1
|
Kim JE, Jeong GJ, Yoo YM, Bhang SH, Kim JH, Shin YM, Yoo KH, Lee BC, Baek W, Heo DN, Mongrain R, Lee JB, Yoon JK. 3D bioprinting technology for modeling vascular diseases and its application. Biofabrication 2025; 17:022014. [PMID: 40081017 DOI: 10.1088/1758-5090/adc03a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
In vitromodeling of vascular diseases provides a useful platform for drug screening and mechanistic studies, by recapitulating the essential structures and physiological characteristics of the native tissue. Bioprinting is an emerging technique that offers high-resolution 3D capabilities, which have recently been employed in the modeling of various tissues and associated diseases. Blood vessels are composed of multiple layers of distinct cell types, and experience different mechanical conditions depending on the vessel type. The intimal layer, in particular, is directly exposed to such hemodynamic conditions inducing shear stress, which in turn influence vascular physiology. 3D bioprinting techniques have addressed the structural limitations of the previous vascular models, by incorporating supporting cells such as smooth muscle cells, geometrical properties such as dilation, curvature, or branching, or mechanical stimulation such as shear stress and pulsatile pressure. This paper presents a review of the physiology of blood vessels along with the pathophysiology of the target diseases including atherosclerosis, thrombosis, aneurysms, and tumor angiogenesis. Additionally, it discusses recent advances in fabricatingin vitro3D vascular disease models utilizing bioprinting techniques, while addressing the current challenges and future perspectives for the potential clinical translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Min Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Byung-Chul Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
- Biofriends Inc., Seoul 02447, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, H3A 0C3 Montréal, Canada
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| |
Collapse
|
2
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
3
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025; 13:1131-1160. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
4
|
Pan Z, Yao Q, Kong W, Ma X, Tian L, Zhao Y, Zhu S, Chen S, Sun M, Liu J, Jiang S, Ma J, Liu Q, Peng X, Li X, Hong Z, Hong Y, Wang X, Liu J, Zhang J, Zhang W, Sun B, Pahlavan S, Xia Y, Shen W, Liu Y, Jiang W, Xie Z, Kong W, Wang X, Wang K. Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery. Cell Stem Cell 2025; 32:227-245.e9. [PMID: 39579761 DOI: 10.1016/j.stem.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Venous malformations (VMs) represent prevalent vascular anomalies typically attributed to non-inherited somatic mutations within venous endothelial cells (VECs). The lack of robust disease models for VMs impedes drug discovery. Here, we devise a robust protocol for the generation of human induced VECs (iVECs) through manipulation of cell-cycle dynamics via the retinoic signaling pathway. We introduce an L914F mutation into the TIE2 gene locus of induced pluripotent stem cells (iPSCs) and show that the mutated iVECs form dilated blood vessels after transplantation into mice, thereby recapitulating the phenotypic characteristics observed in VMs. Moreover, utilizing a deep neural network and a high-throughput digital RNA with perturbation of genes sequencing (DRUG-seq) approach, we perform drug screening and demonstrate that bosutinib effectively rescues the disease phenotype in vitro and in vivo. In summary, by leveraging genome editing and stem cell technology, we generate VM models that enable the development of additional therapeutics.
Collapse
Affiliation(s)
- Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Qiyang Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaojing Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Liangliang Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Shuntian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sheng Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengze Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Simin Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jianxun Ma
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Qijia Liu
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xiaohong Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Bingbing Sun
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Youchen Xia
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyong Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Gill-Jones NDS, Robbins JM, Gadula S, Hingorani A, Nguyen H, Ostrozhynskyy Y, Aurshina A, Marks N, Ascher E, Hingorani A. Expansion of WallStents® after Initial Deployment in Nonthrombotic Iliac Vein Lesions. Ann Vasc Surg 2025; 110:337-341. [PMID: 39098725 DOI: 10.1016/j.avsg.2024.07.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND To determine the structural changes of Wallstents (Boston Scientific, Natick, MA) in vivo following deployment in iliac veins. METHODS This retrospective single-center study was performed from September 2012 to April 2013 and included 100 office-based patients who underwent initial stent placement for nonthrombotic iliac vein lesions with Wallstent as well as a second procedure for stenting of the contralateral iliac vein. Measurements were obtained with marker balloons and the diameters of the stents were compared at the time of the index procedure to the secondary procedure. RESULTS The average time between the 2 procedures was 28 days (range 3-237, SD ± 39.89). The overall average stent diameter after the index procedure was 16.38 mm (range 10.95-21.45, SD ± 2.24). The overall average stent diameter of the index stent when remeasured during the second intervention was 17.58 mm (range 12.84-24.11, SD ± 2.38, P = 0.0003), which was significantly different from the initial measurements. There was no difference when comparing changes in stent diameter by gender or laterality of procedure. However, there was a significant difference in expansion of stents when placed in the common iliac vein versus the external iliac or common femoral veins. CONCLUSIONS This study shows that self-expanding Wallstents can continue to expand days to weeks in vivo following initial deployment. Additionally, we found that the change in diameter from initial placement to follow-up was more significant in stents placed in the proximal and middle segments of the common iliac vein. CLINICAL RELEVANCE Wallstents are durable implants designed to last within a patient for the rest of their life, it is important to understand the structural changes occurring after their placement. This study allows for a better understanding of Wallstent dynamics in vivo.
Collapse
Affiliation(s)
- Nisha D S Gill-Jones
- St. George's University School of Medicine, University Centre, True Blue, Grenada West Indies.
| | | | - Srinanda Gadula
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jia H, Moore M, Wadhwa M, Burns C. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Stem Cells Int 2024; 2024:6153235. [PMID: 39687754 PMCID: PMC11649354 DOI: 10.1155/sci/6153235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have emerged as a promising source of autologous cells with great potential to produce novel cell therapy for ischemic vascular diseases. However, their clinical application still faces numerous challenges including safety concerns such as the potential aberrant immunogenicity derived from the reprogramming process. This study investigated immunological phenotypes of iPSC-ECs by a side-by-side comparison with primary human umbilical vein ECs (HUVECs). Three types of human iPSC-ECs, NIBSC8-EC generated in house and two commercial iPSC-ECs, alongside HUVECs, were examined for surface expression of proteins of immune relevance under resting conditions and after cytokine activation. All iPSC-EC populations failed to express major histocompatibility complex (MHC) Class II on their surface following interferon-gamma (IFN-γ) treatment but showed similar basal and IFN-γ-stimulated expression levels of MHC Class I of HUVECs. Multiple iPSC-ECs also retained constitutive and tumor necrosis factor-alpha (TNF-α)-stimulated expression levels of intercellular adhesion molecule-1 (ICAM-1) like HUVECs. However, TNF-α induced a differential expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) on iPSC-ECs. Furthermore, real-time monitoring of proliferation of human peripheral blood mononuclear cells (PBMCs) cocultured on an endothelial monolayer over 5 days showed that iPSC-ECs provoked distinct dynamics of PBMC proliferation, which was generally decreased in alloreactivity and IFN-γ-stimulated proliferation of PBMCs compared with HUVECs. Consistently, in the conventional mixed lymphocyte reaction (MLR), the proliferation of total CD3+ and CD4+ T cells after 5-day cocultures with multiple iPSC-EC populations was largely reduced compared to HUVECs. Last, multiple iPSC-EC cocultures secreted lower levels of proinflammatory cytokines than HUVEC cocultures. Collectively, iPSC-ECs manifested many similarities, but also some disparities with a generally weaker inflammatory immune response than primary ECs, indicating that iPSC-ECs may possibly exhibit hypoimmunogenicity corresponding with less risk of immune rejection in a transplant setting, which is important for safe and effective cell therapies.
Collapse
Affiliation(s)
- Haiyan Jia
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Melanie Moore
- Therapeutic Reference Materials, Standards Lifecycle, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Meenu Wadhwa
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Chris Burns
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| |
Collapse
|
7
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
8
|
Tuuminen R, Jeon S. Choroidal arterial abnormality in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2024; 262:3465-3473. [PMID: 38748212 DOI: 10.1007/s00417-024-06522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 11/24/2024] Open
Abstract
PURPOSE To evaluate the choroidal arterial abnormality in central serous chorioretinopathy (CSC). METHODS Fifty-two eyes from 52 patients with CSC were retrospectively evaluated. Arterial and venous ultrawide-field indocyanine green angiography were merged after color and transparency adjustments to compare the choroidal arterial and venous vasculature. Specifically, we evaluated whether the choroidal arteries directly fill the pachyvessel without interconnection of choriocapillaris (arterial pachyvessel; aPV). Then, the clinical characteristics of patients with and without arterial pachyvessel were compared. RESULTS Pachyvessel under subretinal fluid was detected in 47 of 52 eyes (90.4%). An arterial pachyvessel was detected in eight of 52 eyes (15.4%). Of those eight eyes with arterial pachyvessel, seven (87.5%) showed sustained staining through the venous phase, suggesting they are arteriovenous shunt, while one eye (12.5%) showed diminished fluorescence in the venous phase, suggesting this pachyvessel was purely an artery. Patients with arterial pachyvessel experienced more CSC recurrences (non-aPV group: 2.09 ± 1.44 times vs. aPV group: 3.25 ± 1.28 times; p = 0.039) and pachychoroid neovasculopathy (PNV) development (non-aPV group: 2.3% vs. aPV group: 37.5%, p = 0.009). CONCLUSION The presence of arterial pachyvessel in eyes with CSC may represent choroidal circulatory imbalance and focal shear stress to Bruch's membrane, leading to a chronic nature and PNV development.
Collapse
Affiliation(s)
- Raimo Tuuminen
- Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sohee Jeon
- Keye Eye Center, 326 Teheran-Ro, Gangnam-Gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Piffard SH, Hennig GW, Sackheim AM, Howard AJ, Lambert A, Majumdar D, Nelson MT, Freeman K. DISTINCT PATTERNS OF ENDOTHELIAL CELL ACTIVATION PRODUCED BY EXTRACELLULAR HISTONES AND BACTERIAL LIPOPOLYSACCHARIDE. Shock 2024; 62:728-735. [PMID: 39194254 DOI: 10.1097/shk.0000000000002461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Objective : Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca 2+ ), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca 2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca 2+ events in veins than in arteries. Methods : We studied cultured ECs (EA.hy926) and native endothelial cells from surgically opened murine blood vessels. High-speed live cell imaging of Ca 2+ events were acquired for 5 min before and after stimulation of cultured ECs with histones or LPS alone or in combination. Histone-induced EC Ca 2+ events were also compared in native endothelial cells from resistance-sized arteries and veins. Ca 2+ activity was quantified as "Ca 2+ prevalence" using custom spatiotemporal analysis. Additionally, cultured ECs were collected after 6 h of exposure to histones or LPS for RNA sequencing. Results : ECs-both in culture and in blood vessels-rapidly increased Ca 2+ activity within seconds of histone exposure. In contrast, LPS exposure produced only a slight increase in Ca 2+ activity in cultured ECs and no effect on blood vessels over 5-min recording periods. Histones evoked large aberrant Ca 2+ events (>30 s in duration) in both veins and arteries, but with different spatio-temporal patterns. Ca 2+ activity in arterial ECs often appeared as "rosettes", with Ca 2+ events that propagated from one cell to all adjacent surrounding cells. In veins, ECs responded individually without spreading. Surprisingly, exposure of cultured ECs to LPS for 5 min before histones potentiated EC Ca 2+ activity by an order of magnitude. Exposure of ECs to histones or LPS both increased gene expression, but different mRNAs were induced. Conclusions : LPS and histones activate ECs through mechanisms that are distinct and additive; only histones produce large aberrant Ca 2+ events. ECs in arteries and veins display different patterns of Ca 2+ responses to histones.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark T Nelson
- Surgery; Larner College of Medicine, University of Vermont, Burlington VT
| | | |
Collapse
|
10
|
Kambe R, Mitomo K, Ikarashi T, Haketa M, Tashiro K, Furusawa M, Muramatsu T. Localization of Both CD31- and Endomucin-Expressing Vessels in Mouse Dental Pulp. Acta Histochem Cytochem 2024; 57:157-163. [PMID: 39552934 PMCID: PMC11565222 DOI: 10.1267/ahc.24-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/03/2024] [Indexed: 11/19/2024] Open
Abstract
We investigated the localization of both CD31- and endomucin-expressing vessels in mouse dental pulp to elucidate their relationship with dentin formation. The maxillae of C57BL/6 male mice (1, 4, 8, 12, and 56 weeks old) were fixed with 4% paraformaldehyde solution, and cryosections (12-μm-thick) were prepared. Immunofluorescence was performed using anti-CD31 and anti-endomucin antibodies, and calcein labeling was conducted to elucidate relationships with dentin formation. At 1 week, many CD31-expressing (CD31 (+)) and endomucin-expressing (endomucin (+)) vessels were observed throughout the dental papilla. At 4 weeks, CD31 (+) and endomucin (+) vessels decreased in the crown and increased in the root of dental pulp. At 12 weeks, CD31 (+) and endomucin (+) vessels were detected at the root apex, but not in coronal pulp. At 56 weeks, few CD31 (+) and endomucin (+) vessels were observed in dental pulp. Both CD31(+) and endomucin (+) vessels were detected directly beneath calcein-labeled dentin at all sites. These results suggest the presence of CD31 (+) and endomucin (+) vessels in dental pulp and their contribution to dentin formation.
Collapse
Affiliation(s)
- Ryo Kambe
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - Keisuke Mitomo
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Takatoshi Ikarashi
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Mayuka Haketa
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Tashiro
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | | | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
11
|
Changizi Kecheklou A, Afshar Mogaddam MR, Sorouraddin SM, Farajzadeh MA, Fathi AA. Thin film microextraction of apixaban from plasma based on the covalent organic framework coated on a mesh prior to liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124302. [PMID: 39362117 DOI: 10.1016/j.jchromb.2024.124302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
In this research, a new covalent organic framework was synthesized and utilized as a coating in thin film microextraction for the extraction of apixaban from plasma samples. This coating was applied to the mesh modified through immersion in a HF solution. The extracted drug was then analyzed using liquid chromatography-tandem mass spectrometry. By combining the high specific surface area and selectivity of the covalent organic framework, along with integrating the innovative thin film microextraction method and a sensitive analysis system, an efficient analytical approach was achieved. The target analyte was preconcentrated and extracted by immersing of the covalent organic framework-coated mesh as an absorbent into the biological sample. Subsequently, a sonication process was conducted for a specific duration. Following this, the extracted analyte was desorbed using acetonitrile as the elution solvent. The effective parameters of the proposed technique were optimized by using "one-parameter-at-a-time" strategy and the optimal conditions were selected. By integrating the developed method notable achievements were made in the terms of low limits of detection and quantification (0.17 and 0.56 µg/L, respectively), a wide linear range (0.05-250 µg/L), intra- and inter day precisions (with relative standard deviations of ≤14 %), as well as satisfactory extraction recoveries (53 % and 54 % in plasma and deionized water, respectively). Hence, it can be concluded that the introduced technique exhibits high efficiency and reliability when applied to biological samples.
Collapse
Affiliation(s)
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemistry and Chemical Engineering Department, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Cheng CK, Huang Y. Vascular endothelium: The interface for multiplex signal transduction. J Mol Cell Cardiol 2024; 195:97-102. [PMID: 39147197 DOI: 10.1016/j.yjmcc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
As the innermost monolayer of the vasculature, endothelial cells (ECs) serve as the interface for multiplex signal transduction. Directly exposed to blood-borne factors, both endogenous and exogenous, ECs actively mediate vascular homeostasis and represent a therapeutic target against cardiometabolic diseases. ECs act as the first-line gateway between gut-derived substances and vasculature. Additionally, ECs convert blood flow-exerted hemodynamic forces into downstream biochemical signaling to modulate vascular pathophysiology. Besides, ECs can sense other forms of stimuli, like cell extrusion, thermal stimulation, photostimulation, radiation, magnetic field, noise, and gravity. Future efforts are still needed to deepen our understanding on endothelial biology.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
13
|
Lessiak U, Melchert M, Walter I, Kummer S, Nell B, Tschulenk W, Pratscher B. Isolation-protocol, characterization, and in-vitro performance of equine umbilical vein endothelial cells. Front Vet Sci 2024; 11:1421946. [PMID: 39411390 PMCID: PMC11473255 DOI: 10.3389/fvets.2024.1421946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Angiogenesis plays a crucial role in various physiological and pathological conditions. However, research in equine angiogenesis is relative limited, necessitating the development of suitable in-vitro models. To effectively analyze angiogenesis in-vitro, it is essential to target the specific cells responsible for this process, namely endothelial cells. Human umbilical vein endothelial cells (HUVECs) are one of the most used in vitro models for studying angiogenesis in humans. Serving as an equivalent to HUVECs, we present a comprehensive isolation protocol for equine umbilical vein endothelial cells (EqUVECs) with relatively minimal requirements, thereby enhancing accessibility for researchers. Umbilical cords obtained from five foals were used to isolate endothelial cells, followed by morphological and immunohistochemical identification. Performance of the cells in various assays commonly used in angiogenesis research was studied. Additionally, EqUVEC expression of vascular endothelial growth factor (VEGF) was assessed using ELISA. EqUVECs exhibited endothelial characteristics, forming a homogeneous monolayer with distinctive morphology. Immunohistochemical staining confirmed positive expression of key endothelial markers including von Willebrand factor (vWF), CD31, and vascular endothelial growth factor receptor-2 (VEGFR-2). Furthermore, performance assessments in in-vitro assays demonstrated the viability, proliferation, migration, tube formation and VEGF-expression capabilities of EqUVECs. The findings suggest that EqUVECs are a promising in-vitro model for studying equine angiogenesis, offering a foundation for further investigations into equine-specific vascular processes and therapeutic interventions.
Collapse
Affiliation(s)
- Ulrike Lessiak
- Ophthalmology Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Melchert
- Centre for Animal Reproduction, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Walter
- Department of Biomedical Science and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Nell
- Ophthalmology Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Waltraud Tschulenk
- Department of Biomedical Science and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Pratscher
- Research Unit Internal Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
14
|
Limbu S, McCloskey KE. An Endothelial Cell Is Not Simply an Endothelial Cell. Stem Cells Dev 2024; 33:517-527. [PMID: 39030822 PMCID: PMC11564855 DOI: 10.1089/scd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
| | - Kara E. McCloskey
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
15
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
16
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
da Silva Feltran G, Augusto da Silva R, da Costa Fernandes CJ, Ferreira MR, Dos Santos SAA, Justulin Junior LA, Del Valle Sosa L, Zambuzzi WF. Vascular smooth muscle cells exhibit elevated hypoxia-inducible Factor-1α expression in human blood vessel organoids, influencing osteogenic performance. Exp Cell Res 2024; 440:114136. [PMID: 38909881 DOI: 10.1016/j.yexcr.2024.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.
Collapse
Affiliation(s)
- Geórgia da Silva Feltran
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Rodrigo Augusto da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | - Marcel Rodrigues Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil
| | | | - Luis Antônio Justulin Junior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Liliana Del Valle Sosa
- Electron Microscopy Center, Faculty of Medical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Campus Botucatu, Botucatu, São Paulo, 18618-970, Brazil.
| |
Collapse
|
18
|
Duranova H, Kuzelova L, Borotova P, Simora V, Fialkova V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:419-439. [PMID: 38817111 DOI: 10.1093/mam/ozae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Human umbilical vein endothelial cells (HUVECs) are primary cells isolated from the vein of an umbilical cord, extensively used in cardiovascular studies and medical research. These cells, retaining the characteristics of endothelial cells in vivo, serve as a valuable cellular model system for understanding vascular biology, endothelial dysfunction, pathophysiology of diseases such as atherosclerosis, and responses to different drugs or treatments. Transmission electron microscopy (TEM) has been a cornerstone in revealing the detailed architecture of multiple cellular model systems including HUVECs, allowing researchers to visualize subcellular organelles, membrane structures, and cytoskeletal elements. Among them, the endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus can be meticulously examined to recognize alterations indicative of cellular responses to various stimuli. Importantly, Weibel-Palade bodies are characteristic secretory organelles found in HUVECs, which can be easily distinguished in the TEM. These distinctive structures also dynamically react to different factors through regulated exocytosis, resulting in complete or selective release of their contents. This detailed review summarizes the ultrastructural features of HUVECs and highlights the utility of TEM as a pivotal tool for analyzing HUVECs in diverse research frameworks, contributing valuable insights into the comprehension of HUVEC behavior and enriching our knowledge into the complexity of vascular biology.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lenka Kuzelova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Petra Borotova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
19
|
Cucu RP, Hînganu MV, Costan VV, Lozneanu L, Boişteanu O, Tamaş C, Negru D, Hînganu D. Morphofunctional and histological patterns of blood vessels in the superficial cervicofacial musculoaponeurotic system in midlateral face regions. Ann Anat 2024; 253:152221. [PMID: 38309593 DOI: 10.1016/j.aanat.2024.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE The superficial cervicofacial musculoaponeurotic system (SMAS) is a complex network formed by mimic muscles and conjunctive tissue of the superficial fascia of the face.This study aimed to introduce new anatomofunctional data on the importance of the trans-SMAS distribution pattern of the skin microperfusion of the face and to underline the role of SMAS in maintaining the homeostasis of the vascular network that crosses it. Considering the fibrous and muscular matrix of the SMAS, using COLIII and MyoH2 antibodies, together with endothelial immunohistochemistry(IHC)intercellular adhesion molecule 2 marker, we determined the correlation of these structures and their interaction. METHODS This study included 33donors of SMAS tissues, which have been stained withregular hematoxylin and eosin (HE), and three different IHC markers have been used (collagen III, muscular tissue, and blood vessels). The samples were collected from parotid, masseteric, jugal, and zygomatic regions. Magnetic resonance angiography was used to identify the main vascular sources of the midlateral regions of the face of another 47 patients. RESULTS Significant differences in topographic arrangement, density, and relations of the microsopic vasculature were observed between each of the four regions. Major differences were identified between the role of SMAS in each of these regions, from the parotid capsule to masseteric fascia, transition mobile part, and attaching manners in the zygomatic subunit. CONCLUSIONS Blood vessel topography must be related with the surrounding conjunctive and muscular tissue, especially regarding facial SMAS. Intrinsic relations between these three components of the SMAS and nervous fibers can provide us important hints on the functionality of the whole system.
Collapse
Affiliation(s)
| | - Marius Valeriu Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Victor-Vlad Costan
- Department of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Ludmila Lozneanu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Otilia Boişteanu
- Department of Oral surgery, Anaesthesiology and Intensive Care, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Camelia Tamaş
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dragoş Negru
- Radiology and imaging department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
20
|
Park JS, Cresci GAM. Dysfunctional intestinal microvascular endothelial cells: Insights and therapeutic implications in gastrointestinal inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00043. [PMID: 38818514 PMCID: PMC11136270 DOI: 10.1097/in9.0000000000000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
The intestinal microvascular endothelium plays a crucial role in orchestrating host responses to inflammation within the gastrointestinal tract. This review delves into the unique aspects of intestinal microvascular endothelial cells, distinct from those of larger vessels, in mediating leukocyte recruitment, maintaining barrier integrity, and regulating angiogenesis during inflammation. Specifically, their role in the pathogenesis of inflammatory bowel diseases, where dysregulated endothelial functions contribute to the disease progression, is reviewed. Furthermore, this review discusses the isolation technique for these cells and commonly used adhesion molecules for in vitro and in vivo experiments. In addition, we reviewed the development and therapeutic implications of a biologic agent targeting the interaction between α4β7 integrin on T lymphocytes and mucosal addressin cellular adhesion molecule-1 on gut endothelium. Notably, vedolizumab, a humanized monoclonal antibody against α4β7 integrin, has shown promising outcomes in inflammatory bowel diseases and other gastrointestinal inflammatory conditions, including chronic pouchitis, immune checkpoint inhibitor-induced colitis, and acute cellular rejection post-intestinal transplantation.
Collapse
Affiliation(s)
- Ji Seok Park
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A. M. Cresci
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
21
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Liu C, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, dos Santos CC, Radisic M. Cardiac tissue model of immune-induced dysfunction reveals the role of free mitochondrial DNA and the therapeutic effects of exosomes. SCIENCE ADVANCES 2024; 10:eadk0164. [PMID: 38536913 PMCID: PMC10971762 DOI: 10.1126/sciadv.adk0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Erika L. Beroncal
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eryn Churcher
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrew Baker
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Uriel Trahtemberg
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Galilee Medical Center, Nahariya, Israel
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Agostino Pierro
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ana C. Andreazza
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3D5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1
| |
Collapse
|
22
|
Prapas S, Katsavrias K, Gaudino M, Puskas JD, Di Mauro M, Zografos P, Guarracini S, Linardakis I, Panagiotopoulos I, Di Marco M, Papandreopoulos S, Pomakidou S, Totaro A, Calafiore AM. Saphenous vein to the right coronary system from the right thoracic artery or the aorta. Long-term propensity-matched results of 2 groups. Eur J Cardiothorac Surg 2024; 65:ezae060. [PMID: 38400814 DOI: 10.1093/ejcts/ezae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVES Since 2000, we anastomosed the saphenous vein graft to the right coronary artery system using the stump of the right internal thoracic artery as inflow. The long-term results of patients where the right coronary artery was grafted with the right internal thoracic artery or the ascending aorta as saphenous vein inflow has not been reported. METHODS From 2000 to 2018, 699 consecutive patients had right internal thoracic artery elongated with saphenous vein (I-graft group, n = 358, 51.2%) or saphenous vein from the aorta (Ao-graft group, n = 341, 48.8%) on right coronary artery system. Inclusion criteria were age ≤75 years, bilateral internal thoracic arteries as a Y graft on the left system (three-vessel disease, n = 603, 86.3%) or as a left internal thoracic artery on left anterior descending and right internal thoracic artery elongated with saphenous vein on the right coronary artery system (two-vessel disease, n = 96, 13.7%), only 1 saphenous vein per patient. Propensity-matching identified 272 patients per group. One-hundred and twenty-two patients underwent coronary computed tomographic angiography to asses grafts patency after a median follow-up of 88 (65-93) months. RESULTS In the paired samples, there was no difference in the early outcome. Ten-year survival and freedom from death, non-fatal acute myocardial infarction and repeat revascularization were higher in I-graft group: 90.6 [standard error (SE): 2.0] vs 78.2 (SE: 5.3), P = 0.0266, and 85.2 (SE: 2.4) vs 69.9 (SE: 5.3), P = 0.0179. Saphenous vein graft, at a long-time follow-up, showed a higher patency rate (81.6% (SE: 7.0) vs 50.7% (SE: 7.9), P < 0.0001) and a smaller internal lumen diameter (2.7, standard deviation: 0.4 vs 3.4, standard deviation: 0.6 mm, P < 0.0001) when right internal thoracic artery was the inflow. CONCLUSIONS Grafting the right coronary artery with saphenous vein may entail higher patency rate and better outcome when the inflow is the right internal thoracic artery than when is the ascending aorta. Prospective randomized data are needed to test this hypothesis.
Collapse
Affiliation(s)
- Sotirios Prapas
- 1st Department of Cardiac Surgery A, Henry Dunant Hospital, Athens, Greece
| | | | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - John D Puskas
- Department of Cardiovascular Surgery, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michele Di Mauro
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
- Department of Cardiology, "Pierangeli" Hospital, Pescara, Italy
| | | | | | - Ioannis Linardakis
- 1st Department of Cardiac Surgery A, Henry Dunant Hospital, Athens, Greece
| | | | | | | | | | - Antonio Totaro
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | |
Collapse
|
23
|
Gamberini G, Maglio S, Mariani A, Mazzotta AD, Forgione A, Marescaux J, Melfi F, Tognarelli S, Menciassi A. Design and preliminary validation of a high-fidelity vascular simulator for robot-assisted manipulation. Sci Rep 2024; 14:4779. [PMID: 38413654 PMCID: PMC10899586 DOI: 10.1038/s41598-024-55351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
The number of robot-assisted minimally invasive surgeries is increasing annually, together with the need for dedicated and effective training. Surgeons need to learn how to address the novel control modalities of surgical instruments and the loss of haptic feedback, which is a common feature of most surgical robots. High-fidelity physical simulation has proved to be a valid training tool, and it might help in fulfilling these learning needs. In this regard, a high-fidelity sensorized simulator of vascular structures was designed, fabricated and preliminarily validated. The main objective of the simulator is to train novices in robotic surgery to correctly perform vascular resection procedures without applying excessive strain to tissues. The vessel simulator was integrated with soft strain sensors to quantify and objectively assess manipulation skills and to provide real-time feedback to the trainee during a training session. Additionally, a portable and user-friendly training task board was produced to replicate anatomical constraints. The simulator was characterized in terms of its mechanical properties, demonstrating its realism with respect to human tissues. Its face, content and construct validity, together with its usability, were assessed by implementing a training scenario with 13 clinicians, and the results were generally positive.
Collapse
Affiliation(s)
- Giulia Gamberini
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy.
- The Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Sabina Maglio
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
- The Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Andrea Mariani
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Dario Mazzotta
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
- The Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Surgery, Madre Giuseppina Vannini Hospital, Istituto Figlie Di San Camillo, Rome, Italy
| | - Antonello Forgione
- IRCAD France, Institut de recherche contre les cancers de l'appareil digestif, Strabourg Cedex, France
| | - Jacques Marescaux
- IRCAD France, Institut de recherche contre les cancers de l'appareil digestif, Strabourg Cedex, France
| | | | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
- The Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arianna Menciassi
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
- The Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
24
|
Cheng YW, Anzell AR, Morosky SA, Schwartze TA, Hinck CS, Hinck AP, Roman BL, Davidson LA. Shear Stress and Sub-Femtomolar Levels of Ligand Synergize to Activate ALK1 Signaling in Endothelial Cells. Cells 2024; 13:285. [PMID: 38334677 PMCID: PMC10854672 DOI: 10.3390/cells13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Anthony R. Anzell
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefanie A. Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tristin A. Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lance A. Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Baluk P, Shirakura K, Vestweber D, McDonald DM. Heterogeneity of endothelial VE-PTP downstream polarization, Tie2 activation, junctional claudin-5, and permeability in the aorta and vena cava. Cell Tissue Res 2024; 395:81-103. [PMID: 38032480 PMCID: PMC10774230 DOI: 10.1007/s00441-023-03844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Endothelial cells of mammalian blood vessels have multiple levels of heterogeneity along the vascular tree and among different organs. Further heterogeneity results from blood flow turbulence and variations in shear stress. In the aorta, vascular endothelial protein tyrosine phosphatase (VE-PTP), which dephosphorylates tyrosine kinase receptor Tie2 in the plasma membrane, undergoes downstream polarization and endocytosis in endothelial cells exposed to laminar flow and high shear stress. VE-PTP sequestration promotes Tie2 phosphorylation at tyrosine992 and endothelial barrier tightening. The present study characterized the heterogeneity of VE-PTP polarization, Tie2-pY992 and total Tie2, and claudin-5 in anatomically defined regions of endothelial cells in the mouse descending thoracic aorta, where laminar flow is variable and IgG extravasation is patchy. We discovered that VE-PTP and Tie2-pY992 had mosaic patterns, unlike the uniform distribution of total Tie2. Claudin-5 at tight junctions also had a mosaic pattern, whereas VE-cadherin at adherens junctions bordered all endothelial cells. Importantly, the amounts of Tie2-pY992 and claudin-5 in aortic endothelial cells correlated with downstream polarization of VE-PTP. VE-PTP and Tie2-pY992 also had mosaic patterns in the vena cava, but claudin-5 was nearly absent and extravasated IgG was ubiquitous. Correlation of Tie2-pY992 and claudin-5 with VE-PTP polarization supports their collective interaction in the regulation of endothelial barrier function in the aorta, yet differences between the aorta and vena cava indicate additional flow-related determinants of permeability. Together, the results highlight new levels of endothelial cell functional mosaicism in the aorta and vena cava, where blood flow dynamics are well known to be heterogeneous.
Collapse
Affiliation(s)
- Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA
| | - Keisuke Shirakura
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster, 48149, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster, 48149, Germany
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, 513 Parnassus Avenue, Room S1349, San Francisco, CA, 94143-0452, USA.
| |
Collapse
|
26
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Azman SS, Yazid MD, Abdul Ghani NA, Raja Sabudin RZA, Abdul Rahman MR, Sulaiman N. Generation of a novel ex-vivo model to study re-endothelialization. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:408-416. [PMID: 37584645 DOI: 10.1080/21691401.2023.2245456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Endothelial dysfunction initiates the pathogenesis of a myriad of cardiovascular diseases, yet the precise underlying mechanisms remain unclear. Current model utilises mechanical denudation of arteries resulting in an arterial-injury model with onset of intimal hyperplasia (IH). Our study shows that 5 min enzymatic denudation of human umbilical artery (hUA) lumen at 37 °C efficiently denudes hUA while maintaining vessel integrity without significantly increase intima-media thickness after 7 days in culture. This ex-vivo model will be a valuable tool in understanding the mechanism of re-endothelialization prior to smooth muscle cells (SMC) activation thus placating IH at an early stage.
Collapse
Affiliation(s)
- Siti Sarah Azman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, Perak, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Raja Zahratul Azma Raja Sabudin
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
28
|
Gupta S, Sharma A, Petrovski G, Verma RS. Vascular reconstruction of the decellularized biomatrix for whole-organ engineering-a critical perspective and future strategies. Front Bioeng Biotechnol 2023; 11:1221159. [PMID: 38026872 PMCID: PMC10680456 DOI: 10.3389/fbioe.2023.1221159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Whole-organ re-engineering is the most challenging goal yet to be achieved in tissue engineering and regenerative medicine. One essential factor in any transplantable and functional tissue engineering is fabricating a perfusable vascular network with macro- and micro-sized blood vessels. Whole-organ development has become more practical with the use of the decellularized organ biomatrix (DOB) as it provides a native biochemical and structural framework for a particular organ. However, reconstructing vasculature and re-endothelialization in the DOB is a highly challenging task and has not been achieved for constructing a clinically transplantable vascularized organ with an efficient perfusable capability. Here, we critically and articulately emphasized factors that have been studied for the vascular reconstruction in the DOB. Furthermore, we highlighted the factors used for vasculature development studies in general and their application in whole-organ vascular reconstruction. We also analyzed in detail the strategies explored so far for vascular reconstruction and angiogenesis in the DOB for functional and perfusable vasculature development. Finally, we discussed some of the crucial factors that have been largely ignored in the vascular reconstruction of the DOB and the future directions that should be addressed systematically.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
29
|
Murphy AR, Allenby MC. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater 2023; 171:114-130. [PMID: 37717711 DOI: 10.1016/j.actbio.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The increasing gap between clinical demand for tissue or organ transplants and the availability of donated tissue highlights the emerging opportunities for lab-grown or synthetically engineered tissue. While the field of tissue engineering has existed for nearly half a century, its clinical translation remains unrealised, in part, due to a limited ability to engineer sufficient vascular supply into fabricated tissue, which is necessary to enable nutrient and waste exchange, prevent cellular necrosis, and support tissue proliferation. Techniques to develop anatomically relevant, functional vascular networks in vitro have made significant progress in the last decade, however, the challenge now remains as to how best incorporate these throughout dense parenchymal tissue-like structures to address diffusion-limited development and allow for the fabrication of large-scale vascularised tissue. This review explores advances made in the laboratory engineering of vasculature structures and summarises recent attempts to integrate vascular networks together with sophisticated in vitro avascular tissue and organ-like structures. STATEMENT OF SIGNIFICANCE: The ability to grow full scale, functional tissue and organs in vitro is primarily limited by an inability to adequately diffuse oxygen and nutrients throughout developing cellularised structures, which generally results from the absence of perfusable vessel networks. Techniques to engineering both perfusable vascular networks and avascular miniaturised organ-like structures have recently increased in complexity, sophistication, and physiological relevance. However, integrating these two essential elements into a single functioning vascularised tissue structure represents a significant spatial and temporal engineering challenge which is yet to be surmounted. Here, we explore a range of vessel morphogenic phenomena essential for tissue-vascular co-development, as well as evaluate a range of recent noteworthy approaches for generating vascularised tissue products in vitro.
Collapse
Affiliation(s)
- A R Murphy
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia
| | - M C Allenby
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia; Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
30
|
Gafranek JT, D'Aniello E, Ravisankar P, Thakkar K, Vagnozzi RJ, Lim HW, Salomonis N, Waxman JS. Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nat Commun 2023; 14:5509. [PMID: 37679366 PMCID: PMC10485058 DOI: 10.1038/s41467-023-41184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
How two-chambered hearts in basal vertebrates have evolved from single-chamber hearts found in ancestral chordates remains unclear. Here, we show that the teleost sinus venosus (SV) is a chamber-like vessel comprised of an outer layer of smooth muscle cells. We find that in adult zebrafish nr2f1a mutants, which lack atria, the SV comes to physically resemble the thicker bulbus arteriosus (BA) at the arterial pole of the heart through an adaptive, hypertensive response involving smooth muscle proliferation due to aberrant hemodynamic flow. Single cell transcriptomics show that smooth muscle and endothelial cell populations within the adapting SV also take on arterial signatures. Bulk transcriptomics of the blood sinuses flanking the tunicate heart reinforce a model of greater equivalency in ancestral chordate BA and SV precursors. Our data simultaneously reveal that secondary complications from congenital heart defects can develop in adult zebrafish similar to those in humans and that the foundation of equivalency between flanking auxiliary vessels may remain latent within basal vertebrate hearts.
Collapse
Affiliation(s)
- Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Ronald J Vagnozzi
- Division of Cardiology, Gates Center for Regenerative Medicine, Consortium for Fibrosis Research and Translation (CFReT), University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
31
|
Rojas-González DM, Babendreyer A, Ludwig A, Mela P. Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering. Sci Rep 2023; 13:14384. [PMID: 37658092 PMCID: PMC10474151 DOI: 10.1038/s41598-023-41247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.
Collapse
Affiliation(s)
- Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany.
| |
Collapse
|
32
|
Dhumale P, Nielsen JV, Hansen ACS, Burton M, Beck HC, Jørgensen MG, Toyserkani NM, Haahr MK, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH, Sheikh SP. CD31 defines a subpopulation of human adipose-derived regenerative cells with potent angiogenic effects. Sci Rep 2023; 13:14401. [PMID: 37658225 PMCID: PMC10474028 DOI: 10.1038/s41598-023-41535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Cellular heterogeneity represents a major challenge for regenerative treatment using freshly isolated Adipose Derived Regenerative Cells (ADRCs). Emerging data suggest superior efficacy of ADRCs as compared to the ex vivo expanded and more homogeneous ADRCs (= ASCs) for indications involving (micro)vascular deficiency, however, it remains unknown which ADRC cell subtypes account for the improvement. Surprisingly, we found regarding erectile dysfunction (ED) that the number of injected CD31+ ADRCs correlated positively with erectile function 12 months after one bolus of autologous ADRCs. Comprehensive in vitro and ex vivo analyses confirmed superior pro-angiogenic and paracrine effects of human CD31+ enriched ADRCs compared to the corresponding CD31- and parent ADRCs. When CD31+, CD31- and ADRCs were co-cultured in aortic ring- and corpus cavernous tube formation assays, the CD31+ ADRCs induced significantly higher tube development. This effect was corroborated using conditioned medium (CM), while quantitative mass spectrometric analysis suggested that this is likely explained by secretory pro-angiogenic proteins including DKK3, ANGPT2, ANAX2 and VIM, all enriched in CD31+ ADRC CM. Single-cell RNA sequencing showed that transcripts of the upregulated and secreted proteins were present in 9 endothelial ADRC subsets including endothelial progenitor cells in the heterogenous non-cultured ADRCs. Our data suggest that the vascular benefit of using ADRCs in regenerative medicine is dictated by CD31+ ADRCs.
Collapse
Affiliation(s)
- Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | | | - Mark Burton
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | | | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Urology, OUH, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Genetics, OUH, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Plastic Surgery, OUH, Odense, Denmark
- Research Unit for Plastic Surgery, Department of Clinical Research, SDU, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark
| | - Søren Paludan Sheikh
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital (OUH), Odense, Denmark.
| |
Collapse
|
33
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
34
|
Arakelian L, Lion J, Churlaud G, Bargui R, Thierry B, Mutabazi E, Bruneval P, Alberdi AJ, Doliger C, Veyssiere M, Larghero J, Mooney N. Endothelial CD34 expression and regulation of immune cell response in-vitro. Sci Rep 2023; 13:13512. [PMID: 37598252 PMCID: PMC10439936 DOI: 10.1038/s41598-023-40622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Endothelial cells cover the lining of different blood vessels and lymph nodes, and have major functions including the transport of blood, vessel homeostasis, inflammatory responses, control of transendothelial migration of circulating cells into the tissues, and formation of new blood vessels. Therefore, understanding these cells is of major interest. The morphological features, phenotype and function of endothelial cells varies according to the vascular bed examined. The sialomucin, CD34, is widely used as an endothelial marker. However, CD34 is differentially expressed on endothelial cells in different organs and in pathological conditions. Little is known about regulation of endothelial CD34 expression or function. Expression of CD34 is also strongly regulated in-vitro in endothelial cell models, including human umbilical vein endothelial cells (HUVEC) and endothelial colony forming cells (ECFC). We have therefore analysed the expression and function of CD34 by comparing CD34high and CD34low endothelial cell subpopulations. Transcriptomic analysis showed that CD34 gene and protein expressions are highly correlated, that CD34high cells proliferate less but express higher levels of IL-33 and Angiopoietin 2, compared with CD34low cells. Higher secretion levels of IL-33 and Angiopoietin 2 by CD34high HUVECs was confirmed by ELISA. Finally, when endothelial cells were allowed to interact with peripheral blood mononuclear cells, CD34high endothelial cells activated stronger proliferation of regulatory T lymphocytes (Tregs) compared to CD34low cells whereas expansion of other CD4+-T cell subsets was equivalent. These results suggest that CD34 expression by endothelial cells in-vitro associates with their ability to proliferate and with an immunogenic ability that favours the tolerogenic response.
Collapse
Affiliation(s)
- Lousineh Arakelian
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France.
- Université Paris Cité, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France.
| | - Julien Lion
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Guillaume Churlaud
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, 75010, Paris, France
| | - Rezlene Bargui
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Evelyne Mutabazi
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Patrick Bruneval
- Service de Cardiologie, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Antonio José Alberdi
- UMS Saint-Louis US53/UAR2030, Université Paris Cité - INSERM - CNRS, Institut de Recherche Saint Louis, Paris, France
| | - Christelle Doliger
- UMS Saint-Louis US53/UAR2030, Université Paris Cité - INSERM - CNRS, Institut de Recherche Saint Louis, Paris, France
| | - Maëva Veyssiere
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Jérôme Larghero
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, 75010, Paris, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
35
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, Dos Santos CC, Radisic M. Heart-on-a-chip model of immune-induced cardiac dysfunction reveals the role of free mitochondrial DNA and therapeutic effects of endothelial exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552495. [PMID: 37609237 PMCID: PMC10441383 DOI: 10.1101/2023.08.09.552495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cardiovascular disease continues to take more human lives than all cancer combined, prompting the need for improved research models and treatment options. Despite a significant progress in development of mature heart-on-a-chip models of fibrosis and cardiomyopathies starting from induced pluripotent stem cells (iPSCs), human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip system with circulating immune cells to model SARS-CoV-2-induced acute myocarditis. Briefly, we observed hallmarks of COVID-19-induced myocardial inflammation in the heart-on-a-chip model, as the presence of immune cells augmented the expression levels of proinflammatory cytokines, triggered progressive impairment of contractile function and altered intracellular calcium transient activities. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the in vitro heart-on-a-chip model and then validated in COVID-19 patients with low left ventricular ejection fraction (LVEF), demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2 induced myocardial inflammation, we established that administration of human umbilical vein-derived EVs effectively rescued the contractile deficit, normalized intracellular calcium handling, elevated the contraction force and reduced the ccf- mtDNA and chemokine release via TLR-NF-kB signaling axis.
Collapse
|
36
|
Ribeiro A, Rebocho da Costa M, de Sena-Tomás C, Rodrigues EC, Quitéria R, Maçarico T, Rosa Santos SC, Saúde L. Development and repair of blood vessels in the zebrafish spinal cord. Open Biol 2023; 13:230103. [PMID: 37553073 PMCID: PMC10409570 DOI: 10.1098/rsob.230103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The vascular system is inefficiently repaired after spinal cord injury (SCI) in mammals, resulting in secondary tissue damage and immune deregulation that contribute to the limited functional recovery. Unlike mammals, zebrafish can repair the spinal cord (SC) and restore motility, but the vascular response to injury has not been investigated. Here, we describe the zebrafish SC blood vasculature, starting in development with the initial vessel ingression in a body size-dependent manner, the acquisition of perivascular support and the establishment of ventral to dorsal blood circulation. The vascular organization grows in complexity and displays multiple barrier specializations in adulthood. After injury, vessels rapidly regrow into the lesion, preceding the glial bridge and axons. Vascular repair involves an early burst of angiogenesis that creates dysmorphic and leaky vessels. Dysfunctional vessels are later removed, as pericytes are recruited and the blood-SC barrier is re-established. This study demonstrates that zebrafish can successfully re-vascularize the spinal tissue, reinforcing the value of this organism as a regenerative model for SCI.
Collapse
Affiliation(s)
- Ana Ribeiro
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Mariana Rebocho da Costa
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Carmen de Sena-Tomás
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Elsa Charas Rodrigues
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Raquel Quitéria
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Tiago Maçarico
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| |
Collapse
|
37
|
Coulombe P, Cole G, Fentiman A, Parker JDK, Yung E, Bilenky M, Degefie L, Lac P, Ling MYM, Tam D, Humphries RK, Karsan A. Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression. Nat Commun 2023; 14:4537. [PMID: 37500618 PMCID: PMC10374625 DOI: 10.1038/s41467-023-40283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) originate from an endothelial-to-hematopoietic transition (EHT) during embryogenesis. Characterization of early hemogenic endothelial (HE) cells is required to understand what drives hemogenic specification and to accurately define cells capable of undergoing EHT. Using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), we define the early subpopulation of pre-HE cells based on both surface markers and transcriptomes. We identify the transcription factor Meis1 as an essential regulator of hemogenic cell specification in the embryo prior to Runx1 expression. Meis1 is expressed at the earliest stages of EHT and distinguishes pre-HE cells primed towards the hemogenic trajectory from the arterial endothelial cells that continue towards a vascular fate. Endothelial-specific deletion of Meis1 impairs the formation of functional Runx1-expressing HE which significantly impedes the emergence of pre-HSPC via EHT. Our findings implicate Meis1 in a critical fate-determining step for establishing EHT potential in endothelial cells.
Collapse
Affiliation(s)
- Patrick Coulombe
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Grace Cole
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Amanda Fentiman
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Jeremy D K Parker
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Eric Yung
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Misha Bilenky
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Lemlem Degefie
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Patrick Lac
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Maggie Y M Ling
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Derek Tam
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
38
|
Allen BJ, Frye H, Ramanathan R, Caggiano LR, Tabima DM, Chesler NC, Philip JL. Biomechanical and Mechanobiological Drivers of the Transition From PostCapillary Pulmonary Hypertension to Combined Pre-/PostCapillary Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e028121. [PMID: 36734341 PMCID: PMC9973648 DOI: 10.1161/jaha.122.028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combined pre-/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mechanotransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the progression to Cpc-PH. We focus on pathologically increased cyclic stretch and decreased wall shear stress; mechanotransduction by endothelial cells, smooth muscle cells, and pulmonary arterial fibroblasts; and signaling-stimulated remodeling of the pulmonary veins, capillaries, and arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and mechanobiological mechanisms of Cpc-PH progression may highlight potential pharmacologic avenues to prevent right heart failure and subsequent mortality.
Collapse
Affiliation(s)
- Betty J. Allen
- Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWI
| | - Hailey Frye
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Rasika Ramanathan
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Laura R. Caggiano
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA
| | - Diana M. Tabima
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Naomi C. Chesler
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA
| | | |
Collapse
|
39
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Wakabayashi T, Naito H. Cellular heterogeneity and stem cells of vascular endothelial cells in blood vessel formation and homeostasis: Insights from single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1146399. [PMID: 37025170 PMCID: PMC10070846 DOI: 10.3389/fcell.2023.1146399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Vascular endothelial cells (ECs) that constitute the inner surface of blood vessels are essential for new vessel formation and organ homeostasis. ECs display remarkable phenotypic heterogeneity across different organs and the vascular tree during angiogenesis and homeostasis. Recent advances in single cell RNA sequencing (scRNA-seq) technologies have allowed a new understanding of EC heterogeneity in both mice and humans. In particular, scRNA-seq has identified new molecular signatures for arterial, venous and capillary ECs in different organs, as well as previously unrecognized specialized EC subtypes, such as the aerocytes localized in the alveolar capillaries of the lung. scRNA-seq has also revealed the gene expression profiles of specialized tissue-resident EC subtypes that are capable of clonal expansion and contribute to adult angiogenesis, a process of new vessel formation from the pre-existing vasculature. These specialized tissue-resident ECs have been identified in various different mouse tissues, including aortic endothelium, liver, heart, lung, skin, skeletal muscle, retina, choroid, and brain. Transcription factors and signaling pathways have also been identified in the specialized tissue-resident ECs that control angiogenesis. Furthermore, scRNA-seq has also documented responses of ECs in diseases such as cancer, age-related macular degeneration, Alzheimer's disease, atherosclerosis, and myocardial infarction. These new findings revealed by scRNA-seq have the potential to provide new therapeutic targets for different diseases associated with blood vessels. In this article, we summarize recent advances in the understanding of the vascular endothelial cell heterogeneity and endothelial stem cells associated with angiogenesis and homeostasis in mice and humans, and we discuss future prospects for the application of scRNA-seq technology.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
- *Correspondence: Taku Wakabayashi, ; Hisamichi Naito,
| |
Collapse
|
41
|
He Y, Shiu YT, Imrey PB, Radeva MK, Beck GJ, Gassman JJ, Northrup HM, Roy-Chaudhury P, Berceli SA, Cheung AK. Association of Shear Stress with Subsequent Lumen Remodeling in Hemodialysis Arteriovenous Fistulas. Clin J Am Soc Nephrol 2023; 18:72-83. [PMID: 36446600 PMCID: PMC10101625 DOI: 10.2215/cjn.04630422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Blood flow-induced wall shear stress is a strong local regulator of vascular remodeling, but its effects on arteriovenous fistula (AVF) remodeling are unclear. METHODS In this prospective cohort study, we used computational fluid dynamics simulations and statistical mixed-effects modeling to investigate the associations between wall shear stress and AVF remodeling in 120 participants undergoing AVF creation surgery. Postoperative magnetic resonance imaging data at 1 day, 6 weeks, and 6 months were used to derive current wall shear stress by computational fluid dynamic simulations and to quantify subsequent changes in AVF lumen cross-sectional area at 1-mm intervals along the proximal artery and AVF vein. RESULTS Combining artery and vein data, prior mean wall shear stress was significantly associated with lumen area expansion. Mean wall shear stress at day 1 was significantly associated with change in lumen area from day 1 to week 6 (11% larger area per interquartile range [IQR] higher mean wall shear stress, 95% confidence interval [95% CI], 5% to 18%; n =101), and mean wall shear stress at 6 weeks was significantly associated with change in lumen area from 6 weeks to month 6 (14% larger area per IQR higher, 95% CI, 3% to 28%; n =52). The association of mean wall shear stress at day 1 with lumen area expansion from day 1 to week 6 differed significantly by diabetes ( P =0.009): 27% (95% CI, 17% to 37%) larger area per IQR higher mean wall shear stress without diabetes and 9% (95% CI, -1% to 19%) with diabetes. Oscillatory shear index at day 1 was significantly associated with change in lumen area from day 1 to week 6 (5% smaller area per IQR higher oscillatory shear index, 95% CI, 3% to 7%), and oscillatory shear index at 6 weeks was significantly associated with change in lumen from 6 weeks to month 6 (7% smaller area per IQR higher oscillatory shear index, 95% CI, 2% to 11%). Wall shear stress spatial gradient was not significantly associated with subsequent remodeling. In a joint model, wall shear stress and oscillatory shear index statistically significantly interacted in their associations with lumen area expansion in a complex nonlinear fashion. CONCLUSIONS Higher wall shear stress and lower oscillatory shear index were associated with greater lumen expansion after AVF creation surgery.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Peter B. Imrey
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Milena K. Radeva
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Jennifer J. Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Hannah M. Northrup
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
- Department of Medicine, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
42
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
Schilling K, Zhai Y, Zhou Z, Zhou B, Brown E, Zhang X. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. eLife 2022; 11:e83146. [PMID: 36326085 PMCID: PMC9678361 DOI: 10.7554/elife.83146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Bin Zhou
- Shanghai Institutes for Biological SciencesShanghaiChina
| | - Edward Brown
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| |
Collapse
|
44
|
Calcagno DM, Taghdiri N, Ninh VK, Mesfin JM, Toomu A, Sehgal R, Lee J, Liang Y, Duran JM, Adler E, Christman KL, Zhang K, Sheikh F, Fu Z, King KR. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1039-1055. [PMID: 39086770 PMCID: PMC11290420 DOI: 10.1038/s44161-022-00160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 08/02/2024]
Abstract
The border zone (BZ) of the infarcted heart is a geographically complex and biologically enigmatic interface separating poorly perfused infarct zones (IZs) from remote zones (RZs). The cellular and molecular mechanisms of myocardial BZs are not well understood because microdissection inevitably combines them with uncontrolled amounts of RZs and IZs. Here, we use single-cell/nucleus RNA sequencing, spatial transcriptomics and multiplexed RNA fluorescence in situ hybridization to redefine the BZ based on cardiomyocyte transcriptomes. BZ1 (Nppa + Xirp2 -) forms a hundreds-of-micrometer-thick layer of morphologically intact cells adjacent to RZs that are detectable within an hour of injury. Meanwhile, BZ2 (Nppa + Xirp2 +) forms a near-single-cell-thick layer of morphologically distorted cardiomyocytes at the IZ edge that colocalize with matricellular protein-expressing myofibroblasts and express predominantly mechanotransduction genes. Surprisingly, mechanical injury alone is sufficient to induce BZ genes. We propose a 'loss of neighbor' hypothesis to explain how ischemic cell death mechanically destabilizes the BZ to induce its transcriptional response.
Collapse
Affiliation(s)
- D. M. Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - N. Taghdiri
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - V. K. Ninh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Mesfin
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - A. Toomu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - R. Sehgal
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J. Lee
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Y. Liang
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Duran
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - E. Adler
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - K. L. Christman
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - K. Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - F. Sheikh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Z. Fu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - K. R. King
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Naiche LA, Villa SR, Kitajewski JK. Endothelial Cell Fate Determination: A Top Notch Job in Vascular Decision-Making. Cold Spring Harb Perspect Med 2022; 12:a041183. [PMID: 35288401 PMCID: PMC9619357 DOI: 10.1101/cshperspect.a041183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As vascular networks form, endothelial cells (ECs) undergo cell fate decisions that determine whether they become tip or stalk cells of the developing vascular plexus or mature into arterial, venous, or lymphatic endothelium. EC fate decisions are coordinated with neighboring cells to initiate sprouting, maintain endothelial barrier, or ensure appropriate specialization of vessels. We describe mechanisms that control EC fate at specific steps in these processes, with an emphasis on the role of the Notch signaling pathway. Specific EC fate determination steps that are highlighted are tip/stalk selection during sprouting angiogenesis, venous-arterial specification, arteriogenesis, lymphatic vessel specification, and lymphatic valve formation.
Collapse
Affiliation(s)
- L A Naiche
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - Stephanie R Villa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois 60612, USA
- University of Illinois Cancer Center, Chicago, Illinois 60612, USA
| |
Collapse
|
46
|
Zhang G, Li M, Zhou D, Yang X, Zhang W, Gao R. Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. J Transl Med 2022; 20:446. [PMID: 36184589 PMCID: PMC9528146 DOI: 10.1186/s12967-022-03649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Metastasis is the primary cause of cancer-related mortality. Metastasis involves a complex multistep process during which individual tumor cells spread primarily through destruction of the endothelial barrier, entering the circulatory system to colonize distant organs. However, the role of the endothelial barrier as the rate-limiting process in tumor metastasis and how these processes affect the regulation of the host microenvironment at the molecular level are poorly understood. Methods Here, we analyzed differentially expressed genes in breast cancer and lung adenocarcinoma, including metastatic and recurrent specimens, using TCGA dataset. The effects of EMCN on endothelial cells in vitro and in vivo were analyzed by assessing angiogenesis and vascular permeability, respectively. We established a syngeneic mouse model of endothelial cell-specific knockout of EMCN (EMCNecko) to study the role of EMCN in tumor growth and metastasis. Transcriptome sequencing, Western blotting, qPCR and immunofluorescence confirmed important factors in the premetastatic niche. A mouse model of allograft tumor resection with lung metastasis was established to confirm the therapeutic effect of a notch inhibitor combined with an anti-TGF-β antibody. Results We found a strong correlation of EMCN deficiency with tumor recurrence and metastasis. Comparative experiments in WT and EMCNecko mice revealed that endothelial EMCN deficiency did not affect primary tumor growth significantly but strongly promoted spontaneous metastasis. EMCN deficiency was associated with gene profiles that regulate cell junctions in vitro and enhance vascular permeability in vivo. Mechanistically, EMCN deficiency mainly affected the host microenvironment and led to the formation of a lung premetastatic niche by recruiting Ly6G+ neutrophils and upregulating MMP9, S100A8/A9 and TGF-β expression. Anti-TGF-β antibody effectively eliminated TGF-β-induced neutrophil polarization, thereby reducing lung metastasis. Notably, the combination of a Notch inhibitor and an anti-TGF-β antibody effectively inhibited tumor growth and lung metastasis and prolonged the survival time of mice. Conclusions We present a new translational strategy of EMCN as a new key player in tumor lung metastasis by affecting the host microenvironment. These findings could provide a sound theoretical basis for clinical treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03649-4.
Collapse
Affiliation(s)
- Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Dandan Zhou
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China. .,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China. .,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
| |
Collapse
|
47
|
Muhl L, Mocci G, Pietilä R, Liu J, He L, Genové G, Leptidis S, Gustafsson S, Buyandelger B, Raschperger E, Hansson EM, Björkegren JL, Vanlandewijck M, Lendahl U, Betsholtz C. A single-cell transcriptomic inventory of murine smooth muscle cells. Dev Cell 2022; 57:2426-2443.e6. [DOI: 10.1016/j.devcel.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
|
48
|
Ladak SS, McQueen LW, Layton GR, Aujla H, Adebayo A, Zakkar M. The Role of Endothelial Cells in the Onset, Development and Modulation of Vein Graft Disease. Cells 2022; 11:3066. [PMID: 36231026 PMCID: PMC9561968 DOI: 10.3390/cells11193066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells comprise the intimal layer of the vasculature, playing a crucial role in facilitating and regulating aspects such nutrient transport, vascular homeostasis, and inflammatory response. Given the importance of these cells in maintaining a healthy haemodynamic environment, dysfunction of the endothelium is central to a host of vascular diseases and is a key predictor of cardiovascular risk. Of note, endothelial dysfunction is believed to be a key driver for vein graft disease-a pathology in which vein grafts utilised in coronary artery bypass graft surgery develop intimal hyperplasia and accelerated atherosclerosis, resulting in poor long-term patency rates. Activation and denudation of the endothelium following surgical trauma and implantation of the graft encourage a host of immune, inflammatory, and cellular differentiation responses that risk driving the graft to failure. This review aims to provide an overview of the current working knowledge regarding the role of endothelial cells in the onset, development, and modulation of vein graft disease, as well as addressing current surgical and medical management approaches which aim to beneficially modulate endothelial function and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
49
|
Deng L, Chen J, Li Y, Han Y, Fan G, Yang J, Cao D, Lu B, Ning K, Nie S, Zhang Z, Shen D, Zhang Y, Fu W, Wang WE, Wan Y, Li S, Feng YQ, Luo Q, Yuan J. Cryo-fluorescence micro-optical sectioning tomography for volumetric imaging of various whole organs with subcellular resolution. iScience 2022; 25:104805. [PMID: 35992061 PMCID: PMC9389242 DOI: 10.1016/j.isci.2022.104805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Optical visualization of complex microstructures in the entire organ is essential for biomedical research. However, the existing methods fail to accurately acquire the detailed microstructures of whole organs with good morphological and biochemical preservation. This study proposes a cryo-fluorescence micro-optical sectioning tomography (cryo-fMOST) to image whole organs in three dimensions (3D) with submicron resolution. The system comprises a line-illumination microscope module, cryo-microtome, three-stage refrigeration module, and heat insulation device. To demonstrate the imaging capacity and wide applicability of the system, we imaged and reconstructed various organs of mice in 3D, including the healthy tongue, kidney, and brain, as well as the infarcted heart. More importantly, imaged brain slices were performed sugar phosphates determination and fluorescence in situ hybridization imaging to verify the compatibility of multi-omics measurements. The results demonstrated that cryo-fMOST is capable of acquiring high-resolution morphological details of various whole organs and may be potentially useful for spatial multi-omics.
Collapse
Affiliation(s)
- Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianwei Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yafeng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoqing Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongjian Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bolin Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kefu Ning
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Nie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zoutao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Shen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunfei Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Sha Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215123, China
| |
Collapse
|
50
|
Caldiroli A, Pederzani E, Pezzotta M, Azzollini N, Fiori S, Tironi M, Rizzo P, Sangalli F, Figliuzzi M, Fiore GB, Remuzzi A, Riboldi SA, Soncini M, Redaelli A. Hybrid fibroin/polyurethane small-diameter vascular grafts: from fabrication to in vivo preliminary assessment. Biomed Mater 2022; 17. [PMID: 35944550 DOI: 10.1088/1748-605x/ac885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
To address the need of alternatives to autologous vessels for small-calibre vascular applications (e.g. cardiac surgery), a hybrid semi-degradable material composed of silk fibroin and polyurethane (Silkothane®) was herein used to fabricate very small-calibre grafts (innner diameter = 1.5 mm) via electrospinning. Hybrid grafts were in vitro characterized in terms of morphology and mechanical behaviour, and compared to similar grafts of pure silk fibroin. Similarly, two native vessels from a rodent model (abdominal aorta and vena cava) were harvested and characterized. Preliminary implants were performed on Lewis rats to confirm the suitability of Silkothane® grafts for small-calibre applications, specifically as aortic insertion and femoral shunt. The manufacturing process generated pliable grafts consisting of a randomized fibrous mesh and exhibiting similar geometrical features to rat aortas. Both Silkothane® and pure silk fibroin grafts showed radial compliances in the range from 1.37 ± 0.86 to 1.88 ± 1.01 % 10-2 mmHg-1, lower than that of native vessels. The Silkothane® small-calibre devices were also implanted in rats demonstrating to be adequate for vascular applications; all the treated rats survived the surgery for 3 months after implantation, and 16 rats out of 17 (94%) still showed blood flow inside the graft at sacrifice. The obtained results lay the basis for a deeper investigation of the interaction between the Silktohane® graft and the implant site, which may deal with further analysis on the potentialities in terms of degradability and tissue formation, on longer time-points.
Collapse
Affiliation(s)
- Alice Caldiroli
- Bioengineering Laboratories Srl, Via Vivaldi 32/A, Cantù, 22063, ITALY
| | - Elia Pederzani
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Giuseppe Ponzio 34, Milano, Lombardia, 20133, ITALY
| | - Marco Pezzotta
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Giuseppe Ponzio 34, Milano, Lombardia, 20133, ITALY
| | - Nadia Azzollini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Via Stezzano 87, Bergamo, 24126, ITALY
| | - Sonia Fiori
- , Istituto di ricerche farmacologiche mario negri IRCCS, via Stezzano 87, Bergamo, Lombardia, 24126, ITALY
| | - Matteo Tironi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Via Stezzano 87, Bergamo, 24126, ITALY
| | - Paola Rizzo
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri Centro Anna Maria Astori, via Stezzano 87, Bergamo, 24126, ITALY
| | - Fabio Sangalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Stezzano 87, Bergamo, 24126, ITALY
| | - Marina Figliuzzi
- Bioengineering, Istituto di ricerche farmacologiche mario negri IRCCS, via Stezzano 87, Bergamo, Bergamo, 24126, ITALY
| | - Gianfranco Beniamino Fiore
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Giuseppe Ponzio, 34, Milano, Lombardia, 20133, ITALY
| | - Andrea Remuzzi
- Università degli Studi di Bergamo, Via Pignolo 123, Bergamo, Lombardia, 24121, ITALY
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza L Da Vinci ,32, Milano, 20133, ITALY
| | - Alberto Redaelli
- Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria, Via Giuseppe Ponzio 34, Milano, 20133, ITALY
| |
Collapse
|