1
|
Luenstedt J, Hoping F, Feuerstein R, Mauerer B, Berlin C, Rapp J, Marx L, Reichardt W, von Elverfeldt D, Ruess DA, Plundrich D, Laessle C, Jud A, Neeff HP, Holzner PA, Fichtner-Feigl S, Kesselring R. Partial hepatectomy accelerates colorectal metastasis by priming an inflammatory premetastatic niche in the liver. Front Immunol 2024; 15:1388272. [PMID: 38919609 PMCID: PMC11196966 DOI: 10.3389/fimmu.2024.1388272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Background Resection of colorectal liver metastasis is the standard of care for patients with Stage IV CRC. Despite undoubtedly improving the overall survival of patients, pHx for colorectal liver metastasis frequently leads to disease recurrence. The contribution of this procedure to metastatic colorectal cancer at a molecular level is poorly understood. We designed a mouse model of orthograde metastatic colorectal cancer (CRC) to investigate the effect of partial hepatectomy (pHx) on tumor progression. Methods CRC organoids were implanted into the cecal walls of wild type mice, and animals were screened for liver metastasis. At the time of metastasis, 1/3 partial hepatectomy was performed and the tumor burden was assessed longitudinally using MRI. After euthanasia, different tissues were analyzed for immunological and transcriptional changes using FACS, qPCR, RNA sequencing, and immunohistochemistry. Results Mice that underwent pHx presented significant liver hypertrophy and an increased overall metastatic load compared with SHAM operated mice in MRI. Elevation in the metastatic volume was defined by an increase in de novo liver metastasis without any effect on the growth of each metastasis. Concordantly, the livers of pHx mice were characterized by neutrophil and bacterial infiltration, inflammatory response, extracellular remodeling, and an increased abundance of tight junctions, resulting in the formation of a premetastatic niche, thus facilitating metastatic seeding. Conclusions Regenerative pathways following pHx accelerate colorectal metastasis to the liver by priming a premetastatic niche.
Collapse
Affiliation(s)
- Jost Luenstedt
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Hoping
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Rapp
- Eye Center, University Medical Center Freiburg, Freiburg, Germany
- Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Lisa Marx
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothea Plundrich
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Jud
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Hannes Philipp Neeff
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Anton Holzner
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Ge XL, Zhang X, Li CH, Pan K, He L, Ren WZ. Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats. Curr Med Sci 2023; 43:1013-1022. [PMID: 37837571 DOI: 10.1007/s11596-023-2779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/26/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver. METHODS We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated. RESULTS At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1. CONCLUSION In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.
Collapse
Affiliation(s)
- Xin-Lan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Xuan Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Chong-Hui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Ke Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Lei He
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| | - Wei-Zheng Ren
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
3
|
Yan X, Shu Q, Zhao L, Sha B, Zhang Y. The Pivotal Mediating Role of Adenosine Monophosphate-Activated Protein Kinase (AMPK) in Liver Tight Junctions and Liver Regeneration of a Partial-Hepatectomy Mouse Model. Transplant Proc 2022; 54:2374-2380. [PMID: 36182577 DOI: 10.1016/j.transproceed.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aims to explore the pivotal mediating role of adenosine monophosphate-activated protein kinase (AMPK) in liver tight junctions and liver regeneration of a partial hepatectomy (PH) mouse model. METHODS A 70% PH mouse model was used. Firstly, mice were randomly divided into sham, 70% PH, AMPK-activated, and AMPK-inhibited groups. Then serum levels of alanine aminotransferase, aspartate transaminase, total bilirubin, direct bilirubin, albumin, and prealbumin were tested on postoperative days 1, 2 and 3. Furthermore, the expression of tight junction proteins like occludin, claudin-3, and ZO-1, together with bile salt export pump (BSEP), which reflects liver function, and AMPK were measured by Western blot and quantitative real-time polymerase chain reaction. Moreover, the expression of tight junction proteins, BSEP, and Ki-67 were examined by immunohistochemistry. RESULTS After 70% PH, without intervention, the changes in expression of hepatic tight junction proteins (occludin, claudin-3, and ZO-1) were consistent with that of BSEP, which could reflect liver function. After treatment with AMPK activator, the high expression status of tight junction proteins occurred in advance and was maintained stably and for a longer time. It was beneficial to liver function and liver regeneration was promoted at early periods and enhanced continuously after PH. CONCLUSIONS Activation of AMPK could effectively enhance the expression of hepatic tight junction proteins after PH. Therefore, it could speed up the recovery of liver function and promote liver regeneration especially early after PH.
Collapse
Affiliation(s)
- Xiaopeng Yan
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinghua Shu
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bowen Sha
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yufeng Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
5
|
Tocan V, Hayase J, Kamakura S, Kohda A, Ohga S, Kohjima M, Sumimoto H. Hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC in conjunction with Lgl. J Biol Chem 2021; 297:101354. [PMID: 34717957 PMCID: PMC8637150 DOI: 10.1016/j.jbc.2021.101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell-cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; Department of Medicine and Regulatory Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
6
|
Baier FA, Sánchez-Taltavull D, Yarahmadov T, Castellà CG, Jebbawi F, Keogh A, Tombolini R, Odriozola A, Dias MC, Deutsch U, Furuse M, Engelhardt B, Zuber B, Odermatt A, Candinas D, Stroka D. Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cell Mol Gastroenterol Hepatol 2021; 12:745-767. [PMID: 33866021 PMCID: PMC8273426 DOI: 10.1016/j.jcmgh.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.
Collapse
Affiliation(s)
- Felix Alexander Baier
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cristina Gómez Castellà
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Adrian Keogh
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Riccardo Tombolini
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Candinas
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Li M, Zhao J, Cao M, Liu R, Chen G, Li S, Xie Y, Xie J, Cheng Y, Huang L, Su M, Xu Y, Zheng M, Zou K, Geng L, Xu W, Gong S. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res 2020; 53:12. [PMID: 32209121 PMCID: PMC7092522 DOI: 10.1186/s40659-020-00279-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. Results In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. Conclusions These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Musheng Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ruitao Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guanhua Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Songyu Li
- Department of Clinical Laboratory, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Yuanwen Xie
- Department of Anorectal, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingmin Su
- Department of Cancer Biology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, CF103AT, UK
| | - Yuxin Xu
- Department of Preventive Medicine, School of School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Mingyue Zheng
- School of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
8
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
9
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Abstract
Testing the blood for evidence of hepatic damage and dysfunction frequently involves measuring several blood constituents simultaneously to screen for disease. While useful, this approach occasionally leads to apparent disparities between the blood test results, and the results of other diagnostic tests such as histology. In part, these perceived discrepancies may stem from a lack of appreciation for tissue, cellular, and molecular factors that affect the appearance of hepatic disease biomarkers in the blood. Further confusing the matter is that in some instances the mechanisms responsible for the appearance of diagnostic compounds in blood are only partially understood. Many of the known factors that affect hepatic biomarkers are similar to those affecting other tissue markers, while others are unique to the liver, such as those involved with cholestasis. Disease conditions can also cause misleading results by affecting tissue concentrations of test compounds, hepatic mass, and the clearance rate of compounds from the blood. Knowledge of the factors affecting the blood concentrations of biomarkers, as well as investigations into the mechanisms behind changes to hepatic biomarker concentrations, may allow for a better interpretation of blood test results and fewer inconsistencies between diagnostic results.
Collapse
Affiliation(s)
- Philip F Solter
- Department of Pathobiology, University of Illinois, Urbana, Illinois 61802, USA.
| |
Collapse
|
11
|
CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget 2015. [PMID: 25277196 DOI: 10.18632/oncotarget] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies but the molecular genetic basis of this disease remains unclear. By using genome-wide methylation profiling analysis, we identified CLDN3 as an epigenetically regulated gene in cancer. Here, we investigated its function and clinical relevance in human HCC. CLDN3 downregulation occurred in 87/114 (76.3%) of primary HCCs, where it was correlated significantly with shorter survival of HCC patients (P=0.021). Moreover, multivariate cyclooxygenase regression analysis showed that CLDN3 was an independent prognostic factor for overall survival (P=0.014). Absent expression of CLDN3 was also detected in 67% of HCC cell lines, which was significantly associated with its promoter hypermethylation. Ectopic expression of CLDN3 in HCC cells could inhibit cell motility, cell invasiveness, and tumor formation in nude mice. Mechanistic investigations suggested through downregulation of GSK3B, CTNNB1, SNAI2, and CDH2, CLDN3 could significantly suppress metastasis by inactivating the Wnt/β-catenin-epithelial mesenchymal transition (EMT) axis in HCC cells. Collectively, our findings demonstrated that CLDN3 is an epigenetically silenced metastasis suppressor gene in HCC. A better understanding of the molecular mechanism of CLDN3 in inhibiting liver cancer cell metastasis may lead to a more effective management of HCC patients with the inactivation of CLDN3.
Collapse
|
12
|
Jiang L, Yang YD, Fu L, Xu W, Liu D, Liang Q, Zhang X, Xu L, Guan XY, Wu B, Sung JJY, Yu J. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget 2015; 5:7663-76. [PMID: 25277196 PMCID: PMC4202152 DOI: 10.18632/oncotarget.2288] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies but the molecular genetic basis of this disease remains unclear. By using genome-wide methylation profiling analysis, we identified CLDN3 as an epigenetically regulated gene in cancer. Here, we investigated its function and clinical relevance in human HCC. CLDN3 downregulation occurred in 87/114 (76.3%) of primary HCCs, where it was correlated significantly with shorter survival of HCC patients (P=0.021). Moreover, multivariate cyclooxygenase regression analysis showed that CLDN3 was an independent prognostic factor for overall survival (P=0.014). Absent expression of CLDN3 was also detected in 67% of HCC cell lines, which was significantly associated with its promoter hypermethylation. Ectopic expression of CLDN3 in HCC cells could inhibit cell motility, cell invasiveness, and tumor formation in nude mice. Mechanistic investigations suggested through downregulation of GSK3B, CTNNB1, SNAI2, and CDH2, CLDN3 could significantly suppress metastasis by inactivating the Wnt/β-catenin-epithelial mesenchymal transition (EMT) axis in HCC cells. Collectively, our findings demonstrated that CLDN3 is an epigenetically silenced metastasis suppressor gene in HCC. A better understanding of the molecular mechanism of CLDN3 in inhibiting liver cancer cell metastasis may lead to a more effective management of HCC patients with the inactivation of CLDN3.
Collapse
Affiliation(s)
- Lei Jiang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. Contributed equally to this work
| | - Yi-Dong Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Contributed equally to this work
| | - Li Fu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Weiqi Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lixia Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, CUHK Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
13
|
Holczbauer Á, Gyöngyösi B, Lotz G, Törzsök P, Kaposi-Novák P, Szijártó A, Tátrai P, Kupcsulik P, Schaff Z, Kiss A. Increased Expression of Claudin-1 and Claudin-7 in Liver Cirrhosis and Hepatocellular Carcinoma. Pathol Oncol Res 2014; 20:493-502. [DOI: 10.1007/s12253-013-9683-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 12/16/2022]
|
14
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
15
|
Grosse B, Degrouard J, Jaillard D, Cassio D. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins. Tissue Barriers 2013; 1:e25210. [PMID: 24665408 PMCID: PMC3783225 DOI: 10.4161/tisb.25210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022] Open
Abstract
Tight junctions (TJs) of cells expressing simple epithelial polarity have been extensively studied, but less is known about TJs of cells expressing complex polarity. In this paper we analyzed, TJs of four different lines, that form bile canaliculi (BC) and express typical hepatocyte polarity; WIF-B9, 11–3, Can 3–1, Can 10. Striking differences were observed in claudin expression. None of the cell lines produced claudin-1. WIF-B9 and 11–3 expressed only claudin-2 while Can 3–1 and Can 10 expressed claudin-2,-3,-4,-5. TJs of these two classes of lines differed in their ultra-stucture, paracellular permeability, and robustness. Lines expressing a large claudin repertoire, especially Can 10, had complex and efficient TJs, that were maintained when cells were depleted in calcium. Inversely, TJs of WIF-B9 and 11–3 were leaky, permissive and dismantled by calcium depletion. Interestingly, we found that during the polarization process, TJ proteins expressed by all lines were sequentially settled in a specific order: first occludin, ZO-1 and cingulin, then JAM-A and ZO-2, finally claudin-2. Claudins expressed only in Can lines were also sequentially settled: claudin-3 was the first settled. Inhibition of claudin-3 expression delayed BC formation in Can10 and induced the expression of simple epithelial polarity. These results highlight the role of claudins in the settlement and the efficiency of TJs in lines expressing typical hepatocyte polarity. Can 10 seems to be the most promising of these lines because of its claudin repertoire near that of hepatocytes and its capacity to form extended tubular BC sealed by efficient TJs.
Collapse
Affiliation(s)
- Brigitte Grosse
- Inserm, UMR-S 757; Orsay, France ; Université Paris-Sud; Orsay, France
| | | | | | - Doris Cassio
- Inserm, UMR-S 757; Orsay, France ; Université Paris-Sud; Orsay, France
| |
Collapse
|
16
|
Effects of n-3 polyunsaturated fatty acids on rat livers after partial hepatectomy via LKB1-AMPK signaling pathway. Transplant Proc 2012; 43:3604-12. [PMID: 22172813 DOI: 10.1016/j.transproceed.2011.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE n-3 polyunsaturated fatty acid (n-3 PUFA) are considered to be associated with liver regeneration. We investigated the effects of n-3 PUFA on hepatic tight junction (TJs) and liver regeneration after 70% partial hepatectomy (PH) in rats. METHODS Male Sprague-Dawley rats were divided into four groups: sham group; control group, fish oil (FO; 1 mL/kg), and the FO (2 mL/kg) group. We examined changes in expression of hepatic TJs by at confocal microscopy in liver regeneration by routine clinical chemistry methods for hepatic function, and in activation of liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Using Western blot analysis. RESULTS After PH survival was higher in the FO than the control group. We observed treatment with n-3 PUFA to activated the LKB1-AMPK signaling pathway as well as to earlier, stronger and prolonged of the expression of Occludin, Claudin-3, zonula occludens-1, and proliferating cell nuclear antigen proteins. In addition, hepatic TJ structures and the level of liver function were protected after n-3 PUFA treatment. CONCLUSIONS After PH in rats, n-3 PUFA enhanced expression and protected the structure of hepatic TJs via the LKB1-AMPK signaling pathway. Moreover, it may promote liver regeneration partly via the LKB1-AMPK signaling pathway. It protected postoperative hepatic function and may be a liver protective agent against liver failure.
Collapse
|
17
|
Kim K, Ohashi K, Utoh R, Kano K, Okano T. Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 2011; 33:1406-13. [PMID: 22118777 DOI: 10.1016/j.biomaterials.2011.10.084] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Hepatocyte-based tissue engineering is an attractive method that is being developed to treat liver diseases. However, this method is limited by the relatively short lifespan of cultured hepatocytes to maintain their normal function. For this reason, the present study was designed to develop a cell sheet-based hepatocyte co-culture system that enables cultured hepatocytes to preserve their functions for a longer period of time. To achieve this goal, a monolayer cell sheet composed of endothelial cells (EC) was placed on top of a monolayer of hepatocytes (Hep). In this hybrid cell sheet format, histological examination revealed that bile canaliculi networks were formed and well developed among the hepatocytes in the layered Hep-EC sheet group. The albumin secretion level was highly preserved at least for 28 days in the hybrid Hep-EC sheet, whereas the monolayer of hepatocytes exhibited a markedly reduced time course of secretion. The expression levels of hepatocyte-specific genes including albumin, hepatocyte nucleus factor 4 (HNF 4), multidrug resistance-associated protein 2 (MRP 2), and claudin-3 were significantly higher in the Hep-EC sheet compared to the Hep sheet alone after 14-days in culture. In all, this culture system provides a valuable technology to prolong hepatocyte functionality and enable more efficient development of liver tissue engineering approaches to create liver-targeted regenerative therapies.
Collapse
Affiliation(s)
- Kyungsook Kim
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Qiu Y, Wang M, Tan T, Yuan X, Ding Y. Effects of n-3 polyunsaturated fatty acids on hepatic tight junction after partial hepatectomy in rats. Transplant Proc 2011; 43:1480-3. [PMID: 21693221 DOI: 10.1016/j.transproceed.2011.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/01/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To explore the effects of n-3 polyunsaturated fatty acid (PUFA) on the hepatic tight junction in rat liver after partial hepatectomy. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 4 groups: sham operation, 70% hepatectomy, 70% hepatectomy with administration of 1 mL/kg n-3 PUFA, and 70% hepatectomy with administration of 2 mL/kg n-3 PUFA. Morphologic features of the hepatic tight junction were observed at transmission electron microscopy, and expression of the tight junction proteins occludin, claudin-3, and ZO-1 was studied using Western blot analysis. RESULTS The hepatic tight junction structure became loosened 3 days after 70% hepatectomy. The levels of tight junction occludin decreased markedly, whereas claudin-3 and ZO-1 levels increased 2- or 3-fold over control levels. Supplementation of n-3 PUFA alleviated the changes in tight junction structure and occludin expression. CONCLUSION n-3 PUFA has protective effects on hepatic tight junction structure after 70% hepatectomy, which were attributed in part to modulation of occludin expression.
Collapse
Affiliation(s)
- Y Qiu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical College, Nanjing, China
| | | | | | | | | |
Collapse
|
19
|
Yan XP, Wang S, Yang Y, Qiu YD. Effect of ω-3 polyunsaturated fatty acids on hepatic tight junctions and liver regeneration in rats after partial hepatectomy. Shijie Huaren Xiaohua Zazhi 2011; 19:2527-2533. [DOI: 10.11569/wcjd.v19.i24.2527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of ω-3 polyunsaturated fatty acids (PUFAs) on hepatic tight junctions and liver regeneration in rats after partial hepatectomy (PH)
METHODS: A rat model of 70% PH was used in this study. Eighty male SD rats were randomly divided into sham operation group, PH group, PH + low-dose ω-3 PUFA (1 mL/kg) group and PH + high-dose ω-3 PUFA (2 mL/kg) group. Serum samples were collected to measure the levels of total bile acids, total bilirubin, alanine aminotransferase (ALT) and albumin on days 1, 2, 3 and 5 after PH. Tissue samples were collected for detecting the expression of hepatic tight junction proteins (Occludin, Claudin-3 and ZO-1) and PCNA (a parameter reflecting liver regeneration) by Western blot. Tissue samples were also collected for observation of structural changes in hepatic tight junctions by confocal microscopy.
RESULTS: In comparison with the PH group on day 1, the levels of total bile acids (181.2 ± 63.9, 166.7 ± 68.9 vs 228.9 ± 37.7), total bilirubin (13.5 ± 8.8, 7.6 ± 0.1 vs 25.9 ± 15.3) and ALT (1042.2 ± 179.7, 901.4 ± 182.3 vs 2703.9 ± 130.0) decreased significantly in the low- and high-dose ω-3 PUFA groups (all P < 0.05), whereas no marked changes in the level of albumin (27.2 ± 1.1, 29.8 ± 0.9 vs 30.5 ± 1.2) were observed. Compared to the PH group on day 2, a significant decrease in the levels of total bilirubin (6.8 ± 9.2, 6.1 ± 2.0 vs 17.7 ± 1.1) and ALT (452.8 ± 258.5, 499.8 ± 155.9 vs 1 466.5 ± 30.2) was noted in the low- and high-dose ω-3 PUFA groups (all P < 0.05), whereas no marked changes in the level of albumin (26.8 ± 0.4, 27.7 ± 1.0 vs 25.7 ± 0.6) were observed. The expression of hepatic tight junction proteins (Occludin, Claudin-3 and ZO-1) increased significantly on days 1, 2 and 5 after PH (all P < 0.05), and liver regeneration was enhanced significantly on days 1, 2, 3 and 5 after PH (all P < 0.05). Treatment with ω-3 PUFAs promoted structural restoration of hepatic tight junctions.
CONCLUSION: ω-3 PUFAs not only promote the expression of tight junction proteins and protect the structure of hepatic tight junctions but also promote liver regeneration and protect liver function in rats after PH.
Collapse
|
20
|
Mrsny RJ, Brown GT, Gerner-Smidt K, Buret AG, Meddings JB, Quan C, Koval M, Nusrat A. A key claudin extracellular loop domain is critical for epithelial barrier integrity. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:905-15. [PMID: 18349130 DOI: 10.2353/ajpath.2008.070698] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-1(53-80)) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-1(53-80) associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-1(53-80), because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-1(53-80) to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-1(53-80), capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier.
Collapse
Affiliation(s)
- Randall J Mrsny
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Konopka G, Tekiela J, Iverson M, Wells C, Duncan SA. Junctional adhesion molecule-A is critical for the formation of pseudocanaliculi and modulates E-cadherin expression in hepatic cells. J Biol Chem 2007; 282:28137-48. [PMID: 17623668 DOI: 10.1074/jbc.m703592200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatocytes are polarized epithelial cells whose function depends upon their ability to distinguish between the apical and basolateral surfaces that are located at intercellular tight junctions. It has been proposed that the signaling cascades originating at these junctions influence cellular activity by controlling gene expression in the cell nucleus. To assess the validity of this proposal with regard to hepatocytes, we depleted expression of the tight junction protein junctional adhesion molecule-A (JAM-A) in the HepG2 human hepatocellular carcinoma cell line. Reduction of JAM-A resulted in a striking change in cell morphology, with cells forming sheets 1-2 cells thick instead of the normal multilayered clusters. In the absence of JAM-A, other tight junction proteins were mislocalized, and pseudocanaliculi, which form the apical face of the hepatocyte, were consequently absent. There was a strong transcriptional induction of the adherens junction protein E-cadherin in cells with reduced levels of JAM-A. This increase in E-cadherin was partially responsible for the observed alterations in cell morphology and mislocalization of tight junction proteins. We therefore propose the existence of a novel mechanism of cross-talk between specific components of tight and adherens junctions that can be utilized to regulate adhesion between hepatic cells.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53202, USA
| | | | | | | | | |
Collapse
|
22
|
Witteveldt J, Vieyres G, Patel AH. HCV requires a tight junction-associated protein for cell entry. Future Virol 2007. [DOI: 10.2217/17460794.2.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Evans MJ, von Hahn T, Tscherne DM et al.: Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137), 801–805 (2007). Viruses use surface molecules on target cells as receptors to gain entry and initiate infection. Unraveling the mechanisms of the entry process is crucial for understanding the virus life cycle and pathogenesis, and for developing novel intervention strategies. HCV enters cells by endocytosis following binding to receptors via its envelope glycoproteins, E1 and E2. Several cell receptors have been proposed to be involved in this process, but these are not sufficient for productive entry, indicating that one or more entry factors are yet to be discovered. Toward this, Evans and colleagues identified claudin-1, a member of a family of transmembrane proteins that are major constituents of tight junctions between cells, as essential for HCV entry. They demonstrated that claudin-1 is a coreceptor involved in a late stage of virus entry, and identified amino acid residues located in its first external loop as critical for this process. Their findings suggest that claudin-1 does not determine species host range, but it may be a determinant of HCV tissue tropism. The discovery represents a major step forward in understanding the HCV entry mechanism and pathogenesis, and offers a novel target for future development of antiviral therapy.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, G11 5JR, UK
| | - Gabrielle Vieyres
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, G11 5JR, UK
| | - Arvind H Patel
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, G11 5JR, UK
| |
Collapse
|
23
|
Seth D, Gorrell MD, Cordoba S, McCaughan GW, Haber PS. Intrahepatic gene expression in human alcoholic hepatitis. J Hepatol 2006; 45:306-320. [PMID: 16797773 DOI: 10.1016/j.jhep.2006.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/20/2006] [Accepted: 04/25/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Alcoholic hepatitis remains an important cause of morbidity and mortality. Treatment remains unsatisfactory, in part, due to limited understanding of the pathogenesis. The aim of this study is to define the global intrahepatic expression profile of human alcoholic hepatitis. METHODS Gene expression was analysed by DNA microarray on RNA isolated from liver of patients with alcoholic hepatitis (AH, n = 8), alcoholic steatosis (AS, n = 9) and explants from non-diseased donor liver controls (ND, n = 7). Differential expression of selected genes was confirmed by real-time RT-PCR and immunohistochemistry. RESULTS Cluster analysis allowed differentiation of alcoholic hepatitis from alcoholic steatosis. The gene expression profile of AH revealed 586 genes differentially expressed from AS and 211 genes differentially expressed from that of ND liver. In comparison, only 98 genes were differentially expressed in AS from ND. Novel differentially expressed genes in AH in comparison to ND and AS included claudins, osteopontin, CD209, selenoprotein and genes related to bile duct proliferation. Real-time RT-PCR confirmed up-regulation of IL-8, osteopontin, and TNFRSF14 and down-regulation of SAMeS and CD209. CONCLUSIONS This study has defined the intrahepatic gene expression profile of human alcoholic hepatitis and revealed a number of novel differentially expressed genes.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Human livers contain two pluripotent hepatic progenitors, hepatic stem cells and hepatoblasts, with size, morphology, and gene expression profiles distinct from that of mature hepatocytes. Hepatic stem cells, the precursors to hepatoblasts, persist in stable numbers throughout life, and those isolated from the livers of all age donors from fetal to adult are essentially identical in their gene and protein expression profiles. The gene expression profile of hepatic stem cells throughout life consists of high levels of expression of cytokeratin 19 (CK19), neuronal cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM), and claudin-3 (CLDN-3); low levels of albumin; and a complete absence of expression of alpha-fetoprotein (AFP) and adult liver-specific proteins. By contrast, hepatoblasts, the dominant cell population in fetal and neonatal livers, decline in numbers with age and are found as <0.1% of normal adult livers. They express high levels of AFP, elevated levels of albumin, low levels of expression of adult liver-specific proteins, low levels of CK19, and a loss of NCAM and CLDN-3. Mature hepatocytes lack expression altogether of EpCAM, NCAM, AFP, CLDN-3, cytokeratin 19, and have acquired the well-known adult-specific profile that includes expression of high levels of albumin, cytochrome P4503A4, connexins, phosphoenolpyruvate carboxykinase, and transferrin. Thus, hepatic stem cells have a unique stem cell phenotype, whereas hepatoblasts have low levels of expression of both stem cell genes and genes expressed in high levels in mature hepatocytes.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Cell and Molecular Biology, University of North Carolina School of Medicine, Campus Box 7038, Glaxo Building Rooms 32-35, Chapel Hill, 27599, USA.
| | | | | |
Collapse
|
25
|
Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, Noda T. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development 2006; 133:1389-98. [PMID: 16510507 DOI: 10.1242/dev.02294] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial cysts are one of the fundamental architectures for mammalian organogenesis. Although in vitro studies using cultured epithelial cells have revealed proteins required for cyst formation, the mechanisms that orchestrate the functions of these proteins in vivo remain to be clarified. We show that the targeted disruption of the mouse Par3 gene results in midgestational embryonic lethality with defective epicardial development. The epicardium is mainly derived from epicardial cysts and essential for cardiomyocyte proliferation during cardiac morphogenesis. PAR3-deficient epicardial progenitor (EPP) cells do not form cell cysts and show defects in the establishment of apical cortical domains, but not in basolateral domains. In PAR3-deficient EPP cells, the localizations of aPKC, PAR6β and ezrin to the apical cortical domains are disturbed. By contrast, ZO1 andα4/β1 integrins normally localize to cell-cell junctions and basal domains, respectively. Our observations indicate that EPP cell cyst formation requires PAR3 to interpret the polarity cues from cell-cell and cell-extracellular matrix interactions so that each EPP cell establishes apical cortical domains. These results also provide a clear example of the proper organization of epithelial tissues through the regulation of individual cell polarity.
Collapse
Affiliation(s)
- Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Poulsen AN, Klausen TL, Pedersen PS, Willumsen NJ, Frederiksen O. Nucleotide regulation of paracellular Cl- permeability in natural rabbit airway epithelium. Pflugers Arch 2005; 452:188-98. [PMID: 16374638 DOI: 10.1007/s00424-005-0023-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
In this study, we demonstrate a novel regulatory mechanism by which mucosal nucleotides via P2Y receptors decrease paracellular Cl(-) ion permeability in natural rabbit airway epithelium (in addition to a decrease in active Na(+) absorption). In contrast to primary cultures, the natural airway epithelium is a low-resistance epithelium, and an equivalent circuit model predicts that changes of more than approximately 12% in transepithelial conductance (G (t)) must include an effect on paracellular conductance (G (s)). Mucosal P2Y receptor stimulation with uridine triphosphate (UTP; 200 microM) decreased G (t) by up to 50% (average, 24%) and simultaneously decreased the paracellular Cl(-) permeability (mucosa-to-serosa Cl(-) flux) by 16%, but had no effect on mannitol permeability. The G (t) response to UTP was mimicked and attenuated by ionomycin (1 microM), suggesting a dependence on Ca(2+) (i). Amiloride (100 microM) and hyperosmolarity (+75 mM mannitol) also decreased G (t), indicating a role of cell shrinkage. Elevation of cAMP with forskolin (8 microM) or isoproterenol (10 microM) increased G (t) by 55 and 32%, and forskolin increased paracellular Cl(-) permeability by 37% without affecting mannitol permeability. The opposite effects of Ca(2+) (i) and cAMP on G (t) suggest an autocrine nucleotide signaling sequence where P2Y-dependent decrease in passive, paracellular Cl(-) transport is succeeded by a reversion of this effect due to P1-receptor-stimulated cAMP formation by adenosine originating from a time-dependent breakdown of mucosal ATP.
Collapse
Affiliation(s)
- Asser Nyander Poulsen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
27
|
Haworth KE, El-Hanfy A, Prayag S, Healy C, Dietrich S, Sharpe P. Expression of Claudin-3 during chick development. Gene Expr Patterns 2005; 6:40-4. [PMID: 16024293 DOI: 10.1016/j.modgep.2005.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Claudins are membrane proteins located within tight junctions. Using degenerate and gene specific primers the chick homologue of Claudin-3 was isolated. Here we show the expression of Claudin-3 transcripts in the developing chick embryo from Hamburger and Hamilton Stages (HH) 6-22. The early expression domains of Claudin 3 in the developing chick embryo include the mesoderm surrounding Hensen's node and the head fold. Between HH 9 and HH 11 expression domains include the anterior intestinal portal and otic vesicle. By HH 14, gene expression is observed in the pharyngeal endoderm and pouches, in addition to the continued expression in the otic vesicle. Expression in the more posterior pouches was also observed as development proceeded. At HH 20 expression is present in the mesonephric system and also the developing liver, lung bud and intestine.
Collapse
Affiliation(s)
- Kim E Haworth
- Department of Craniofacial Development, GKT Dental Institute, Kings College London, Guys Hospital, London Bridge, SE1 9RT, London, UK
| | | | | | | | | | | |
Collapse
|
28
|
Yamamoto T, Kojima T, Murata M, Takano KI, Go M, Hatakeyama N, Chiba H, Sawada N. p38 MAP-kinase regulates function of gap and tight junctions during regeneration of rat hepatocytes. J Hepatol 2005; 42:707-18. [PMID: 15826721 DOI: 10.1016/j.jhep.2004.12.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 12/02/2004] [Accepted: 12/14/2004] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatocyte regeneration is considered to be associated with adaptive changes in expression of gap and tight junctions through multiple signal transduction pathways including p38 MAP-kinase. The role of the stress responsitive MAP-kinase, p38 MAP-kinase, signaling pathway in function of gap and tight junctions was examined during regeneration of rat hepatocytes in vivo and in vitro. METHODS We examined changes in formation, expression and function of gap and tight junctions in rat livers after 70% partial hepatectomy and in primary cultures of rat hepatocytes, by using a p38 MAP-kinase inhibitor, SB203580. RESULTS When p38 MAP-kinase was activated during partial hepatectomy, down-regulation of Cx32 and up-regulation of claudin-1 were observed. By SB203580 treatment, the down-regulation of Cx32 was inhibited and the up-regulation of claudin-1 was enhanced, well maintaining the structures of gap and tight junctions. SB203580 treatment did not affect the increase of hepatocyte proliferation. In EGF induced proliferative rat hepatocytes treated with SB203580, the expression and function of Cx32 and claudin-1 were increased. CONCLUSIONS Dynamic changes of formation of gap and tight junctions during regeneration of rat hepatocytes in vivo and in vitro are in part controlled via a p38 MAP-kinase signaling pathway, and are independent of cell growth.
Collapse
Affiliation(s)
- Toshinobu Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, S1. W17, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshii T, Mizuno K, Hirose T, Nakajima A, Sekihara H, Ohno S. sPAR-3, a splicing variant of PAR-3, shows cellular localization and an expression pattern different from that of PAR-3 during enterocyte polarization. Am J Physiol Gastrointest Liver Physiol 2005; 288:G564-70. [PMID: 15358599 DOI: 10.1152/ajpgi.00426.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PAR-3 (partitioning-defective) is a scaffold-like PDZ (postsynaptic density-95/discs large/zonula occludens-1) domain-containing protein that forms a complex with PAR-6 and atypical PKC, localizes to tight junctions, and contributes to the formation of functional tight junctions. There are several alternatively spliced isoforms of PAR-3, although their physiological significance remains unknown. In this study, we show that one of the major isoforms of PAR-3, sPAR-3, is predominantly expressed in the Caco-2 cells derived from colon carcinoma and is used as a model to investigate the events involved in the epithelial cell differentiation and cell polarity development. During the polarization of Caco-2 cells, the expression of PAR-3 increases as do those of other cell-cell junction proteins, whereas the expression of sPAR-3 decreases. Biochemical characterization revealed that sPAR-3 associates with atypical PKC, as does PAR-3. On the other hand, immunofluorescence microscopy revealed that sPAR-3 does not concentrate at the cell-cell contact region in fully polarized cells, whereas it concentrates at premature cell-cell junctions. This makes a contrast to PAR-3, which concentrates at tight junctions in fully polarized cells. These results provide evidence suggesting the difference in the role between sPAR-3 and PAR-3 in epithelial cells.
Collapse
Affiliation(s)
- Takako Yoshii
- The Third Department of Internal Medicine, Yokohama City University School of Medicine, Fuku-ura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Villanueva SSM, Ruiz ML, Luquita MG, Sánchez Pozzi EJ, Catania VA, Mottino AD. Involvement of Mrp2 in Hepatic and Intestinal Disposition of Dinitrophenyl-S-glutathione in Partially Hepatectomized Rats. Toxicol Sci 2004; 84:4-11. [PMID: 15590889 DOI: 10.1093/toxsci/kfi053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability of the liver and small intestine for secretion of dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), into bile and lumen, respectively, as well as expression of Mrp2 in both tissues, were assessed in 70-75% hepatectomized rats. An in vivo perfused intestinal model was used. A single i.v. dose of 30 micromol/kg b.w. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered and its glutathione conjugate, DNP-SG, was determined by HPLC in bile and intestinal perfusate. One and seven days after hepatectomy, biliary excretion of DNP-SG was decreased by 90 and 50% with respect to shams, respectively, when expressed per mass unit. In contrast, intestinal excretion was increased by 63% or unchanged one and seven days post-hepatectomy, respectively. Tissue content of DNP-SG 5 min after CDNB administration was substantially decreased in liver and significantly increased in intestine, one day post-hepatectomy. Western and immunofluorescence studies revealed preserved levels and localization of Mrp2 in both tissues from hepatectomized animals, irrespective of the time analyzed. In spite of preserved expression of Mrp2, the higher availability of DNP-SG in intestinal cells, likely as a consequence of increased glutathione-S-transferase-mediated conjugation of CDNB, may explain the in vivo findings. Further experiments in isolated hepatocytes suggested that decreased synthesis of DNP-SG rather than altered canalicular transport is responsible for the substantial impairment in excretion of this compound into bile. Taken together, these results indicate that the intestine may partially compensate for liver DNP-SG disposition, particularly shortly after surgery, while liver capability is recovering.
Collapse
Affiliation(s)
- Silvina S M Villanueva
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Fernández MA, Turró S, Ingelmo-Torres M, Enrich C, Pol A. Intracellular trafficking during liver regeneration. Alterations in late endocytic and transcytotic pathways. J Hepatol 2004; 40:132-9. [PMID: 14672624 DOI: 10.1016/j.jhep.2003.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Liver growth, induced by partial hepatectomy of the organ is a precisely regulated process during which a radical reorganisation of metabolism occurs as the hepatocytes become committed to enter the cell cycle. Recent studies have shown the importance of the endocytic compartment in the control of lipid and protein intracellular trafficking but also in the control of the signal transduction events, which eventually will trigger the initiation of DNA synthesis and the subsequent cell division. METHODS We isolated endosomes at different times after partial hepatectomy in male rats and compared with endosomes isolated from sham-operated animals. Also, bile was collected and analysed by 2D-gel electrophoresis. RESULTS The amount of late endosomes isolated from regenerating livers decreased, concomitant with decreased cathepsin D specific enzyme activity. Furthermore, secretion of horseradish peroxidase, pIgA and transferrin increased in the pre-replicative phase of liver regeneration. CONCLUSIONS At the early stages of liver regeneration, the hepatocellular transport pathway towards degradation (late endosomes and lysosomal pathway) decreases, but the transcytosis and the bile secretion of several major proteins increases.
Collapse
Affiliation(s)
- Manuel A Fernández
- Departament de Biologia Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Arai M, Yokosuka O, Chiba T, Imazeki F, Kato M, Hashida J, Ueda Y, Sugano S, Hashimoto K, Saisho H, Takiguchi M, Seki N. Gene expression profiling reveals the mechanism and pathophysiology of mouse liver regeneration. J Biol Chem 2003; 278:29813-8. [PMID: 12782638 DOI: 10.1074/jbc.m212648200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Comprehensive analysis of the changes in gene expression during liver regeneration was carried out by using an in-house microarray composed of 2,304 distinct mouse liver cDNA clones. Mice were subjected to partial two-thirds hepatectomy, and changes in mRNA levels were monitored up to 48 h. Of the 2,304 genes analyzed, 496 genes showed expression levels measurable at all time points after the partial hepatectomy. 317 genes were up- or down-regulated 2-fold or more at least at one time point during liver regeneration and were classified into eight clusters based on their expression patterns. With a more stringent cut-off value of +/-2 S.D., 68 genes were listed and were classified into five clusters. In these two analyses with different clustering criteria, functionally categorized genes showed similar cluster distributions. Genes involved in protein synthesis and posttranslational processing were significantly enriched in the cluster characterized by rapid gene activation and subsequent persistence. This suggests the importance of modulating the efficiency of protein supply and/or altering the composition of protein population from the early phase of hepatocyte proliferation. Genes for two major liver functions, i.e. plasma protein secretion and intermediate metabolism were enriched in distinct clusters exhibiting the features of gradual gene activation and sustained repression, respectively. Therefore, these genes are differentially regulated during the regeneration, possibly leading to changes in the flow of amino acids and energy from enzyme proteins to plasma proteins in their synthesis. Thus, clustering analysis of expression patterns of functionally classified genes gave insights into mechanism and pathophysiology of liver regeneration.
Collapse
Affiliation(s)
- Makoto Arai
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Manabe N, Hirai SI, Imai F, Nakanishi H, Takai Y, Ohno S. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev Dyn 2002; 225:61-9. [PMID: 12203721 DOI: 10.1002/dvdy.10139] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polarity proteins play fundamental roles in asymmetric cell division, which is essential for the production of different types of cells in multicellular organisms. Here, we explore the localization of atypical PKC isotype-specific interacting protein (ASIP), a mammalian homologue of the Caenorhabditis elegans polarity protein PAR-3, in embryonic neural tissues. Although ASIP is localized on tight junctions in cultured epithelial cells, it localizes on adherens junctions outlined by beta-catenin and afadin at the luminal surface, an apical end of the neuroepithelium in developing mouse central nervous systems. Mammalian homologues of other C. elegans polarity proteins, mPAR-6 and aPKC, also localize in the adherens junctions. In dorsal root ganglia of the peripheral nervous system, ASIP is found predominantly in the cytoplasm of ganglion cells. In dividing preneural cells at the ventricular (luminal) surface of the embryonic telencephalon, ASIP localize in adherence junctions of luminal surface regardless of the axis of cell division. Therefore, only the daughter cell facing the lumen (apical daughter) may inherit ASIP when the division plate is oriented parallel to the surface. Given the roles of Bazooka, a Drosophila homologue of ASIP/PAR-3, in the asymmetric division of the Drosophila neuroblast, these observations suggest that ASIP, along with other polarity proteins and adherens junction proteins, plays an important role in neural cell differentiation by means of asymmetric cell division.
Collapse
Affiliation(s)
- Naoyuki Manabe
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|