1
|
Mullen KR, Tammen I, Matentzoglu NA, Mather M, Balhoff JP, Esdaile E, Leroy G, Park CA, Rando HM, Saklou NT, Webb TL, Vasilevsky NA, Mungall CJ, Haendel MA, Nicholas FW, Toro S. The Vertebrate Breed Ontology: Toward Effective Breed Data Standardization. J Vet Intern Med 2025; 39:e70133. [PMID: 40413720 PMCID: PMC12103836 DOI: 10.1111/jvim.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Limited universally-adopted data standards in veterinary medicine hinder data interoperability and therefore integration and comparison; this ultimately impedes the application of existing information-based tools to support advancement in diagnostics, treatments, and precision medicine. HYPOTHESIS/OBJECTIVES A single, coherent, logic-based standard for documenting breed names in health, production, and research-related records will improve data use capabilities in veterinary and comparative medicine. ANIMALS No live animals were used. METHODS The Vertebrate Breed Ontology (VBO) was created from breed names and related information compiled from the Food and Agriculture Organization of the United Nations, breed registries, communities, and experts, using manual and computational approaches. Each breed is represented by a VBO term that includes breed information and provenance as metadata. VBO terms are classified using description logic to allow computational applications and Artificial Intelligence-readiness. RESULTS VBO is an open, community-driven ontology representing over 19 500 livestock and companion animal breed concepts covering 49 species. Breeds are classified based on community and expert conventions (e.g., cattle breed) and supported by relations to the breed's genus and species indicated by National Center for Biotechnology Information (NCBI) Taxonomy terms. Relationships between VBO terms (e.g., relating breeds to their foundation stock) provide additional context to support advanced data analytics. VBO term metadata includes synonyms, breed identifiers/codes, and attributed cross-references to other databases. CONCLUSION AND CLINICAL IMPORTANCE The adoption of VBO as a standard for breed names in databases and veterinary electronic health records enhances veterinary data interoperability and computability, supporting precision medicine.
Collapse
Affiliation(s)
- Kathleen R. Mullen
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Imke Tammen
- Sydney School of Veterinary ScienceThe University of SydneySydneyNew South WalesAustralia
| | | | - Marius Mather
- Sydney Informatics HubThe University of SydneySydneyNew South WalesAustralia
| | - James P. Balhoff
- Renaissance Computing InstituteUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Elizabeth Esdaile
- Veterinary Genetics Laboratory, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Gregoire Leroy
- Animal Production and Health DivisionFood and Agriculture Organization of the UnitedRomeItaly
| | - Carissa A. Park
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
| | - Halie M. Rando
- Department of Computer ScienceSmith CollegeNorthamptonMassachusettsUSA
| | - Nadia T. Saklou
- Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Tracy L. Webb
- Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | | | | | - Melissa A. Haendel
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Frank W. Nicholas
- Sydney School of Veterinary ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Sabrina Toro
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Perez Jimenez TE, Issaka Salia O, Neibergs HL, Zhu Z, Spoor E, Rider C, Court MH. Novel ryanodine receptor 1 (RYR1) missense gene variants in two pet dogs with fatal malignant hyperthermia identified by next-generation sequencing. Vet Anaesth Analg 2025; 52:8-18. [PMID: 39516111 DOI: 10.1016/j.vaa.2024.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Evaluate a precision medicine approach to confirm a tentative diagnosis of fatal malignant hyperthermia (MH) in isoflurane-anesthetized pet dogs by identifying novel risk variants in known MH susceptibility genes. STUDY DESIGN Retrospective case series. ANIMALS A male Pit Bull mix aged 7 years (case #1), a male Golden Retriever aged 12 months (case #2) and the dam and sire of case #2. METHODS Available case histories and medical records were reviewed. Missense variants in MH susceptibility genes RYR-1, CACNA1S and STAC3 (case #2 only) were identified by next-generation sequencing of DNA from each case and the parents of case #2 with confirmation by Sanger sequencing. The pathogenicity of variants was evaluated by multiple in silico approaches. RESULTS Both cases demonstrated clinical signs during isoflurane anesthesia consistent with volatile anesthetic-induced MH, including tachypnea, tachycardia, severe hyperthermia and muscle rigidity. Despite whole body cooling and other treatments, both dogs died after cardiac arrest within 15 minutes of detecting hyperthermia. Gene sequencing identified novel missense RYR-1 variants in case #1 (p.Gly2375Arg) and case #2 (p.Pro152Leu). Both variants were likely pathogenic based on multiple criteria, including gene location, amino acid alteration and population allele frequency. The case #1 variant was identical to a known human diagnostic MH variant (p.Gly2375Arg). Neither parent of case #2 had the case #2 variant, indicating this variant was not inherited, but arose de novo in a germ cell of either parent or early in embryogenesis. Whole genome sequence analysis confirmed parentage. Two missense variants were identified in CACNA1S. Both variants were considered nonpathogenic. No variants were identified in STAC3. CONCLUSIONS AND CLINICAL RELEVANCE Like humans, MH susceptibility in dogs is associated with different rare variants located in pathogenic hotspots in the RYR-1 gene. Next-generation sequencing is a useful tool to assist in the definitive diagnosis of MH in dogs.
Collapse
Affiliation(s)
- Tania E Perez Jimenez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ousseini Issaka Salia
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Erich Spoor
- Neurology/Neurosurgery Service, Veterinary Specialty Center of Seattle, Lynnwood, WA, USA
| | - Chaley Rider
- Mountain View Veterinary Clinic, Hayden, ID, USA
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Matsumoto Y, Yik-Lok Chung C, Isobe S, Sakamoto M, Lin X, Chan TF, Hirakawa H, Ishihara G, Lam HM, Nakayama S, Sasamoto S, Tanizawa Y, Watanabe A, Watanabe K, Yagura M, Niimura Y, Nakamura Y. Chromosome-scale assembly with improved annotation provides insights into breed-wide genomic structure and diversity in domestic cats. J Adv Res 2024:S2090-1232(24)00478-8. [PMID: 39490737 DOI: 10.1016/j.jare.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Comprehensive genomic resources offer insights into biological features, including traits/disease-related genetic loci. The current reference genome assembly for the domestic cat (Felis catus), Felis_Catus_9.0 (felCat9), derived from sequences of the Abyssinian cat, may inadequately represent the general cat population, limiting the extent of deducible genetic variations. OBJECTIVES The goal was to develop Anicom American Shorthair 1.0 (AnAms1.0), a reference-grade chromosome-scale cat genome assembly. METHODS In contrast to prior assemblies relying on Abyssinian cat sequences, AnAms1.0 was constructed from the sequences of more popular American Shorthair breed, which is related to more breeds than the Abyssinian cat. By combining advanced genomics technologies, including PacBio long-read sequencing and Hi-C- and optical mapping data-based sequence scaffolding, we compared AnAms1.0 to existing Felidae genome assemblies (20 scaffolds, scaffolds N50 > 150 Mbp). Homology-based and ab initio gene annotation through Iso-Seq and RNA-Seq was used to identify new coding genes and splice variants. RESULTS AnAms1.0 demonstrated superior contiguity and accuracy than existing Felidae genome assemblies. Using AnAms1.0, we identified over 1.5 thousand structural variants and 29 million repetitions compared to felCat9. Additionally, we identified > 1,600 novel protein-coding genes. Notably, olfactory receptor structural variants and cardiomyopathy-related variants were identified. CONCLUSION AnAms1.0 facilitates the discovery of novel genes related to normal and disease phenotypes in domestic cats. The analyzed data are publicly accessible on Cats-I (https://cat.annotation.jp/), which we established as a platform for accumulating and sharing genomic resources to discover novel genetic traits and advance veterinary medicine.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan; Data Science Center, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Claire Yik-Lok Chung
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Xiao Lin
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Ting-Fung Chan
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | | | - Genki Ishihara
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan
| | - Hon-Ming Lam
- School of Life Sciences and the Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | | | | | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | | | - Kei Watanabe
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Kanagawa, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Yoshihito Niimura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.
| |
Collapse
|
4
|
Nosalova N, Huniadi M, Horňáková Ľ, Valenčáková A, Horňák S, Nagoos K, Vozar J, Cizkova D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int J Mol Sci 2024; 25:2891. [PMID: 38474142 DOI: 10.3390/ijms25052891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.
Collapse
Affiliation(s)
- Natalia Nosalova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Slavomir Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Kamil Nagoos
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
5
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
6
|
Haluskova J, Holeckova B, Kokulova L, Galdikova M, Bucan J, Schwarzbacherova V, Sedlakova S. Detection of the T1640C RYR1 mutation indicating malignant hyperthermia in dogs. VET MED-CZECH 2023; 68:428-434. [PMID: 38163044 PMCID: PMC10755811 DOI: 10.17221/46/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Malignant hyperthermia (MH) is a clinical syndrome exhibiting elevation of expired carbon dioxide, hyperthermia, muscle rigidity, rhabdomyolysis, acidosis and hyperkalaemia, as well as cardiac dysrhythmia and renal failure. The syndrome manifests itself as a response to anaesthetic agents, such as e.g., halothane, desflurane, and succinylcholine. Depending on the animal species, MH is characterised by autosomal dominant or recessive inheritance, and so far two genes have been identified whose mutations can be linked to MH: RYR1 and CACNA1S. In different species, various mutations of the RYR1 gene have been described which may underlie MH. One of these mutations in dogs is T1640C, which results in the substitution of alanine for valine of the amino acid 547 (V547A) in the RYR1 protein. In our work, we aimed to investigate MH at the DNA level by identifying the T1640C mutation in a group of 50 dogs. For this purpose we used the PCR-RFLP technique, and in six dogs also direct sequencing of PCR products and subsequent comparison of their sequences with the RYR1 gene sequence in an online database. The results of our study show that none of the dogs analysed had any mutant allele of the RYR1 gene, indicating that none should be affected by MH.
Collapse
Affiliation(s)
- Jana Haluskova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Beata Holeckova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Lenka Kokulova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Martina Galdikova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Jaroslav Bucan
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Viera Schwarzbacherova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Silvia Sedlakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
7
|
Rivas VN, Stern JA, Ueda Y. The Role of Personalized Medicine in Companion Animal Cardiology. Vet Clin North Am Small Anim Pract 2023; 53:1255-1276. [PMID: 37423841 PMCID: PMC11184409 DOI: 10.1016/j.cvsm.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiomyopathies remain one of the most common inherited cardiac diseases in both human and veterinary patients. To date, well over 100 mutated genes are known to cause cardiomyopathies in humans with only a handful known in cats and dogs. This review highlights the need and use of personalized one-health approaches to cardiovascular case management and advancement in pharmacogenetic-based therapy in veterinary medicine. Personalized medicine holds promise in understanding the molecular basis of disease and ultimately will unlock the next generation of targeted novel pharmaceuticals and aid in the reversal of detrimental effects at a molecular level.
Collapse
Affiliation(s)
- Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1038 William Moore Drive, Raleigh, NC 27606, USA.
| |
Collapse
|
8
|
Uno Y, Noda Y, Morikuni S, Murayama N, Yamazaki H. Liver microsomal cytochrome P450 3A-dependent drug oxidation activities in individual dogs. Xenobiotica 2023:1-9. [PMID: 37144920 DOI: 10.1080/00498254.2023.2211673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Drug oxidations are mediated mainly by cytochromes P450 (P450s or CYPs). CYP3As are an important P450 subfamily and include liver-specific CYP3A12 and intestine-specific CYP3A98 in dogs. Individual differences in drug oxidation activities were investigated, including correlations with immunoreactive CYP3A protein intensities and CYP3A mRNA expression levels in liver microsomes.Pooled and individual dog liver microsomes showed activities toward nifedipine, midazolam, alprazolam, and estradiol, but the levels of catalytic activities varied approximately twofold among the individual dogs. One dog harbored a CYP1A2 variant causing protein deletion, but showed higher activities than the other dogs toward nifedipine oxidation, midazolam 1'-hydroxylation, alprazolam 4-hydroxylation, estradiol 16α-hydroxylation activities, and caffeine C8-hydroxylation; the latter is used as a reference reaction for CYP1A.In individual dog liver microsomes, the intensities of the immunochemical bands with anti-human CYP3A4 and anti-rat CYP3A2 antibodies along with CYP3A12 and CYP3A26 mRNA expression levels showed good correlations (p < 0.05) with nifedipine oxidation, midazolam 1'- and 4-hydroxylation, alprazolam 1'- and 4-hydroxylation, and estradiol 16α-hydroxylation activities.These results suggest that the oxidation activities of dog liver microsomes toward nifedipine and other typical CYP3A-catalyzed drugs exhibit approximately twofold individual differences and were predominantly mediated by liver-specific CYP3A12 in the dogs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Saho Morikuni
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
9
|
Jimenez TP, Zhu Z, Court MH. Association of cytochrome P450 2D15 (CYP2D15) nonsynonymous polymorphisms and exon 3 deleted RNA splice variant with CYP2D15 protein content and enzyme function in dog liver microsomes. J Vet Pharmacol Ther 2023; 46:77-90. [PMID: 36691326 DOI: 10.1111/jvp.13113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
CYP2D15 is a major drug metabolizing P450 in canine liver. Like the human orthologue (CYP2D6), this enzyme is highly polymorphic with at least five common nonsynonymous variants reported that result in amino acid changes, including p.Ile109Val, p.Leu115Phe, p.Gly186Ser, p.Ile250Phe and p.Ile307Val. Furthermore, a mRNA splice variant of CYP2D15 has been found in canine liver that lacks the exon 3 gene region resulting in an inactive enzyme. The objective of this study was to evaluate whether any of these amino acid variants or the exon 3 deletion mRNA variant (exon3-delta) was associated with differences in CYP2D15-selective activities or protein content in a bank of canine livers. Livers were obtained from 25 Beagles and 34 dogs of various other breeds. CYP2D15-selective activities measured included dextromethorphan o-demethylation and tramadol o-demethylation. Reverse transcription PCR showed that 76% of livers (44/58) expressed both exon3-delta and normally spliced CYP2D15 RNA, while the remaining 24% (14/58) expressed only normally spliced RNA. The presence of exon3-delta was not correlated with CYP2D15 activities or protein content. Compared with wild-type livers, Beagle dog livers heterozygous for the p.Ile109Val and p.Gly186Ser variants showed from 40 to 50% reductions in median enzyme activities, while heterozygous p.Gly186Ser livers were associated with a 41% reduction in median CYP2D15 protein content (p < .05; Dunn's test). In the entire liver bank, livers homozygous for p.Ile109Val were also associated with a 40% reduction in median dextromethorphan O-demethylation activities versus wild-type livers (p < .05). These results identify several nonsynonymous CYP2D15 gene variants associated with variable CYP2D15 metabolism in canine liver.
Collapse
Affiliation(s)
- Tania Perez Jimenez
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Zhaohui Zhu
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Michael H Court
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther 2023; 46:1-16. [PMID: 36326478 PMCID: PMC10092536 DOI: 10.1111/jvp.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
In 2001 the molecular genetic basis of so-called "ivermectin sensitivity" in herding breed dogs was determined to be a P-glycoprotein deficiency caused by a genetic variant of the MDR1 (ABCB1) gene often called "the MDR1 mutation." We have learned a great deal about P-glycoprotein's role in drug disposition since that discovery, namely that P-glycoprotein transports many more drugs than just macrocyclic lactones that P-glycoprotein mediated drug transport is present in more places than just the blood brain barrier, that some cats have a genetic variant of MDR1 that results in P-glycoprotein deficiency, that P-glycoprotein dysfunction can occur as a result of drug-drug interactions in any dog or cat, and that the concept of P-glycoprotein "inhibitors" versus P-glycoprotein substrates is somewhat arbitrary and artificial. This paper will review these discoveries and discuss how they impact drug selection and dosing in dogs and cats with genetically mediated P-glycoprotein deficiency or P-glycoprotein dysfunction resulting from drug-drug interactions.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
11
|
Wu Q, Hu Y, Wang C, Wei W, Gui L, Zeng W, Liu C, Jia W, Miao J, Lan K. Reevaluate In Vitro CYP3A Index Reactions of Benzodiazepines and Steroids between Humans and Dogs. Drug Metab Dispos 2022; 50:741-749. [PMID: 35351776 DOI: 10.1124/dmd.122.000864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 3A (CYP3A), the most important class of drug-metabolizing enzymes, participates in the metabolism of half of clinically used drugs. The CYP3A index reactions of dogs, one of the most widely used preclinical nonrodent species, are still poorly understood. This work evaluated the activity and selectivity of 10 CYP3A index reactions, including midazolam (MDZ) 1'- and 4-hydroxylation, alprazolam (APZ) and triazolam (TRZ) α- and 4-hydroxylation, testosterone (T) 6β-hydroxylation, lithocholate (LCA) 6α-hydroxylation, deoxycholate (DCA) 1β- and 5β-hydroxylation, with quantitative reaction phenotyping and kinetic analysis in human and canine recombinant CYP enzymes (rCYPs). In human studies, all reactions are reconfirmed as mixed index reactions of CYP3A with minor contributions from non-CYP3A isoforms. In canine studies, all reactions are also primarily catalyzed by CYP3A12 with lower contributions from CYP3A26. However, the canine CYP2B11 appreciably contributes to the hydroxylation of benzodiazepines except for APZ 4-hydroxylation. The canine CYP3A isoforms have lower activity than human isoforms toward T 6β-hydroxylation and LCA 6α-hydroxylation and both substrates undergo non-CYP3A catalyzed side reactions. DCA 1β- and 5β-hydroxylation are validated as the CYP3A index reactions in both humans and dogs with limited non-CYP3A contributions and side reactions. In conclusion, this work provides a comprehensive overview for the selectivity and activity of in vitro CYP3A index reactions in humans and dogs. The validated CYP3A index reactions between humans and dogs may benefit future practices in drug metabolism and drug interaction studies. SIGNIFICANCE STATEMENT: Dogs are one of the most important nonrodent animals with limited studies of cytochrome P450 enzymes than humans. This work provides the most comprehensive quantitative data to date for the selectivity and activity of CYP3A index reactions in humans and dogs. The canine CYP2B11 was found to appreciably contribute to hydroxylation of midazolam, alprazolam and triazolam, the well-known probes for human CYP3A. Deoxycholate 1β- and 5β-hydroxylation are validated as the CYP3A index reactions in both humans and dogs.
Collapse
Affiliation(s)
- QingLiang Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - YiTing Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - CuiTong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - Wei Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - LanLan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - WuShuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - Changxiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - Wei Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy (Q.W., Y.H., C.W., W.W., K.L.), and Institute of Clinical Pharmacology, West China Hospital (J.M.), Sichuan University, Chengdu, China; Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (L.G., W.Z., K.L.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.)
| |
Collapse
|
12
|
Franczyk B, Rysz J, Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes (Basel) 2022; 13:311. [PMID: 35205356 PMCID: PMC8871547 DOI: 10.3390/genes13020311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacogenomics is based on the understanding of the individual differences in drug use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable drug responses. The identification of DNA variants which markedly contribute to inter-individual variations in drug responses would improve the efficacy of treatments and decrease the rate of the adverse side effects of drugs. This review focuses only on the impact of polymorphisms within drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the maximum benefits without putting the patient at risk of life-threatening toxicities. However, the adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a few examples of such polymorphisms and their impact on the response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
13
|
Walters K, Stornetta A, Jacobs F, Villalta PW, Razzoli M, Grant M, Zordoky B, Bartolomucci A, Borgatti A, Balbo S. Identification of new candidate biomarkers to support doxorubicin treatments in canine cancer patients. BMC Vet Res 2021; 17:378. [PMID: 34876121 PMCID: PMC8650425 DOI: 10.1186/s12917-021-03062-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Both human and veterinary cancer chemotherapy are undergoing a paradigm shift from a “one size fits all” approach to more personalized, patient-oriented treatment strategies. Personalized chemotherapy is dependent on the identification and validation of biomarkers that can predict treatment outcome and/or risk of toxicity. Many cytotoxic chemotherapy agents, including doxorubicin, base their mechanism of action by interaction with DNA and disruption of normal cellular processes. We developed a high-resolution/accurate-mass liquid chromatography-mass spectrometry DNA screening approach for monitoring doxorubicin-induced DNA modifications (adducts) in vitro and in vivo. We used, for the first time, a new strategy involving the use of isotope-labeled DNA, which greatly facilitates adduct discovery. The overall goal of this work was to identify doxorubicin-DNA adducts to be used as biomarkers to predict drug efficacy for use in veterinary oncology. Results We used our novel mass spectrometry approach to screen for adducts in purified DNA exposed to doxorubicin. This initial in vitro screening identified nine potential doxorubicin-DNA adduct masses, as well as an intense signal corresponding to DNA-intercalated doxorubicin. Two of the adduct masses, together with doxorubicin and its metabolite doxorubicinol, were subsequently detected in vivo in liver DNA extracted from mice exposed to doxorubicin. Finally, the presence of these adducts and analytes was explored in the DNA isolated from dogs undergoing treatment with doxorubicin. The previously identified nine DOX-DNA adducts were not detected in these preliminary three samples collected seven days post-treatment, however intercalated doxorubicin and doxorubicinol were detected. Conclusions This work sets the stage for future evaluation of doxorubicin-DNA adducts and doxorubicin-related molecules as candidate biomarkers to personalize chemotherapy protocols for canine cancer patients. It demonstrates our ability to combine in one method the analysis of DNA adducts and DNA-intercalated doxorubicin and doxorubicinol. The last two analytes interestingly, were persistent in samples from canine patients undergoing doxorubicin chemotherapy seven days after treatment. The presence of doxorubicin in all samples suggests a role for it as a promising biomarker for use in veterinary chemotherapy. Future studies will involve the analysis of more samples from canine cancer patients to elucidate optimal timepoints for monitoring intercalated doxorubicin and doxorubicin-DNA adducts and the correlation of these markers with therapy outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03062-x.
Collapse
Affiliation(s)
- Kristine Walters
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA.,WestVet 24/7 Animal Emergency & Specialty Center, 5024 W Chinden Boulevard, Garden City, ID, 83714, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street Southeast, Minneapolis, MN, 55455, USA
| | - Foster Jacobs
- Masonic Cancer Center, University of Minnesota, 2231 6th Street Southeast, Minneapolis, MN, 55455, USA.,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street Southeast, Minneapolis, MN, 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Marianne Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 308 Harvard Street S.E, Minneapolis, MN, 55455, USA
| | - Beshay Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 308 Harvard Street S.E, Minneapolis, MN, 55455, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA.,Masonic Cancer Center, University of Minnesota, 2231 6th Street Southeast, Minneapolis, MN, 55455, USA.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, MN, 55108, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street Southeast, Minneapolis, MN, 55455, USA. .,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Lerdkrai C, Phungphosop N. Prevalence of the MDR1 gene mutation in herding dog breeds and Thai Ridgebacks in Thailand. Vet World 2021; 14:3015-3020. [PMID: 35017851 PMCID: PMC8743763 DOI: 10.14202/vetworld.2021.3015-3020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aim: A canine multi-drug resistance 1 (MDR1) nt230(del4) is a well-known inherited disorder that primarily affects collies and various herding breeds. The most recognized clinical implication for affected dogs is associated with an increased risk of multiple drug toxicity. To date, MDR1 gene mutations have been identified globally, especially in dogs from the USA and European countries. This study aimed to investigate the prevalence of MDR1 nt230(del4) in herding dog breeds and Thai Ridgebacks in Thailand. Materials and Methods: We clarified the prevalence of MDR1 nt230(del4) in 263 dogs of eight purebred dog breeds in Thailand using an allele-specific multiplex polymerase chain reaction method and direct DNA sequencing. Results: Rough Collies, Australian Shepherds, Shetland Sheepdogs, and Old English Sheepdogs were affected by the mutation with mutant allelic frequencies of 57.14%, 12.82%, 11.28%, and 8.33%, respectively. Among these populations, the prevalence of the MDR1 (+/–) genotype was 57.14% (12/21) for Rough Collies, 25.64% (10/39) for Australian Shepherds, 16.13% (15/93) for Shetland Sheepdogs, and 16.67% (2/12) for Old English Sheepdogs, whereas the MDR1 (–/–) mutation was only identified in Rough Collies and Shetland Sheepdogs, with prevalences of 28.57% (6/21) and 3.22% (3/93), respectively. However, the MDR1 nt230(del4) was not identified in Border Collies, German Shepherds, White Swiss Shepherds, or Thai Ridgebacks. Conclusion: This study provides the current situation regarding MDR1 nt230(del4) in herding dog breeds in Thailand. In this survey, we investigated for the first time the status of MDR1 genotype in Thai Ridgebacks. These results are helpful for veterinarians managing effective therapeutic plans for commonly affected dog breeds, and these results will encourage all breeders to improve their selective breeding programs based on the MDR1 nt230(del4) status.
Collapse
Affiliation(s)
- Chommanad Lerdkrai
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Nuch Phungphosop
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
15
|
Orekhova K, Mazzariol S, Sussan B, Bucci M, Bonsembiante F, Verin R, Centelleghe C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Vet Sci 2021; 8:203. [PMID: 34679033 PMCID: PMC8537515 DOI: 10.3390/vetsci8100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures in puppies often present a diagnostic challenge in terms of identifying and treating the underlying cause. Dog breeds with mutations of the MDR1-gene are known to show adverse reactions to certain drugs, yet metabolic imbalance exacerbated by physiologically immature organs and other contributing pathologies require consideration before arriving at a diagnosis. This study analysed the brains of two male, 5-week-old Australian Shepherd siblings that died after displaying severe neurological symptoms upon administration of MilproVet® to treat severe intestinal helminth infection. Despite the initial symptoms being similar, their case histories varied in terms of the symptom duration, access to supportive therapy and post-mortem interval. Histopathology and immunohistochemistry were used to obtain more information about the phase of the pathological processes in the brain, employing protein markers associated with acute hypoxic damage (β-amyloid precursor protein/APP) and apoptosis (diacylglycerolkinase-ζ/DGK-ζ, apoptotic protease activating factor 1/Apaf1, and B-cell lymphoma related protein 2/Bcl-2). The results seem to reflect the course of the animals' clinical deterioration, implicating that the hypoxic damage to the brains was incompatible with life, and suggesting the usefulness of the mentioned immunohistochemical markers in clarifying the cause of death in animals with acute neurological deficits.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Beatrice Sussan
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Massimo Bucci
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| |
Collapse
|
16
|
The One Medicine concept: its emergence from history as a systematic approach to re-integrate human and veterinary medicine. Emerg Top Life Sci 2021; 5:643-654. [PMID: 34355760 PMCID: PMC8718270 DOI: 10.1042/etls20200353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has resulted in the global recognition for greater inter-disciplinary and multi-disciplinary working, and the need for systematic approaches which recognise the interconnectedness and interactions between human, animal and environmental health. The notion of such a One Team/One science approach is perhaps best exemplified by the One Health concept, a systematic approach which is rapidly entering into the mainstream. However, the concept of One Health, as we presently know it, originated from One Medicine, a notion which is much older and which emerged to promote collaboration between the human and veterinary medicine professions and the allied health/scientific disciplines. Whilst One Medicine is perhaps better known by the veterinary community, some misconceptions of what One Medicine is have arisen. Therefore, this review introduces this emerging concept and how it can help to address overlapping (communicable and non-communicable disease) health challenges faced by both human and veterinary medicine.
Collapse
|
17
|
Zeng W, Gui L, Tan X, Zhu P, Hu Y, Wu Q, Li X, Yang L, Jia W, Liu C, Lan K. Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs. Drug Metab Dispos 2021; 49:369-378. [PMID: 33674269 DOI: 10.1124/dmd.121.000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Deoxycholic acid (DCA, 3α, 12α-dihydroxy-5β-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1β,3α,12α-trihydroxy-5β-cholan-24-oic acid (DCA-1β-ol) and 3α,5β,12α-trihydroxy-5β-cholan-24-oic acid (DCA-5β-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1β-ol and DCA-5β-ol in dog liver microsomes. Six male dogs completed the CYP3A intervention studies including phases of baseline, inhibition (ketoconazole treatments), recovery, and induction (rifampicin treatments). The oral MDZ clearance after a single dose was determined on the last day of the baseline, inhibition, and induction phases, and subjected to correlation analysis with the tertiary oxidation ratios of DCA detected in serum and urine samples. The results confirmed that the predosing serum ratios of DCA oxidation, DCA-5β-ol/DCA, and DCA-1β-ol/DCA were significantly and positively correlated both intraindividually and interindividually with oral MDZ clearance. It was therefore concluded that the tertiary oxidation of DCA is predictive of CYP3A activity in beagle dogs. Clinical transitional studies following the preclinical evidence are promising to provide novel biomarkers of the enterohepatic CYP3A activities. SIGNIFICANCE STATEMENT: Drug development, clinical pharmacology, and therapeutics are under insistent demands of endogenous CYP3A biomarkers that avoid unnecessary drug exposure and invasive sampling. This work has provided the first proof-of-concept preclinical evidence that the CYP3A catalyzed tertiary oxidation of deoxycholate, the major circulating secondary bile acid synthesized in the lower gut by bacteria, may be developed as novel in vivo biomarkers of the enterohepatic CYP3A activities.
Collapse
Affiliation(s)
- Wushuang Zeng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lanlan Gui
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xianwen Tan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Pingping Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Yiting Hu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Qingliang Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xuejing Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lian Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Wei Jia
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Changxiao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| |
Collapse
|
18
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
19
|
Karakus E, Prinzinger C, Leiting S, Geyer J. Sequencing of the Canine Cytochrome P450 CYP2C41 Gene and Genotyping of Its Polymorphic Occurrence in 36 Dog Breeds. Front Vet Sci 2021; 8:663175. [PMID: 33969041 PMCID: PMC8100205 DOI: 10.3389/fvets.2021.663175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Cytochrome P450 (CYP) drug metabolizing enzymes play an important role in efficient drug metabolism and elimination. Many CYPs are polymorphic and, thereby, drug metabolism can vary between individuals. In the case of canine CYP2C41, gene polymorphism was identified. However, as the first available canine genome sequences all were CYP2C41 negative, this polymorphism could not be clarified at the genomic level. The present study provides an exact characterization of the CYP2C41 gene deletion polymorphism at the genomic level and presents a PCR-based genotyping method that was used for CYP2C41 genotyping of 1,089 individual subjects from 36 different dog breeds. None of the Bearded Collie, Bernese Mountain, Boxer, Briard, French Bulldog or Irish Wolfhound subjects had the CYP2C41 gene in their genomes. In contrast, in the Chinese Char-Pei, Siberian Husky, Schapendoes and Kangal breeds, the CYP2C41 allele frequency was very high, with values of 67, 57, 43, and 34%, respectively. Interestingly, the site of gene deletion was identical for all CYP2C41 negative dogs, and all CYP2C41 positive dogs showed highly homologous sequence domains upstream and downstream from the CYP2C41 gene. CYP2C41 genotyping can now be routinely used in future pharmacokinetic studies in canines, in order to identify genetically-based poor or extensive drug metabolizers. This, together with more extensive in vitro drug screening for CYP2C41 substrates will help to determine the clinical relevance of CYP2C41, and to optimize drug treatment. Although the relative abundance of the CYP2C41 protein in the canine liver seems to not be very high, this CYP could substantially contribute to hepatic drug metabolism in dogs expressing CYP2C41 from both alleles and, when CYP2C41 shows higher catalytic activity to a given drug than other hepatic metabolic enzymes.
Collapse
Affiliation(s)
- Emre Karakus
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Clarissa Prinzinger
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Leiting
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
21
|
Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. Absolute Quantitation of Drug-Metabolizing Cytochrome P450 Enzymes and Accessory Proteins in Dog Liver Microsomes Using Label-Free Standard-Free Analysis Reveals Interbreed Variability. Drug Metab Dispos 2019; 47:1314-1324. [PMID: 31427433 PMCID: PMC6800445 DOI: 10.1124/dmd.119.088070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixed-breed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT: This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breed-associated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Tania E Perez Jimenez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
22
|
Shaffer LG. Special issue on canine genetics: animal models for human disease and gene therapies, new discoveries for canine inherited diseases, and standards and guidelines for clinical genetic testing for domestic dogs. Hum Genet 2019; 138:437-440. [PMID: 31056728 DOI: 10.1007/s00439-019-02025-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA.
| |
Collapse
|