1
|
Zhu W, Yi Q, Wang J, Ouyang X, Yang K, Jiang B, Huang B, Liu J, Zhao L, Liu X, Zhong J, Zhong J, Wang B. Comprehensive analysis of CLEC family genes in gastric cancer prognosis immune response and treatment. Sci Rep 2025; 15:5956. [PMID: 39966377 PMCID: PMC11836380 DOI: 10.1038/s41598-024-80204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/15/2024] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer, a prevalent malignancy, often presents challenges due to its low early diagnosis rate and poor prognosis. This study aims to establish a prognostic model composed of genes from the CLEC family, aiming to predict the prognosis of gastric cancer patients effectively. Data Collection: mRNA expression matrices and clinical data were downloaded from the TCGA, GEO, and GTEx databases. Differential analysis, univariate Cox analysis, lasso regression analysis, and multivariate Cox analysis were conducted to identify three genes associated with the prognosis of the CLEC family for building a prognostic model. Prognostic Model Construction: A prognostic model comprising these three genes was constructed. The prognostic value was evaluated using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, multivariable Cox regression analysis incorporating clinical information, and a nomogram. The predictive value of the three-gene signature was further validated using the GSE84437 dataset. Immune and Functional Analyses: Differences in immune status and signaling pathways between different risk groups were assessed through analyses of the tumor microenvironment, immune cell infiltration, immune function, and gene set enrichment. Through tumor mutation analysis, the molecular mechanisms of tumors were revealed. Finally, chemotherapy-sensitivity drugs were identified through drug analysis. Results revealed CD93, CLEC3A, and VCAN as three CLEC family genes associated with prognosis. Multivariable Cox regression analysis demonstrated that these three CLEC family genes were independent prognostic factors for overall survival in gastric cancer patients. Additionally, we constructed a prognostic nomogram that incorporated risk score, age, grade, and stage. Based on TCGA/GSE84437 data, calibration plots demonstrated its predictive solid performance. Furthermore, immune-related analyses and drug sensitivity assessments suggested a close association between the three-gene model and immune cell infiltration, indicating their potential as predictive indicators for chemotherapy sensitivity. We have identified a CLEC family gene model consisting of three genes associated with the prognosis of gastric cancer. This provides a basis for personalized prevention and treatment strategies.
Collapse
Affiliation(s)
- Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Kuan Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Benben Huang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jin Liu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liwen Zhao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuejin Liu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Biao Wang
- Department of Rheumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
2
|
Fu L, Zhao L, Li F, Wen F, Zhang P, Yang X, Wang Y. Pharmacological mechanism of quercetin in the treatment of colorectal cancer by network pharmacology and molecular simulation. J Biomol Struct Dyn 2024; 42:7065-7076. [PMID: 37464874 DOI: 10.1080/07391102.2023.2235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Colorectal cancer is a serious threat to people's life due to its high incidence and high mortality. Quercetin can effectively treat colorectal carcinoma (CRC), but its exact mechanism of action is still unclear. Then quercetin-related target genes were obtained from Swiss Target Prediction database and Similarity Ensemble Approach (SEA) database, and CRC-related target genes were obtained from GeneCards database, respectively. Common target genes were obtained by FunRich software. String software was used to construct a protein-protein interaction (PPI) network. R package was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking, molecular dynamics (MD) simulation and post-dynamics simulation were used to explore the binding stability of quercetin to key targets. In total, 103 and 141 target information of quercetin were obtained from the Swiss Target Prediction database and SEA database, respectively. 1,649 CRC-related genes were obtained from GeneCards database. FunRich software was used to draw venny map and obtain 36 intersection targets of quercetin and CRC. String software was used to construct the PPI network. The core genes were AKT1, EGFR, MMP9, KDR, MET and PTK2. There were 532 items related to biological processes, 14 items related to cellular components, and 43 items related to molecular functions among the key target GO enrichment items. KEGG enrichment pathways of key targets involved cancer pathways, PI3K-Akt signal pathway, etc. The results of molecular docking, MD simulation and post-dynamics simulation showed they had a good affinity and formed a stable effect. So quercetin may play an important role in the treatment of CRC by acting on AKT1, EGFR, MMP9, KDR, MET and PTK2 to affect the development of CRC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Le Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Linan Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Fei Li
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Feng Wen
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Peng Zhang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Xia Yang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
3
|
Estephan LE, Kumar G, Stewart M, Banoub R, Linnenbach A, Harshyne LA, Martinez-Outschoorn UE, Mahoney MG, Curry JM, Johnson J, South AP, Luginbuhl AJ. Altered extracellular matrix correlates with an immunosuppressive tumor microenvironment and disease progression in younger adults with oral cavity squamous cell carcinoma. Front Oncol 2024; 14:1412212. [PMID: 38957320 PMCID: PMC11217481 DOI: 10.3389/fonc.2024.1412212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Oral cavity squamous cell carcinoma (OSCC) occurs most frequently in patients >60 years old with a history of tobacco and alcohol use. Epidemiological studies describe increased incidence of OSCC in younger adults (<45 years). Despite its poor prognosis, knowledge of OSCC tumor microenvironment (TME) characteristics in younger adults is scarce and could help inform possible resistance to emerging treatment options. Methods Patients with OSCC were evaluated using TCGA-HNSC (n=121) and a stage and subsite-matched institutional cohort (n=8) to identify differential gene expression focusing on the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) processes in younger (≤45 years) vs. older adults (≥60 years). NanoString nCounter analysis was performed using isolated total RNA from formalin-fixed paraffin-embedded (FFPE) tumor samples. Stained tumor slides from young and old OSCC patients were evaluated for CD8+ T-cell counts using immunohistochemistry. Results Younger OSCC patients demonstrated significantly increased expression of ECM remodeling and EMT process genes, as well as TME immunosuppression. Gene set enrichment analyses demonstrated increased ECM pathways and concurrent decreased immune pathways in young relative to old patients. Transcripts per million of genetic markers involved in ECM remodeling including LAMB3, VCAN, S100A9, COL5A1, and ITGB2 were significantly increased in tumors of younger vs. older patients (adjusted p-value < 0.10). Young patient TMEs demonstrated a 2.5-fold reduction in CD8+ T-cells as compared to older patients (p < 0.05). Conclusion Differential gene expression impacting ECM remodeling and TME immunosuppression may contribute to disease progression in younger adult OSCC and has implications on response to evolving treatment modalities, such as immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Leonard E. Estephan
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthew Stewart
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Raphael Banoub
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Alban Linnenbach
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Larry A. Harshyne
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Ubaldo E. Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - My G. Mahoney
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph M. Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Andrew P. South
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam J. Luginbuhl
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| |
Collapse
|
4
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I-induced VCAN/ERK signaling and PARP1/ZEB1-mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis 2024; 15:85. [PMID: 38267463 PMCID: PMC10808547 DOI: 10.1038/s41419-024-06468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The global burden of colorectal cancer (CRC) has rapidly increased in recent years. Dysregulated cholesterol homeostasis facilitated by extracellular matrix (ECM) remodeling transforms the tumor microenvironment. Collagen I, a major with ECM component is highly expressed in colorectal tumors with infiltrative growth. Although oxysterol binding protein (OSBP)-related proteins accommodate tumorigenesis, OSBPL2, which is usually involved in deafness, is not associated with CRC progression. Therefore, we aimed to investigate the pathological function of OSBPL2 and identify the molecular link between ECM-Collagen I and OSBPL2 in CRC to facilitate the development of new treatments for CRC. OSBPL2 predicted a favorable prognosis in stage IV CRC and substantially repressed Collagen I-induced focal adhesion, migration, and invasion. The reduction of OSBPL2 activated ERK signaling through the VCAN/AREG/EREG axis during CRC growth, while relying on PARP1 via ZEB1 in CRC metastasis. OSBPL2 defect supported colorectal tumor growth and metastasis, which were suppressed by the ERK and PARP1 inhibitors SCH772984 and AG14361, respectively. Overall, our findings revealed that the Collagen I-induced loss of OSBPL2 aggravates CRC progression through VCAN-mediated ERK signaling and the PARP1/ZEB1 axis. This demonstrates that SCH772984 and AG14361 are reciprocally connective therapies for OSBPL2Low CRC, which could contribute to further development of targeted CRC treatment.
Collapse
Affiliation(s)
- Kang Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuqi Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Proteomic Signature of Extracellular Vesicles Associated with Colorectal Cancer. Molecules 2023; 28:molecules28104227. [PMID: 37241967 DOI: 10.3390/molecules28104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The proteins of extracellular vesicles (EVs) provide proteomic signatures that reflect molecular features of EV-producing cells, including cancer cells. Detection of cancer cell EV proteins is of great interest due to the development of novel predictive diagnostic approaches. Using targeted mass spectrometry with stable-isotope-labeled peptide standards (SIS), we measured in this study the levels of 34 EV-associated proteins in vesicles and whole lysate derived from the colorectal cancer (CRC) cell lines Caco-2, HT29 and HCT116. We also evaluated the abundance of 13 EV-associated proteins (FN1, TLN1, ITGB3, HSPA8, TUBA4A, CD9, CD63, HSPG2, ITGB1, GNAI2, TSG101, PACSIN2, and CDC42) in EVs isolated from blood plasma samples from 11 CRC patients and 20 healthy volunteers. Downregulation of TLN1, ITGB3, and TUBA4A with simultaneous upregulation of HSPG2 protein were observed in cancer samples compared to healthy controls. The proteomic cargo of the EVs associated with CRC represents a promising source of potential prognostic markers.
Collapse
Affiliation(s)
- Natalia Soloveva
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Svetlana Novikova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Tatiana Farafonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
7
|
Luo HL, Chang YL, Liu HY, Wu YT, Sung MT, Su YL, Huang CC, Wang PC, Peng JM. VCAN Hypomethylation and Expression as Predictive Biomarkers of Drug Sensitivity in Upper Urinary Tract Urothelial Carcinoma. Int J Mol Sci 2023; 24:ijms24087486. [PMID: 37108649 PMCID: PMC10139123 DOI: 10.3390/ijms24087486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Versican (VCAN), also known as extracellular matrix proteoglycan 2, has been suggested as a potential biomarker in cancers. Previous research has found that VCAN is highly expressed in bladder cancer. However, its role in predicting outcomes for patients with upper urinary tract urothelial cancer (UTUC) is not well understood. In this study, we collected tissues from 10 patients with UTUC, including 6 with and 4 without lymphovascular invasion (LVI), a pathological feature that plays a significant role in determining metastasis. Results from RNA sequencing revealed that the most differentially expressed genes were involved in extracellular matrix organization. Using the TCGA database for clinical correlation, VCAN was identified as a target for study. A chromosome methylation assay showed that VCAN was hypomethylated in tumors with LVI. In our patient samples, VCAN expression was also found to be high in UTUC tumors with LVI. In vitro analysis showed that knocking down VCAN inhibited cell migration but not proliferation. A heatmap analysis also confirmed a significant correlation between VCAN and migration genes. Additionally, silencing VCAN increased the effectiveness of cisplatin, gemcitabine and epirubicin, thus providing potential opportunities for clinical application.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yen-Ting Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ming-Tse Sung
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yu-Li Su
- Department of Hematology and Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Chia Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
8
|
A stabilized CXCL9(74-103)-derived peptide selectively inhibits proliferation, adhesion and metastasis of tumor cells that express high levels of heparan sulfate. Int J Biol Macromol 2022; 222:2808-2822. [PMID: 36272565 DOI: 10.1016/j.ijbiomac.2022.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
9
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
10
|
Identification of Candidate Therapeutic Target Genes and Profiling of Tumor-Infiltrating Immune Cells in Pancreatic Cancer via Integrated Transcriptomic Analysis. DISEASE MARKERS 2022; 2022:3839480. [PMID: 36061357 PMCID: PMC9428685 DOI: 10.1155/2022/3839480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) has a dismal prognosis despite advancing scientific and technological knowledge. The exploration of novel genes is critical to improving current therapeutic measures. This research is aimed at selecting hub genes that can act as candidate therapeutic target genes and as prognostic biomarkers in PC. Gene expression profiles of datasets GSE101448, GSE15471, and GSE62452 were extracted from the GEO database. The “limma” package was performed to select differentially expressed genes (DEGs) between PC and normal tissue samples in each dataset. Robust rank aggregation (RRA) algorithm was conducted to integrate multiple expression profiles and identify robust DEGs. GO analysis and KEGG analysis were conducted to identify the functional correlation of the DEGs. The CIBERSORT algorithm was conducted to estimate the immune cell composition of each tissue sample. STRING and Cytoscape were used to establish the protein-protein interaction (PPI) network. The cytoHubba plugin in Cytoscape was performed to identify hub genes. Survival analysis based on hub gene expression was performed with clinical information from TCGA database. 566 robust DEGs (338 upregulated genes and 226 downregulated genes) were identified. Tumor tissue had a higher infiltration of resting dendritic cells and tumor-associated macrophages (TAM), including M0, M1, and M2 macrophages, while infiltration levels of B memory cells, plasma cells, T cells CD8, T follicular helper cells, and NK cells in normal tissue were relatively higher. GO terms and KEGG pathway analysis results revealed enrichment in tumor-associated pathways, including the extracellular matrix organization, cell−substrate adhesion cytokine−cytokine receptor interaction, calcium signaling pathway, and glycine, serine, and threonine metabolism, to name a few. Finally, FN1, MSLN, PLAU, and VCAN were selected as hub genes. High expression of FN1, MSLN, PLAU, and VCAN in PC significantly correlated with poor prognosis. Integrated transcriptomic analysis was used to provide new insights into PC pathogenesis. FN1, MSLN, PLAU, and VCAN may be considered as novel biomarkers of PC.
Collapse
|
11
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Liu C, Papukashvili D, Dong Y, Wang X, Hu X, Yang N, Cai J, Xie F, Rcheulishvili N, Wang PG. Identification of Tumor Antigens and Design of mRNA Vaccine for Colorectal Cancer Based on the Immune Subtype. Front Cell Dev Biol 2022; 9:783527. [PMID: 35127707 PMCID: PMC8811447 DOI: 10.3389/fcell.2021.783527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
mRNA vaccines have become a promising alternative to conventional cancer immunotherapy approaches. However, its application on colorectal cancer (CRC) remains poorly understood. We herein identified potential antigens for designing an effective mRNA vaccine, further to build an immune landscape for the accurate selection of patients for mRNA vaccine therapy. Raw transcriptome data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were retrieved. Consensus clustering algorithm was applied to divide the CRC samples into four immune subtypes. Immunogenomics analysis was further integrated to characterize the immune microenvironment of each immune subtype. Six tumor antigens were found to be associated with poor prognosis and infiltration of antigen-presenting cells (APCs) in CRC patients. Furthermore, each of the immune subtypes showed differential cellular and molecular features. The IS2 and IS4 exhibited significantly improved survival and higher immune cell infiltration compared with IS1 and IS3. Immune checkpoint molecules and human leukocyte antigen also showed significant differential expression in four immune subtypes. Moreover, we performed graph structure learning-based dimensionality reduction to visualize the immune landscape of CRC. Our results revealed a complex immune landscape that may provide directions for mRNA vaccine treatment of CRC and define appropriate vaccination patients.
Collapse
Affiliation(s)
- Cong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dimitri Papukashvili
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xingyun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Hu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nuo Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengfei Xie
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nino Rcheulishvili
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Peng George Wang,
| |
Collapse
|
14
|
Saha A, Cheriyamundath S, Kumar A, Gavert N, Brabletz T, Ben-Ze’ev A. A Necessary Role for Increased Biglycan Expression during L1-Mediated Colon Cancer Progression. Int J Mol Sci 2021; 23:ijms23010445. [PMID: 35008869 PMCID: PMC8745639 DOI: 10.3390/ijms23010445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/17/2023] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling and downstream β-catenin-TCF target genes is a hallmark of colorectal cancer (CRC) development. We identified the immunoglobulin-like cell adhesion receptor L1CAM (L1) as a target of β-catenin-TCF transactivation in CRC cells. Overexpression of L1 in CRC cells confers enhanced proliferation, motility, tumorigenesis, and liver metastasis, and L1 is exclusively localized at invasive areas of human CRC tissue. Several genes are induced after L1 transfection into CRC cells by a mechanism involving the L1-ezrin-NF-κB pathway. We conducted a secretomic analysis of the proteins in the culture medium of L1-overexpressing CRC cells. We detected a highly increased level of biglycan, a small leucine-rich ECM component, and a signaling molecule. We found that induction of biglycan is required for the cellular processes conferred by L1, including enhanced proliferation, motility, tumorigenesis, and liver metastasis. The suppression of endogenous biglycan levels or a point mutation in the L1 ectodomain that regulates cell–cell adhesion mediated by L1 blocked the enhanced tumorigenic properties conferred by L1. The mechanism of biglycan induction by L1 involves the L1-NF-κB pathway. Blocking NF-κB signaling in L1 expressing cells suppressed the induction of biglycan and the tumorigenic properties conferred by L1. Biglycan expression was undetectable in the normal colonic mucosa, but expressed at highly increased levels in the tumor tissue, especially in the stroma. The therapeutic strategies to target biglycan expression might provide a useful approach for CRC treatment in L1-overexpressing tumors.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (S.C.); (A.K.); (N.G.)
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (S.C.); (A.K.); (N.G.)
| | - Anmol Kumar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (S.C.); (A.K.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (S.C.); (A.K.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (S.C.); (A.K.); (N.G.)
- Correspondence:
| |
Collapse
|
15
|
Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, Schechter E, Borst L, Yoder JA, Freedman JA, Patierno SR, Cheng K, Eward WC, Somarelli JA. A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Front Oncol 2021; 11:641187. [PMID: 34631514 PMCID: PMC8495265 DOI: 10.3389/fonc.2021.641187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis is a multistep process in which cells must detach, migrate/invade local structures, intravasate, circulate, extravasate, and colonize. A full understanding of the complexity of this process has been limited by the lack of ability to study these steps in isolation with detailed molecular analyses. Leveraging a comparative oncology approach, we injected canine osteosarcoma cells into the circulation of transgenic zebrafish with fluorescent blood vessels in a biologically dynamic metastasis extravasation model. Circulating tumor cell clusters that successfully extravasated the vasculature as multicellular units were isolated under intravital imaging (n = 6). These extravasation-positive tumor cell clusters sublines were then molecularly profiled by RNA-Seq. Using a systems-level analysis, we pinpointed the downregulation of KRAS signaling, immune pathways, and extracellular matrix (ECM) organization as enriched in extravasated cells (p < 0.05). Within the extracellular matrix remodeling pathway, we identified versican (VCAN) as consistently upregulated and central to the ECM gene regulatory network (p < 0.05). Versican expression is prognostic for a poorer metastasis-free and overall survival in patients with osteosarcoma. Together, our results provide a novel experimental framework to study discrete steps in the metastatic process. Using this system, we identify the versican/ECM network dysregulation as a potential contributor to osteosarcoma circulating tumor cell metastasis.
Collapse
Affiliation(s)
- Tyler A Allen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Mark M Cullen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lan Nguyen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Elyse Schechter
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Luke Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Steven R Patierno
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, NC, United States
| | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
16
|
Santos NJ, Barquilha CN, Barbosa IC, Macedo RT, Lima FO, Justulin LA, Barbosa GO, Carvalho HF, Felisbino SL. Syndecan Family Gene and Protein Expression and Their Prognostic Values for Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168669. [PMID: 34445387 PMCID: PMC8395474 DOI: 10.3390/ijms22168669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.
Collapse
Affiliation(s)
- Nilton José Santos
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Caroline Nascimento Barquilha
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Isabela Correa Barbosa
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Rodrigo Tavares Macedo
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Flávio Oliveira Lima
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Luis Antônio Justulin
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
| | - Guilherme Oliveira Barbosa
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Sérgio Luis Felisbino
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Correspondence:
| |
Collapse
|
17
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
18
|
Biskup K, Stellmach C, Braicu EI, Sehouli J, Blanchard V. Chondroitin Sulfate Disaccharides, a Serum Marker for Primary Serous Epithelial Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11071143. [PMID: 34201657 PMCID: PMC8304809 DOI: 10.3390/diagnostics11071143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans are long polysaccharidic chains, which are mostly present in connective tissues. Modified GAG expression in tissues surrounding malignant cells has been shown to contribute to tumor progression, aggressive status and metastasis in many types of cancer. Ovarian cancer is one of the most lethal gynecological malignancies due to its late diagnosis because of the absence of clear symptoms and unavailability of early disease markers. We investigated for the first time GAG changes at the molecular level as a novel biomarker for primary epithelial ovarian cancer. To this end, serum of a cohort of 68 samples was digested with chondroitinase ABC, which releases chondroitin sulfate into disaccharides. After labeling and purification, they were measured by HPLC, yielding a profile of eight disaccharides. We proposed a novel GAG-based score named "CS- bio" from the measured abundance of disaccharides present that were of statistical relevance. CS-bio's performance was compared with CA125, the clinically used serum tumor marker in routine diagnostics. CS-bio had a better sensitivity and specificity than CA125. It was more apt in differentiating early-stage patients from healthy controls, which is of high interest for oncologists.
Collapse
Affiliation(s)
- Karina Biskup
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Caroline Stellmach
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Elena Ioana Braicu
- European Competence Center for Ovarian Cancer, Department of Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Jalid Sehouli
- European Competence Center for Ovarian Cancer, Department of Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
19
|
Fattahi F, Kiani J, Alemrajabi M, Soroush A, Naseri M, Najafi M, Madjd Z. Overexpression of DDIT4 and TPTEP1 are associated with metastasis and advanced stages in colorectal cancer patients: a study utilizing bioinformatics prediction and experimental validation. Cancer Cell Int 2021; 21:303. [PMID: 34107956 PMCID: PMC8191213 DOI: 10.1186/s12935-021-02002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Various diagnostic and prognostic tools exist in colorectal cancer (CRC) due to multiple genetic and epigenetic alterations causing the disease. Today, the expression of RNAs is being used as prognostic markers for cancer. METHODS In the current study, various dysregulated RNAs in CRC were identified via bioinformatics prediction. Expression of several of these RNAs were measured by RT-qPCR in 48 tissues from CRC patients as well as in colorectal cancer stem cell-enriched spheroids derived from the HT-29 cell line. The relationships between the expression levels of these RNAs and clinicopathological features were analyzed. RESULTS Our bioinformatics analysis determined 11 key mRNAs, 9 hub miRNAs, and 18 lncRNAs which among them 2 coding RNA genes including DDIT4 and SULF1 as well as 3 non-coding RNA genes including TPTEP1, miR-181d-5p, and miR-148b-3p were selected for the further investigations. Expression of DDIT4, TPTEP1, and miR-181d-5p showed significantly increased levels while SULF1 and miR-148b-3p showed decreased levels in CRC tissues compared to the adjacent normal tissues. Positive relationships between DDIT4, SULF1, and TPTEP1 expression and metastasis and advanced stages of CRC were observed. Additionally, our results showed significant correlations between expression of TPTEP1 with DDIT4 and SULF1. CONCLUSIONS Our findings demonstrated increased expression levels of DDIT4 and TPTEP1 in CRC were associated with more aggressive tumor behavior and more advanced stages of the disease. The positive correlations between TPTEP1 as non-coding RNA and both DDIT4 and SULF1 suggest a regulatory effect of TPTEP1 on these genes.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Upregulation of Versican Associated with Tumor Progression, Metastasis, and Poor Prognosis in Bladder Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6949864. [PMID: 33604385 PMCID: PMC7872746 DOI: 10.1155/2021/6949864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/04/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
Objective This work analyzes the role of versican (VCAN) on bladder cancer (BLCA). Versican (VCAN) is a chondroitin sulfate proteoglycan which is important for tumorigenesis and the development of cancer. However, the expression of VCAN on human bladder cancer (BLCA) has been rarely reported. Methods The clinical significance of VCAN in BLCA has been determined by our bioinformatics tools. Then, we performed immunohistochemical staining (IHC) and analyzed the correlation between VCAN expression and clinicopathological features. Results The bioinformatics results reveal that a high VCAN mRNA level was significantly associated with stage, histological subtype, molecular subtype, and metastasis in BLCA. Furthermore, IHC reveals that expression of VCAN was significantly correlated with the number of tumors, invasion depth, lymph node metastasis, distant metastasis, and histological grade. Kaplan-Meier survival analysis reveals that patients with a high expression of VCAN have poor prognosis than those patients with a low expression of VCAN. According to our result from the bioinformatics database, the mechanism of VCAN in BLCA revealed that VCAN was related to FBN1 and genes of the ECM remodeling pathway (MMP1, MMP2). Conclusion VCAN expression might be included in the process of carcinogenesis and prognosis. Hence, VCAN could be a reliable biomarker of the clinical prognosis on BLCA.
Collapse
|
22
|
Wang S, Bager CL, Karsdal MA, Chondros D, Taverna D, Willumsen N. Blood-based extracellular matrix biomarkers as predictors of survival in patients with metastatic pancreatic ductal adenocarcinoma receiving pegvorhyaluronidase alfa. J Transl Med 2021; 19:39. [PMID: 33478521 PMCID: PMC7819178 DOI: 10.1186/s12967-021-02701-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Extensive extracellular matrix (ECM) remodeling is a hallmark of metastatic pancreatic ductal adenocarcinoma (mPDA). We investigated fragments of collagen types III (C3M, PRO-C3), VI (PRO-C6), and VIII (C8-C), and versican (VCANM) in plasma as biomarkers for predicting progression-free survival (PFS) and overall survival (OS) in patients with mPDA treated with pegvorhyaluronidase alfa, a biologic that degrades the ECM component hyaluronan (HA), in a randomized phase 2 study (HALO109-202). Methods HALO109-202 comprised a discovery cohort (Stage 1, n = 94) and a validation cohort (Stage 2, n = 95). Plasma ECM biomarkers were analyzed by ELISAs. Univariate Cox regression analysis and Kaplan–Meier plots evaluated predictive associations between biomarkers, PFS and OS in patients treated with pegvorhyaluronidase alfa plus nab-paclitaxel/gemcitabine (PAG) versus nab-paclitaxel/gemcitabine (AG) alone. Results PFS was improved with PAG vs. AG in Stage 1 patients with high C3M/PRO-C3 ratio (median cut-off): median PFS (mPFS) 8.0 vs. 5.3 months, P = 0.031; HR = 0.40; 95% CI 0.17–0.92). High C3M/PRO-C3 ratio was validated in Stage 2 patients by predicting a PFS benefit of PAG vs. AG (mPFS: 8.8 vs. 3.4 months, P = 0.046; HR = 0.46; 95% CI 0.21–0.98). OS was also improved in patients with high C3M/PRO-C3 ratio treated with PAG vs. AG (mOS 13.8 vs 8.5 months, P = 0.009; HR = 0.35; 95% CI 0.16–0.77). Interestingly, high C3M/PRO-C3 ratio predicted for a PFS benefit to PAG vs. AG both in patients with HA-low tumors (HR = 0.36; 95% CI 0.17–0.79) and HA-high tumors (HR = 0.20; 95% CI 0.06–0.69). Conclusions The C3M/PRO-C3 ratio measuring type III collagen turnover in plasma has potential as a blood-based predictive biomarker in patients with mPDA and provides additional value to a HA biopsy when applied for patient selection. Trial registration: NCT01839487. Registered 25 April 2016
Collapse
Affiliation(s)
- Song Wang
- Halozyme Therapeutics, Inc., San Diego, CA, USA
| | - Cecilie L Bager
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
23
|
Qi L, Zhang Y, Zhang W, Wang Y, Han Y, Ding Y. The inhibition of colorectal cancer growth by the natural product macrocarpal I. Free Radic Biol Med 2021; 162:383-391. [PMID: 33137468 DOI: 10.1016/j.freeradbiomed.2020.10.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Presently, few small molecule compounds are used as targeted therapy drugs in the treatment of colorectal cancer (CRC). It is important to identify new small molecule compounds, which can be used in the treatment of CRC. METHODS In this study, we selected four protein molecules as drug targets: PRL-3 (Phosphatase of regenerating liver 3), CLIC4 (Chloride intracellular channel 4), THBS2 (Thrombospondin 2), and BGN (Biglycan). These protein molecules were associated with the growth and metastasis of CRC cells. Small molecular compounds were screened on the basis of their target structures. Thus, five small molecule compounds were screened from each target structure, and three small molecule compounds (macrocarpal I, sildenafil, and neoandrographolide) were found to bind with two drug targets at the same time. Further experiments revealed that the inhibition rate of macrocarpal I was the highest in CRC cells. Therefore, we determined the effects of macrocarpal I on proliferation, apoptosis, cytoskeleton of CRC cells, and subcutaneous tumorigenesis in nude mice. Furthermore, RNA-seq analysis was performed to determine the molecular mechanism through which macrocarpal I inhibited the progression of CRC. RESULTS We found that macrocarpal I could effectively inhibit proliferation, colony formation of CRC cells, and subcutaneous tumorigenesis in nude mice. Moreover, it also destroyed the cytoskeleton of CRC cells and promoted apoptosis. The effects on kinase activity, cytoskeleton, and DNA repair is the mechanism of macrocarpal I to inhibiting CRC growth. CONCLUSION Macrocarpal I is a small molecule compound that can effectively inhibit the progression of CRC. Thus, macrocarpal I is a therapeutic compound that shows promising results in the treatment of advanced CRC.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, 510515, China.
| | - Ying Zhang
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Wenjuan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, 510515, China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, 510515, China
| | - Yue Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, 510515, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Li W, Han F, Fu M, Wang Z. High expression of VCAN is an independent predictor of poor prognosis in gastric cancer. J Int Med Res 2020; 48:300060519891271. [PMID: 31939331 PMCID: PMC7254169 DOI: 10.1177/0300060519891271] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Wenfei Li
- Department of Radiology, Affiliated Zhongshan Hospital of DaLian University, Dalian, Liaoning, China
| | - Fang Han
- Department of Radiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Min Fu
- Department of Radiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhanqiu Wang
- Department of Radiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
25
|
Papadas A, Arauz G, Cicala A, Wiesner J, Asimakopoulos F. Versican and Versican-matrikines in Cancer Progression, Inflammation, and Immunity. J Histochem Cytochem 2020; 68:871-885. [PMID: 32623942 PMCID: PMC7711242 DOI: 10.1369/0022155420937098] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
26
|
Neill T, Buraschi S, Kapoor A, Iozzo RV. Proteoglycan-driven Autophagy: A Nutrient-independent Mechanism to Control Intracellular Catabolism. J Histochem Cytochem 2020; 68:733-746. [PMID: 32623955 PMCID: PMC7649965 DOI: 10.1369/0022155420937370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans are rapidly emerging as versatile regulators of intracellular catabolic pathways. This is predominantly achieved via the non-canonical induction of autophagy, a fundamentally and evolutionarily conserved eukaryotic pathway necessary for maintaining organismal homeostasis. Autophagy facilitated by either decorin, a small leucine-rich proteoglycan, or perlecan, a basement membrane heparan sulfate proteoglycan, proceeds independently of ambient nutrient conditions. We found that soluble decorin evokes endothelial cell autophagy and breast carcinoma cell mitophagy by directly interacting with vascular endothelial growth factor receptor 2 (VEGFR2) or the Met receptor tyrosine kinase, respectively. Endorepellin, a soluble, proteolytic fragment of perlecan, induces autophagy and endoplasmic reticulum stress within the vasculature, downstream of VEGFR2. These potent matrix-derived cues transduce key biological information via receptor binding to converge upon a newly discovered nexus of core autophagic machinery comprised of Peg3 (paternally expressed gene 3) for autophagy or mitostatin for mitophagy. Here, we give a mechanistic overview of the nutrient-independent, proteoglycan-driven programs utilized for autophagic or mitophagic progression. We propose that catabolic control of cell behavior is an underlying basis for proteoglycan versatility and may provide novel therapeutic targets for the treatment of human disease.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Simone Buraschi
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Aastha Kapoor
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Renato V Iozzo
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
27
|
Qi X, Lin Y, Liu X, Chen J, Shen B. Biomarker Discovery for the Carcinogenic Heterogeneity Between Colon and Rectal Cancers Based on lncRNA-Associated ceRNA Network Analysis. Front Oncol 2020; 10:535985. [PMID: 33194594 PMCID: PMC7662689 DOI: 10.3389/fonc.2020.535985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Emerging evidence has revealed that risk factors and metastatic patterns differ greatly between colon and rectal cancers. However, the molecular mechanism underlying their pathogenic differences remains unclear. Therefore, we here aimed to identify non-coding RNA biomarkers based on lncRNA-associated ceRNA network (LceNET) to elucidate the carcinogenic heterogeneity between colon and rectal cancers. Methods A global LceNET in human was constructed by employing experimental evidence-based miRNA-mRNA and miRNA-lncRNA interactions. Then, four context-specific ceRNA networks related to cancer initiation and metastasis were extracted by mapping differentially expressed lncRNAs, miRNAs and mRNAs to the global LceNET. Notably, a novel network-based bioinformatics model was proposed and applied to identify lncRNA/miRNA biomarkers and critical ceRNA triplets for understanding the carcinogenic heterogeneity between colon and rectal cancers. Moreover, the identified biomarkers were further validated by their diagnostic/prognostic performance, expression pattern and correlation analysis. Results Based on network modeling, lncRNA KCNQ1OT1 (AUC>0.85) and SNHG1 (AUC>0.94) were unveiled as common diagnostic biomarkers for the initiation and metastasis of colon and rectal cancers. qRT-PCR analysis uncovered that these lncRNAs had significantly higher expression level in CRC cell lines with high metastatic potential. In particular, KCNQ1OT1 and SNHG1 function in colon and rectal cancers via different ceRNA mechanisms. For example, KCNQ1OT1/miR-484/ANKRD36 axis was involved in the initiation of colon cancer, while KCNQ1OT1/miR-181a-5p/PCGF2 axis was implicated in the metastasis of rectal cancer; the SNHG1/miR-484/ORC6 axis played a role in colon cancer, while SNHG1/miR-423-5p/EZH2 and SNHG1/let-7b-5p/ATP6V1F axes participated in the initiation and metastasis of rectal cancer, respectively. In these ceRNA triplets, miR-484, miR-181a-5p, miR-423-5p and let-7b-5p were identified as miRNA biomarkers with excellent distinguishing ability between normal and tumor tissues, and ANKRD36, PCGF2, EZH2 and ATP6V1F were closely related to the prognosis of corresponding cancer. Conclusion The landscape of lncRNA-associated ceRNA network not only facilitates the exploration of non-coding RNA biomarkers, but also provides deep insights into the oncogenetic heterogeneity between colon and rectal cancers, thereby contributing to the optimization of diagnostic and therapeutic strategies of CRC.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.,Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China.,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou, China.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Mao L, Yang J, Yue J, Chen Y, Zhou H, Fan D, Zhang Q, Buraschi S, Iozzo RV, Bi X. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol 2020; 95:1-14. [PMID: 33065248 DOI: 10.1016/j.matbio.2020.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.
Collapse
Affiliation(s)
- Liping Mao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jinxue Yang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiaxin Yue
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yang Chen
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Dongdong Fan
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang 110036, China
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
29
|
Fujiwara-Tani R, Sasaki T, Fujii K, Luo Y, Mori T, Kishi S, Mori S, Matsushima-Otsuka S, Nishiguchi Y, Goto K, Kawahara I, Kondoh M, Sho M, Kuniyasu H. Diabetes mellitus is associated with liver metastasis of colorectal cancer through production of biglycan-rich cancer stroma. Oncotarget 2020; 11:2982-2994. [PMID: 32821344 PMCID: PMC7415403 DOI: 10.18632/oncotarget.27674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
High morbidity and mortality of cancer, especially colorectal cancer (CRC), in diabetic patients have been reported. In this study, we investigated the relationship between the presence of diabetes mellitus (blood hemoglobin A1C was 6.5% or higher at the time of diagnosis of CRC) and the progression and liver metastasis of CRC. Histopathological findings in the primary lesions, which were preferential to diabetes-complicated CRC (DM-CRC) and the liver metastasis, were also investigated. Of the 473 CRC patients who underwent curative surgical resection, 148 (31%) had diabetes. In DM-CRC cases, the stage was more advanced, with more cases in stage IV or postoperative disease recurrence. Histopathological findings correlated with liver metastasis in DM-CRC, including budding grade, perineural invasion, and myxomatous tumor stroma, and all were highly correlated with the stage. Additionally, myxomatous stroma showed the strongest correlation with liver metastasis in multivariate analysis. Myxomatous stroma in stage III cases correlated with liver recurrence. The myxomatous stroma was abundant in biglycan protein and contained numerous CD90-positive mesenchymal stem cells (MSCs). In human colon cancer cell line HT29, biglycan expression was induced by high sugar concentration, fatty acids, and insulin, and its contact co-culture with MSCs resulted in enhanced stemness and epithelial-mesenchymal transition phenotype. Thus, DM-CRC has higher malignant phenotypes compared to non-DM-CRC, and the involvement of diabetes-induced biglycan may act as a pathogenic factor.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
30
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
31
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
ADAMTS-15 Has a Tumor Suppressor Role in Prostate Cancer. Biomolecules 2020; 10:biom10050682. [PMID: 32354091 PMCID: PMC7277637 DOI: 10.3390/biom10050682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix remodeling has emerged as an important factor in many cancers. Proteoglycans, including versican (VCAN), are regulated via cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alterations in the balance between Proteoglycans and ADAMTS enzymes have been proposed to contribute to cancer progression. Here, we analyzed the expression of ADAMTS-15 in human prostate cancer, and investigated the effects of enforced expression in prostate cancer cell lines. ADAMTS-15 was found to be expressed in human prostate cancer biopsies with evidence of co-localization with VCAN and its bioactive cleavage fragment versikine. Enforced expression of ADAMTS-15, but not a catalytically-inactive version, decreased cell proliferation and migration of the ‘castrate-resistant’ PC3 prostate cancer cell line in vitro, with survival increased. Analysis of ‘androgen-responsive’ LNCaP prostate cancer cells in vivo in NOD/SCID mice revealed that ADAMTS-15 expression caused slower growing tumors, which resulted in increased survival. This was not observed in castrated mice or with cells expressing catalytically-inactive ADAMTS-15. Collectively, this research identifies the enzymatic function of ADAMTS-15 as having a tumor suppressor role in prostate cancer, possibly in concert with androgens, and that VCAN represents a likely key substrate, highlighting potential new options for the clinic.
Collapse
|
33
|
Papadas A, Asimakopoulos F. Versican in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:55-72. [PMID: 32845502 DOI: 10.1007/978-3-030-48457-6_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Versican is an extracellular matrix proteoglycan with nonredundant roles in diverse biological and cellular processes, ranging from embryonic development to adult inflammation and cancer. Versican is essential for cardiovascular morphogenesis, neural crest migration, and skeletal development during embryogenesis. In the adult, versican acts as an inflammation "amplifier" and regulator of immune cell activation and cytokine production. Increased versican expression has been observed in a wide range of malignant tumors and has been associated with poor patient outcomes. The main sources of versican production in the tumor microenvironment include accessory cells (myeloid cells and stromal components) and, in some contexts, the tumor cells themselves. Versican has been implicated in several classical hallmarks of cancer such as proliferative signaling, evasion of growth suppressor signaling, resistance to cell death, angiogenesis, and tissue invasion and metastasis. More recently, versican has been implicated in escape from tumor immune surveillance, e.g., through dendritic cell dysfunction. Versican's multiple contributions to benign and malignant biological processes are further diversified through the generation of versican-derived bioactive proteolytic fragments (matrikines), with versikine being the most studied to date. Versican and versican-derived matrikines hold promise as targets in the management of inflammatory and malignant conditions as well as in the development of novel predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Athanasios Papadas
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA. .,University of Wisconsin-Madison, Cellular and Molecular Pathology Program, Madison, WI, USA.
| | - Fotis Asimakopoulos
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
34
|
Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH-Responsive PEG-Shedding and Targeting Peptide-Modified Nanoparticles for Dual-Delivery of Irinotecan and microRNA to Enhance Tumor-Specific Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903296. [PMID: 31709707 DOI: 10.1002/smll.201903296] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA-200 (miR-200) has been reported to inhibit metastasis in cancer cells. Herein, pH-sensitive and peptide-modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR-200, respectively. These peptides include one cell-penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria-targeting peptide. The peptide-modified nanoparticles are further coated with a pH-sensitive PEG-lipid derivative with an imine bond. These specially-designed nanoparticles exhibit pH-responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR-200 by SLN further increases the cytotoxicity of irinotecan-loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β-catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC-bearing mice, the in vivo results further indicate that irinotecan and miR-200 in pH-responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β-catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH-responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Vivian Juang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hsien Chang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chen-Shen Wang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
- Faculty of Pharmacy, National Yang-Ming University, Taipei, 112, Taiwan
- Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, Taipei, 112, Taiwan
| |
Collapse
|
35
|
Gupta N, Kumar R, Seth T, Garg B, Sharma A. Targeting of stromal versican by miR-144/199 inhibits multiple myeloma by downregulating FAK/STAT3 signalling. RNA Biol 2019; 17:98-111. [PMID: 31532704 DOI: 10.1080/15476286.2019.1669405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The abnormal growth of malignant plasma cells in Multiple Myeloma (MM) requires bone marrow (BM) niche consisting of proteoglycans, cytokines, etc. Versican (VCAN), a chondroitin sulphate proteoglycan promotes progression in solid tumours but there is dearth of literature in MM. Hence, we studied the involvement of VCAN in MM and its regulation by microRNAs as a therapeutic approach. Thirty MM patients and 20 controls were recruited and BM stromal cells (BMSCs) were isolated by primary culture. Molecular levels of VCAN, miR-144, miR-199 & miR-203 were determined in study subjects and cell lines. The involvement of VCAN in myeloma pathogenesis was studied using BMSCs-conditioned medium (BMSCs-CM) and VCAN-neutralizing antibody or microRNA mimics. Elevated expression of VCAN was observed in patients especially in BM stroma while microRNA expression was significantly lower and showed negative correlation with VCAN. Moreover, BMSCs-CM showed the presence of VCAN which upon supplementing to MM cells alter parameters in favour of myeloma progression, however, this effect was neutralized by VCAN antibody or miR (miR-144 and miR-199) mimics. The downstream signalling of VCAN was found to activate FAK and STAT3 which subsides by using VCAN antibody or miR mimics. The neutralization of oncogenic effect of BMSCs-CM by VCAN blockage affirms its plausible role in progression of MM. VCAN was observed as a paracrine mediator in the cross-talk of BMSCs and myeloma cells in BM microenvironment. Therefore, these findings suggest exploring VCAN as novel therapeutic target and utilization of microRNAs as a therapy to regulate VCAN for better management of MM.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raman Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Bhavuk Garg
- Department of Orthopedics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
36
|
Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Front Oncol 2019; 9:843. [PMID: 31620357 PMCID: PMC6759624 DOI: 10.3389/fonc.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
37
|
Lin SC, Wu CP, Tseng T, Jhang Y, Lee SC. Role of syndecan-1 and exogenous heparin in hepatoma sphere formation. Biochem Cell Biol 2019; 98:112-119. [PMID: 31042409 DOI: 10.1139/bcb-2018-0246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycosaminoglycan-modified proteoglycans play important roles in many cell activities, including cell differentiation and stem cell development. Tumor sphere formation ability is one of properties in cancer stem cells (CSCs). The correlation between CSC markers and proteoglycan remains to be clarified. Upon hepatoma sphere formation, expression of CSC markers CD13, CD90, CD133, and CD44, as well the syndecan family protein syndecan-1 (SDC1), increased as analyzed by PCR. Further examination by suppression of CD13 expression showed downregulation of SDC1 and CD44 gene expression, whereas suppression of SDC1 gene expression downregulated CD13 and CD44 gene expression. Suppression of SDC1 gene expression also suppressed sphere development, as analyzed by a novel sphereocrit assay to quantify the level of sphere formation. The heparin disaccharide components, but not those of chondroitin disaccharide, changed with hepatoma sphere development, revealing the increased levels of N-sulfation and 2-O-sulfation. These explained the inhibition of hepatoma sphere formation by exogenous heparin. In conclusion, we found that SDC1 affected CSC marker CD13 and CD44 expression. SDC1 proteoglycan and heparin components changed and affected hepatoma sphere development. Application of heparin mimics in reduction of hepatoma stem cells might be possible.
Collapse
Affiliation(s)
- Shih-Chiang Lin
- Far Eastern Memorial Hospital, Banqiao District, New Taipei City, Taiwan, 22060
| | - Ching-Po Wu
- School of Medicine, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan, 24205
| | - TingTing Tseng
- School of Medicine, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan, 24205
| | - Yaoyun Jhang
- School of Medicine, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan, 24205
| | - Shao-Chen Lee
- School of Medicine, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan, 24205
| |
Collapse
|
38
|
Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Anal Cell Pathol (Amst) 2018; 2018:8389595. [PMID: 30027065 PMCID: PMC6031075 DOI: 10.1155/2018/8389595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, accounting for more than 610,000 mortalities every year. Prognosis of patients is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to investigate molecules involved in colorectal cancer tumorigenesis, with possible use as tumor markers. Heparan sulfate proteoglycans are complex molecules present in the cell membrane and extracellular matrix, which play vital roles in cell adhesion, migration, proliferation, and signaling pathways. In colorectal cancer, the cell surface proteoglycan syndecan-2 is upregulated and increases cell migration. Moreover, expression of syndecan-1 and syndecan-4, generally antitumor molecules, is reduced. Levels of glypicans and perlecan are also altered in colorectal cancer; however, their role in tumor progression is not fully understood. In addition, studies have reported increased heparan sulfate remodeling enzymes, as the endosulfatases. Therefore, heparan sulfate proteoglycans are candidate molecules to clarify colorectal cancer tumorigenesis, as well as important targets to therapy and diagnosis.
Collapse
|
39
|
Atak A, Khurana S, Gollapalli K, Reddy PJ, Levy R, Ben-Salmon S, Hollander D, Donyo M, Heit A, Hotz-Wagenblatt A, Biran H, Sharan R, Rane S, Shelar A, Ast G, Srivastava S. Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget 2018; 9:13530-13544. [PMID: 29568375 PMCID: PMC5862596 DOI: 10.18632/oncotarget.24418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Adenocarcinomas are cancers originating from the gland forming cells of the colon and rectal lining, and are known to be the most common type of colorectal cancers. The current diagnosis strategies for colorectal cancers include biopsy, laboratory tests, and colonoscopy which are time consuming. Identification of protein biomarkers could aid in the detection of colon adenocarcinomas (CACs). In this study, tissue proteome of colon adenocarcinomas (n = 11) was compared with the matched control specimens (n = 11) using isobaric tags for relative and absolute quantitation (iTRAQ) based liquid chromatography-mass spectrometry (LC-MS/MS) approach. A list of 285 significantly altered proteins was identified in colon adenocarcinomas as compared to its matched controls, which are associated with growth and malignancy of the tumors. Protein interaction analysis revealed the association of altered proteins in colon adenocarcinomas with various transcription factors and their targets. A panel of nine proteins was validated using multiple reaction monitoring (MRM). Additionally, S100A9 was also validated using immunoblotting. The identified panel of proteins may serve as potential biomarkers and thereby aid in the detection of colon adenocarcinomas.
Collapse
Affiliation(s)
- Apurva Atak
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samiksha Khurana
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kishore Gollapalli
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Panga Jaipal Reddy
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Roei Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anke Heit
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Hadas Biran
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shailendra Rane
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
40
|
Subbarayan K, Leisz S, Wickenhauser C, Bethmann D, Massa C, Steven A, Seliger B. Biglycan-mediated upregulation of MHC class I expression in HER-2/neu-transformed cells. Oncoimmunology 2018; 7:e1373233. [PMID: 29632715 DOI: 10.1080/2162402x.2017.1373233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix protein biglycan (BGN) has oncogenic or tumor suppressive potential depending on the cellular origin. HER-2/neu overexpression in murine fibroblasts and human model systems is inversely correlated with BGN expression. Upon its restoration BGNhigh HER-2/neu+ fibroblasts were less tumorigenic in immune competent mice when compared to BGNlow/neg HER-2/neu+ cells, which was associated with enhanced immune cell responses and higher frequencies of immune effector cells in tumors and peripheral blood. The increased immunogenicity of BGNhigh HER-2/neu+ fibroblasts appears to be due to upregulated MHC class I surface antigens and reduced expression levels of transforming growth factor (TGF)-β isoforms and the TGF-β receptor 1 suggesting a link between BGN, TGF-β pathway and HER-2/neu-mediated downregulation of MHC class I antigens. Treatment of BGNlow/neg HER-2/neu+ cells with recombinant BGN or an inhibitor of TGF-β enhanced MHC class I surface antigens in BGNlow/neg HER-2/neu-overexpressing murine fibroblasts, which was mediated by a transcriptional upregulation of major MHC class I antigen processing components. Furthermore, BGN expression in HER-2/neu+ cells was accompanied by an increased expression of the proteoglycan decorin (DCN). Since recombinant DCN also elevated MHC class I surface expression in BGNlow/neg HER-2/neu+ cells, both proteoglycans might act synergistically. This was in accordance with in silico analyses of mRNA data obtained from The Cancer Genome Atlas (TCGA) dataset available for breast cancer (BC) patients. Thus, our data provide for the first time evidence that proteoglycan signatures are modulated by HER-2/neu and linked to MHC class I-mediated immune escape associated with an altered TGF-β pathway.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| |
Collapse
|
41
|
Ushakov VS, Tsidulko AY, de La Bourdonnaye G, Kazanskaya GM, Volkov AM, Kiselev RS, Kobozev VV, Kostromskaya DV, Gaytan AS, Krivoshapkin AL, Aidagulova SV, Grigorieva EV. Heparan Sulfate Biosynthetic System Is Inhibited in Human Glioma Due to EXT1/2 and HS6ST1/2 Down-Regulation. Int J Mol Sci 2017; 18:ijms18112301. [PMID: 29104277 PMCID: PMC5713271 DOI: 10.3390/ijms18112301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/14/2023] Open
Abstract
Heparan sulfate (HS) is an important component of the extracellular matrix and cell surface, which plays a key role in cell–cell and cell–matrix interactions. Functional activity of HS directly depends on its structure, which determined by a complex system of HS biosynthetic enzymes. During malignant transformation, the system can undergo significant changes, but for glioma, HS biosynthesis has not been studied in detail. In this study, we performed a comparative analysis of the HS biosynthetic system in human gliomas of different grades. RT-PCR analysis showed that the overall transcriptional activity of the main HS biosynthesis-involved genes (EXT1, EXT2, NDST1, NDST2, GLCE, HS2ST1, HS3ST1, HS3ST2, HS6ST1, HS6ST2, SULF1, SULF2, HPSE) was decreased by 1.5–2-fold in Grade II-III glioma (p < 0.01) and by 3-fold in Grade IV glioma (glioblastoma multiforme, GBM) (p < 0.05), as compared with the para-tumourous tissue. The inhibition was mainly due to the elongation (a decrease in EXT1/2 expression by 3–4-fold) and 6-O-sulfation steps (a decrease in 6OST1/2 expression by 2–5-fold) of the HS biosynthesis. Heparanase (HPSE) expression was identified in 50% of GBM tumours by immunostaining, and was characterised by a high intratumoural heterogeneity of the presence of the HPSE protein. The detected disorganisation of the HS biosynthetic system in gliomas might be a potential molecular mechanism for the changes of HS structure and content in tumour microenvironments, contributing to the invasion of glioma cells and the development of the disease.
Collapse
Affiliation(s)
- Victor S Ushakov
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| | | | - Gabin de La Bourdonnaye
- Novosibirsk State University, Novosibirsk 630090, Russia.
- National Institute of Applied Sciences, 31400 Toulouse, France.
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
| | | | - Roman S Kiselev
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
- Novosibirsk State Medical University, 630090 Novosibirsk, Russia.
| | | | | | | | - Alexei L Krivoshapkin
- Meshalkin National Medical Research Centre, 630055 Novosibirsk, Russia.
- Novosibirsk State Medical University, 630090 Novosibirsk, Russia.
- European Medical Centre, 129110 Moscow, Russia.
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Novosibirsk 630117, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
42
|
Bourdakou MM, Spyrou GM. Informed walks: whispering hints to gene hunters inside networks' jungle. BMC SYSTEMS BIOLOGY 2017; 11:97. [PMID: 29020948 PMCID: PMC5637247 DOI: 10.1186/s12918-017-0473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Background Systemic approaches offer a different point of view on the analysis of several types of molecular associations as well as on the identification of specific gene communities in several cancer types. However, due to lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression networks are widely used instead. Many efforts have been made to exploit the information hidden in these networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types. Methods In this study we present the development of the Informed Walks model based on random walks that incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to suppress the corresponding cancer type through a drug-repurposing pipeline. Conclusions We have developed a method of gene subnetwork highlighting based on prior knowledge, capable to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing pipelines for a variety of cancer types. Electronic supplementary material The online version of this article (10.1186/s12918-017-0473-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.,Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou 4, 115 27, Athens, Greece
| | - George M Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, Ayios Dometios, 2370, Nicosia, Cyprus.
| |
Collapse
|
43
|
|
44
|
Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM, Götte M. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer 2017; 16:57. [PMID: 28270211 PMCID: PMC5341174 DOI: 10.1186/s12943-017-0621-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC. Methods We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests. Results Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling. Conclusions Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0621-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramy Gadalla
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Omnia Samir
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hossam Taha Mohamed
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, 11566, Cairo, Egypt
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany.
| |
Collapse
|
45
|
Mitsui Y, Shiina H, Kato T, Maekawa S, Hashimoto Y, Shiina M, Imai-Sumida M, Kulkarni P, Dasgupta P, Wong RK, Hiraki M, Arichi N, Fukuhara S, Yamamura S, Majid S, Saini S, Deng G, Dahiya R, Nakajima K, Tanaka Y. Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma. Mol Cancer Res 2017; 15:884-895. [PMID: 28242813 DOI: 10.1158/1541-7786.mcr-16-0444] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022]
Abstract
The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN-depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biologic pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis (P < 0.001) and worse 5-year overall survival after radical nephrectomy (P = 0.014). In vitro, VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNFα, BID, and BAK Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus is an attractive target for novel diagnostic, prognostic, and therapeutic strategies.Implications: This study highlights the oncogenic role of VCAN in renal cell carcinogenesis and suggests that this gene has therapeutic and/or biomarker potential for renal cell cancer. Mol Cancer Res; 15(7); 884-95. ©2017 AACR.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan. .,Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Hiroaki Shiina
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Taku Kato
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Yutaka Hashimoto
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Marisa Shiina
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Mitsuho Imai-Sumida
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Ryan Kenji Wong
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Miho Hiraki
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Naoko Arichi
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Yamamura
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Guoren Deng
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Koichi Nakajima
- Department of Urology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California. .,Department of Urology, University of California, San Francisco, California
| |
Collapse
|
46
|
Nuñez-Sánchez MA, González-Sarrías A, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, Espín JC, García-Conesa MT. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: a randomized clinical trial. J Nutr Biochem 2017; 42:126-133. [PMID: 28183047 DOI: 10.1016/j.jnutbio.2017.01.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
The clinical evidence of dietary polyphenols as colorectal cancer (CRC) chemopreventive compounds is very weak. Verification in humans of tissue-specific molecular regulation by the intake of polyphenols requires complex clinical trials that allow for the procurement of sufficient pre- and postsupplementation tissue samples. Ellagitannins (ETs), ellagic acid (EA) and their gut microbiota-derived metabolites, the urolithins, modify gene expression in colon normal and cancer cultured cells. We conducted here the first clinical trial with 35 CRC patients daily supplemented with 900 mg of an ET-containing pomegranate extract (PE) and evaluated the expression of various CRC-related genes in normal and cancerous colon tissues before (biopsies) and after (surgical specimens) 5-35 days of supplementation. Tissues were also obtained from 10 control patients (no supplementation) that confirmed a large, gene- and tissue-specific interindividual variability and impact of the experimental protocol on gene expression, with some genes induced (MYC, CD44, CDKN1A, CTNNB1), some repressed (CASP3) and others not affected (KRAS). Despite these issues, the consumption of the PE was significantly associated with a counterbalance effect in the expression of CD44, CTNNB1, CDKN1A, EGFR and TYMs, suggesting that the intake of this PE modulated the impact of the protocol on gene expression in a gene- and tissue-specific manner. These effects were not associated with the individuals' capacity to produce specific urolithins (i.e., metabotypes) or the levels of urolithins and EA in the colon tissues and did not reproduce in vitro effects evidencing the difficulty of demonstrating in vivo the in vitro results.
Collapse
Affiliation(s)
- María A Nuñez-Sánchez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Rocío García-Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Tamara Monedero-Saiz
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain; Nutrition, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | | | - María B Gómez-Sánchez
- Nutrition, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | - Carmen Sánchez-Álvarez
- Nutrition, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | - Ana M García-Albert
- Digestive, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | | | - Miguel Ruiz-Marín
- Surgery, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | - Francisco A Pastor-Quirante
- Anatomical Pathology Services, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | - Francisco Martínez-Díaz
- Anatomical Pathology Services, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
47
|
Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 2017; 284:10-26. [PMID: 27860287 PMCID: PMC5226885 DOI: 10.1111/febs.13963] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
Abstract
Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Tredup
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Maria A. Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
48
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
49
|
Extracellular Matrix, a Hard Player in Angiogenesis. Int J Mol Sci 2016; 17:ijms17111822. [PMID: 27809279 PMCID: PMC5133823 DOI: 10.3390/ijms17111822] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins, glycoproteins, proteoglycans, and polysaccharides. Through multiple interactions with each other and the cell surface receptors, not only the ECM determines the physical and mechanical properties of the tissues, but also profoundly influences cell behavior and many physiological and pathological processes. One of the functions that have been extensively explored is its impingement on angiogenesis. The strong impact of the ECM in this context is both direct and indirect by virtue of its ability to interact and/or store several growth factors and cytokines. The aim of this review is to provide some examples of the complex molecular mechanisms that are elicited by these molecules in promoting or weakening the angiogenic processes. The scenario is intricate, since matrix remodeling often generates fragments displaying opposite effects compared to those exerted by the whole molecules. Thus, the balance will tilt towards angiogenesis or angiostasis depending on the relative expression of pro- or anti-angiogenetic molecules/fragments composing the matrix of a given tissue. One of the vital aspects of this field of research is that, for its endogenous nature, the ECM can be viewed as a reservoir to draw from for the development of new more efficacious therapies to treat angiogenesis-dependent pathologies.
Collapse
|
50
|
Tsidulko AY, Matskova L, Astakhova LA, Ernberg I, Grigorieva EV. Proteoglycan expression correlates with the phenotype of malignant and non-malignant EBV-positive B-cell lines. Oncotarget 2016; 6:43529-39. [PMID: 26527314 PMCID: PMC4791248 DOI: 10.18632/oncotarget.5984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
The involvement of proteoglycans (PGs) in EBV-host interactions and lymphomagenesis remains poorly investigated. In this study, expression of major proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, aggrecan, NG2, serglycin, decorin, biglycan, lumican, CD44), heparan sulphate (HS) metabolic system (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) and extracellular matrix (ECM) components (collagen 1A1, fibronectin, elastin) in primary B cells and EBV carrying cell lines with different phenotypes, patterns of EBV-host cell interaction and viral latency stages (type I-III) was investigated. Primary B cells expressed a wide repertoire of PGs (dominated by serglycin and CD44) and ECM components. Lymphoblastoid EBV+ B cell lines (LCLs) showed specific PG expression with down-regulation of CD44 and ECM components and up-regulation of serglycin and perlecan/HSPG2. For Burkitt's lymphoma cells (BL), serglycin was down-regulated in BL type III cells and perlecan in type I BL cells. The biosynthetic machinery for HS was active in all cell lines, with some tendency to be down-regulated in BL cells. 5'-aza-dC and/or Trichostatin A resulted in transcriptional upregulation of the genes, suggesting that low expression of ECM components, proteoglycan core proteins and HS biosynthetic system is due to epigenetic suppression in type I cells. Taken together, our data show that proteoglycans are expressed in primary B lymphocytes whereas they are not or only partly expressed in EBV-carrying cell lines, depending on their latency type program.
Collapse
Affiliation(s)
- Alexandra Y Tsidulko
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | | | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|