1
|
Balázs A, Rubil T, Wong CK, Berger J, Drescher M, Seidel K, Stahl M, Graeber SY, Mall MA. The potentiator ivacaftor is essential for pharmacological restoration of F508del-CFTR function and mucociliary clearance in cystic fibrosis. JCI Insight 2025; 10:e187951. [PMID: 40261705 DOI: 10.1172/jci.insight.187951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Pharmacological rescue of F508del-CFTR by the triple combination CFTR modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) leads to unprecedented clinical benefits in patients with cystic fibrosis (CF). However, previous studies in CF primary human airway epithelial cultures demonstrated that chronic treatment with the potentiator ivacaftor can render the F508del protein unstable, thus limiting restoration of CFTR chloride channel function. Even so, quantitative studies of this unwanted effect of ivacaftor on F508del channel function with dependency on cell culture conditions remain limited, and the impact of chronic ivacaftor exposure on restoration of mucociliary clearance that is impaired in patients with CF has not been studied. In patient-derived primary nasal epithelial cultures, we found that different culture conditions (UNC-ALI medium vs. PneumaCult medium) have profound effects on ETI-mediated restoration of F508del-CFTR function. Chronic treatment with ivacaftor as part of ETI triple therapy limited the rescue of F508del-CFTR chloride channel function when CF nasal epithelial cultures were grown in UNC-ALI medium but not in PneumaCult medium. In PneumaCult medium, both chronic and acute addition of ivacaftor as part of ETI treatment led to constitutive CFTR-mediated chloride secretion in the absence of exogenous cAMP-dependent stimulation. This constitutive CFTR-mediated chloride secretion was essential to improve viscoelastic properties of the mucus layer and to restore mucociliary transport on CF nasal epithelial cultures. Furthermore, nasal potential difference measurements in patients with CF showed that ETI restored constitutive F508del-CFTR activity in vivo. These results demonstrate that ivacaftor as a component of ETI therapy is essential to restore mucociliary clearance and suggest that this effect is facilitated by its constitutive activation of F508del channels following their folding correction in patients with CF.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Christine K Wong
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Jasmin Berger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| |
Collapse
|
2
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
3
|
Premchandar A, Ming R, Baiad A, Da Fonte DF, Xu H, Faubert D, Veit G, Lukacs GL. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15:1389586. [PMID: 38725656 PMCID: PMC11079177 DOI: 10.3389/fphar.2024.1389586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Premature termination codons (PTCs) represent ∼9% of CF mutations that typically cause severe expression defects of the CFTR anion channel. Despite the prevalence of PTCs as the underlying cause of genetic diseases, understanding the therapeutic susceptibilities of their molecular defects, both at the transcript and protein levels remains partially elucidated. Given that the molecular pathologies depend on the PTC positions in CF, multiple pharmacological interventions are required to suppress the accelerated nonsense-mediated mRNA decay (NMD), to correct the CFTR conformational defect caused by misincorporated amino acids, and to enhance the inefficient stop codon readthrough. The G418-induced readthrough outcome was previously investigated only in reporter models that mimic the impact of the local sequence context on PTC mutations in CFTR. To identify the misincorporated amino acids and their ratios for PTCs in the context of full-length CFTR readthrough, we developed an affinity purification (AP)-tandem mass spectrometry (AP-MS/MS) pipeline. We confirmed the incorporation of Cys, Arg, and Trp residues at the UGA stop codons of G542X, R1162X, and S1196X in CFTR. Notably, we observed that the Cys and Arg incorporation was favored over that of Trp into these CFTR PTCs, suggesting that the transcript sequence beyond the proximity of PTCs and/or other factors can impact the amino acid incorporation and full-length CFTR functional expression. Additionally, establishing the misincorporated amino acid ratios in the readthrough CFTR PTCs aided in maximizing the functional rescue efficiency of PTCs by optimizing CFTR modulator combinations. Collectively, our findings contribute to the understanding of molecular defects underlying various CFTR nonsense mutations and provide a foundation to refine mutation-dependent therapeutic strategies for various CF-causing nonsense mutations.
Collapse
Affiliation(s)
| | - Ruiji Ming
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Abed Baiad
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Denis Faubert
- IRCM Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLoS Biol 2024; 22:e3002566. [PMID: 38652717 PMCID: PMC11037538 DOI: 10.1371/journal.pbio.3002566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
6
|
Borgo C, D’Amore C, Capurro V, Tomati V, Pedemonte N, Bosello Travain V, Salvi M. SUMOylation Inhibition Enhances Protein Transcription under CMV Promoter: A Lesson from a Study with the F508del-CFTR Mutant. Int J Mol Sci 2024; 25:2302. [PMID: 38396982 PMCID: PMC10889535 DOI: 10.3390/ijms25042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | | | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| |
Collapse
|
7
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages interact with respiratory epithelial cells and induce the secretion of antiviral and proinflammatory cytokines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579115. [PMID: 38370761 PMCID: PMC10871231 DOI: 10.1101/2024.02.06.579115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
8
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedüs T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. Nat Commun 2023; 14:6868. [PMID: 37891162 PMCID: PMC10611759 DOI: 10.1038/s41467-023-42586-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR posttranslational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their posttranslational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding.
Collapse
Affiliation(s)
- Naoto Soya
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Haijin Xu
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Ariel Roldan
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhengrong Yang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Haoxin Ye
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Fan Jiang
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Aiswarya Premchandar
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - John Kappes
- Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Tamás Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Soya N, Xu H, Roldan A, Yang Z, Ye H, Jiang F, Premchandar A, Veit G, Cole SPC, Kappes J, Hegedus T, Lukacs GL. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563107. [PMID: 37905074 PMCID: PMC10614980 DOI: 10.1101/2023.10.19.563107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The folding/misfolding and pharmacological rescue of multidomain ATP-binding cassette (ABC) C-subfamily transporters, essential for organismal health, remain incompletely understood. The ABCC transporters core consists of two nucleotide binding domains (NBD1,2) and transmembrane domains (TMD1,2). Using molecular dynamic simulations, biochemical and hydrogen deuterium exchange approaches, we show that the mutational uncoupling or stabilization of NBD1-TMD1/2 interfaces can compromise or facilitate the CFTR(ABCC7)-, MRP1(ABCC1)-, and ABCC6-transporters posttranslational coupled domain-folding in the endoplasmic reticulum. Allosteric or orthosteric binding of VX-809 and/or VX-445 folding correctors to TMD1/2 can rescue kinetically trapped CFTR post-translational folding intermediates of cystic fibrosis (CF) mutants of NBD1 or TMD1 by global rewiring inter-domain allosteric-networks. We propose that dynamic allosteric domain-domain communications not only regulate ABCC-transporters function but are indispensable to tune the folding landscape of their post-translational intermediates. These allosteric networks can be compromised by CF-mutations, and reinstated by correctors, offering a framework for mechanistic understanding of ABCC-transporters (mis)folding. One-Sentence Summary Allosteric interdomain communication and its modulation are critical determinants of ABCC-transporters post-translational conformational biogenesis, misfolding, and pharmacological rescue.
Collapse
|
10
|
Deniz Derman I, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. Biofabrication 2023; 15:044103. [PMID: 37536321 PMCID: PMC10424246 DOI: 10.1088/1758-5090/aced23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | | | - Megan Callender
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Mian Horvath
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Zengshuo Mo
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Elizabeth Fleming
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, United States of America
| | - Karolina Palucka
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Cancer Institute, Penn State University, University Park, PA 16802, United States of America
- Neurosurgery Department, Penn State University, University Park, PA 16802, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
11
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
12
|
Kleinfelder K, Villella VR, Hristodor AM, Laudanna C, Castaldo G, Amato F, Melotti P, Sorio C. Theratyping of the Rare CFTR Genotype A559T in Rectal Organoids and Nasal Cells Reveals a Relevant Response to Elexacaftor (VX-445) and Tezacaftor (VX-661) Combination. Int J Mol Sci 2023; 24:10358. [PMID: 37373505 DOI: 10.3390/ijms241210358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the promising results of new CFTR targeting drugs designed for the recovery of F508del- and class III variants activity, none of them have been approved for individuals with selected rare mutations, because uncharacterized CFTR variants lack information associated with the ability of these compounds in recovering their molecular defects. Here we used both rectal organoids (colonoids) and primary nasal brushed cells (hNEC) derived from a CF patient homozygous for A559T (c.1675G>A) variant to evaluate the responsiveness of this pathogenic variant to available CFTR targeted drugs that include VX-770, VX-809, VX-661 and VX-661 combined with VX-445. A559T is a rare mutation, found in African-Americans people with CF (PwCF) with only 85 patients registered in the CFTR2 database. At present, there is no treatment approved by FDA (U.S. Food and Drug Administration) for this genotype. Short-circuit current (Isc) measurements indicate that A559T-CFTR presents a minimal function. The acute addition of VX-770 following CFTR activation by forskolin had no significant increment of baseline level of anion transport in both colonoids and nasal cells. However, the combined treatment, VX-661-VX-445, significantly increases the chloride secretion in A559T-colonoids monolayers and hNEC, reaching approximately 10% of WT-CFTR function. These results were confirmed by forskolin-induced swelling assay and by western blotting in rectal organoids. Overall, our data show a relevant response to VX-661-VX-445 in rectal organoids and hNEC with CFTR genotype A559T/A559T. This could provide a strong rationale for treating patients carrying this variant with VX-661-VX-445-VX-770 combination.
Collapse
Affiliation(s)
- Karina Kleinfelder
- Cystic Fibrosis Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona, 37134 Verona, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Napoli, Italy
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Anca Manuela Hristodor
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Carlo Laudanna
- Cystic Fibrosis Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona, 37134 Verona, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Napoli, Italy
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Napoli, Italy
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Claudio Sorio
- Cystic Fibrosis Laboratory "D. Lissandrini", Department of Medicine, Division of General Pathology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
13
|
Derman ID, Yeo M, Castaneda DC, Callender M, Horvath M, Mo Z, Xiong R, Fleming E, Chen P, Peeples ME, Palucka K, Oh J, Ozbolat IT. High-Throughput Bioprinting of the Nasal Epithelium using Patient-derived Nasal Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534723. [PMID: 37034627 PMCID: PMC10081172 DOI: 10.1101/2023.03.29.534723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner. 3D Bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of nasal progenitor cells ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4-week air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes such as disease modeling, immunological studies, and drug screening.
Collapse
|
14
|
The COPD-Associated Polymorphism Impairs the CFTR Function to Suppress Excessive IL-8 Production upon Environmental Pathogen Exposure. Int J Mol Sci 2023; 24:ijms24032305. [PMID: 36768629 PMCID: PMC9916815 DOI: 10.3390/ijms24032305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
COPD is a lifestyle-related disease resulting from irreversible damage to respiratory tissues mostly due to chronic exposure to environmental pollutants, including cigarette smoke. Environmental pathogens and pollutants induce the acquired dysfunction of the CFTR Cl- channel, which is invoked in COPD. Despite the increased incidence of CFTR polymorphism R75Q or M470V in COPD patients, the mechanism of how the CFTR variant affects COPD pathogenesis remains unclear. Here, we investigated the impact of CFTR polymorphisms (R75Q, M470V) on the CFTR function in airway epithelial cell models. While wild-type (WT) CFTR suppressed the proinflammatory cytokine production induced by COPD-related pathogens including pyocyanin (PYO), R75Q- or M470V-CFTR failed. Mechanistically, the R75Q- or M470V-CFTR fractional PM activity (FPMA) was significantly lower than WT-CFTR in the presence of PYO. Notably, the CF drug Trikafta corrected the PM expression of R75Q- or M470V-CFTR even upon PYO exposure and consequently suppressed the excessive IL-8 production. These results suggest that R75Q or M470V polymorphism impairs the CFTR function to suppress the excessive proinflammatory response to environmental pathogens associated with COPD. Moreover, Trikafta may be useful to prevent the COPD pathogenesis associated with acquired CFTR dysfunction.
Collapse
|
15
|
Livnat G, Meeker JD, Ostmann AJ, Strecker LM, Clancy JP, Brewington JJ. Phenotypic Alteration of an Established Human Airway Cell Line by Media Selection. Int J Mol Sci 2023; 24:ijms24021246. [PMID: 36674762 PMCID: PMC9862772 DOI: 10.3390/ijms24021246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a chloride/bicarbonate channel. Many studies utilize human airway cell models (cell lines and primary cells) to study different aspects of CFTR biology. Media selection can alter the growth and differentiation of primary cells, yet the impact on stable airway cell lines is unclear. To determine the impact of media and growth conditions on CFBE41o- cells stably transduced with wild-type or F508del CFTR, we examined four commonly used growth media, measuring epithelial and mesenchymal markers, as well as CFTR expression, maturation, and function. The selection of growth media altered the expression of epithelial and mesenchymal markers in the cell lines, and significantly impacted CFTR expression and subsequent function. These results highlight the importance of media selection to CFTR and cell line behavior and should be considered in both studies of primary human airway cells and stable cell lines.
Collapse
Affiliation(s)
- Galit Livnat
- Pediatric Pulmonology and CF Center, Carmel Medical Center, Haifa 3100000, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Jessica D. Meeker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Alicia J. Ostmann
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Lauren M. Strecker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | | | - John J. Brewington
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
- Correspondence: ; Tel.: +1-(513)-803-1548
| |
Collapse
|
16
|
Organoid Technology and Its Role for Theratyping Applications in Cystic Fibrosis. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010004. [PMID: 36670555 PMCID: PMC9856584 DOI: 10.3390/children10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Cystic fibrosis (CF) is a autosomal recessive, multisystemic disease caused by different mutations in the CFTR gene encoding CF transmembrane conductance regulator. Although symptom management is important to avoid complications, the approval of CFTR modulator drugs in the clinic has demonstrated significant improvements by targeting the primary molecular defect of CF and thereby preventing problems related to CFTR deficiency or dysfunction. CFTR modulator therapies have positively changed the patients' quality of life, especially for those who start their use at the onset of the disease. Due to early diagnosis with the implementation of newborn screening programs and considerable progress in the treatment options, nowadays pediatric mortality was dramatically reduced. In any case, the main obstacle to treat CF is to predict the drug response of patients due to genetic complexity and heterogeneity. Advances in 3D culture systems have led to the extrapolation of disease modeling and individual drug response in vitro by producing mini organs called "organoids" easily obtained from nasal and rectal mucosa biopsies. In this review, we focus primarily on patient-derived intestinal organoids used as in vitro model for CF disease. Organoids combine high-validity of outcomes with a high throughput, thus enabling CF disease classification, drug development and treatment optimization in a personalized manner.
Collapse
|
17
|
Marques Dos Santos M, Tan Pei Fei M, Li C, Jia S, Snyder SA. Cell-line and culture model specific responses to organic contaminants in house dust: Cell bioenergetics, oxidative stress, and inflammation endpoints. ENVIRONMENT INTERNATIONAL 2022; 167:107403. [PMID: 35863240 DOI: 10.1016/j.envint.2022.107403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Exposure to organic contaminants in house dust is linked to the development or exacerbation of many allergic and immune disorders. In this work, we evaluate the effects of organic contaminants on different cell bioenergetics endpoints using five different cell lines (16HBE14o-, NuLi-1, A549, THP-1 and HepG2), and examine its effects on lung epithelial cells using conventional 2D and 3D (air-liquid interface/ALI) models. Proposed rapid bioenergetic assays relies on a quick, 40 min, exposure protocol that provides equivalent dose-response curves for ATP production, spare respiratory capacity, and cell respiration. Although cell-line differences play an important role in assay performance, established EC50 concentrations for immortalized lung epithelial cells ranged from 0.11 to 0.15 mg/mL (∼2 µg of dust in a 96-well microplate format). Bioenergetic response of distinct cell types (i.e., monocytes and hepatocytes) was significantly different from epithelial cells; with HepG2 showing metabolic activity that might adversely affect results in 24 h exposure experiments. Like in cell bioenergetics, cell barrier function assay in ALI showed a dose dependent response. Although this is a physiologically relevant model, measurements are not as sensitivity as cytokine profiling and reactive oxygen species (ROS) assays. Observed effects are not solely explained by exposure to individual contaminants, this suggests that many causal agents responsible for adverse effects are still unknown. While 16HBE14o- cells show batter barrier formation characteristics, NuLi-1 cells are more sensitivity to oxidative stress induction even at low house dust extract concentrations, (NuLi-1 2.11-fold-change vs. 16HBE14o- 1.36-fold change) at 0.06 µg/mL. Results show that immortalized cell lines can be a suitable alternative to primary cells or other testing models, especially in the development of high-throughput assays. Observed cell line specific responses with different biomarker also highlights the importance of careful in-vitro model selection and potential drawbacks in risk assessment studies.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore; Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Megan Tan Pei Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
18
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
19
|
Absence of EPAC1 Signaling to Stabilize CFTR in Intestinal Organoids. Cells 2022; 11:cells11152295. [PMID: 35892592 PMCID: PMC9332071 DOI: 10.3390/cells11152295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.
Collapse
|
20
|
Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach RJ, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A, Fan Y, Swensen AM, Vortherms T, Manelli A, Balut C, Gao W, Yong H, Schrimpf M, Tse C, Kym P, Wang X. Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis. Bioorg Med Chem Lett 2022; 72:128843. [PMID: 35688367 DOI: 10.1016/j.bmcl.2022.128843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.
Collapse
Affiliation(s)
- Marc J C Scanio
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States.
| | - Xenia B Searle
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Bo Liu
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - John R Koenig
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Robert J Altenbach
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gregory A Gfesser
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew Bogdan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Stephen Greszler
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Gang Zhao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Ashvani Singh
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Yihong Fan
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Andrew M Swensen
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Timothy Vortherms
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Arlene Manelli
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Corina Balut
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Wenqing Gao
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Hong Yong
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Michael Schrimpf
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Chris Tse
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Philip Kym
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| | - Xueqing Wang
- Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL, United States
| |
Collapse
|
21
|
Centorame A, Dumut DC, Youssef M, Ondra M, Kianicka I, Shah J, Paun RA, Ozdian T, Hanrahan JW, Gusev E, Petrof B, Hajduch M, Pislariu R, De Sanctis JB, Radzioch D. Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Front Pharmacol 2022; 13:876842. [PMID: 35668939 PMCID: PMC9163687 DOI: 10.3389/fphar.2022.876842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Collapse
Affiliation(s)
- Amanda Centorame
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juhi Shah
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Radu Alexandru Paun
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Ekaterina Gusev
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Basil Petrof
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Danuta Radzioch
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Laurent Pharmaceuticals, Montreal, QC, Canada
| |
Collapse
|
22
|
Thorn CR, Wignall A, Kopecki Z, Kral A, Prestidge CA, Thomas N. Liquid Crystal Nanoparticles Enhance Tobramycin Efficacy in a Murine Model of Pseudomonas aeruginosa Biofilm Wound Infection. ACS Infect Dis 2022; 8:841-854. [PMID: 35255215 DOI: 10.1021/acsinfecdis.1c00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic Pseudomonas aeruginosa wound infections are highly prevalent and often untreatable due to biofilm formation, resulting in high antimicrobial tolerance. Standard antibiotic therapy for P. aeruginosa infections involves tobramycin, yet it is highly ineffective as monotherapy as tobramycin cannot penetrate the biofilm to elicit its antimicrobial effect. Lipid liquid crystal nanoparticles (LCNPs) have previously been shown to increase the antimicrobial efficacy and penetration of tobramycin against P. aeruginosa biofilms in vitro and ex vivo. Here, for the first time, we have developed a chronic P. aeruginosa biofilm infection in full-thickness wounds in mice to examine the potential of LCNPs to improve the effect of tobramycin, preclinically. After three doses, administered once a day, tobramycin-LCNPs significantly reduced the P. aeruginosa bacterial load in murine wounds 1000-fold more than unformulated tobramycin, which in turn showed no significant difference to the saline control treatment. Consistent with the improved P. aeruginosa eradication, the tobramycin-LCNPs promoted wound healing. In comparison to previous in vitro and ex vivo data, we show a strong in vitro-in vivo correlation between P. aeruginosa biofilm infection models. The enhanced activity of tobramycin-LCNPs in vivo in the preclinical murine model demonstrates the strong potential of LCNPs as a next-generation formulation approach to improve the efficacy of tobramycin against P. aeruginosa biofilm wound infections.
Collapse
Affiliation(s)
- Chelsea R. Thorn
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Zlatko Kopecki
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Future Industries Institute, UniSA, Mawson Lakes, SA 5095, Australia
| | - Anita Kral
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, S.A. Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A. Prestidge
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| |
Collapse
|
23
|
Behroozian S, Sampedro I, Dhodary B, Her S, Yu Q, Stanton BA, Hill JE. Pseudomonas aeruginosa PAO1 Is Attracted to Bovine Bile in a Novel, Cystic Fibrosis-Derived Bronchial Epithelial Cell Model. Microorganisms 2022; 10:716. [PMID: 35456767 PMCID: PMC9032244 DOI: 10.3390/microorganisms10040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is a life-threatening, inherited, multi-organ disease that renders patients susceptible throughout their lives to chronic and ultimately deteriorating protracted pulmonary infections. Those infections are dominated in adulthood by the opportunistic pathogen, Pseudomonas aeruginosa (Pa). As with other advancing respiratory illnesses, people with CF (pwCF) also frequently suffer from gastroesophageal reflux disease (GERD), including bile aspiration into the lung. GERD is a major co-morbidity factor in pwCF, with a reported prevalence of 35-81% in affected individuals. Bile is associated with the early acquisition of Pa in CF patients and in vitro studies show that it causes Pa to adopt a chronic lifestyle. We hypothesized that Pa is chemoattracted to bile in the lung environment. To evaluate, we developed a novel chemotaxis experimental system mimicking the lung environment using CF-derived bronchial epithelial (CFBE) cells which allowed for the evaluation of Pa (strain PAO1) chemotaxis in a physiological scenario superior to the standard in vitro systems. We performed qualitative and quantitative chemotaxis tests using this new experimental system, and microcapillary assays to demonstrate that bovine bile is a chemoattractant for Pa and is positively correlated with bile concentration. These results further buttress the hypothesis that bile likely contributes to the colonization and pathogenesis of Pa in the lung, particularly in pwCF.
Collapse
Affiliation(s)
- Shekooh Behroozian
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, GR, Spain;
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, GR, Spain
| | - Basanta Dhodary
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Stephanie Her
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Qianru Yu
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Bruce A. Stanton
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Jane E. Hill
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| |
Collapse
|
24
|
Horstmann JC, Laric A, Boese A, Yildiz D, Röhrig T, Empting M, Frank N, Krug D, Müller R, Schneider-Daum N, de Souza Carvalho-Wodarz C, Lehr CM. Transferring Microclusters of P. aeruginosa Biofilms to the Air-Liquid Interface of Bronchial Epithelial Cells for Repeated Deposition of Aerosolized Tobramycin. ACS Infect Dis 2022; 8:137-149. [PMID: 34919390 DOI: 10.1021/acsinfecdis.1c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an alternative to technically demanding and ethically debatable animal models, the use of organotypic and disease-relevant human cell culture models may improve the throughput, speed, and success rate for the translation of novel anti-infectives into the clinic. Besides bacterial killing, host cell viability and barrier function appear as relevant but seldomly measured readouts. Moreover, bacterial virulence factors and signaling molecules are typically not addressed in current cell culture models. Here, we describe a reproducible protocol for cultivating barrier-forming human bronchial epithelial cell monolayers on Transwell inserts and infecting them with microclusters of pre-grown mature Pseudomonas aeruginosa PAO1 biofilms under the air-liquid interface conditions. Bacterial growth and quorum sensing molecules were determined upon tobramycin treatment. The host cell response was simultaneously assessed through cell viability, epithelial barrier function, and cytokine release. By repeated deposition of aerosolized tobramycin after 1, 24, and 48 h, bacterial growth was controlled (reduction from 10 to 4 log10 CFU/mL), which leads to epithelial cell survival for up to 72 h. E-cadherin's cell-cell adhesion protein expression was preserved with the consecutive treatment, and quorum sensing molecules were reduced. However, the bacteria could not be eradicated and epithelial barrier function was impaired, similar to the currently observed situation in the clinic in lack of more efficient anti-infective therapies. Such a human-based in vitro approach has the potential for the preclinical development of novel anti-infectives and nanoscale delivery systems for oral inhalation.
Collapse
Affiliation(s)
- Justus C. Horstmann
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Annabelle Laric
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Annette Boese
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicolas Frank
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniel Krug
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Thorn CR, Carvalho-Wodarz CDS, Horstmann JC, Lehr CM, Prestidge CA, Thomas N. Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100531. [PMID: 33978317 DOI: 10.1002/smll.202100531] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Pseudomonas aeruginosa biofilms cause persistent and chronic infections, most known clinically in cystic fibrosis (CF). Tobramycin (TOB) is a standard anti-pseudomonal antibiotic; however, in biofilm infections, its efficacy severely decreases due to limited permeability across the biofilm matrix. Herewith, a biomimetic, nanostructured, lipid liquid crystal nanoparticle-(LCNP)-formulation is discovered to significantly enhance the efficacy of TOB and eradicate P. aeruginosa biofilm infections. Using an advanced, biologically-relevant co-culture model of human CF bronchial epithelial cells infected with P. aeruginosa biofilms at an air-liquid interface, nebulized TOB-LCNPs completely eradicated 1 × 109 CFU mL-1 of P. aeruginosa after two doses, a 100-fold improvement over the unformulated antibiotic. The enhanced activity of TOB is not observed with a liposomal formulation of TOB or with ciprofloxacin, an antibiotic that readily penetrates biofilms. It is demonstrated that the unique nanostructure of the LCNPs drives the enhanced penetration of TOB across the biofilm barrier, but not through the healthy lung epithelium barrier, significantly increasing the available antibiotic concentration at the site of infection. The LCNPs are an innovative strategy to improve the performance of TOB as a directed pulmonary therapy, enabling the administration of lower doses, reducing the toxicity, and amplifying the anti-biofilm activity of the anti-pseudomonal antibiotic.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| | | | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| |
Collapse
|
26
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
27
|
Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021; 11:1752-1765. [PMID: 34047967 PMCID: PMC8236054 DOI: 10.1007/s13346-021-01002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.
Collapse
|
28
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
30
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, Frenkiel S, Matouk E, Velkov T, Lukacs GL. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight 2020; 5:139983. [PMID: 32853178 PMCID: PMC7526550 DOI: 10.1172/jci.insight.139983] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Based on its clinical benefits, Trikafta — the combination of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor), and the gating potentiator VX-770 (ivacaftor) — was FDA approved for treatment of patients with cystic fibrosis (CF) carrying deletion of phenylalanine at position 508 (F508del) of the CF transmembrane conductance regulator (CFTR) on at least 1 allele. Neither the mechanism of action of VX-445 nor the susceptibility of rare CF folding mutants to Trikafta are known. Here, we show that, in human bronchial epithelial cells, VX-445 synergistically restores F508del-CFTR processing in combination with type I or II correctors that target the nucleotide binding domain 1 (NBD1) membrane spanning domains (MSDs) interface and NBD2, respectively, consistent with a type III corrector mechanism. This inference was supported by the VX-445 binding to and unfolding suppression of the isolated F508del-NBD1 of CFTR. The VX-661 plus VX-445 treatment restored F508del-CFTR chloride channel function in the presence of VX-770 to approximately 62% of WT CFTR in homozygous nasal epithelia. Substantial rescue of rare misprocessing mutations (S13F, R31C, G85E, E92K, V520F, M1101K, and N1303K), confined to MSD1, MSD2, NBD1, and NBD2 of CFTR, was also observed in airway epithelia, suggesting an allosteric correction mechanism and the possible application of Trikafta for patients with rare misfolding mutants of CFTR. Trikafta, the combination of type I corrector VX-661, type III corrector VX-445, and the potentiator VX-770, may be applied for various CFTR folding mutants.
Collapse
Affiliation(s)
| | | | - Mark A Hancock
- SPR-MS Facility, McGill University, Montréal, Quebec, Canada
| | | | | | - Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, and
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Gergely L Lukacs
- Department of Physiology and.,Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
32
|
Sheikh Z, Bradbury P, Pozzoli M, Young PM, Ong HX, Traini D. An in vitro model for assessing drug transport in cystic fibrosis treatment: Characterisation of the CuFi-1 cell line. Eur J Pharm Biopharm 2020; 156:121-130. [PMID: 32916267 DOI: 10.1016/j.ejpb.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis (CF) is a disease that most commonly affects the lungs and is characterized by mucus retention and a continuous cycle of bacterial infection and inflammation. Current CF treatment strategies are focused on targeted drug delivery to the lungs. Novel inhalable drug therapies require an in vitro CF model that appropriately mimics the in vivo CF lung environment to better understand drug delivery and transport across the CF epithelium, and predict drug therapeutic efficacy. Therefore, the aim of this research was to determine the appropriate air-liquid interface (ALI) culture method of the CuFi-1 (CF cell line) compared to the NuLi-1 (healthy cell line) cells to be used as in vitro models of CF airway epithelia. Furthermore, drug transport on both CuFi-1 and NuLi-1 was investigated to determine whether these cell lines could be used to study transport of drugs used in CF treatment using Ibuprofen (the only anti-inflammatory drug currently approved for CF) as a model drug. Differentiating characteristics specific to airway epithelia such as mucus production, inflammatory response and tight junction formation at two seeding densities (Low and High) were assessed throughout an 8-week ALI culture period. This study demonstrated that both the NuLi-1 and CuFi-1 cell lines fully differentiate in ALI culture with significant mucus secretion, IL-6 and IL-8 production, and functional tight junctions at week 8. Additionally, the High seeding density was found to alter the phenotype of the NuLi-1 cell line. For the first time, this study identifies that ibuprofen is transported via the paracellular pathway in ALI models of NuLi-1 and CuFi-1 cell lines. Overall, these findings highlight that NuLi-1 and CuFi-1 as promising in vitro ALI models to investigate the transport properties of novel inhalable drug therapies for CF treatment.
Collapse
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
33
|
Dhooghe B, Bouzin C, Mottais A, Hermans E, Delion M, Panin N, Noel S, Leal T. Vardenafil increases intracellular accumulation of the most prevalent mutant cystic fibrosis transmembrane conductance regulator (CTFR) in human bronchial epithelial cells. Biol Open 2020; 9:bio053116. [PMID: 32747447 PMCID: PMC7473651 DOI: 10.1242/bio.053116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease characterized by progressive lung and chronic digestive manifestations. We have shown that therapeutic doses of vardenafil, a phosphodiesterase type 5 (PDE5) inhibitor, corrects CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport in respiratory and intestinal tissues of F508del homozygous mice. Here, we studied the effect of vardenafil on CFTR in 16HBE14o- and CFBE41o- cell lines. First, the expression levels of PDE5 mRNA in these cell lines were monitored. The two cell lines were exposed to different drugs (dimethyl sulfoxide, 8-Br-cGMP, forskolin or vardenafil). The cAMP and cGMP intracellular concentrations were measured. Finally, we localised the CFTR by immunolabelling. PDE5 was similarly expressed in both wild-type and in CF cells. A fast and transient rise in cGMP intracellular contents followed treatment with vardenafil, confirming its PDE5 inhibitory effect. We showed that vardenafil promoted both the early steps of the cellular processing and the trafficking of F508del without fully addressing the protein to the plasma membrane. The effect was not reproduced by the brominated cGMP analogue and it was not prevented by the combination of a protein kinase G (PKG) inhibitor and vardenafil. These findings support the view that vardenafil partially rescues F508del through cGMP/PKG-independent mechanisms.
Collapse
Affiliation(s)
- Barbara Dhooghe
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale et Clinique, Cell Imaging Platform, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Angélique Mottais
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neurosciences, Faculté de Pharmacie et Sciences Biomédicales, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Martial Delion
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Nadtha Panin
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Teresinha Leal
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
34
|
Cai Y, Varasteh S, van Putten JPM, Folkerts G, Braber S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci Rep 2020; 10:13042. [PMID: 32747652 PMCID: PMC7400546 DOI: 10.1038/s41598-020-69982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pulmonary infection is associated with inflammation and damage to the bronchial epithelium characterized by an increase in the release of inflammatory factors and a decrease in airway barrier function. Our objective is to optimize a method for the isolation and culture of primary bronchial epithelial cells (PBECs) and to provide an ex vivo model to study mechanisms of epithelial airway inflammation. PBECs were isolated and cultured from the airways of calves in a submerged cell culture and liquid-liquid interface system. A higher yield and cell viability were obtained after stripping the epithelium from the bronchial section compared to cutting the bronchial section in smaller pieces prior to digestion. Mannheimia haemolytica and lipopolysaccharide (LPS) as stimulants increased inflammatory responses (IL-8, IL-6 and TNF-α release), possibly, by the activation of "TLR-mediated MAPKs and NF-κB" signaling. Furthermore, M. haemolytica and LPS disrupted the bronchial epithelial layer as observed by a decreased transepithelial electrical resistance and zonula occludens-1 and E-cadherin expression. An optimized isolation and culture method for calf PBECs was developed, which cooperated with animal use Replacement, Reduction and Refinement (3R's) principle, and can also contribute to the increased knowledge and development of effective therapies for other animal and humans (childhood) respiratory diseases.
Collapse
Affiliation(s)
- Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Soheil Varasteh
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Gróf I, Bocsik A, Harazin A, Santa-Maria AR, Vizsnyiczai G, Barna L, Kiss L, Fűr G, Rakonczay Z, Ambrus R, Szabó-Révész P, Gosselet F, Jaikumpun P, Szabó H, Zsembery Á, Deli MA. The Effect of Sodium Bicarbonate, a Beneficial Adjuvant Molecule in Cystic Fibrosis, on Bronchial Epithelial Cells Expressing a Wild-Type or Mutant CFTR Channel. Int J Mol Sci 2020; 21:4024. [PMID: 32512832 PMCID: PMC7312297 DOI: 10.3390/ijms21114024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Clinical and experimental results with inhaled sodium bicarbonate as an adjuvant therapy in cystic fibrosis (CF) are promising due to its mucolytic and bacteriostatic properties, but its direct effect has not been studied on respiratory epithelial cells. Our aim was to establish and characterize co-culture models of human CF bronchial epithelial (CFBE) cell lines expressing a wild-type (WT) or mutant (deltaF508) CF transmembrane conductance regulator (CFTR) channel with human vascular endothelial cells and investigate the effects of bicarbonate. Vascular endothelial cells induced better barrier properties in CFBE cells as reflected by the higher resistance and lower permeability values. Activation of CFTR by cAMP decreased the electrical resistance in WT but not in mutant CFBE cell layers confirming the presence and absence of functional channels, respectively. Sodium bicarbonate (100 mM) was well-tolerated by CFBE cells: it slightly reduced the impedance of WT but not that of the mutant CFBE cells. Sodium bicarbonate significantly decreased the more-alkaline intracellular pH of the mutant CFBE cells, while the barrier properties of the models were only minimally changed. These observations indicate that sodium bicarbonate is beneficial to deltaF508-CFTR expressing CFBE cells. Thus, sodium bicarbonate may have a direct therapeutic effect on the bronchial epithelium.
Collapse
Affiliation(s)
- Ilona Gróf
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - Ana Raquel Santa-Maria
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Gabriella Fűr
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, H-6725 Szeged, Hungary; (L.K.); (G.F.); (Z.R.J.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (P S.-R.)
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (R.A.); (P S.-R.)
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, UR 2465, Artois University, F-62300 Lens, France;
| | - Pongsiri Jaikumpun
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (P.J.); (Á.Z.)
| | - Hajnalka Szabó
- Department of Pediatrics, Fejér County Szent György University Teaching Hospital, H-8000 Székesfehérvár, Hungary;
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (P.J.); (Á.Z.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (I.G.); (A.B.); (A.H.); (A.R.S.-M.); (G.V.); (L.B.)
| |
Collapse
|
36
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|
37
|
Singh AK, Fan Y, Balut C, Alani S, Manelli AM, Swensen AM, Jia Y, Neelands TR, Vortherms TA, Liu B, Searle XB, Wang X, Gao W, Hwang TC, Ren HY, Cyr D, Kym PR, Conrath K, Tse C. Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222. J Pharmacol Exp Ther 2020; 372:107-118. [PMID: 31732698 PMCID: PMC11047061 DOI: 10.1124/jpet.119.261800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.
Collapse
Affiliation(s)
- Ashvani K Singh
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Yihong Fan
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Corina Balut
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Sara Alani
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Arlene M Manelli
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Andrew M Swensen
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Ying Jia
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Torben R Neelands
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Timothy A Vortherms
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Bo Liu
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xenia B Searle
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xueqing Wang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Wenqing Gao
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Tzyh-Chang Hwang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Hong Y Ren
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Douglas Cyr
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Philip R Kym
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Katja Conrath
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Chris Tse
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| |
Collapse
|
38
|
Scanio MJC, Searle XB, Liu B, Koenig JR, Altenbach R, Gfesser GA, Bogdan A, Greszler S, Zhao G, Singh A, Fan Y, Swensen AM, Vortherms T, Manelli A, Balut C, Jia Y, Gao W, Yong H, Schrimpf M, Tse C, Kym P, Wang X. Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis. ACS Med Chem Lett 2019; 10:1543-1548. [PMID: 31749908 DOI: 10.1021/acsmedchemlett.9b00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the CFTR gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2S,3R,4S,5S)-3-(tert-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-((S)-tetrahydro-2H-pyran-2-carbonyl)-5-(o-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.
Collapse
Affiliation(s)
- Marc J. C. Scanio
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xenia B. Searle
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Bo Liu
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - John R. Koenig
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Robert Altenbach
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gregory A. Gfesser
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew Bogdan
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stephen Greszler
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gang Zhao
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yihong Fan
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew M. Swensen
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Timothy Vortherms
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Arlene Manelli
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Corina Balut
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Jia
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Wenqing Gao
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Hong Yong
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael Schrimpf
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Chris Tse
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Philip Kym
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xueqing Wang
- Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
39
|
Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019; 9:12706. [PMID: 31481727 PMCID: PMC6722123 DOI: 10.1038/s41598-019-48971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and acquired loss-of-function defect of the cystic fibrosis transmembrane conductance regulator (CFTR) compromise airway surface liquid homeostasis and mucociliary clearance (MCC), culminating in recurrent lung inflammation/infection. While chronic cigarette smoke (CS), CS extract (CSE; water-soluble compounds) and CS condensate (CSC; particulate, organic fraction) exposure inhibit CFTR activity at transcriptional, biochemical, and functional levels, the acute impact of CSC remains incompletely understood. We report that CSC transiently activates CFTR chloride secretion in airway epithelia. The comparable CFTR phospho-occupancy after CSC- and forskolin-exposure, determined by affinity-enriched tandem mass spectrometry and pharmacology, suggest that localised cAMP-dependent protein kinase (PKA) stimulation by CSC causes the channel opening. Due to the inhibition of the MRP4/ABCC4, a cAMP-exporter confined to the CFTR macromolecular signalling-complex, PKA activation is accomplished by the subcompartmentalised elevation of cytosolic cAMP. In line, MRP4 inhibition results in CFTR activation and phospho-occupancy similar to that by forskolin. In contrast, acute CSC exposure reversibly inhibits the phosphorylated CFTR both in vivo and in phospholipid bilayers, without altering its cell surface density and phospho-occupancy. We propose that components of CSC elicit both a transient protective CFTR activation, as well as subsequent channel block in airway epithelia, contributing to the subacute MCC defect in acquired CF lung diseases.
Collapse
|
40
|
Amaral MD, de Boeck K. Theranostics by testing CFTR modulators in patient-derived materials: The current status and a proposal for subjects with rare CFTR mutations. J Cyst Fibros 2019; 18:685-692. [PMID: 31326274 DOI: 10.1016/j.jcf.2019.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
The last decade has witnessed developments in the CF drug pipeline which are both exciting and unprecedented, bringing with them previously unconsidered challenges. The Task Force group came together to consider these challenges and possible strategies to address them. Over the last 18 months, we have discussed internally and gathered views from a broad range of individuals representing patient organizations, clinical and research teams, the pharmaceutical industry and regulatory agencies. In this and the accompanying article, we discuss two main areas of focus: i) optimising trial design and delivery for speed/efficiency; ii) drug development for patients with rare CFTR mutations. We propose some strategies to tackle the challenges ahead and highlight areas where further thought is needed. We see this as the start of a process rather than the end and hope herewith to engage the wider community in seeking solutions to improved treatments for all patients with CF.
Collapse
|
41
|
Bouvet GF, Voisin G, Cyr Y, Bascunana V, Massé C, Berthiaume Y. DNA Methylation Regulates RGS2-induced S100A12 Expression in Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:601-613. [PMID: 29944393 DOI: 10.1165/rcmb.2016-0164oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RGS2 is a key modulator of stress in human airway epithelial cells, especially of hyperresponsiveness and mucin hypersecretion, both of which are features of cystic fibrosis (CF). Because its expression can be modulated through the DNA methylation pathway, we hypothesize that RGS2 is downregulated by DNA hypermethylation in CF airway epithelial cells. This downregulation would then lead to an enhanced inflammatory response. We demonstrated RGS2 transcript and protein downregulation in cultured airway epithelial cells from patients with CF and validated our findings in two CF epithelial cell lines. A methylated DNA immunoprecipitation array showed the presence of methylated cytosine on 13 gene promoters in CF. Among these genes, we confirmed that the RGS2 promoter was hypermethylated by using bisulfite conversion coupled with a methylation-specific PCR assay. Finally, we showed that downregulation of RGS2 in non-CF cells increased the expression of S100A12, a proinflammatory marker. These results highlight the importance of epigenetic regulation in gene expression in CF and show that RGS2 might modulate the inflammatory response in CF through DNA methylation control.
Collapse
Affiliation(s)
| | - Gregory Voisin
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yannick Cyr
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | | | - Chantal Massé
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Bidaud-Meynard A, Bossard F, Schnúr A, Fukuda R, Veit G, Xu H, Lukacs GL. Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting. J Cell Sci 2019; 132:jcs.226886. [PMID: 30975917 DOI: 10.1242/jcs.226886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Apical polarity of cystic fibrosis transmembrane conductance regulator (CFTR) is essential for solute and water transport in secretory epithelia and can be impaired in human diseases. Maintenance of apical polarity in the face of CFTR non-polarized delivery and inefficient apical retention of mutant CFTRs lacking PDZ-domain protein (NHERF1, also known as SLC9A3R1) interaction, remains enigmatic. Here, we show that basolateral CFTR delivery originates from biosynthetic (∼35%) and endocytic (∼65%) recycling missorting. Basolateral channels are retrieved via basolateral-to-apical transcytosis (hereafter denoted apical transcytosis), enhancing CFTR apical expression by two-fold and suppressing its degradation. In airway epithelia, CFTR transcytosis is microtubule-dependent but independent of Myo5B, Rab11 proteins and NHERF1 binding to its C-terminal DTRL motif. Increased basolateral delivery due to compromised apical recycling and accelerated internalization upon impaired NHERF1-CFTR association is largely counterbalanced by efficient CFTR basolateral internalization and apical transcytosis. Thus, transcytosis represents a previously unrecognized, but indispensable, mechanism for maintaining CFTR apical polarity that acts by attenuating its constitutive and mutation-induced basolateral missorting.
Collapse
Affiliation(s)
| | - Florian Bossard
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Ryosuke Fukuda
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada .,Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|
43
|
Doiron JE, Le CA, Ody BK, Brace JB, Post SJ, Thacker NL, Hill HM, Breton GW, Mulder MJ, Chang S, Bridges TM, Tang L, Wang W, Rowe SM, Aller SG, Turlington M. Evaluation of 1,2,3-Triazoles as Amide Bioisosteres In Cystic Fibrosis Transmembrane Conductance Regulator Modulators VX-770 and VX-809. Chemistry 2019; 25:3662-3674. [PMID: 30650214 PMCID: PMC6469399 DOI: 10.1002/chem.201805919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11, derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly, triazole analogues derived from potentiator VX-770 displayed no potentiation of F508del, G551D, or WT-CFTR in cellular Ussing chamber assays. However, patch clamp analysis revealed that triazole 60 potentiates WT-CFTR similarly to VX-770. The efficacy of 60 in the cell-free patch clamp experiment suggests that the loss of activity in the cellular assay could be due to the inability of VX-770 triazole derivatives to reach the CFTR binding site. Moreover, in addition to the negative impact on biological activity, triazoles in both structural classes displayed decreased metabolic stability in human microsomes relative to the analogous amides. In contrast to the many studies that demonstrate the advantages of using the 1,2,3-triazole, these findings highlight the negative impacts that can arise from replacement of the amide with the triazole and suggest that caution is warranted when considering use of the 1,2,3-triazole as an amide bioisostere.
Collapse
Affiliation(s)
- Jake E. Doiron
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Christina A. Le
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA),
| | - Britton K. Ody
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Jonathon B. Brace
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Savannah J. Post
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Nathan L. Thacker
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Harrison M. Hill
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Gary W. Breton
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| | - Matthew J. Mulder
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232 (USA)
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232 (USA)
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232 (USA)
| | - Liping Tang
- Departments of Medicine and Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
| | - Steven M. Rowe
- Departments of Medicine and Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA)
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35205 (USA),
| | - Mark Turlington
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30165 (USA),
| |
Collapse
|
44
|
Faraj J, Bodas M, Pehote G, Swanson D, Sharma A, Vij N. Novel cystamine-core dendrimer-formulation rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection by augmenting autophagy. Expert Opin Drug Deliv 2019; 16:177-186. [PMID: 30732491 DOI: 10.1080/17425247.2019.1575807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is challenged with pathophysiological barriers for effective airway drug-delivery. Hence, we standardized the therapeutic efficacy of the novel dendrimer-based autophagy-inducing anti-oxidant drug, cysteamine. RESEARCH DESIGN AND METHODS Human primary-CF epithelial-cells, CFBE41o-cells were used to standardize the efficacy of the dendrimer-cystamine in correcting impaired-autophagy, rescuing ΔF508-CFTR and Pseudomonas-aeruginosa (Pa) infection. RESULTS We first designed a novel cystamine-core dendrimer formulation (G4-CYS) that significantly increases membrane-ΔF508CFTR expression in CFBE41o-cells (p < 0.05) by forming its reduced-form cysteamine, in vivo. Additionally, G4-CYS treatment corrects ΔF508-CFTR-mediated impaired-autophagy as observed by a significant decrease (p < 0.05) in Ub-LC3-positive aggresome-bodies. Next, we verified that in non-permeabilized CFBE41o-cells, G4-CYS significantly (p < 0.05) induces ΔF508-CFTR's forward-trafficking to the plasma membrane. Furthermore, cysteamine's known antibacterial and anti-biofilm properties against Pa were enhanced as our findings demonstrate that both G4-CYS and its control DAB-core dendrimer, G4-DAB, exhibited significant (p < 0.05) bactericidal-activity against Pa. We also found that both G4-CYS and G4-DAB exhibit marked mucolytic-activity against porcine-mucus (p < 0.05). Finally, we demonstrate that G4-CYS not only corrects the autophagy-impairment by rescuing ΔF508-CFTR in CFBE41o-cells but also corrects the intrinsic phagocytosis defect (p < 0.05). CONCLUSIONS Overall, our data demonstrates the efficacy of novel cystamine-dendrimer formulation in rescuing ΔF508-CFTR to the plasma membrane and inhibiting Pa bacterial-infection by augmenting autophagy.
Collapse
Affiliation(s)
- Janine Faraj
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Manish Bodas
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Oklahoma , Oklahoma City , OK , USA
| | - Garrett Pehote
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Doug Swanson
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Ajit Sharma
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Neeraj Vij
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e 4Dx Limited , Los Angeles , CA , USA.,f VIJ Biotech LLC , Baltimore , MD , USA
| |
Collapse
|
45
|
Garbuzenko OB, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J Control Release 2019; 296:225-231. [PMID: 30677435 PMCID: PMC6461390 DOI: 10.1016/j.jconrel.2019.01.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF), a most deadly genetic disorder, is caused by mutations of CF transmembrane receptor (CFTR) - a chloride channel present at the surface of epithelial cells. In general, two steps have to be involved in treatment of the disease: correction of cellular defects and potentiation to further increase channel opening. Consequently, a combinatorial simultaneous treatment with two drugs with different mechanisms of action, lumacaftor and ivacaftor, has been recently proposed. While lumacaftor is used to correct p.Phe508del mutation (the loss of phenylalanine at position 508) and increase the amount of cell surface-localized CFTR protein, ivacaftor serves as a CFTR potentiator that increases the open probability of CFTR channels. Since the main organ that is affected by cystic fibrosis is the lung, the delivery of drugs directly to the lungs by inhalation has a potential to enhance the efficacy of the treatment of CF and limit adverse side effects upon healthy tissues and organs. Based on our extensive experience in inhalation delivering of drugs by different nanocarriers, we selected nanostructured lipid carriers (NLC) for the delivery both drugs directly to the lungs by inhalation and tested NLC loaded with drugs in vitro (normal and CF human bronchial epithelial cells) and in vivo (homozygote/homozygote bi-transgenic mice with CF). The results show that the designed NLCs demonstrated a high drug loading efficiency and were internalized in the cytoplasm of CF cells. It was found that NLC-loaded drugs were able to restore the expression and function of CFTR protein. As a result, the combination of lumacaftor and ivacaftor delivered by lipid nanoparticles directly into the lungs was highly effective in treating lung manifestations of cystic fibrosis.
Collapse
Affiliation(s)
- O B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | - N Kbah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | - A Kuzmov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | - N Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | - V Pozharov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | - T Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
46
|
Martin C, Lozano-Iturbe V, Girón RM, Vazquez-Espinosa E, Rodriguez D, Merayo-Lloves J, Vazquez F, Quirós LM, García B. Glycosaminoglycans are differentially involved in bacterial binding to healthy and cystic fibrosis lung cells. J Cyst Fibros 2018; 18:e19-e25. [PMID: 30415947 DOI: 10.1016/j.jcf.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glycosaminoglycans (GAGs) are essential in many infections, including recurrent bacterial respiratory infections, the main cause of mortality in cystic fibrosis (CF) patients. METHODS Using a cellular model of healthy and CF lung epithelium, a comparative transcriptomic study of GAG encoding genes was performed using qRT-PCR, and their differential involvement in the adhesion of bacterial pathogens analyzed by enzymatic degradation and binding competition experiments. RESULTS Various alterations in gene expression in CF cells were found which affect GAG structures and seem to influence bacterial adherence to lung epithelium cells. Heparan sulfate appears to be the most important GAG species involved in bacterial binding. CONCLUSIONS Adherence to lung epithelial cells of some of the main pathogens involved in CF is dependent on GAGs, and the expression of these polysaccharides is altered in CF cells, suggesting it could play an essential role in the development of infectious pathology.
Collapse
Affiliation(s)
- Carla Martin
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Víctor Lozano-Iturbe
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Rosa M Girón
- Department of Pneumology, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Emma Vazquez-Espinosa
- Department of Pneumology, Hospital La Princesa, Institute for Health Research (IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - David Rodriguez
- Department of Biochemistry, University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Fernando Vazquez
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain; Department of Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis M Quirós
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| | - Beatriz García
- University Institute Fernandez-Vega (IUFV), University of Oviedo and Eye Research Foundation (FIO), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain; Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
47
|
Park JY, Ryu H, Lee B, Ha DH, Ahn M, Kim S, Kim JY, Jeon NL, Cho DW. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication 2018; 11:015002. [PMID: 30270851 DOI: 10.1088/1758-5090/aae545] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We used 3D cell printing to emulate an airway coupled with a naturally-derived blood vessel network in vitro. Decellularized extracellular matrix bioink derived from porcine tracheal mucosa (tmdECM) was used to encapsulate and print endothelial cells and fibroblasts within a designated polycarprolactone (PCL) frame. Providing a niche that emulates conditions in vivo, tmdECM gradually drives endothelial re-orientation, which leads to the formation of a lumen and blood vessel network. A fully-differentiated in vitro airway model was assembled with the printed vascular platform, and collectively reproduced a functional interface between the airway epithelium and the vascular network. The model presented respiratory symptoms including asthmatic airway inflammation and allergen-induced asthma exacerbation in physiological context. Because of the adaptable and automated nature of direct 3D cell printing, we expect that this will have relevance in vivo and high reproducibility for production of high-content platforms for preclinical trials in biomedical research.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Veit G, Xu H, Dreano E, Avramescu RG, Bagdany M, Beitel LK, Roldan A, Hancock MA, Lay C, Li W, Morin K, Gao S, Mak PA, Ainscow E, Orth AP, McNamara P, Edelman A, Frenkiel S, Matouk E, Sermet-Gaudelus I, Barnes WG, Lukacs GL. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 2018; 24:1732-1742. [PMID: 30297908 PMCID: PMC6301090 DOI: 10.1038/s41591-018-0200-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces. Although individually these compounds marginally improve ΔF508-CFTR folding efficiency, function and stability, their combinations lead to ~50-100% of wild-type-level correction in immortalized and primary human airway epithelia and in mouse nasal epithelia. Likewise, corrector combinations were effective against rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Elise Dreano
- Institut Necker-Enfants Malades (INEM)-INSERM U1151, Paris, France
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Miklos Bagdany
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Lenore K Beitel
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Ariel Roldan
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Mark A Hancock
- SPR-MS Facility, McGill University, Montréal, Quebec, Canada
| | - Cecilia Lay
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Wei Li
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Katelin Morin
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Sandra Gao
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Puiying A Mak
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Edward Ainscow
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anthony P Orth
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Peter McNamara
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | | | - Saul Frenkiel
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montréal, Quebec, Canada
| | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, McGill University, Montréal, Quebec, Canada
| | | | - William G Barnes
- Genomic Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montréal, Quebec, Canada. .,Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
49
|
Hutt DM, Loguercio S, Campos AR, Balch WE. A Proteomic Variant Approach (ProVarA) for Personalized Medicine of Inherited and Somatic Disease. J Mol Biol 2018; 430:2951-2973. [PMID: 29924966 PMCID: PMC6097907 DOI: 10.1016/j.jmb.2018.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
The advent of precision medicine for genetic diseases has been hampered by the large number of variants that cause familial and somatic disease, a complexity that is further confounded by the impact of genetic modifiers. To begin to understand differences in onset, progression and therapeutic response that exist among disease-causing variants, we present the proteomic variant approach (ProVarA), a proteomic method that integrates mass spectrometry with genomic tools to dissect the etiology of disease. To illustrate its value, we examined the impact of variation in cystic fibrosis (CF), where 2025 disease-associated mutations in the CF transmembrane conductance regulator (CFTR) gene have been annotated and where individual genotypes exhibit phenotypic heterogeneity and response to therapeutic intervention. A comparative analysis of variant-specific proteomics allows us to identify a number of protein interactions contributing to the basic defects associated with F508del- and G551D-CFTR, two of the most common disease-associated variants in the patient population. We demonstrate that a number of these causal interactions are significantly altered in response to treatment with Vx809 and Vx770, small-molecule therapeutics that respectively target the F508del and G551D variants. ProVarA represents the first comparative proteomic analysis among multiple disease-causing mutations, thereby providing a methodological approach that provides a significant advancement to existing proteomic efforts in understanding the impact of variation in CF disease. We posit that the implementation of ProVarA for any familial or somatic mutation will provide a substantial increase in the knowledge base needed to implement a precision medicine-based approach for clinical management of disease.
Collapse
Affiliation(s)
- Darren M Hutt
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Salvatore Loguercio
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Alexandre Rosa Campos
- Sanford Burnham Prebys Medical Discovery Institute Proteomic Core 10901 North Torrey Pines Road, La Jolla CA USA 92037
| | - William E Balch
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- Integrative Structural and Computational Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| |
Collapse
|
50
|
Avramescu RG, Kai Y, Xu H, Bidaud-Meynard A, Schnúr A, Frenkiel S, Matouk E, Veit G, Lukacs GL. Mutation-specific downregulation of CFTR2 variants by gating potentiators. Hum Mol Genet 2018; 26:4873-4885. [PMID: 29040544 DOI: 10.1093/hmg/ddx367] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Approximately 50% of cystic fibrosis (CF) patients are heterozygous with a rare mutation on at least one allele. Several mutants exhibit functional defects, correctable by gating potentiators. Long-term exposure (≥24 h) to the only available potentiator drug, VX-770, leads to the biochemical and functional downregulation of F508del-CFTR both in immortalized and primary human airway cells, and possibly other CF mutants, attenuating its beneficial effect. Based on these considerations, we wanted to determine the effect of chronic VX-770 exposure on the functional and biochemical expression of rare CF processing/gating mutants in human airway epithelia. Expression of CFTR2 mutants was monitored in the human bronchial epithelial cell line (CFBE41o-) and in patient-derived conditionally reprogrammed bronchial and nasal epithelia by short-circuit current measurements, cell surface ELISA and immunoblotting in the absence or presence of CFTR modulators. The VX-770 half-maximal effective (EC50) concentration for G551D-CFTR activation was ∼0.63 μM in human nasal epithelia, implying that comparable concentration is required in the lung to attain clinical benefit. Five of the twelve rare CFTR2 mutants were susceptible to ∼20-70% downregulation by chronic VX-770 exposure with an IC50 of ∼1-20 nM and to destabilization by other investigational potentiators, thereby diminishing the primary functional gain of CFTR modulators. Thus, chronic exposure to VX-770 and preclinical potentiators can destabilize CFTR2 mutants in human airway epithelial models in a mutation and compound specific manner. This highlights the importance of selecting potentiator drugs with minimal destabilizing effects on CF mutants, advocating a precision medicine approach.
Collapse
Affiliation(s)
- Radu G Avramescu
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Yukari Kai
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | - Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Saul Frenkiel
- Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, Montréal, QC H2T 1E2, Canada
| | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, Respiratory Division, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|