that uses the Illumina platform. This work demonstrates that NTSR is likely driven by the differences in the expression patterns of a set of genes. The assembled transcriptome data presented here provide a valuable resource for A. aequalis biology, and should facilitate the study of herbicide resistance at the molecular level in this and other weed species.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Guohui Yuan
- Eco-environment and Plant Protection Research Institute, Shanghai Academy of Agricultural SciencesShanghai, China
| | - Fan Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Jinxin Wang
| |
Collapse
|
16
|
De Paola D, Zuluaga DL, Sonnante G. The miRNAome of durum wheat: isolation and characterisation of conserved and novel microRNAs and their target genes. BMC Genomics 2016; 17:505. [PMID: 27448633 PMCID: PMC4957382 DOI: 10.1186/s12864-016-2838-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background The allotetraploid durum wheat [Triticum turgidum subsp. durum (Desf.) Husn.] is a highly economically important species especially in the Mediterranean basin. However, its genomics, transcriptomics and in particular microRNAome are still largely unknown. Results In the present work, two small RNA libraries from durum wheat Ciccio and Svevo cultivars were generated from different tissues at the late milk (Z77) developmental stage. A total of 167 conserved and 98 potential novel miRNAs were identified in the two libraries and interestingly, three novel miRNAs were found to be derived from ribosomal RNA. Putative target genes were predicted for conserved and novel miRNAs, the majority of which interact with nucleic acids, according to GO terms relative to molecular function. Quantitative qPCR analysis showed that several miRNAs identified were differentially expressed in the mature (Z77) developmental stage compared to young (Z14) tissues. Moreover, target gene expression analysis suggested that in roots, the putative genes encoding for the SQUAMOSA SPL2 and TGA1 proteins are regulated by ttu-miR156n, while MYB3 transcription factor by ttu-miR319f. Additionally, the Photosystem II P680 chlorophyll A apoprotein gene showed an expression level negatively correlated to that of ttu-novel-48 in leaves. Conclusion Our results suggest that, in durum wheat, these genes may play important roles in root/leaf development and are subjected to miRNA regulation. The prediction of novel miRNAs putatively derived from ribosomal RNA opens new perspectives on the study of plant miRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2838-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Domenico De Paola
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Diana L Zuluaga
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
17
|
Maroli AS, Nandula VK, Dayan FE, Duke SO, Gerard P, Tharayil N. Metabolic Profiling and Enzyme Analyses Indicate a Potential Role of Antioxidant Systems in Complementing Glyphosate Resistance in an Amaranthus palmeri Biotype. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9199-209. [PMID: 26329798 DOI: 10.1021/acs.jafc.5b04223] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metabolomics and biochemical assays were employed to identify physiological perturbations induced by a commercial formulation of glyphosate in susceptible (S) and resistant (R) biotypes of Amaranthus palmeri. At 8 h after treatment (HAT), compared to the respective water-treated control, cellular metabolism of both biotypes were similarly perturbed by glyphosate, resulting in abundance of most metabolites including shikimic acid, amino acids, organic acids and sugars. However, by 80 HAT the metabolite pool of glyphosate-treated R-biotype was similar to that of the control S- and R-biotypes, indicating a potential physiological recovery. Furthermore, the glyphosate-treated R-biotype had lower reactive oxygen species (ROS) damage, higher ROS scavenging activity, and higher levels of potential antioxidant compounds derived from the phenylpropanoid pathway. Thus, metabolomics, in conjunction with biochemical assays, indicate that glyphosate-induced metabolic perturbations are not limited to the shikimate pathway, and the oxidant quenching efficiency could potentially complement the glyphosate resistance in this R-biotype.
Collapse
Affiliation(s)
| | - Vijay K Nandula
- Crop Production Systems Research Unit, United States Department of Agriculture , Stoneville, Mississippi 38776, United States
| | - Franck E Dayan
- Natural Products Utilization Research Unit, United States Department of Agriculture , University, Mississippi 38677, United States
| | - Stephen O Duke
- Natural Products Utilization Research Unit, United States Department of Agriculture , University, Mississippi 38677, United States
| | | | | |
Collapse
|
18
|
Discovery of microRNAs and transcript targets related to witches' broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Genet Genomics 2015; 291:181-91. [PMID: 26243687 DOI: 10.1007/s00438-015-1102-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Paulownia witches' broom (PaWB) caused by the phytoplasma is a devastating disease of Paulownia trees. It has caused heavy yield losses to Paulownia production worldwide. However, knowledge of the transcriptional and post-transcriptional regulation of gene expression by microRNAs (miRNAs), especially miRNAs responsive to PaWB disease stress, is still rudimentary. In this study, to identify miRNAs and their transcript targets that are responsive to PaWB disease stress, six sequencing libraries were constructed from healthy (PF), PaWB-infected (PFI), and PaWB-infected, 20 mg L(-1) methyl methane sulfonate-treated (PFI20) P. fortunei seedlings. As a result, 95 conserved miRNAs belonging to 18 miRNA families, as well as 122 potential novel miRNAs, were identified. Most of them were found to be a response to PaWB disease-induced stress, and the expression levels of these miRNAs were validated by quantitative real-time PCR analysis. The study simultaneously identified 109 target genes from the P. fortunei for 14 conserved miRNA families and 24 novel miRNAs by degradome sequencing. Furthermore, the functions of the miRNA targets were annotated based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The results presented here provide the groundwork for further analysis of miRNAs and target genes responsive to the PaWB disease stress, and could be also useful for addressing new questions to better understand the mechanisms of plant infection by phytoplasma in the future.
Collapse
|
19
|
miRNA-based drought regulation in wheat. Funct Integr Genomics 2015; 16:221-33. [PMID: 26141043 DOI: 10.1007/s10142-015-0452-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. Drought is a common environmental stress influencing crop growth and development. To date, it has been reported that a number of plant miRNA are involved in drought stress response. In this study, we comparatively investigated drought stress-responsive miRNAs in the root and leaf of bread wheat (Triticum aestivum cv. Sivas 111/33) by miRNA microarray screening. miRNA microarray analysis showed that 285 miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upregulated and 129 downregulated) were differentially expressed in leaf and root tissues, respectively. Among the differentially expressed miRNAs, 23 miRNAs were only expressed in the leaf and 26 miRNAs were only expressed in the root of wheat growth under drought stress. Upon drought treatment, expression of miR159, miR160, miR166, miR169, miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and miR5049 were found to be significantly differentiated in bread wheat. The regulatory network analysis showed that miR395 has connections with a number of target transcripts, and miR159 and miR319 share a number of target genes. Drought-tolerant and drought-sensitive wheat cultivars showed altered expression pattern upon drought stress in terms of investigated miRNA and their target transcript expression level.
Collapse
|
20
|
Doğramacı M, Foley ME, Horvath DP, Hernandez AG, Khetani RS, Fields CJ, Keating KM, Mikel MA, Anderson JV. Glyphosate's impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genomics 2015; 16:395. [PMID: 25986459 PMCID: PMC4437557 DOI: 10.1186/s12864-015-1627-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leafy spurge (Euphorbia esula) is a perennial weed that is considered glyphosate tolerant, which is partially attributed to escape through establishment of new vegetative shoots from an abundance of underground adventitious buds. Leafy spurge plants treated with sub-lethal concentrations of foliar-applied glyphosate produce new vegetative shoots with reduced main stem elongation and increased branching. Processes associated with the glyphosate-induced phenotype were determined by RNAseq using aerial shoots derived from crown buds of glyphosate-treated and -untreated plants. Comparison between transcript abundance and accumulation of shikimate or phytohormones (abscisic acid, auxin, cytokinins, and gibberellins) from these same samples was also done to reveal correlations. RESULTS Transcriptome assembly and analyses confirmed differential abundance among 12,918 transcripts (FDR ≤ 0.05) and highlighted numerous processes associated with shoot apical meristem maintenance and stem growth, which is consistent with the increased number of actively growing meristems in response to glyphosate. Foliar applied glyphosate increased shikimate abundance in crown buds prior to decapitation of aboveground shoots, which induces growth from these buds, indicating that 5-enolpyruvylshikimate 3-phosphate (EPSPS) the target site of glyphosate was inhibited. However, abundance of shikimate was similar in a subsequent generation of aerial shoots derived from crown buds of treated and untreated plants, suggesting EPSPS is no longer inhibited or abundance of shikimate initially observed in crown buds dissipated over time. Overall, auxins, gibberellins (precursors and catabolites of bioactive gibberellins), and cytokinins (precursors and bioactive cytokinins) were more abundant in the aboveground shoots derived from glyphosate-treated plants. CONCLUSION Based on the overall data, we propose that the glyphosate-induced phenotype resulted from complex interactions involving shoot apical meristem maintenance, hormone biosynthesis and signaling (auxin, cytokinins, gibberellins, and strigolactones), cellular transport, and detoxification mechanisms.
Collapse
Affiliation(s)
- Münevver Doğramacı
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - Michael E Foley
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - David P Horvath
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - Alvaro G Hernandez
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Radhika S Khetani
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Christopher J Fields
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Kathleen M Keating
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Mark A Mikel
- Department of Crop Sciences, 2608 Institute for Genomic Biology, and Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, 61801, USA.
| | - James V Anderson
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| |
Collapse
|
21
|
Doğramacı M, Foley ME, Horvath DP, Hernandez AG, Khetani RS, Fields CJ, Keating KM, Mikel MA, Anderson JV. Glyphosate's impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genomics 2015. [PMID: 25986459 DOI: 10.1186/s12864‐015‐1627‐9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Leafy spurge (Euphorbia esula) is a perennial weed that is considered glyphosate tolerant, which is partially attributed to escape through establishment of new vegetative shoots from an abundance of underground adventitious buds. Leafy spurge plants treated with sub-lethal concentrations of foliar-applied glyphosate produce new vegetative shoots with reduced main stem elongation and increased branching. Processes associated with the glyphosate-induced phenotype were determined by RNAseq using aerial shoots derived from crown buds of glyphosate-treated and -untreated plants. Comparison between transcript abundance and accumulation of shikimate or phytohormones (abscisic acid, auxin, cytokinins, and gibberellins) from these same samples was also done to reveal correlations. RESULTS Transcriptome assembly and analyses confirmed differential abundance among 12,918 transcripts (FDR ≤ 0.05) and highlighted numerous processes associated with shoot apical meristem maintenance and stem growth, which is consistent with the increased number of actively growing meristems in response to glyphosate. Foliar applied glyphosate increased shikimate abundance in crown buds prior to decapitation of aboveground shoots, which induces growth from these buds, indicating that 5-enolpyruvylshikimate 3-phosphate (EPSPS) the target site of glyphosate was inhibited. However, abundance of shikimate was similar in a subsequent generation of aerial shoots derived from crown buds of treated and untreated plants, suggesting EPSPS is no longer inhibited or abundance of shikimate initially observed in crown buds dissipated over time. Overall, auxins, gibberellins (precursors and catabolites of bioactive gibberellins), and cytokinins (precursors and bioactive cytokinins) were more abundant in the aboveground shoots derived from glyphosate-treated plants. CONCLUSION Based on the overall data, we propose that the glyphosate-induced phenotype resulted from complex interactions involving shoot apical meristem maintenance, hormone biosynthesis and signaling (auxin, cytokinins, gibberellins, and strigolactones), cellular transport, and detoxification mechanisms.
Collapse
Affiliation(s)
- Münevver Doğramacı
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - Michael E Foley
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - David P Horvath
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| | - Alvaro G Hernandez
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Radhika S Khetani
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Christopher J Fields
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Kathleen M Keating
- University of Illinois, W.M. Keck Center for Comparative and Functional Genomics, Urbana, IL, 61801, USA.
| | - Mark A Mikel
- Department of Crop Sciences, 2608 Institute for Genomic Biology, and Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, 61801, USA.
| | - James V Anderson
- United States Department of Agriculture, Agricultural Research Service, Sunflower and Plant Biology Research, Fargo, ND, 58102, USA.
| |
Collapse
|
22
|
Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T. Regulation of the alkaloid biosynthesis by miRNA in opium poppy. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:409-20. [PMID: 25735537 DOI: 10.1111/pbi.12346] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 05/21/2023]
Abstract
Opium poppy (Papaver somniferum) is an important medicinal plant producing benzylisoquinoline alkaloids (BIA). MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) of approximately 21 nucleotides. They are noncoding, but regulate gene expression in eukaryotes. Although many studies have been conducted on the identification and functions of plant miRNA, scarce researches on miRNA regulation of alkaloid biosynthesis have been reported. In this study, a total of 316 conserved and 11 novel miRNAs were identified in opium poppy using second-generation sequencing and direct cloning. Tissue-specific regulation of miRNA expression was comparatively analysed by miRNA microarray assays. A total of 232 miRNAs were found to be differentially expressed among four tissues. Likewise, 1469 target transcripts were detected using in silico and experimental approaches. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates carbohydrate metabolism and genetic-information processing. Additionally, miRNA target transcripts were mostly involved in response to stress against various factors and secondary-metabolite biosynthesis processes. Target transcript identification analyses revealed that some of the miRNAs might be involved in BIA biosynthesis, such as pso-miR13, pso-miR2161 and pso-miR408. Additionally, three putatively mature miRNA sequences were predicted to be targeting BIA-biosynthesis genes.
Collapse
Affiliation(s)
- Hatice Boke
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | | | | | | | | | | |
Collapse
|
23
|
Tsai CC, Chiang YC, Weng IS, Lin YS, Chou CH. Evidence of purifying selection and co-evolution at the fold-back arm of the novel precursor microRNA159 gene in Phalaenopsis Species (Orchidaceae). PLoS One 2014; 9:e114493. [PMID: 25470008 PMCID: PMC4254996 DOI: 10.1371/journal.pone.0114493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, endogenously transcribed, non-protein-coding RNAs that play important roles in regulation of gene expression in animals and plants. Here, selective constraints on the novel precursor microRNA159 (pre-miR159) gene were investigated in 42 Phalaenopsis species (Orchidaceae). METHODS/RESULTS A novel precursor microRNA159 gene was isolated from 42 Phalaenopsis species using a new microRNA-PCR (miR-PCR) approach. Sequencing of pre-miR159 genes revealed differences from the canonical pre-miR159 gene in Phalaenopsis species and other plants. Results demonstrated that the 5' and 3' fold-back arms and the terminal loop of the novel pre-miR159 gene have undergone purifying selection and selective constraint for stabilizing the secondary hairpin structure. Two conserved motifs within the 5' fold-back arm had the highest purifying selective pressure within the novel pre-miR159 gene. Evidence of sequence co-evolution between the 5' and 3' fold-back regions was observed. CONCLUSIONS Functional selective pressure might arise from the constraint of forming a hairpin structure and demonstrate co-evolution of sequences between the 5' and 3' fold-back regions of the novel pre-miR159 gene in Phalaenopsis species.
Collapse
Affiliation(s)
- Chi-Chu Tsai
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, 908, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- * E-mail: (YCC); (CHC)
| | - I-Szu Weng
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, 908, Taiwan
| | - Yu-Shium Lin
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, 908, Taiwan
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung, 404, Taiwan
- * E-mail: (YCC); (CHC)
| |
Collapse
|
24
|
Inal B, Türktaş M, Eren H, Ilhan E, Okay S, Atak M, Erayman M, Unver T. Genome-wide fungal stress responsive miRNA expression in wheat. PLANTA 2014; 240:1287-98. [PMID: 25156489 DOI: 10.1007/s00425-014-2153-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/12/2014] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding class of RNAs. They were identified in many plants with their diverse regulatory roles in several cellular and metabolic processes. A number of miRNAs were involved in biotic and abiotic stress responses. Here, fungal stress responsive wheat miRNAs were analyzed by using miRNA-microarray strategy. Two different fungi (Fusarium culmorum and Bipolaris sorokiniana) were inoculated on resistant and sensitive wheat cultivars. A total of 87 differentially regulated miRNAs were detected in the 8 × 15 K array including all of the available plant miRNAs. Using bioinformatics tools, the target transcripts of responsive miRNAs were predicted, and related biological processes and mechanisms were assessed. A number of the miRNAs such as miR2592s, miR869.1, miR169b were highly differentially regulated showing more than 200-fold change upon fungal-inoculation. Some of the miRNAs were identified as fungal-inoculation responsive for the first time. The analyses showed that some of the differentially regulated miRNAs targeted resistance-related genes such as LRR, glucuronosyl transferase, peroxidase and Pto kinase. The comparison of the two miRNA-microarray analyses indicated that fungal-responsive wheat miRNAs were differentially regulated in pathogen- and cultivar-specific manners.
Collapse
Affiliation(s)
- Behçet Inal
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100, Cankiri, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dombrowski JE, Martin RC. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum. BMC Res Notes 2014; 7:807. [PMID: 25403248 PMCID: PMC4289168 DOI: 10.1186/1756-0500-7-807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background Previously it has been shown that mechanical wounding, salinity and heat activated a 46 kDa and 44 kDa mitogen-activated protein kinases (MAPKs) in forage related grasses. Forage and turf related grasses are utilized in diverse environments where they are routinely subjected to herbicides and exposed to fire and volatiles after cutting, however very little is known concerning the perception or molecular responses to these different stresses or compounds. Results In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated protein kinase (MAPK) was activated in the leaves within 5 min and a 44 kDa MAPK 15 min after exposure to green leaf volatiles released from grass clippings. When the tips of leaves of Lt plants were scorched by fire, the 46 kDa MAPK and 44 kDa MAPK were rapidly activated within 5 min and 20 min respectively in the treated leaf, and 15 min systemically in an adjacent untreated tiller after exposure to fire. Nonanoic acid (pelargonic acid), a component in herbicides used on grasses, activated a 46 kDa MAPK in the treated leaves within 5 min of exposure and 15 min in systemic tissues. At concentrations normally used in the herbicides, nonanoic acid was found to only weakly activate the 44 kDa MAPK after an hour in treated leaves, but strongly activated it in the systemic tillers 30 min after treatment. Acetic acid, HCl and NaOH also were found to activate these MAPKs in treated tillers. Conclusion The rapid activation of these MAPKs to a wide range of stress stimuli, suggest that these MAPKs play a role in the perception and response to these stresses and compounds. The activation of the MAPK by green leaf volatiles indicates a role for these compounds in wound signaling in grasses. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-807) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James E Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, Oregon State University, 3450 SW Campus Way, Corvallis, Oregon 97331-7102, USA.
| | | |
Collapse
|
26
|
Sun XH, Zhao LP, Zou Q, Wang ZB. Identification of microRNA genes and their mRNA targets in Festuca arundinacea. Appl Biochem Biotechnol 2014; 172:3875-87. [PMID: 24577674 DOI: 10.1007/s12010-014-0805-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/12/2014] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs of 22 nucleotides (nts) in length, which plays important roles in post-transcriptional degradation of target mRNA or inhibition of protein synthesis through binding the specific sites of target mRNA. Growing evidences have shown that miRNAs play an important role in various biological processes, including growth and development, signal transduction, apoptosis, proliferation, stress responses, maintenance of genome stability, and so on. In our study, we used bioinformatic tools to predict miRNA and the corresponding target genes of Festuca arundinacea. We used known miRNAs of other plants from miRBase to search against expressed sequence tags (EST) databases and genome survey sequences (GSS) of F. arundinacea. A total of 8 potential miRNAs were predicted. Phylogenetic analysis of the predicted miRNAs revealed that miRNA398c of F. arundinacea species was evolutionary highly conserved with Populus trichocarpa. The 8 potential miRNAs corresponding to 20 target genes were found. Most of the miRNA target genes were predicted to encode transcription factors that regulate cell growth and development, signaling, metabolism, and other biology processes. By bioinformatics methods, we can effectively predict novel miRNAs and its target genes and add information to F. arundinacea miRNA database. Moreover, it shows a path for the prediction and analysis of miRNAs to those species whose genomes are not available through bioinformatics tools.
Collapse
Affiliation(s)
- Xi Hong Sun
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang City, 471003, Henan Province, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). PLANT SIGNALING & BEHAVIOR 2014; 9:e29462. [PMID: 25763692 PMCID: PMC4203583 DOI: 10.4161/psb.29462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, approximately 21nt in length, non-coding RNA, which mediate the expression of target genes primarily at post-transcriptional levels. miRNAs play critical roles in almost all plant cellular and metabolic processes. Although numerous miRNAs have been identified in the plant kingdom, the miRNAs in blueberry, which is an economically important small fruit crop, still remain totally unknown. In this study, we reported a computational identification of miRNAs and their targets in blueberry. By conducting an EST-based comparative genomics approach, 9 potential vco-miRNAs were discovered from 22,402 blueberry ESTs according to a series of filtering criteria, designated as vco-miR156-5p, vco-miR156-3p, vco-miR1436, vco-miR1522, vco-miR4495, vco-miR5120, vco-miR5658, vco-miR5783, and vco-miR5986. Based on sequence complementarity between miRNA and its target transcript, 34 target ESTs from blueberry and 70 targets from other species were identified for the vco-miRNAs. The targets were found to be involved in transcription, RNA splicing and binding, DNA duplication, signal transduction, transport and trafficking, stress response, as well as synthesis and metabolic process. These findings will greatly contribute to future research in regard to functions and regulatory mechanisms of blueberry miRNAs.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yanming Hou
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Li Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Wenhao Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Chen Quan
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Biology; Western University; London, ON Canada
| | - Shaomin Bian
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
- Correspondence to: Shaomin Bian,
| |
Collapse
|
28
|
Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 2013; 536:254-64. [PMID: 24368332 DOI: 10.1016/j.gene.2013.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023]
Abstract
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Collapse
|
29
|
Lu YC, Yang SN, Zhang JJ, Zhang JJ, Tan LR, Yang H. A collection of glycosyltransferases from rice (Oryza sativa) exposed to atrazine. Gene 2013; 531:243-52. [DOI: 10.1016/j.gene.2013.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/24/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
|
30
|
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 2013; 14:683. [PMID: 24094114 PMCID: PMC3852598 DOI: 10.1186/1471-2164-14-683] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213-217, 2012), little sequence data is available for the corresponding B-genome.To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety 'Pisang Klutuk Wulung' (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. RESULTS The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. CONCLUSIONS We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| | - Ranganath Gudimella
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee Wan Sin
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Norzulaani Khalid
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Johan Keulemans
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
31
|
Jiang LX, Jin LG, Guo Y, Tao B, Qiu LJ. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max). Biochem Biophys Res Commun 2013; 437:544-9. [PMID: 23845904 DOI: 10.1016/j.bbrc.2013.06.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/26/2023]
Abstract
Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.
Collapse
Affiliation(s)
- Ling-Xue Jiang
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | | | | | | | | |
Collapse
|
32
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
33
|
Couée I, Serra AA, Ramel F, Gouesbet G, Sulmon C. Physiology and toxicology of hormone-disrupting chemicals in higher plants. PLANT CELL REPORTS 2013; 32:933-41. [PMID: 23553555 DOI: 10.1007/s00299-013-1428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 05/13/2023]
Abstract
Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.
Collapse
Affiliation(s)
- Ivan Couée
- Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Université de Rennes 1, Campus de Beaulieu, bâtiment 14A, 35042 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|
34
|
Turktas M, Inal B, Okay S, Erkilic EG, Dundar E, Hernandez P, Dorado G, Unver T. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.). PLoS One 2013; 8:e59876. [PMID: 23555820 PMCID: PMC3610735 DOI: 10.1371/journal.pone.0059876] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.
Collapse
Affiliation(s)
- Mine Turktas
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Behcet Inal
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Sezer Okay
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Emine Gulden Erkilic
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Ekrem Dundar
- Department of Biology, Faculty of Art and Science, Balikesir University, Balikesir, Turkey
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Turgay Unver
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| |
Collapse
|
35
|
Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T. Boron stress responsive microRNAs and their targets in barley. PLoS One 2013; 8:e59543. [PMID: 23555702 PMCID: PMC3608689 DOI: 10.1371/journal.pone.0059543] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 01/08/2023] Open
Abstract
Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress.
Collapse
Affiliation(s)
- Esma Ozhuner
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Serdal Sakcali
- Department of Biology, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Hatice Boke
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
- * E-mail:
| |
Collapse
|
36
|
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. PEST MANAGEMENT SCIENCE 2013; 69:176-87. [PMID: 22614948 DOI: 10.1002/ps.3318] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Non-target-site-based resistance (NTSR) can confer unpredictable cross-resistance to herbicides. However, the genetic determinants of NTSR remain poorly known. The current, urgent challenge for weed scientists is thus to elucidate the bases of NTSR so that detection tools are developed, the evolution of NTSR is understood, the efficacy of the shrinking herbicide portfolio is maintained and integrated weed management strategies, including fully effective herbicide applications, are designed and implemented. In this paper, the importance of NTSR in resistance to herbicides is underlined. The most likely way in which NTSR evolves-by accumulation of different mechanisms within individual plants-is described. The NTSR mechanisms, which can interfere with herbicide penetration, translocation and accumulation at the target site, and/or protect the plant against the consequences of herbicide action, are then reviewed. NTSR is a part of the plant stress response. As such, NTSR is a dynamic process unrolling over time that involves 'protectors' directly interfering with herbicide action, and also regulators controlling 'protector' expression. NTSR is thus a quantitative trait. On this basis, a three-step procedure is proposed, based on the use of the 'omics' (genomics, transcriptomics, proteomics or metabolomics), to unravel the genetic bases of NTSR.
Collapse
|
37
|
Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC PLANT BIOLOGY 2013; 13:10. [PMID: 23320600 PMCID: PMC3564680 DOI: 10.1186/1471-2229-13-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes. RESULTS Six olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves ("on year" and "off year" leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways. CONCLUSION A comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data on the miRNA-fruit development interaction and advance perspectives in the miRNA profile of the olive tree.
Collapse
Affiliation(s)
- Huriye Yanik
- Faculty of Science, Department of Biology, Cankiri Karatekin University, 18100, Cankiri, Turkey
| | - Mine Turktas
- Faculty of Science, Department of Biology, Cankiri Karatekin University, 18100, Cankiri, Turkey
| | - Ekrem Dundar
- Department of Biology, Balikesir University, Faculty of Art and Science, 10145, Balikesir, Turkey
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14080, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Turgay Unver
- Faculty of Science, Department of Biology, Cankiri Karatekin University, 18100, Cankiri, Turkey
| |
Collapse
|
38
|
Kim JS, Yu SK, Lee MH, Park MG, Park E, Kim SG, Lee SY, Kim CS, Kim HJ, Chun HS, Chun SW, Kim DK. MicroRNA-205 directly regulates the tumor suppressor, interleukin-24, in human KB oral cancer cells. Mol Cells 2013; 35:17-24. [PMID: 23212344 PMCID: PMC3887855 DOI: 10.1007/s10059-013-2154-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miRNA) is a form of small noncoding RNA that regulates the expression of genes either by inhibiting mRNA translation or by inducing its degradation. Small microRNA play important roles in regulating a large number of cellular processes, including development, proliferation and apoptosis. This study examined the biological functions of miR-205 as a tumor suppressor in KB oral cancer cells. The results showed that miR-205 expression was significantly lower in KB oral cancer cells than in human normal oral keratinocytes. Furthermore, the miR-205 over-expressed in KB oral cancer cells increased the cell cytotoxicity and induced apoptosis through the activation of caspase-3/-7. The transfection of miR-205 into KB oral cancer cells strongly induced IL-24, a well known cytokine that acts as a tumor suppressor in a range of tumor tissues. In addition, miR-205 targeted the IL-24 promoter directly to induce gene expression. Overall, miR-205 has significant therapeutic potential to turn on silenced tumor suppressor genes by targeting them with miRNA.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Sun-Kyoung Yu
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Myoung-Hwa Lee
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Min-Gyeong Park
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Euteum Park
- Department of Biotechnology, Chosun University, Gwangju 501-759,
Korea
| | - Su-Gwan Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759,
Korea
| | - Sook-Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759,
Korea
| | - Chun Sung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Heung-Joong Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
| | - Hong Sung Chun
- Department of Biotechnology, Chosun University, Gwangju 501-759,
Korea
| | - Sang-Woo Chun
- Department of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University, Iksan 570-749,
Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759,
Korea
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759,
Korea
| |
Collapse
|
39
|
Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 2012; 7:e50298. [PMID: 23227166 PMCID: PMC3515591 DOI: 10.1371/journal.pone.0050298] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022] Open
Abstract
Peach (Prunus persica L.) is one of the most important worldwide fresh fruits. Since fruit growth largely depends on adequate water supply, drought stress is considered as the most important abiotic stress limiting fleshy fruit production and quality in peach. Plant responses to drought stress are regulated both at transcriptional and post-transcriptional level. As post-transcriptional gene regulators, miRNAs (miRNAs) are small (19–25 nucleotides in length), endogenous, non-coding RNAs. Recent studies indicate that miRNAs are involved in plant responses to drought. Therefore, Illumina deep sequencing technology was used for genome-wide identification of miRNAs and their expression profile in response to drought in peach. In this study, four sRNA libraries were constructed from leaf control (LC), leaf stress (LS), root control (RC) and root stress (RS) samples. We identified a total of 531, 471, 535 and 487 known mature miRNAs in LC, LS, RC and RS libraries, respectively. The expression level of 262 (104 up-regulated, 158 down-regulated) of the 453 miRNAs changed significantly in leaf tissue, whereas 368 (221 up-regulated, 147 down-regulated) of the 465 miRNAs had expression levels that changed significantly in root tissue upon drought stress. Additionally, a total of 197, 221, 238 and 265 novel miRNA precursor candidates were identified from LC, LS, RC and RS libraries, respectively. Target transcripts (137 for LC, 133 for LS, 148 for RC and 153 for RS) generated significant Gene Ontology (GO) terms related to DNA binding and catalytic activites. Genome-wide miRNA expression analysis of peach by deep sequencing approach helped to expand our understanding of miRNA function in response to drought stress in peach and Rosaceae. A set of differentially expressed miRNAs could pave the way for developing new strategies to alleviate the adverse effects of drought stress on plant growth and development.
Collapse
Affiliation(s)
- Vahap Eldem
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - Ufuk Çelikkol Akçay
- Suleyman Demirel University, Faculty of Agriculture, Department of Agricultural Biotechnology, Isparta, Turkey
| | - Esma Ozhuner
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| | - Yakup Bakır
- Marmara University, Faculty of Arts and Science, Department of Biology, Istanbul, Turkey
| | - Serkan Uranbey
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| | - Turgay Unver
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
- * E-mail:
| |
Collapse
|
40
|
Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D, Budak H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. PLANTA 2012; 236:1081-92. [PMID: 22569921 DOI: 10.1007/s00425-012-1657-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/16/2012] [Indexed: 05/02/2023]
Abstract
An autophagy-related gene Atg8 was cloned for the first time from wild emmer wheat, named as TdAtg8, and its role on autophagy under abiotic stress conditions was investigated. Examination of TdAtg8 expression patterns indicated that Atg8 expression was strongly upregulated under drought stress, especially in the roots when compared to leaves. LysoTracker(®) red marker, utilized to observe autophagosomes, revealed that autophagy is constitutively active in Triticum dicoccoides. Moreover, autophagy was determined to be induced in plants exposed to osmotic stress when compared to plants grown under normal conditions. Functional studies were executed in yeast to confirm that the TdATG8 protein is functional, and showed that the TdAtg8 gene complements the atg8∆::kan MX yeast mutant strain grown under nitrogen deficiency. For further functional analysis, TdATG8 protein was expressed in yeast and analyzed using Western immunoblotting. Atg8-silenced plants were exposed to drought stress and chlorophyll and malondialdehyde (MDA) content measurements demonstrated that Atg8 plays a key role on drought stress tolerance. In addition, Atg8-silenced plants exposed to osmotic stress were found to have decreased Atg8 expression level in comparison to controls. Hence, Atg8 is a positive regulator in osmotic and drought stress response.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Biological Sciences and Bioengineering Program, Sabanci University, Tuzla, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
41
|
Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One 2012; 7:e40859. [PMID: 22815845 PMCID: PMC3398953 DOI: 10.1371/journal.pone.0040859] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 11/26/2022] Open
Abstract
Individual chromosome-based studies of bread wheat are beginning to provide valuable structural and functional information about one of the world's most important crops. As new genome sequences become available, identifying miRNA coding sequences is arguably as important a task as annotating protein coding sequences, but one that is not as well developed. We compared conservation-based identification of conserved miRNAs in 1.5× coverage survey sequences of wheat chromosome 1AL with a predictive method based on pre-miRNA hairpin structure alone. In total, 42 sequences expected to encode conserved miRNAs were identified on chromosome 1AL, including members of several miRNA families that have not previously been reported to be expressed in T. aestivum. In addition, we demonstrate that a number of sequences previously annotated as novel wheat miRNAs are closely related to transposable elements, particularly Miniature Inverted Terminal repeat Elements (MITEs). Some of these TE-miRNAs may well have a functional role, but separating true miRNA coding sequences from TEs in genomic sequences is far from straightforward. We propose a strategy for annotation to minimize the risk of mis-identifying TE sequences as miRNAs.
Collapse
Affiliation(s)
- Stuart J. Lucas
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| |
Collapse
|
42
|
Zhang JJ, Zhou ZS, Song JB, Liu ZP, Yang H. Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:57-68. [PMID: 22503142 DOI: 10.1016/j.jhazmat.2012.03.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 05/08/2023]
Abstract
The residue of atrazine (a herbicide) has become hazards in environments due to its intensive use. However, its molecular toxicity to on plants and human beings is not fully understood. In this study, we performed high-throughput sequencing of atrazine-exposed rice (Oryza sativa) to analyze global expression and complexity of genes in the crop. Four libraries were constructed from shoots and roots with or without atrazine exposure. We sequenced 5,751,861, 5,790,013, 5,375,999 and 6,039,618 clean tags that corresponded to 220,806, 111,301, 248,802 and 114,338 distinct tags for Root-Atr (root control, atrazine-free), Shoot-Atr (shoot control, atrazine-free), Root+Atr (root treated with atrazine) and Shoot+Atr (shoot treated with atrazine) libraries, respectively. Mapping the clean tags to gene databases generated 18,833-21,007 annotated genes for each library. Most of annotated genes were differentially expressed among the libraries. The most 40 differentially expressed genes were associated with resistance to environmental stress, degradation of xenobiotics and molecular metabolism. Validation of gene expression by quantitative RT-PCR confirmed the deep-sequencing results. The transcriptome sequences were further subjected to Gene Orthology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and showed modified biological functions and metabolic pathways. Our results not only highlight the transcriptional complexity in rice with atrazine but also represent a major improvement for analyzing transcriptional changes on a large scale in xenobiotics-responsive toxicology.
Collapse
Affiliation(s)
- Jia Jun Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
43
|
Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I. Xenobiotic sensing and signalling in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3999-4014. [PMID: 22493519 DOI: 10.1093/jxb/ers102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthropogenic changes and chemical pollution confront plant communities with various xenobiotic compounds or combinations of xenobiotics, involving chemical structures that are at least partially novel for plant species. Plant responses to chemical challenges and stimuli are usually characterized by the approaches of toxicology, ecotoxicology, and stress physiology. Development of transcriptomics and proteomics analysis has demonstrated the importance of modifications to gene expression in plant responses to xenobiotics. It has emerged that xenobiotic effects could involve not only biochemical and physiological disruption, but also the disruption of signalling pathways. Moreover, mutations affecting sensing and signalling pathways result in modifications of responses to xenobiotics, thus confirming interference or crosstalk between xenobiotic effects and signalling pathways. Some of these changes at gene expression, regulation and signalling levels suggest various mechanisms of xenobiotic sensing in higher plants, in accordance with xenobiotic-sensing mechanisms that have been characterized in other phyla (yeast, invertebrates, vertebrates). In higher plants, such sensing systems are difficult to identify, even though different lines of evidence, involving mutant studies, transcription factor analysis, or comparative studies, point to their existence. It remains difficult to distinguish between the hypothesis of direct xenobiotic sensing and indirect sensing of xenobiotic-related modifications. However, future characterization of xenobiotic sensing and signalling in higher plants is likely to be a key element for determining the tolerance and remediation capacities of plant species. This characterization will also be of interest for understanding evolutionary dynamics of stress adaptation and mechanisms of adaptation to novel stressors.
Collapse
Affiliation(s)
- Fanny Ramel
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Kantar M, Akpınar BA, Valárik M, Lucas SJ, Doležel J, Hernández P, Budak H. Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics 2012; 12:465-79. [DOI: 10.1007/s10142-012-0285-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
|
45
|
Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:791-9. [PMID: 22122669 DOI: 10.1089/omi.2011.0073] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a lack of knowledge on the tissue-specific expression of miRNAs in response to dehydration stress in Brachypodium (Brachypodium distachyon (L.) Beauv), a model for temperate grass species. In this study, miRNA expression patterns of drought-tolerant Brachypodium were investigated using the miRNA microarray platform. A total of 205 miRNAs in control and 438 miRNAs in both drought-treated leaf and root tissues were expressed. Seven of the detected Brachypodium miRNAs were dehydration stress responsive. Expression levels of known drought-responsive miRNAs, miR896, and miR1867 were quantified by qRT-PCR in Brachypodium upon 4 h and 8 h dehydration stress applications. This was performed to compare drought responsiveness of miRNAs in closely related species. Target transcripts of selected drought responsive miRNAs, miR170, miR1850, miR896, miR406, miR528, miR390, were computationally predicted. Target transcript of miR896 was verified by retrieving a cleaved miR896 transcript from drought stress-treated leaf samples using a modified 5' RLM-RACE. Brachypodium dehydration responsive miRNA were also detected in barley and wild emmer wheat. Hence, the outcomes highlighted the conserved features of miRNA upon dehydration stress in Triticeae.
Collapse
Affiliation(s)
- Hikmet Budak
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
46
|
Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R, Miyake A, Nakano K, Yamochi T, Ishida T, Watanabe T. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology 2012; 9:38. [PMID: 22569184 PMCID: PMC3410806 DOI: 10.1186/1742-4690-9-38] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection. RESULTS Characterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4-3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4-3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3' LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication. CONCLUSIONS The results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4-3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
NOMURA DANIELK, CASIDA JOHNE. Activity-based protein profiling of organophosphorus and thiocarbamate pesticides reveals multiple serine hydrolase targets in mouse brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2808-15. [PMID: 21341672 PMCID: PMC3071868 DOI: 10.1021/jf101747r] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, a chemoproteomic platform, termed activity-based protein profiling, was used to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in the degradation of endocannabinoid signaling lipids, monoacylglycerol lipase, and fatty acid amide hydrolase were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants.
Collapse
Affiliation(s)
- DANIEL K. NOMURA
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - JOHN E. CASIDA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
48
|
Kantar M, Lucas SJ, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. PLANTA 2011; 233:471-84. [PMID: 21069383 DOI: 10.1007/s00425-010-1309-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 10/25/2010] [Indexed: 05/18/2023]
Abstract
Drought is a major environmental stress factor that affects plant growth and development worldwide. Wild emmer wheat (Triticum turgidum ssp. dicoccoides), the ancestor of domesticated durum wheat (Triticum turgidum ssp. durum), has great potential for improving the understanding of the wheat drought response. MicroRNAs (miRNAs) are a recently discovered class of gene expression regulators that have also been linked to several plant stress responses; however, this relationship is just beginning to be understood. miRNA expression patterns of drought-resistant wild emmer wheat in response to drought stress were investigated using a plant miRNA microarray platform. Expression was detected to be 205 miRNAs in control and 438 miRNAs in drought-stressed leaf and root tissues. Of these miRNAs, the following 13 were differentially regulated in response to drought: miR1867, miR896, miR398, miR528, miR474, miR1450, miR396, miR1881, miR894, miR156, miR1432, miR166 and miR171. Regulation of miRNAs upon 4 and 8 h drought stress applications observed by qRT-PCR. Target transcripts of differentially regulated miRNAs were computationally predicted. In addition to miRNA microarray study, five new conserved T. turgidum miRNAs were identified through a homology-based approach, and their secondary structures and putative targets were predicted. These findings both computationally and experimentally highlight the presence of miRNAs in T. dicoccoides and further extend the role of miRNAs under shock drought stress conditions.
Collapse
Affiliation(s)
- Melda Kantar
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | | | | |
Collapse
|
49
|
Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 2010; 10:493-507. [PMID: 20676715 DOI: 10.1007/s10142-010-0181-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/17/2010] [Accepted: 07/11/2010] [Indexed: 12/21/2022]
Abstract
We aim to identify conserved and dehydration responsive microRNAs (miRNAs) in Hordeum vulgare (barley). A total of 28 new barley miRNAs belonging to 18 distinct miRNA families were identified. Detailed nucleotide analyses revealed that barley pre-miRNAs are in the range of 46-114 nucleotides with average of 77.14. Using 28 newly detected miRNAs as queries, 445 potential target mRNAs were predicted. The predicted miRNAs were differentially expressed and some of them behaved similarly in leaf and root tissues upon stress treatment. Hvu-MIR156, Hvu-MIR166, Hvu-MIR171, and Hvu-MIR408 were detected as dehydration stress-responsive barley miRNAs. To discover target transcripts of barley miRNAs a modified 5' RLM-RACE was performed and seven cleaved miRNA transcripts were retrieved from drought stressed leaf samples. In silico analysis indicated 15 potential EST targets. Measurement of expression levels showed a positive correlation between levels of miRNA expression and suppression of their target mRNA transcripts in dehydration-stress-treated barley.
Collapse
|