1
|
Hol EM, Dykstra W, Chevalier J, Cuadrado E, Bugiani M, Aronica E, Verkhratsky A. Neuroglia in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:159-175. [PMID: 40148043 DOI: 10.1016/b978-0-443-19102-2.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic neurologic disorders characterized by white matter degeneration resulting from mutations affecting glial cells. This review focuses on the primary subtypes-astroglial, oligodendroglial, and microglial leukodystrophies-offering a detailed description of their neuropathologic features and clinical manifestations. It delves into key aspects of the pathogenesis, emphasizing the distinct cellular mechanisms that drive white matter damage. Advances in disease modeling, including the development of animal models with pathologic gene expressions and patient-derived iPS-cell models, have significantly enhanced our understanding of these rare disorders. Insights into the roles of different glial cell types highlight the complexity of leukodystrophies and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Juliette Chevalier
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eloy Cuadrado
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
3
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Vanishing White Matter Disease Diagnosis After Athletic Concussion in an Adolescent Male Patient. Clin J Sport Med 2021; 31:e207-e209. [PMID: 31688083 DOI: 10.1097/jsm.0000000000000783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023]
Abstract
We report the recognition of a diagnosis of leukoencephalopathy with vanishing white matter, also known as vanishing white matter disease in an adolescent male patient after a sports-related concussion. The patient's atypical symptoms after the concussion led to imaging and subsequent neurological consultation. The objective of this clinical case is to highlight the importance of considering imaging in patients who present with atypical symptoms that may be present after a concussion and to raise awareness of this rare disorder which can present after head trauma.
Collapse
|
5
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Bursle C, Yiu EM, Yeung A, Freeman JL, Stutterd C, Leventer RJ, Vanderver A, Yaplito‐Lee J. Hyperinsulinaemic hypoglycaemia: A rare association of vanishing white matter disease. JIMD Rep 2020; 51:11-16. [PMID: 32071834 PMCID: PMC7012737 DOI: 10.1002/jmd2.12081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/18/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
We report two unrelated patients with infantile onset leukoencephalopathy with vanishing white matter (VWM) and hyperinsulinaemic hypoglycaemia. To our knowledge, this association has not been described previously. Both patients had compound heterozygous pathogenic variants in EIF2B4 detected on exome sequencing and absence of other variants which might explain the hyperinsulinism. Hypoglycaemia became apparent at 6 and 8 months, respectively, although in one patient, transient neonatal hypoglycaemia was also documented. One patient responded to diazoxide and the other was managed with continuous nasogastric feeding. We hypothesise that the pathophysiology of hyperinsulinism in VWM may involve dysregulation of transcription of genes related to insulin secretion.
Collapse
Affiliation(s)
- Carolyn Bursle
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneAustralia
| | - Eppie M. Yiu
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Alison Yeung
- Murdoch Children's Research InstituteMelbourneAustralia
- Victorian Clinical Genetics ServiceMelbourneAustralia
| | - Jeremy L. Freeman
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - Chloe Stutterd
- Murdoch Children's Research InstituteMelbourneAustralia
- Victorian Clinical Genetics ServiceMelbourneAustralia
| | - Richard J. Leventer
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Adeline Vanderver
- Victorian Clinical Genetics ServiceMelbourneAustralia
- Neurology DepartmentChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Joy Yaplito‐Lee
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneAustralia
| |
Collapse
|
7
|
Abstract
Activation of the unfolded protein response in response to endoplasmic reticulum stress preserves cell viability and function under stressful conditions. Nevertheless, persistent, unresolvable activation of the unfolded protein response can trigger apoptosis to eliminate stressed cells. Recent studies show that the unfolded protein response plays an important role in the pathogenesis of various disorders of myelin, including multiples sclerosis, Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease, vanishing white matter disease, spinal cord injury, tuberous sclerosis complex, and hypoxia-induced perinatal white matter injury. In this review we summarize the current literature on the unfolded protein response and the evidence for its role in the pathogenesis of myelin disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Young-Baird SK, Lourenço MB, Elder MK, Klann E, Liebau S, Dever TE. Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB. Mol Cell 2019; 77:875-886.e7. [PMID: 31836389 DOI: 10.1016/j.molcel.2019.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Dysregulation of cellular protein synthesis is linked to a variety of diseases. Mutations in EIF2S3, encoding the γ subunit of the heterotrimeric eukaryotic translation initiation factor eIF2, cause MEHMO syndrome, an X-linked intellectual disability disorder. Here, using patient-derived induced pluripotent stem cells, we show that a mutation at the C terminus of eIF2γ impairs CDC123 promotion of eIF2 complex formation and decreases the level of eIF2-GTP-Met-tRNAiMet ternary complexes. This reduction in eIF2 activity results in dysregulation of global and gene-specific protein synthesis and enhances cell death upon stress induction. Addition of the drug ISRIB, an activator of the eIF2 guanine nucleotide exchange factor, rescues the cell growth, translation, and neuronal differentiation defects associated with the EIF2S3 mutation, offering the possibility of therapeutic intervention for MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA.
| | - Maíra Bertolessi Lourenço
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
10
|
Herrero M, Mandelboum S, Elroy-Stein O. eIF2B Mutations Cause Mitochondrial Malfunction in Oligodendrocytes. Neuromolecular Med 2019; 21:303-313. [PMID: 31134486 DOI: 10.1007/s12017-019-08551-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023]
Abstract
Vanishing white matter (VWM) disease (OMIM#306896) is an autosomal recessive neurodegenerative leukodystrophy caused by hypomorphic mutations in any of the five genes encoding the subunits of eukaryotic translation initiation factor 2B (eIF2B). The disease is manifested by loss of cerebral white matter and progressive deterioration upon exposure to environmental and physiological stressors. "Foamy" oligodendrocytes (OLG), increased numbers of oligodendrocytes precursor cells (OPC), and immature defective astrocytes are major neuropathological denominators. Our recent work using Eif2b5R132H/R132H mice uncovered a fundamental link between eIF2B and mitochondrial function. A decrease in oxidative phosphorylation capacity was observed in mutant astrocytes and fibroblasts. While an adaptive increase in mitochondria abundance corrects the phenotype of mutant fibroblasts, it is not sufficient to compensate for the high-energy demand of astrocytes, explaining their involvement in the disease. To date, astrocytes are marked as central for the disease while eIF2B-mutant OLG are currently assumed to lack a cellular phenotype on their own. Here we show a reduced capacity of eIF2B-mutant OPC isolated from Eif2b5R132H/R132H mice to conduct oxidative respiration despite the adaptive increase in their mitochondrial abundance. We also show their impaired ability to efficiently complete critical differentiation steps towards mature OLG. The concept that defective differentiation of eIF2B-mutant OPC could be a consequence of mitochondrial malfunction is in agreement with numerous studies indicating high dependency of differentiating OLG on accurate mitochondrial performance and ATP availability.
Collapse
Affiliation(s)
- Melisa Herrero
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shir Mandelboum
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Bugiani M, Vuong C, Breur M, van der Knaap MS. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 2019; 28:408-421. [PMID: 29740943 DOI: 10.1111/bpa.12606] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.
Collapse
Affiliation(s)
- Marianna Bugiani
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Vuong
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Atzmon A, Herrero M, Sharet-Eshed R, Gilad Y, Senderowitz H, Elroy-Stein O. Drug Screening Identifies Sigma-1-Receptor as a Target for the Therapy of VWM Leukodystrophy. Front Mol Neurosci 2018; 11:336. [PMID: 30279648 PMCID: PMC6153319 DOI: 10.3389/fnmol.2018.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Vanishing white matter (VWM) disease is an autosomal genetic leukodystrophy caused by mutations in subunits of eukaryotic translation initiation factor 2B (eIF2B). The clinical symptoms exhibit progressive loss of white matter in both hemispheres of the brain, accompanied by motor functions deterioration, neurological deficits, and early death. To date there is no treatment for VWM disease. The aim of this work was to expedite rational development of a therapeutic opportunity. Our approach was to design a computer-aided strategy for an efficient and reliable screening of drug-like molecules; and to use primary cultures of fibroblasts isolated from the Eif2b5R132H/R132H VWM mouse model for screening. The abnormal mitochondria content phenotype of the mutant cells was chosen as a read-out for a simple cell-based fluorescent assay to assess the effect of the tested compounds. We obtained a hit rate of 0.04% (20 hits out of 50,000 compounds from the selected library). All primary hits decreased mitochondria content and brought it closer to WT levels. Structural similarities between our primary hits and other compounds with known targets allowed the identification of three putative cellular pathways/targets: 11β-hydroxysteroid dehydrogenase type 1, Sonic hedgehog (Shh), and Sigma-1-Receptor (S1R). In addition to initial experimental indication of Shh pathway impairment in VWM mouse brains, the current study provides evidence that S1R is a relevant target for pharmaceutical intervention for potential treatment of the disease. Specifically, we found lower expression level of S1R protein in fibroblasts, astrocytes, and whole brains isolated from Eif2b5R132H/R132H compared to WT mice, and confirmed that one of the hits is a direct binder of S1R, acting as agonist. Furthermore, we provide evidence that treatment of mutant mouse fibroblasts and astrocytes with various S1R agonists corrects the functional impairments of their mitochondria and prevents their need to increase their mitochondria content for compensation purposes. Moreover, S1R activation enhances the survival rate of mutant cells under ER stress conditions, bringing it to WT levels. This study marks S1R as a target for drug development toward treatment of VWM disease. Moreover, it further establishes the important connection between white matter well-being and S1R-mediated proper mitochondria/ER function.
Collapse
Affiliation(s)
- Andrea Atzmon
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet-Eshed
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yocheved Gilad
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Orna Elroy-Stein
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Porciuncula R, Spada PKWDS, Goulart KOB. LEUKOENCEPHALOPATHY WITH EVANESCENT WHITE MATTER: A CASE REPORT. REVISTA PAULISTA DE PEDIATRIA 2018; 36:515-518. [PMID: 29995139 PMCID: PMC6322808 DOI: 10.1590/1984-0462/;2018;36;4;00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/28/2017] [Indexed: 12/04/2022]
Abstract
Objective: To describe the case of a child diagnosed with leukoencephalopathy with
vanishing white matter (LVWM), a rare genetic disease with autosomal
recessive inheritance pattern. Case description: A 5-month-old male child started to refuse breast-feeding, showing
somnolence and signs of dehydration,with dry mouth, increasing body
temperature and adipsy. As days went by, the symptoms got worse. The infant
was very sleepy and was transferred to the intensive care unit, where he
stayed for one week. At this time, a signal alteration with hyper attenuated
T2 predominance was identified in the magnetic resonance imaging,
compromising the white matter, which had diffuse and symmetrical aspect. At
this time, the infant started to present seizures. When the infant was 11
months old, he was diagnosed with tonsillitis and presented recurrent fever
peaks and extreme sleepiness. After hospital admission, the infant
progressed to a comatose state and died. The diagnosis of LVWM was confirmed
in examinations performed after death. As a late diagnosis, a genetic
disease was identified with a mutation in one of the five genes responsible
for the codification of complex eukaryotic translation initiation factor 2B
(eIF2B), involved with the control of the protein translation and which is
described as pathogenic in individuals with LVWM. Comments: LVWM is a hereditary brain disease that occurs primarily in children. The
disease is chronic and progressive, with additional episodes of rapid
deterioration, as shown in the present case report.
Collapse
|
14
|
Pavitt GD. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1491. [PMID: 29989343 DOI: 10.1002/wrna.1491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Graham D Pavitt
- Division Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Moon SL, Parker R. EIF2B2 mutations in vanishing white matter disease hypersuppress translation and delay recovery during the integrated stress response. RNA (NEW YORK, N.Y.) 2018; 24:841-852. [PMID: 29632131 PMCID: PMC5959252 DOI: 10.1261/rna.066563.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/07/2018] [Indexed: 05/29/2023]
Abstract
Mutations in eIF2B genes cause vanishing white matter disease (VWMD), a fatal leukodystrophy that can manifest following physical trauma or illness, conditions that activate the integrated stress response (ISR). EIF2B is the guanine exchange factor for eIF2, facilitating ternary complex formation and translation initiation. During the ISR, eIF2α is phosphorylated and inhibits eIF2B, causing global translation suppression and stress-induced gene translation, allowing stress adaptation and recovery. We demonstrate that VWMD patient cells hypersuppress translation during the ISR caused by acute ER stress, delaying stress-induced gene expression and interrupting a negative feedback loop that allows translational recovery by GADD34-mediated dephosphorylation of phospho-eIF2α. Thus, cells from VWMD patients undergo a prolonged state of translational hyperrepression and fail to recover from stress. We demonstrate that small molecules targeting eIF2B or the eIF2α kinase PERK rescue translation defects in patient cells. Therefore, defects in the ISR could contribute to white matter loss in VWMD.
Collapse
Affiliation(s)
- Stephanie L Moon
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
16
|
Wong YL, LeBon L, Edalji R, Lim HB, Sun C, Sidrauski C. The small molecule ISRIB rescues the stability and activity of Vanishing White Matter Disease eIF2B mutant complexes. eLife 2018; 7:32733. [PMID: 29489452 PMCID: PMC5829914 DOI: 10.7554/elife.32733] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
eIF2B is a dedicated guanine nucleotide exchange factor for eIF2, the GTPase that is essential to initiate mRNA translation. The integrated stress response (ISR) signaling pathway inhibits eIF2B activity, attenuates global protein synthesis and upregulates a set of stress-response proteins. Partial loss-of-function mutations in eIF2B cause a neurodegenerative disorder called Vanishing White Matter Disease (VWMD). Previously, we showed that the small molecule ISRIB is a specific activator of eIF2B (Sidrauski et al., 2015). Here, we report that various VWMD mutations destabilize the decameric eIF2B holoenzyme and impair its enzymatic activity. ISRIB stabilizes VWMD mutant eIF2B in the decameric form and restores the residual catalytic activity to wild-type levels. Moreover, ISRIB blocks activation of the ISR in cells carrying these mutations. As such, ISRIB promises to be an invaluable tool in proof-of-concept studies aiming to ameliorate defects resulting from inappropriate or pathological activation of the ISR.
Collapse
Affiliation(s)
- Yao Liang Wong
- Calico Life Sciences LLC, South San Francisco, United States
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, United States
| | - Rohinton Edalji
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | - Hock Ben Lim
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | - Chaohong Sun
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | | |
Collapse
|
17
|
Wisse LE, Ter Braak TJ, van de Beek MC, van Berkel CGM, Wortel J, Heine VM, Proud CG, van der Knaap MS, Abbink TEM. Adult mouse eIF2Bε Arg191His astrocytes display a normal integrated stress response in vitro. Sci Rep 2018; 8:3773. [PMID: 29491431 PMCID: PMC5830650 DOI: 10.1038/s41598-018-21885-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Vanishing white matter (VWM) is a genetic childhood white matter disorder, characterized by chronic as well as episodic, stress provoked, neurological deterioration. Treatment is unavailable and patients often die within a few years after onset. VWM is caused by recessive mutations in the eukaryotic initiation factor 2B (eIF2B). eIF2B regulates protein synthesis rates in every cell of the body. In normal cells, various types of cellular stress inhibit eIF2B activity and induce the integrated stress response (ISR). We have developed a VWM mouse model homozygous for the pathogenic Arg191His mutation in eIF2Bε (2b5ho), representative of the human disease. Neuropathological examination of VWM patient and mouse brain tissue suggests that astrocytes are primarily affected. We hypothesized that VWM astrocytes are selectively hypersensitive to ISR induction, resulting in a heightened response. We cultured astrocytes from wildtype and VWM mice and investigated the ISR in assays that measure transcriptional induction of stress genes, protein synthesis rates and cell viability. We investigated the effects of short- and long-term stress as well as stress recovery. We detected congruent results amongst the various assays and did not detect a hyperactive ISR in VWM mouse astrocytes.
Collapse
Affiliation(s)
- Lisanne E Wisse
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Timo J Ter Braak
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Malu-Clair van de Beek
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Carola G M van Berkel
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke Wortel
- Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Chris G Proud
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab 2017; 6:1024-1039. [PMID: 28951826 PMCID: PMC5605732 DOI: 10.1016/j.molmet.2017.06.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. SCOPE OF REVIEW Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes. There is substantial evidence for the presence of endoplasmic reticulum stress in β cells in type 1 and type 2 diabetes. Direct evidence for the importance of this stress response is provided by an increasing number of monogenic forms of diabetes. In particular, mutations in the PERK branch of the unfolded protein response provide insight into its importance for human β cell function and survival. The knowledge gained from different rodent models is reviewed. More disease- and patient-relevant models, using human induced pluripotent stem cells differentiated into β cells, will further advance our understanding of pathogenic mechanisms. Finally, we review the therapeutic modulation of endoplasmic reticulum stress and signaling in β cells. MAJOR CONCLUSIONS Pancreatic β cells are sensitive to excessive endoplasmic reticulum stress and dysregulated eIF2α phosphorylation, as indicated by transcriptome data, monogenic forms of diabetes and pharmacological studies. This should be taken into consideration when devising new therapeutic approaches for diabetes.
Collapse
Key Words
- ATF, activating transcription factor
- CHOP, C/EBP homologous protein
- CRISPR, clustered regularly interspaced short palindromic repeats
- CReP, constitutive repressor of eIF2α phosphorylation
- Diabetes
- ER, endoplasmic reticulum
- ERAD, ER-associated degradation
- Endoplasmic reticulum stress
- GCN2, general control non-derepressible-2
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GWAS, genome-wide association study
- HNF1A, hepatocyte nuclear factor 1-α
- HRI, heme-regulated inhibitor kinase
- IAPP, islet amyloid polypeptide
- IER3IP1, immediate early response-3 interacting protein-1
- IRE1, inositol-requiring protein-1
- ISR, integrated stress response
- Insulin
- Islet
- MEHMO, mental retardation, epilepsy, hypogonadism and -genitalism, microcephaly and obesity
- MODY, maturity-onset diabetes of the young
- NRF2, nuclear factor, erythroid 2 like 2
- PBA, 4-phenyl butyric acid
- PERK, PKR-like ER kinase
- PKR, protein kinase RNA
- PP1, protein phosphatase 1
- PPA, phenylpropenoic acid glucoside
- Pancreatic β cell
- Pdx1, pancreatic duodenal homeobox 1
- RIDD, regulated IRE1-dependent decay
- RyR2, type 2 ryanodine receptor/Ca2+ release channel
- SERCA, sarcoendoplasmic reticulum Ca2+ ATPase
- TUDCA, taurine-conjugated ursodeoxycholic acid derivative
- UPR, unfolded protein response
- WFS, Wolfram syndrome
- XBP1, X-box binding protein 1
- eIF2, eukaryotic translation initiation factor 2
- eIF2α
- hESC, human embryonic stem cell
- hPSC, human pluripotent stem cell
- hiPSC, human induced pluripotent stem cell
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
19
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Raini G, Sharet R, Herrero M, Atzmon A, Shenoy A, Geiger T, Elroy-Stein O. Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease. J Neurochem 2017; 141:694-707. [PMID: 28306143 DOI: 10.1111/jnc.14024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a master regulator of protein synthesis under normal and stress conditions. Mutations in any of the five genes encoding its subunits lead to vanishing white matter (VWM) disease, a recessive genetic deadly illness caused by progressive loss of white matter in the brain. In this study we used fibroblasts, which are not involved in the disease, to demonstrate the involvement of eIF2B in mitochondrial function and abundance. Mass spectrometry of total proteome of mouse embryonic fibroblasts (MEFs) isolated from Eif2b5R132H/R132H mice revealed unbalanced stoichiometry of proteins involved in oxidative phosphorylation and of mitochondrial translation machinery components, among others. Mutant MEFs exhibit 55% decrease in oxygen consumption rate per mtDNA content and 47% increase in mitochondrial abundance (p < 0.005), reflecting adaptation to energy requirements. A more robust eIF2B-associated oxidative respiration deficiency was found in mutant primary astrocytes, which exhibit > 3-fold lower ATP-linked respiration per cell despite a 2-fold increase in mtDNA content (p < 0.03). The 2-fold increase in basal and stimulated glycolysis in mutant astrocytes (p ≤ 0.03), but not in MEFs, demonstrates their higher energetic needs and further explicates their involvement in the disease. The data demonstrate the critical role of eIF2B in tight coordination of expression from nuclear and mitochondrial genomes and illuminates the importance of mitochondrial function in VWM pathology. Further dissection of the signaling network associated with eIF2B function will help generating therapeutic strategies for VWM disease and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gali Raini
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Skopkova M, Hennig F, Shin BS, Turner CE, Stanikova D, Brennerova K, Stanik J, Fischer U, Henden L, Müller U, Steinberger D, Leshinsky-Silver E, Bottani A, Kurdiova T, Ukropec J, Nyitrayova O, Kolnikova M, Klimes I, Borck G, Bahlo M, Haas SA, Kim JR, Lotspeich-Cole LE, Gasperikova D, Dever TE, Kalscheuer VM. EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat 2017; 38:409-425. [PMID: 28055140 DOI: 10.1002/humu.23170] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022]
Abstract
Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.
Collapse
Affiliation(s)
- Martina Skopkova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Friederike Hennig
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Clesson E Turner
- Department of Genetics, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Daniela Stanikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Katarina Brennerova
- First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Juraj Stanik
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia.,Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, University of Leipzig, Germany
| | - Ute Fischer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lyndal Henden
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ulrich Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Daniela Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany.,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - Esther Leshinsky-Silver
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Timea Kurdiova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Miriam Kolnikova
- Department of Pediatric Neurology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Iwar Klimes
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Leda E Lotspeich-Cole
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Gasperikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
22
|
Volpi VG, Touvier T, D'Antonio M. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders. Front Mol Neurosci 2017; 9:162. [PMID: 28101003 PMCID: PMC5209374 DOI: 10.3389/fnmol.2016.00162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia.
Collapse
Affiliation(s)
- Vera G Volpi
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Thierry Touvier
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| |
Collapse
|
23
|
Elroy-Stein O. Mitochondrial malfunction in vanishing white matter disease: a disease of the cytosolic translation machinery. Neural Regen Res 2017; 12:1610-1612. [PMID: 29171421 PMCID: PMC5696837 DOI: 10.4103/1673-5374.217329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Orna Elroy-Stein
- Dept of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
24
|
Sekine Y, Zyryanova A, Crespillo-Casado A, Amin-Wetzel N, Harding HP, Ron D. Paradoxical Sensitivity to an Integrated Stress Response Blocking Mutation in Vanishing White Matter Cells. PLoS One 2016; 11:e0166278. [PMID: 27812215 PMCID: PMC5094784 DOI: 10.1371/journal.pone.0166278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 01/28/2023] Open
Abstract
The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2’s alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an inherited leukoencephalopathy with vanishing white matter (VWM), but the role of the ISR in its pathogenesis remains unclear. Using CRISPR-Cas9 genome editing we introduced the most severe known VWM mutation, EIF2B4A391D, into CHO cells. Compared to isogenic wildtype cells, GEF activity of cells with the VWM mutation was impaired and the mutant cells experienced modest enhancement of the ISR. However, despite their enhanced ISR, imposed by the intrinsic defect in eIF2B, disrupting the inhibitory effect of phosphorylated eIF2α on GEF by a contravening EIF2S1/eIF2αS51A mutation that functions upstream of eIF2B, selectively enfeebled both EIF2B4A391D and the related severe VWM EIF2B4R483W cells. The basis for paradoxical dependence of cells with the VWM mutations on an intact eIF2α genotype remains unclear, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations. Nonetheless, our findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR.
Collapse
Affiliation(s)
- Yusuke Sekine
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (DR); (YS)
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Niko Amin-Wetzel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Heather P. Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (DR); (YS)
| |
Collapse
|
25
|
Chen N, Dai L, Jiang Y, Wang J, Hao H, Ren Y, Leng X, Zang L, Wu Y. Endoplasmic reticulum stress intolerance in EIF2B3 mutant oligodendrocytes is modulated by depressed autophagy. Brain Dev 2016; 38:507-15. [PMID: 26625702 DOI: 10.1016/j.braindev.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Eukaryotic translation initiation factor 2B (eIF2B) is an essential factor for the initiation of protein synthesis. Mutations in eIF2B encoded by EIF2B1-5 cause a lethal leukoencephalopathy--vanishing white matter disease (VWM). Previous studies have suggested that an improper activated unfolded protein response (UPR) after endoplasmic reticulum stress (ERS) contributed to the pathogenesis of the disease. Autophagy, an important compensatory pathway after ERS, was analyzed in this study. METHODS To determine the tolerance differences to ERS, cell viability and apoptosis rates were detected in oligodendrocyte cell lines transfected with EIF2B3-c.1037T>C or the wild type. Autophagy flux was measured between groups. Autophagy inducers and inhibitors were used to identify the role of autophagy in the mutant oligodendrocytes. RESULTS We confirmed that oligodendrocytes with mutant EIF2B3 was less tolerant to ERS than the wild type, with decreased cell viability and increased apoptosis rates. Autophagy flux was depressed in mutant oligodendrocytes under baseline condition and after ERS stimulation. Reduced expression of autophagy related gene (Atg) 3 and Atg 7 were involved in the depression of autophagy flux. The mutant oligodendrocytes pretreated with autophagy inducers showed stable cell viability and decreased apoptosis despite ERS induction, whereas the autophagy inhibitors aggravated cell apoptosis and viability declination. CONCLUSIONS Oligodendrocytes transfected with mutant EIF2B3 was less tolerant to ERS than the wild type. Depressed autophagy flux was observed in the mutant cells at baseline and after ERS stimulation. Improperly depressed autophagy played a role in the susceptibility to ERS in EIF2B3 mutant oligodendrocytes.
Collapse
Affiliation(s)
- Na Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Lifang Dai
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hongjun Hao
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yali Ren
- Lab of Electron Microscopy, Peking University First Hospital, Beijing 100034, China
| | - Xuerong Leng
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Lili Zang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
26
|
Chen N, Jiang YW, Hao HJ, Ban TT, Gao K, Zhang ZB, Wang JM, Wu Y. Different Eukaryotic Initiation Factor 2Bε Mutations Lead to Various Degrees of Intolerance to the Stress of Endoplasmic Reticulum in Oligodendrocytes. Chin Med J (Engl) 2016; 128:1772-7. [PMID: 26112719 PMCID: PMC4733711 DOI: 10.4103/0366-6999.159353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Vanishing white matter disease (VWM), a human autosomal recessive inherited leukoencephalopathy, is due to mutations in eukaryotic initiation factor 2B (eIF2B). eIF2B is responsible for the initiation of protein synthesis by its guanine nucleotide exchange factor (GEF) activity. Mutations of eIF2B impair GEF activity at different degree. Previous studies implied improperly activated unfolded protein response (UPR) and endoplasmic reticulum stress (ERS) participated in the pathogenesis of VWM. Autophagy relieves endoplasmic reticulum load by eliminating the unfolded protein. It is still unknown the effects of genotypes on the pathogenesis. In this work, UPR and autophagy flux were analyzed with different mutational types. Methods: ERS tolerance, reflected by apoptosis and cell viability, was detected in human oligodendrocyte cell line transfected with the wild type, or different mutations of p. Arg113His, p. Arg269* or p. Ser610-Asp613del in eIF2Bε. A representative UPR-PERK component of activating transcription factor 4 (ATF4) was measured under the basal condition and ERS induction. Autophagy was analyzed the flux in the presence of lysosomal inhibitors. Results: The degree of ERS tolerance varied in different genotypes. The truncated or deletion mutant showed prominent apoptosis cell viability declination after ERS induction. The most seriously damaged GEF activity of p. Arg269* group underwent spontaneous apoptosis. The truncated or deletion mutant showed elevated ATF4 under basal as well as ERS condition. Decreased expression of LC3-I and LC3-II in the mutants reflected an impaired autophagy flux, which was more obvious in the truncated or deletion mutants after ERS induction. Conclusions: GEF activities in different genotypes could influence the cell ERS tolerance as well as compensatory pathways of UPR and autophagy. Oligodendrocytes with truncated or deletion mutants showed less tolerable to ERS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
27
|
Dooves S, Bugiani M, Postma NL, Polder E, Land N, Horan ST, van Deijk ALF, van de Kreeke A, Jacobs G, Vuong C, Klooster J, Kamermans M, Wortel J, Loos M, Wisse LE, Scheper GC, Abbink TEM, Heine VM, van der Knaap MS. Astrocytes are central in the pathomechanisms of vanishing white matter. J Clin Invest 2016; 126:1512-24. [PMID: 26974157 DOI: 10.1172/jci83908] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/28/2016] [Indexed: 11/17/2022] Open
Abstract
Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients' tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders.
Collapse
|
28
|
Zhang H, Dai L, Chen N, Zang L, Leng X, Du L, Wang J, Jiang Y, Zhang F, Wu X, Wu Y. Fifteen novel EIF2B1-5 mutations identified in Chinese children with leukoencephalopathy with vanishing white matter and a long term follow-up. PLoS One 2015; 10:e0118001. [PMID: 25761052 PMCID: PMC4356545 DOI: 10.1371/journal.pone.0118001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/03/2015] [Indexed: 01/08/2023] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited childhood white matter disorders, which caused by mutations in each of the five subunits of eukaryotic translation initiation factor 2B (EIF2B1-5). In our study, 34 out of the 36 clinically diagnosed children (94%) were identified to have EIF2B1-5 mutations by sequencing. 15 novel mutations were identified. CNVs were not detected in patients with only one mutant allele and mutation-negative determined by gene sequencing. There is a significantly higher incidence of patients with EIF2B3 mutations compared with Caucasian patients (32% vs. 4%). c.1037T>C (p.Ile346Thr) in EIF2B3 was confirmed to be a founder mutation in Chinese, which probably one of the causes of the genotypic differences between ethnicities. Our average 4.4 years-follow-up on infantile, early childhood and juvenile VWM children suggested a rapid deterioration in motor function. Episodic aggravation was presented in 90% of infantile cases and 71.4% of childhood cases. 10 patients died during the follow-up. The Kaplan-Meier curve showed that the median survival time is 8.83 ± 1.51 years. This is the largest sample of children in a VWM follow-up study, which is helpful for a more depth understanding about the natural course.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lifang Dai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lili Zang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuerong Leng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Feng Zhang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 2013; 12:105-18. [PMID: 23237905 DOI: 10.1016/s1474-4422(12)70238-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum (ER) dysfunction might have an important part to play in a range of neurological disorders, including cerebral ischaemia, sleep apnoea, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, the prion diseases, and familial encephalopathy with neuroserpin inclusion bodies. Protein misfolding in the ER initiates the well studied unfolded protein response in energy-starved neurons during stroke, which is relevant to the toxic effects of reperfusion. The toxic peptide amyloid β induces ER stress in Alzheimer's disease, which leads to activation of similar pathways, whereas the accumulation of polymeric neuroserpin in the neuronal ER triggers a poorly understood ER-overload response. In other neurological disorders, such as Parkinson's and Huntington's diseases, ER dysfunction is well recognised but the mechanisms by which it contributes to pathogenesis remain unclear. By targeting components of these signalling responses, amelioration of their toxic effects and so the treatment of a range of neurodegenerative disorders might become possible.
Collapse
Affiliation(s)
- Benoit D Roussel
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
30
|
Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, Aronica E, Hol EM, Kuijpers TW. Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome. Brain 2013; 136:245-58. [DOI: 10.1093/brain/aws321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
31
|
The endoplasmic reticulum unfolded protein response and neurodegeneration. PROTEIN QUALITY CONTROL IN NEURODEGENERATIVE DISEASES 2013. [DOI: 10.1007/978-3-642-27928-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
32
|
Huyghe A, Horzinski L, Hénaut A, Gaillard M, Bertini E, Schiffmann R, Rodriguez D, Dantal Y, Boespflug-Tanguy O, Fogli A. Developmental splicing deregulation in leukodystrophies related to EIF2B mutations. PLoS One 2012; 7:e38264. [PMID: 22737209 PMCID: PMC3380860 DOI: 10.1371/journal.pone.0038264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Laetitia Horzinski
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Alain Hénaut
- Systématique, Adaptation, Evolution, CNRS - Université Pierre et Marie Curie, Paris, France
| | - Marina Gaillard
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Enrico Bertini
- Division of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neuroscience, Bambino Gesu’Hospital Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, United States of America
| | - Diana Rodriguez
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Neuropédiatrie, Paris, France
- INSERM U676, Hopital Robert Debré, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Yann Dantal
- Soluscience, Faculté de Médecine, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- INSERM U676, Hopital Robert Debré, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Neuropédiatrie et Maladies Métaboliques, Paris, France
- Université Paris Diderot, Sorbonne Cité, Paris, France
| | - Anne Fogli
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
- Centre Hospitalier Universitaire de Clermont-Ferrand, Service de Biochimie Médicale et Biologie Moléculaire, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
33
|
Pavitt GD, Ron D. New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012278. [PMID: 22535228 DOI: 10.1101/cshperspect.a012278] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Homeostasis of the protein-folding environment in the endoplasmic reticulum (ER) is maintained by signal transduction pathways that collectively constitute an unfolded protein response (UPR). These affect bulk protein synthesis and thereby the levels of ER stress, but also culminate in regulated expression of specific mRNAs, such as that encoding the transcription factor ATF4. Mechanisms linking eukaryotic initiation factor 2 (eIF2) phosphorylation to control of unfolded protein load in the ER were elucidated more than 10 years ago, but recent work has highlighted the diversity of processes that impinge on eIF2 activity and revealed that there are multiple mechanisms by which changes in eIF2 activity can modulate the translation of individual mRNAs. In addition, the potential for affecting this step of translation initiation pharmacologically is becoming clearer. Furthermore, it is now clear that another strand of the UPR, controlled by the endoribonuclease inositol-requiring enzyme 1 (IRE1), also affects rates of protein synthesis in stressed cells and that its effector function, mediated by the transcription factor X-box-binding protein 1 (XBP1), is subject to important mRNA-specific translational regulation. These new insights into the convergence of translational control and the UPR will be reviewed here.
Collapse
Affiliation(s)
- Graham D Pavitt
- Faculty of Life Sciences, University of Manchester, United Kingdom.
| | | |
Collapse
|
34
|
Dalton LE, Healey E, Irving J, Marciniak SJ. Phosphoproteins in stress-induced disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:189-221. [PMID: 22340719 DOI: 10.1016/b978-0-12-396456-4.00003-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.
Collapse
Affiliation(s)
- Lucy E Dalton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
Vanishing white matter (VWM) is an inherited and often severe brain disease. It is caused by mutations in the genes for eIF2B, a protein that plays a key role in mRNA translation. The age of onset and clinical features are highly variable. In severe cases, onset may be antenatal and other organs are affected. The main feature is always a progressive encephalopathy, faster deterioration being provoked by head injury or febrile infections. The myelinating cells, oligodendrocytes, are affected in VWM. Initial studies suggested that VWM mutations decreased eIF2B’s activity. However, recent findings indicate that the situation is more complex. Studies in human brain samples or a mouse model for VWM indicate that development of astroglial cells and oligodendrocytes is impaired. Defects in eIF2B likely affect cell stress pathways and the expression of specific proteins, although their identities remain unknown.
Collapse
Affiliation(s)
- Christopher G Proud
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
36
|
Marom L, Ulitsky I, Cabilly Y, Shamir R, Elroy-Stein O. A point mutation in translation initiation factor eIF2B leads to function--and time-specific changes in brain gene expression. PLoS One 2011; 6:e26992. [PMID: 22073122 PMCID: PMC3205039 DOI: 10.1371/journal.pone.0026992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM. To further explore the effect of the mutation on global gene expression in the brain, we conducted a wide-scale transcriptome analysis of the first three critical postnatal weeks. METHODOLOGY/PRINCIPAL FINDINGS Genome-wide mRNA expression of wild-type and mutant mice was profiled at postnatal (P) days 1, 18 and 21 to reflect the early proliferative stage prior to white matter establishment (P1) and the peak of oligodendrocye differentiation and myelin synthesis (P18 and P21). At each developmental stage, between 441 and 818 genes were differentially expressed in the mutant brain with minimal overlap, generating unique time point-specific gene expression signatures. CONCLUSIONS The current study demonstrates that a point mutation in eIF2B, a key translation initiation factor, has a massive effect on global gene expression in the brain. The overall changes in expression patterns reflect multiple layers of indirect effects that accumulate as the brain develops and matures. The differentially expressed genes seem to reflect delayed waves of gene expression as well as an adaptation process to cope with hypersensitivity to cellular stress.
Collapse
Affiliation(s)
- Liraz Marom
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Igor Ulitsky
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Cabilly
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
- Interdisciplinary School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Liu R, van der Lei HDW, Wang X, Wortham NC, Tang H, van Berkel CGM, Mufunde TA, Huang W, van der Knaap MS, Scheper GC, Proud CG. Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes. Hum Mutat 2011; 32:1036-45. [PMID: 21560189 DOI: 10.1002/humu.21535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/02/2011] [Indexed: 01/28/2023]
Abstract
Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (α-ε; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis. Here, we have studied the functional effects of selected VWM mutations in EIF2B2-5 by coexpressing mutated and wild-type subunits in human cells. The observed functional effects are very diverse, including defects in eIF2B complex integrity; binding to the regulatory α-subunit; substrate binding; and GEF activity. Activity data for recombinant eIF2B complexes agree closely with those for patient-derived cells with the same mutations. Some mutations do not affect these parameters even though they cause severe disease. These findings are important for three reasons; they demonstrate that measuring eIF2B activity in patients' cells has limited value as a diagnostic test; they imply that severe disease can result from alterations in eIF2B function other than defects in complex integrity, substrate binding or GEF activity, and last, the diversity of functional effects of VWM mutations implies that seeking agents to manage or treat VWM should focus on downstream effectors of eIF2B, not restoring eIF2B activity.
Collapse
Affiliation(s)
- Rui Liu
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The alpha subunit of eukaryotic initiation factor 2B (eIF2B) is required for eIF2-mediated translational suppression of vesicular stomatitis virus. J Virol 2011; 85:9716-25. [PMID: 21795329 DOI: 10.1128/jvi.05146-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α), which sequesters eIF2B to prevent exchange activity. Previously, we demonstrated that tumor cells are sensitive to viral replication, possibly due to the occurrence of defects in eIF2B that overcome the inhibitory effects of eIF2α phosphorylation. To extend this analysis, we have investigated the importance of eIF2Bα function and report that this subunit can functionally substitute for its counterpart, GCN3, in yeast. In addition, a variant of mammalian eIF2Bα harboring a point mutation (T41A) was able overcome translational inhibition invoked by amino acid depravation, which activates Saccharomyces cerevisiae GCN2 to phosphorylate the yeast eIF2α homolog SUI2. Significantly, we also demonstrate that the loss of eIF2Bα, or the expression of the T41A variant in mammalian cells, is sufficient to neutralize the consequences of eIF2α phosphorylation and render normal cells susceptible to virus infection. Our data emphasize the importance of eIF2Bα in mediating the eIF2 kinase translation-inhibitory activity and may provide insight into the complex nature of viral oncolysis.
Collapse
|
39
|
Leng X, Wu Y, Wang X, Pan Y, Wang J, Li J, Du L, Dai L, Wu X, Proud CG, Jiang Y. Functional analysis of recently identified mutations in eukaryotic translation initiation factor 2Bɛ (eIF2Bɛ) identified in Chinese patients with vanishing white matter disease. J Hum Genet 2011; 56:300-5. [PMID: 21307862 DOI: 10.1038/jhg.2011.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vanishing white matter disease (VWM) is the first human hereditary disease known to be caused by defects in initiation of protein synthesis. Gene defects in each of the five subunits of eukaryotic translation initiation factor 2B (eIF2B α-ɛ) are responsible for the disease, although the mechanism of the pathogenesis is not well understood. In our previous study, four novel eIF2Bɛ mutations were found in Chinese patients: p.Asp62Val, p.Cys335Ser, p.Asn376Asp and p.Ser610-Asp613del. Functional analysis was performed on these mutations and the recently reported p.Arg269X. Our data showed that all resulted in a decrease in the guanine nucleotide exchange (GEF) activity of the eIF2B complex. p.Arg269X and p.Ser610-Asp613del mutants displayed the lowest activity, followed by p.Cys335Ser, p.Asn376Asp and p.Asp62Val. p.Arg269X and p.Ser610-Asp613del could not produce stable eIF2Bɛ, leading to almost complete loss-of-function. No evidence was obtained for the three missense mutations in changes in eIF2Bɛ protein level or eIF2BɛSer(540) phosphorylation, and disruption of holocomplex assembly, or binding to eIF2. All patients in our study had the classical phenotype. p.Asp62Val and p.Asn376Asp mutations caused only mildly decreased GEF activity, were probably responsible for relatively mild phenotype in cases of classical VWM.
Collapse
Affiliation(s)
- Xuerong Leng
- Pediatric Department, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23:239-52. [PMID: 21288706 DOI: 10.1016/j.ceb.2011.01.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.
Collapse
Affiliation(s)
- Soledad Matus
- Center for Molecular Studies of Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
41
|
Evaluation of the endoplasmic reticulum-stress response in eIF2B-mutated lymphocytes and lymphoblasts from CACH/VWM patients. BMC Neurol 2010; 10:94. [PMID: 20958979 PMCID: PMC2967530 DOI: 10.1186/1471-2377-10-94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 10/19/2010] [Indexed: 12/03/2022] Open
Abstract
Background Eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor (GEF) and a key regulator of translation initiation under normal and stress conditions, causes an autosomal recessive leukodystrophy of a wide clinical spectrum. EBV-immortalised lymphocytes (EIL) from eIF2B-mutated patients exhibit a decrease in eIF2B GEF activity. eIF2B-mutated primary fibroblasts have a hyper-induction of activating transcription factor 4 (ATF4) which is involved in the protective unfolded protein response (UPR), also known as the ER-stress response. We tested the hypothesis that EIL from eIF2B-mutated patients also exhibit a heightened ER-stress response. Methods We used thapsigargin as an ER-stress agent and looked at polysomal profiles, rate of protein synthesis, translational activation of ATF4, and transcriptional induction of stress-specific mRNAs (ATF4, CHOP, ASNS, GRP78) in normal and eIF2B-mutated EIL. We also compared the level of stress-specific mRNAs between EIL and primary lymphocytes (PL). Results Despite the low eIF2B GEF activity in the 12 eIF2B-mutated EIL cell lines tested (range 40-70% of normal), these cell lines did not differ from normal EIL in their ATF4-mediated ER-stress response. The absence of hyper-induction of ATF4-mediated ER-stress response in eIF2B-mutated EIL in contrast to primary fibroblasts is not related to their transformation by EBV. Indeed, PL exhibited a higher induction of the stress-specific mRNAs in comparison to EIL, but no hyper-induction of the UPR was noticed in the eIF2B-mutated cell lines in comparison to controls. Conclusions Taken together with work of others, our results demonstrate the absence of a major difference in ER-stress response between controls and eIF2B-mutated cells. Therefore, components of the ER-stress response cannot be used as discriminantory markers in eIF2B-related disorders.
Collapse
|
42
|
Abstract
Vanishing white matter (VWM) is one of the most prevalent inherited childhood leukoencephalopathies, but this may affect people of all ages, including neonates and adults. It is a progressive disorder clinically dominated by cerebellar ataxia and in which minor stress conditions, such as fever or mild trauma, provoke major episodes of neurologic deterioration. Typical pathological findings include increasing white matter rarefaction and cystic degeneration, oligodendrocytosis with highly characteristic foamy oligodendrocytes, meager astrogliosis with dysmorphic astrocytes, and loss of oligodendrocytes by apoptosis. Vanishing white matter is caused by mutations in any of the genes encoding the 5 subunits of the eukaryotic translation initiation factor 2B (eIF2B), EIF2B1 through EIF2B5. eIF2B is a ubiquitously expressed protein complex that plays a crucial role in regulating the rate of protein synthesis. Vanishing white matter mutations reduce the activity of eIF2B and impair its function to couple protein synthesis to the cellular demands in basal conditions and during stress. Reduced eIF2B activity leads to sustained improper activation of the unfolded protein response, resulting in concomitant expression of proliferation, prosurvival, and proapoptotic downstream effectors. Consequently, VWM cells are constitutively predisposed and hyperreactive to stress. In view of the fact that VWM genes are housekeeping genes, it is surprising that the disease is primarily a leukoencephalopathy. The pathophysiology of selective glial vulnerability in VWM remains poorly understood.
Collapse
|
43
|
Geva M, Cabilly Y, Assaf Y, Mindroul N, Marom L, Raini G, Pinchasi D, Elroy-Stein O. A mouse model for eukaryotic translation initiation factor 2B-leucodystrophy reveals abnormal development of brain white matter. ACTA ACUST UNITED AC 2010; 133:2448-61. [PMID: 20826436 DOI: 10.1093/brain/awq180] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit. In contrast to human patients, mice homozygous for the mutant Eif2b5 allele (Eif2b5(R132H/R132H) mice) enable multiple analyses under a defined genetic background during the pre-symptomatic stages and during recovery from a defined brain insult. Time-course magnetic resonance imaging revealed for the first time the delayed development of the brain white matter due to the mutation. Electron microscopy demonstrated a higher proportion of small-calibre nerve fibres. Immunohistochemistry detected an abnormal abundance of oligodendrocytes and astrocytes in the brain of younger animals, as well as an abnormal level of major myelin proteins. Most importantly, mutant mice failed to recover from cuprizone-induced demyelination, reflecting an increased sensitivity to brain insults. The anomalous development of white matter in Eif2b5(R132H/R132H) mice underscores the importance of tight translational control to normal myelin formation and maintenance.
Collapse
Affiliation(s)
- Michal Geva
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Martin L, Kimball SR, Gardner LB. Regulation of the unfolded protein response by eif2Bdelta isoforms. J Biol Chem 2010; 285:31944-53. [PMID: 20709751 DOI: 10.1074/jbc.m110.153148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells respond to a variety of stresses, including unfolded proteins in the endoplasmic reticulum (ER), by phosphorylating a subunit of translation initiation factor eIF2, eIF2α. eIF2α phosphorylation inactivates the eIF2B complex. The inactivation of eIF2B not only suppresses the initiation of protein translation but paradoxically up-regulates the translation and expression of transcription factor ATF-4. Both of these processes are important for the cellular response to ER stress, also termed the unfolded protein response. Here we demonstrate that cellular response resulting from eIF2α phosphorylation is attenuated in several cancer cell lines. The deficiency of the unfolded protein response in these cells correlates with the expression of a specific isoform of a regulatory eIF2B subunit, eIF2Bδ variant 1 (V1). Replacement of total eIF2Bδ with V1 renders cells insensitive to eIF2α phosphorylation; specifically, they neither up-regulate ATF-4 and ATF-4 targets nor suppress protein translation. Expression of variant 2 eIF2Bδ in ER stress response-deficient cells restores the stress response. Our data suggest that V1 does not interact with the eIF2 complex, a requisite for eIF2B inhibition by eIF2α phosphorylation. Together, these data delineate a novel physiological mechanism to regulate the ER stress response with a large potential impact on a variety of diseases that result in ER stress.
Collapse
Affiliation(s)
- Leenus Martin
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
45
|
Motlekar N, de Almeida RA, Pavitt GD, Diamond SL, Napper AD. Discovery of chemical modulators of a conserved translational control pathway by parallel screening in yeast. Assay Drug Dev Technol 2010; 7:479-94. [PMID: 19715453 DOI: 10.1089/adt.2009.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) B is a guanine nucleotide exchange factor that plays a central role in translation initiation and its control, especially in response to diverse cellular stresses. In addition, inherited mutations in human eIF2B subunits cause a fatal brain disorder commonly called childhood ataxia with central nervous system hypomyelination or leukoencephalopathy with vanishing white matter. In yeast, inhibiting activity of eIF2B up-regulates expression of the transcriptional activator general control nondepressible (GCN) 4. We report here evaluation of high-throughput screening (HTS) using a yeast-based reporter gene assay, in which strains containing either wild-type or a mutant eIF2B were screened in parallel to identify compounds modifying eIF2B-dependent responses. The goals of the HTS were twofold: first, to discover compounds that restore normal function to mutant eIF2B, which may have therapeutic utility for the fatal human disease; and second, to identify compounds that activate a GCN4 response, which might be useful experimental tools. The HTS assay measured cell growth by absorbance, and activation of gene expression via a beta-galactosidase reporter gene fusion. Because mutant eIF2B activates GCN4 in the absence of stress inducers, the mutant strain was screened for reduction in GCN4 activation. HTS revealed apparent mutant-selective inhibitors but did not reliably predict selectivity as these hits affected both wild-type and mutant strains equally on dose-response confirmation. Wild-type strain results from the HTS identified two GCN4 response activators, both of which were confirmed to be wild-type selective in dose-response testing, suggesting that these compounds may activate GCN4 by a mechanism that down-regulates eIF2B activity.
Collapse
Affiliation(s)
- Nuzhat Motlekar
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, and Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
46
|
Protein synthesis and its control in neuronal cells with a focus on vanishing white matter disease. Biochem Soc Trans 2009; 37:1298-310. [DOI: 10.1042/bst0371298] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein synthesis (also termed mRNA translation) is a key step in the expression of a cell's genetic information, in which the information contained within the coding region of the mRNA is used to direct the synthesis of the new protein, a process that is catalysed by the ribosome. Protein synthesis must be tightly controlled, to ensure the right proteins are made in the right amounts at the right time, and must be accurate, to avoid errors that could lead to the production of defective and potentially damaging proteins. In addition to the ribosome, protein synthesis also requires proteins termed translation factors, which mediate specific steps of the process. The first major stage of mRNA translation is termed ‘initiation’ and involves the recruitment of the ribosome to the mRNA and the identification of the correct start codon to commence translation. In eukaryotic cells, this process requires a set of eIFs (eukaryotic initiation factors). During the second main stage of translation, ‘elongation’, the ribosome traverses the coding region of the mRNA, assembling the new polypeptide: this process requires eEFs (eukaryotic elongation factors). Control of eEF2 is important in certain neurological processes. It is now clear that defects in eIFs or in their control can give rise to a number of diseases. This paper provides an overview of translation initiation and its control mechanisms, particularly those examined in neuronal cells. A major focus concerns an inherited neurological condition termed VHM (vanishing white matter) or CACH (childhood ataxia with central nervous system hypomyelination). VWM/CACH is caused by mutations in the translation initiation factor, eIF2B, a component of the basal translational machinery in all cells.
Collapse
|
47
|
Abstract
Myelinating cells, oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system produce an enormous amount of plasma membrane during the myelination process, making them particularly susceptible to disruptions of the secretory pathway. Endoplasmic reticulum stress, initiated by the accumulation of unfolded or misfolded proteins, activates the unfolded protein response, which adapts cells to the stress. If this adaptive response is insufficient, the unfolded protein response activates an apoptotic program to eliminate the affected cells. Recent observations suggest that endoplasmic reticulum stress in myelinating cells is important in the pathogenesis of various disorders of myelin, including Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease and Vanishing White Matter Disease, as well as in the most common myelin disorder, multiple sclerosis. A better understanding of endoplasmic reticulum stress in myelinating cells has laid the groundwork for the design of new therapeutic strategies for promoting myelinating cell survival in these disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Cell Biology & Neuroscience, University of South Alabama, 307 University Blvd, MSB1201, Mobile, AL 36688. ()
| | - Brian Popko
- The Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, 5841 South Maryland Avenue MC2030, Chicago, IL 60637. ()
| |
Collapse
|
48
|
Identification of novel EIF2B mutations in Chinese patients with vanishing white matter disease. J Hum Genet 2009; 54:74-7. [DOI: 10.1038/jhg.2008.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Kantor L, Pinchasi D, Mintz M, Hathout Y, Vanderver A, Elroy-Stein O. A point mutation in translation initiation factor 2B leads to a continuous hyper stress state in oligodendroglial-derived cells. PLoS One 2008; 3:e3783. [PMID: 19023445 PMCID: PMC2583043 DOI: 10.1371/journal.pone.0003783] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM). The disease is manifested by loss of brain myelin upon physiological stress. In a previous study, we showed that fibroblasts isolated from CACH/VWM patients are hypersensitive to pharmacologically-induced endoplasmic reticulum (ER) stress. Since brain cells from affected individuals are not available for research, we wished to assess the effect of eIF2B mutation on oligodendroglial-derived cells. Methodology/Principal Findings A rat oligodendroglial-derived cell line was used for a stable knock-down of eIF2B5 followed by stable expression of mutated eIF2B5(R195H) cDNA. In response to a pharmacological ER-stress agent, eIF2B5(R195H) expressing cells exhibited heightened ER-stress response demonstrated by hyper induction of ATF4, GADD34, Bip, PDIA1, PDIA3, PDIA4 and PDIA6 proteins. Moreover, even in the absence of a pharmacological stress agent, eIF2B5(R195H)-expressing cells exhibited high basal levels of ATF4, GADD34 and ER-associated Bip, PDIA1 and PDIA3. Significance The data provide evidence that oligodendroglial-derived cells expressing a mutated eIF2B constantly use their stress response mechanism as an adaptation mean in order to survive. The current study is the first to demonstrate the effects of eIF2B5 mutation on ER homeostasis in oligodendroglial-derived cells.
Collapse
Affiliation(s)
- Liraz Kantor
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dalia Pinchasi
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Michelle Mintz
- Center for Genetic Medicine, Children's National Medical Center, Washington D. C., United States of America
| | - Yetrib Hathout
- Center for Genetic Medicine, Children's National Medical Center, Washington D. C., United States of America
| | - Adeline Vanderver
- Center for Genetic Medicine, Children's National Medical Center, Washington D. C., United States of America
| | - Orna Elroy-Stein
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
50
|
Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Biochem Soc Trans 2008; 36:658-64. [PMID: 18631136 DOI: 10.1042/bst0360658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A variety of cellular processes rely on G-proteins, which cycle through active GTP-bound and inactive GDP-bound forms. The switch between these states is commonly regulated by GEFs (guanine-nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Although G-proteins have structural similarity, GEFs are very diverse proteins. A complex example of this system is seen in eukaryotic translation initiation between eIF (eukaryotic initiation factor) 2, a G-protein, its five-subunit GEF, eIF2B, and its GAP, eIF5. eIF2 delivers Met-tRNA(i) (initiator methionyl-tRNA) to the 40S ribosomal subunit before mRNA binding. Upon AUG recognition, eIF2 hydrolyses GTP, aided by eIF5. eIF2B then re-activates eIF2 by removing GDP, thereby promoting association of GTP. In the present article, we review data from studies of representative G-protein-GEF pairs and compare these with observations from our research on eIF2 and eIF2B to propose a model for how interactions between eIF2B and eIF2 promote guanine nucleotide exchange.
Collapse
|