1
|
Zhang F, Biederman JA, Pierce NA, Potts DL, Reed SC, Smith WK. Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland. PLANT, CELL & ENVIRONMENT 2025; 48:943-952. [PMID: 39375916 DOI: 10.1111/pce.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.
Collapse
Affiliation(s)
- Fangyue Zhang
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- USDA Agricultural Research Service Southwest Watershed Research Center, Tucson, Arizona, USA
| | - Joel A Biederman
- USDA Agricultural Research Service Southwest Watershed Research Center, Tucson, Arizona, USA
| | - Nathan A Pierce
- USDA Agricultural Research Service Southwest Watershed Research Center, Tucson, Arizona, USA
| | - Daniel L Potts
- Biology Department, SUNY Buffalo State, Buffalo, New York, USA
| | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Song Y, Yan D, Liu T, Lu Y, Jiao R, Wen Y, Qin T, Weng B, Shi W. The suitability of isotopic methods in identifying water sources of a shallow-rooted herbaceous plant in a desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166072. [PMID: 37544443 DOI: 10.1016/j.scitotenv.2023.166072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Isotopic methodologies have gained prominence in investigating the composition of plant water sources; however, concerns regarding their suitability and reliability in diverse environments have emerged in recent years. This study presents a comparative analysis of root, soil, and liquid water (precipitation, dew, and groundwater) samples obtained from a desert steppe using isotope ratio infrared spectrometry (IRIS) and isotope ratio mass spectrometry (IRMS). The objective was to evaluate the applicability of these techniques in discerning the water sources of Stipa breviflora, a shallow-rooted herbaceous plant species. Additionally, we explored the root water uptake characteristics and water use strategy of S. breviflora. Our findings indicate that the IRIS method had more enriched values of D compared to the IRMS method across all samples, while no discernible pattern was observed for 18O. Notably, the differences observed among all samples exceeded the instruments' accuracies. Moreover, an unexpected occurrence was noted, whereby both D and 18O values in the root water were more enriched than in any of the considered water sources, rendering identification of the plant water sources unattainable. By conducting a re-analysis of more refined soil layer samples, we discovered that S. breviflora exhibits the ability to absorb and utilize water sources in close proximity to the soil surface. It further suggested that the shallow-rooted herbaceous plants in desert steppes can exploit small rainfalls, frequently overlooked in their ecological importance. Considering the distinctive soil and plant characteristics of desert steppes, we recommend adopting IRMS methods in conjunction with refined surface soil sampling for isotopic analysis aiming to identify water sources of shallow-rooted herbaceous plants. This study provides novel insights into assessing the suitability of isotopic techniques for analyzing plant water sources, while enhancing our understanding of water use strategies and environmental adaptation mechanisms employed by shallow-rooted herbaceous plants within xerophytic grassland ecosystems.
Collapse
Affiliation(s)
- Yifan Song
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China
| | - Denghua Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Tiejun Liu
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China
| | - Yajing Lu
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Rui Jiao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yunhao Wen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China
| | - Tianling Qin
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Baisha Weng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wei Shi
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
3
|
Tulloch AIT, Healy A, Silcock J, Wardle GM, Dickman CR, Frank ASK, Aubault H, Barton K, Greenville AC. Long-term livestock exclusion increases plant richness and reproductive capacity in arid woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2909. [PMID: 37602895 DOI: 10.1002/eap.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
Herbivore exclusion is implemented globally to recover ecosystems from grazing by introduced and native herbivores, but evidence for large-scale biodiversity benefits is inconsistent in arid ecosystems. We examined the effects of livestock exclusion on dryland plant richness and reproductive capacity. We collected data on plant species richness and seeding (reproductive capacity), rainfall, vegetation productivity and cover, soil strength and herbivore grazing intensity from 68 sites across 6500 km2 of arid Georgina gidgee (Acacia georginae) woodlands in central Australia between 2018 and 2020. Sites were on an actively grazed cattle station and two destocked conservation reserves. We used structural equation modeling to examine indirect (via soil or vegetation modification) versus direct (herbivory) effects of grazing intensity by two introduced herbivores (cattle, camels) and a native herbivore (red kangaroo), on seasonal plant species richness and seeding of all plants, and the richness and seeding of four plant groups (native grasses, forbs, annual chenopod shrubs, and palatable perennial shrubs). Non-native herbivores had a strong indirect effect on plant richness and seeding by reducing vegetative ground cover, resulting in decreased richness and seeding of native grasses and forbs. Herbivores also had small but negative direct impacts on plant richness and seeding. This direct effect was explained by reductions in annual chenopod and palatable perennial shrub richness under grazing activity. Responses to grazing were herbivore-dependent; introduced herbivore grazing reduced native plant richness and seeding, while native herbivore grazing had no significant effect on richness or seeding of different plant functional groups. Soil strength decreased under grazing by cattle but not camels or kangaroos. Cattle had direct effects on palatable perennial shrub richness and seeding, whereas camels had indirect effects, reducing richness and seeding by reducing the abundance of shrubs. We show that considering indirect pathways improves evaluations of the effects of disturbances on biodiversity, as focusing only on direct effects can mask critical mechanisms of change. Our results indicate substantial biodiversity benefits from excluding livestock and controlling camels in drylands. Reducing introduced herbivore impacts will improve soil and vegetation condition, ensure reproduction and seasonal persistence of species, and protect native plant diversity.
Collapse
Affiliation(s)
- Ayesha I T Tulloch
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Al Healy
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer Silcock
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anke S K Frank
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Pilungah Reserve, Bush Heritage Australia, Boulia, Queensland, Australia
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Helene Aubault
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Kyle Barton
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Aaron C Greenville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Adegbite G, Edeki S, Isewon I, Emmanuel J, Dokunmu T, Rotimi S, Oyelade J, Adebiyi E. Mathematical modeling of malaria transmission dynamics in humans with mobility and control states. Infect Dis Model 2023; 8:1015-1031. [PMID: 37649792 PMCID: PMC10463202 DOI: 10.1016/j.idm.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Malaria importation is one of the hypothetical drivers of malaria transmission dynamics across the globe. Several studies on malaria importation focused on the effect of the use of conventional malaria control strategies as approved by the World Health Organization (WHO) on malaria transmission dynamics but did not capture the effect of the use of traditional malaria control strategies by vigilant humans. In order to handle the aforementioned situation, a novel system of Ordinary Differential Equations (ODEs) was developed comprising the human and the malaria vector compartments. Analysis of the system was carried out to assess its quantitative properties. The novel computational algorithm used to solve the developed system of ODEs was implemented and benchmarked with the existing Runge-Kutta numerical solution method. Furthermore, simulations of different vigilant conditions useful to control malaria were carried out. The novel system of malaria models was well-posed and epidemiologically meaningful based on its quantitative properties. The novel algorithm performed relatively better in terms of model simulation accuracy than Runge-Kutta. At the best model-fit condition of 98% vigilance to the use of conventional and traditional malaria control strategies, this study revealed that malaria importation has a persistent impact on malaria transmission dynamics. In lieu of this, this study opined that total vigilance to the use of the WHO-approved and traditional malaria management tools would be the most effective control strategy against malaria importation.
Collapse
Affiliation(s)
- Gbenga Adegbite
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Sunday Edeki
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Mathematics, Covenant University, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
| | - Jerry Emmanuel
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
| | - Titilope Dokunmu
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communications-African Centre of Excellence, Covenant University, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
The constant provision of plant productivity is integral to supporting the liability of ecosystems and human wellbeing in global drylands. Drylands are paradigmatic examples of systems prone to experiencing abrupt changes in their functioning. Indeed, space-for-time substitution approaches suggest that abrupt changes in plant productivity are widespread, but this evidence is less clear using observational time series or experimental data at a large scale. Studying the prevalence and, most importantly, the unknown drivers of abrupt (rather than gradual) dynamical patterns in drylands may help to unveil hotspots of current and future dynamical instabilities in drylands. Using a 20-y global satellite-derived temporal assessment of dryland Normalized Difference Vegetation Index (NDVI), we show that 50% of all dryland ecosystems exhibiting gains or losses of NDVI are characterized by abrupt positive/negative temporal dynamics. We further show that abrupt changes are more common among negative than positive NDVI trends and can be found in global regions suffering recent droughts, particularly around critical aridity thresholds. Positive abrupt dynamics are found most in ecosystems with low seasonal variability or high aridity. Our work unveils the high importance of climate variability on triggering abrupt shifts in vegetation and it provides missing evidence of increasing abruptness in systems intensively managed by humans, with low soil organic carbon contents, or around specific aridity thresholds. These results highlight that abrupt changes in dryland dynamics are very common, especially for productivity losses, pinpoint global hotspots of dryland vulnerability, and identify drivers that could be targeted for effective dryland management.
Collapse
|
6
|
Gibb H, Wardle GM, Greenville AC, Grossman BF, Dickman CR. Top-down response to spatial variation in productivity and bottom-up response to temporal variation in productivity in a long-term study of desert ants. Biol Lett 2022; 18:20220314. [PMID: 36102012 PMCID: PMC9471271 DOI: 10.1098/rsbl.2022.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Under the Ecosystem Exploitation Hypothesis ecosystem productivity predicts trophic complexity, but it is unclear if spatial and temporal drivers of productivity have similar impacts. Long-term studies are necessary to capture temporal impacts on trophic structure in variable ecosystems such as deserts. We sampled ants and measured plant resources in the Simpson Desert, central Australia over a 22-year period, during which rainfall varied 10-fold. We sampled dune swales (higher nutrient) and crests (lower nutrient) to account for spatial variation in productivity. We asked how temporal and spatial variation in productivity affects the abundance of ant trophic guilds. Precipitation increased vegetation cover, with the difference more pronounced on dune crests; seeding and flowering also increased with precipitation. Generalist activity increased over time, irrespective of productivity. Predators were more active in more productive (swale) habitat, i.e. spatial impacts of productivity were greatest at the highest trophic level. By contrast, herbivores (seed harvesters and sugar feeders) increased with long-term rainfall; seed harvesters also increased as seeding increased. Temporal impacts of productivity were therefore greatest for low trophic levels. Whether productivity variation leads to top-down or bottom-up structured ecosystems thus depends on the scale and dimension (spatial or temporal) of productivity.
Collapse
Affiliation(s)
- Heloise Gibb
- Department of Ecology, Environment and Evolution and Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences A08, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences A08, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Blair F. Grossman
- Department of Ecology, Environment and Evolution and Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences A08, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Effects of long-term enclosing on distributions of carbon and nitrogen in semia-arid grassland of Inner Mongolia. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Jones TA, Monaco TA, Larson SR, Hamerlynck EP, Crain JL. Using Genomic Selection to Develop Performance-Based Restoration Plant Materials. Int J Mol Sci 2022; 23:ijms23158275. [PMID: 35955409 PMCID: PMC9368130 DOI: 10.3390/ijms23158275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Effective native plant materials are critical to restoring the structure and function of extensively modified ecosystems, such as the sagebrush steppe of North America’s Intermountain West. The reestablishment of native bunchgrasses, e.g., bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] À. Löve), is the first step for recovery from invasive species and frequent wildfire and towards greater ecosystem resiliency. Effective native plant material exhibits functional traits that confer ecological fitness, phenotypic plasticity that enables adaptation to the local environment, and genetic variation that facilitates rapid evolution to local conditions, i.e., local adaptation. Here we illustrate a multi-disciplinary approach based on genomic selection to develop plant materials that address environmental issues that constrain local populations in altered ecosystems. Based on DNA sequence, genomic selection allows rapid screening of large numbers of seedlings, even for traits expressed only in more mature plants. Plants are genotyped and phenotyped in a training population to develop a genome model for the desired phenotype. Populations with modified phenotypes can be used to identify plant syndromes and test basic hypotheses regarding relationships of traits to adaptation and to one another. The effectiveness of genomic selection in crop and livestock breeding suggests this approach has tremendous potential for improving restoration outcomes for species such as bluebunch wheatgrass.
Collapse
Affiliation(s)
- Thomas A. Jones
- USDA-Agricultural Research Service, Forage & Range Research Laboratory, 696 North 1100 East, Logan, UT 84322, USA; (T.A.M.); (S.R.L.)
- Correspondence:
| | - Thomas A. Monaco
- USDA-Agricultural Research Service, Forage & Range Research Laboratory, 696 North 1100 East, Logan, UT 84322, USA; (T.A.M.); (S.R.L.)
| | - Steven R. Larson
- USDA-Agricultural Research Service, Forage & Range Research Laboratory, 696 North 1100 East, Logan, UT 84322, USA; (T.A.M.); (S.R.L.)
| | - Erik P. Hamerlynck
- USDA-Agricultural Research Service, Range & Meadow Forage Management Research Laboratory, 67826-A Highway 205, Burns, OR 97720, USA;
| | - Jared L. Crain
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS 66506, USA;
| |
Collapse
|
9
|
Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya’an–Linzhi Section of the Sichuan–Tibet Railway. REMOTE SENSING 2022. [DOI: 10.3390/rs14153584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vegetation dynamics and their responses to climate change are of significant spatial and temporal heterogeneity. The Sichuan–Tibet Railway (STR) is a major construction project of the 14th Five-Year Plan for Economic and Social Development of the People’s Republic of China that is of great significance to promoting the social and economic development of Sichuan–Tibet areas. The planned railway line crosses areas with a complex geological condition and fragile ecological environment, where the regional vegetation dynamics are sensitive to climate change, topographic conditions and human activities. So, analyzing the vegetation variations in the complex vertical ecosystem and exploring their responses to hydrothermal factors are critical for providing technical support for the ecological program’s implementation along the route of the planned railway line. Based on MOD13Q1 Normalized Difference Vegetation Index (NDVI) data for the growing season (May to October) during 2001–2020, a Theil-Sen trend analysis, Mann–Kendall test, Hurst exponent analysis and partial correlation analysis were used to detect the vegetation dynamics, predict the vegetation sustainability, examine the relationship between vegetation change and hydrothermal factors, regionalize the driving forces for vegetation growth and explore the interannual variation pattern of driving factors. The growing season NDVI along the Ya’an–Linzhi section of the STR showed a marked rate of increase (0.0009/year) during the past 20 years, and the vegetation’s slight improvement areas accounted for the largest proportion (47.53%). Among the three hydrothermal parameters (temperature, precipitation and radiation), the correlation between vegetation growth and the temperature was the most significant, and the vegetation response to precipitation was the most immediate. The vegetation changes were affected by the combined impact of climatic and non-climatic factors, and the proportion of hydrothermal factors’ combined driving force slightly increased during the study period. Based on the Hurst exponent, the future vegetation sustainability of the area along the Ya’an–Linzhi section of the STR faces a risk of degradation, and more effective conservations should be implemented during the railway construction period to protect the regional ecological environment.
Collapse
|
10
|
Ehleringer JR, Driscoll AW. Intrinsic water-use efficiency influences establishment in Encelia farinosa. Oecologia 2022; 199:563-578. [PMID: 35819533 DOI: 10.1007/s00442-022-05217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
We describe establishment of Encelia farinosa, a drought-deciduous shrub common to the Mojave and Sonoran Deserts, based on annual observations of two populations between 1980 and 2020. Only 11 establishment events of 50 + yearlings (0.02-0.03 individuals m-2) occurred during this monitoring period; in 68% of the years fewer than 10 yearlings were established. Yearling survival to adulthood (age 4) ranged from 88 to 5% and was significantly related to cumulative precipitation. Juvenile survival rates were lowest during the current megadrought period. We calculated intrinsic water-use efficiency (iWUE) and observed the widest variations in iWUE values among the youngest plants. Among juveniles, surviving yearlings with the lowest iWUE values exhibited upward ontogenetic shifts in iWUE values, whereas those yearlings with the highest initial iWUE values exhibited little if any change. Juvenile size, higher iWUE values, and greater likelihood of surviving were all positively related with each other over the past several decades. Furthermore, iWUE and photosynthetic capacity were positively related to each other, providing a mechanistic explanation for why increased iWUE values among juveniles could lead to greater survival rates and to larger plants under water-deficit conditions. We posit that there is bi-directional selection for genotypic variations in iWUE values among E. farinosa and that this variation is selected for because of interannual environmental heterogeneity in precipitation and VPD associated with both high- and low-frequency climate cycles. Extreme drought cycles may favor plants with higher iWUE values, whereas more mesic periods may allow for greater persistence of lower iWUE genotypes.
Collapse
Affiliation(s)
- James R Ehleringer
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Avery W Driscoll
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
- Present Address: Department of Soil and Crop Sciences, Colorado State University, 301 University Avenue, Fort Collins, CO, 80523, USA
| |
Collapse
|
11
|
Zhang LM, Roiloa SR, Xue W, Yu FH. Effects of temporal heterogeneity in nutrient supply on intra- and inter-genet competition of a clonal herb. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Hoover DL, Hajek OL, Smith MD, Wilkins K, Slette IJ, Knapp AK. Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge, and the carbon cycle. GLOBAL CHANGE BIOLOGY 2022; 28:2611-2621. [PMID: 35076159 DOI: 10.1111/gcb.16081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 05/08/2023]
Abstract
Climate change is predicted to increase the frequency and intensity of extreme events including droughts and large precipitation events or "deluges." While many studies have focused on the ecological impacts of individual events (e.g., a heat wave), there is growing recognition that when extreme events co-occur as compound extremes, (e.g., a heatwave during a drought), the additive effects on ecosystems are often greater than either extreme alone. In this study, we assessed a unique type of extreme-a contrasting compound extreme-where the extremes may have offsetting, rather than additive ecological effects, by examining how a deluge during a drought impacts productivity and carbon cycling in a semi-arid grassland. The experiment consisted of four treatments: a control (average precipitation), an extreme drought (<5th percentile), an extreme drought interrupted by a single deluge (>95th percentile), or an extreme drought interrupted by the equivalent amount of precipitation added in several smaller events. We highlight three key results. First, extreme drought resulted in early senescence, reduced carbon uptake, and a decline in net primary productivity relative to the control treatment. Second, the deluge imposed during extreme drought stimulated carbon fluxes and plant growth well above the levels of both the control and the drought treatment with several additional smaller rainfall events, emphasizing the importance of precipitation amount, event size, and timing. Third, while the deluge's positive effects on carbon fluxes and plant growth persisted for 1 month, the deluge did not completely offset the negative effects of extreme drought on end-of-season productivity. Thus, in the case of these contrasting hydroclimatic extremes, a deluge during a drought can stimulate temporally dynamic ecosystem processes (e.g., net ecosystem exchange) while only partially compensating for reductions in ecosystem functions over longer time scales (e.g., aboveground net primary productivity).
Collapse
Affiliation(s)
- David L Hoover
- USDA-ARS Rangeland Resources and Systems Research Unit, Crops Research Laboratory, Fort Collins, Colorado, USA
| | - Olivia L Hajek
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Kate Wilkins
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ingrid J Slette
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Morillas L, Roales J, Cruz C, Munzi S. Non-Toxic Increases in Nitrogen Availability Can Improve the Ability of the Soil Lichen Cladonia rangiferina to Cope with Environmental Changes. J Fungi (Basel) 2022; 8:jof8040333. [PMID: 35448564 PMCID: PMC9025437 DOI: 10.3390/jof8040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change and atmospheric nitrogen (N) deposition on drylands are greatly threatening these especially vulnerable areas. Soil biocrust-forming lichens in drylands can provide early indicators of these disturbances and play a pivotal role, as they contribute to key ecosystem services. In this study, we explored the effects of different long-term water availability regimes simulating climate changes and their interaction with N addition on the physiological response of the soil lichen Cladonia rangiferina. Three sets of this lichen were subjected to control, reduced watering, and reduced watering and N addition (40 kg NH4NO3 ha−1 year−1) treatments for 16 months. Finally, all samples were subjected to daily hydration cycles with N-enriched water at two levels (40 and 80 kg NH4NO3 ha−1 year−1) for 23 days. We found that reduced watering significantly decreased the vitality of this lichen, whereas N addition unexpectedly helped lichens subjected to reduced watering to cope with stress produced by high temperatures. We also found that long-term exposure to N addition contributed to the acclimation to higher N availability. Overall, our data suggest that the interactions between reduced watering and increased N supply and temperature have an important potential to reduce the physiological performance of this soil lichen.
Collapse
Affiliation(s)
- Lourdes Morillas
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisbon, Portugal; (J.R.); (C.C.); (S.M.)
- Correspondence:
| | - Javier Roales
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisbon, Portugal; (J.R.); (C.C.); (S.M.)
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisbon, Portugal; (J.R.); (C.C.); (S.M.)
| | - Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisbon, Portugal; (J.R.); (C.C.); (S.M.)
- Centro Interuniversitário de História das Ciências e da Tecnologia Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Churchill AC, Zhang H, Fuller KJ, Amiji B, Anderson IC, Barton CVM, Carrillo Y, Catunda KLM, Chandregowda MH, Igwenagu C, Jacob V, Kim GW, Macdonald CA, Medlyn BE, Moore BD, Pendall E, Plett JM, Post AK, Powell JR, Tissue DT, Tjoelker MG, Power SA. Pastures and Climate Extremes: Impacts of Cool Season Warming and Drought on the Productivity of Key Pasture Species in a Field Experiment. FRONTIERS IN PLANT SCIENCE 2022; 13:836968. [PMID: 35321443 PMCID: PMC8937038 DOI: 10.3389/fpls.2022.836968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.
Collapse
Affiliation(s)
- Amber C. Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Kathryn J. Fuller
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Burhan Amiji
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Ian C. Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Craig V. M. Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Karen L. M. Catunda
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | - Chioma Igwenagu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Vinod Jacob
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Gil Won Kim
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Catriona A. Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Alison K. Post
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- The Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia
| | - Mark G. Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
15
|
Fajardo A, Llancabure JC, Moreno PC. Assessing forest degradation using multivariate and machine-learning methods in the Patagonian temperate rain forest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2495. [PMID: 34783406 DOI: 10.1002/eap.2495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The process of forest degradation, along with deforestation, is the second greatest producer of global greenhouse gas emissions. A key challenge that remains unresolved is how to quantify the critical threshold that distinguishes a degraded from a non-degraded forest. We determined the critical threshold of forest degradation in mature stands belonging to the temperate evergreen rain forest of southern Chile by quantifying key forest stand factors characterizing the forest degradation status. Forest degradation in this area is mainly caused by high grading, harvesting of fuelwood, and sub-canopy grazing by livestock. We established 160 500-m2 plots in forest stands that represented varied degrees of alteration (from pristine conditions to obvious forest degradation), and measured several variables related to the structure and composition of the forest stands, including exotic and native species richness, soil nutrient levels, and other landscape-scale variables. In order to identify classes of forest degradation, we applied multivariate and machine-learning analyses. We found that richness of exotic species (including invasive species) with a diameter at breast height (DBH) < 10 cm and tree density (N, DBH > 10 cm) were the two composition and structural variables that best explained the forest degradation status, e.g., forest stands with five or more exotic species were consistently found more associated with degraded forest and stands with N < 200 trees/ha represented degraded forests, while N > 1,000 trees/ha represent pristine forests. We introduced an analytical methodology, mainly based on machine learning, that successfully identified the forest degradation status that can be replicated in other scenarios. In conclusion, here by providing an extensive data set quantifying forest and site attributes, the results of this study are undoubtedly useful for managers and decision makers in classifying and mapping forests suffering various degrees of degradation.
Collapse
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
| | - Juan C Llancabure
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Camino Baguales s/n, Coyhaique, 5951601, Chile
| | - Paulo C Moreno
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Camino Baguales s/n, Coyhaique, 5951601, Chile
- Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, Genova, 16126, Italy
| |
Collapse
|
16
|
Deng Y, Bossdorf O, Scheepens JF. Transgenerational effects of temperature fluctuations in Arabidopsis thaliana. AOB PLANTS 2021; 13:plab064. [PMID: 34950444 PMCID: PMC8691168 DOI: 10.1093/aobpla/plab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Plant stress responses can extend into the following generations, a phenomenon called transgenerational effects. Heat stress, in particular, is known to affect plant offspring, but we do not know to what extent these effects depend on the temporal patterns of the stress, and whether transgenerational responses are adaptive and genetically variable within species. To address these questions, we carried out a two-generation experiment with nine Arabidopsis thaliana genotypes. We subjected the plants to heat stress regimes that varied in timing and frequency, but not in mean temperature, and we then grew the offspring of these plants under controlled conditions as well as under renewed heat stress. The stress treatments significantly carried over to the offspring generation, with timing having stronger effects on plant phenotypes than stress frequency. However, there was no evidence that transgenerational effects were adaptive. The magnitudes of transgenerational effects differed substantially among genotypes, and for some traits the strength of plant responses was significantly associated with the climatic variability at the sites of origin. In summary, timing of heat stress not only directly affects plants, but it can also cause transgenerational effects on offspring phenotypes. Genetic variation in transgenerational effects, as well as correlations between transgenerational effects and climatic variability, indicates that transgenerational effects can evolve, and have probably already done so in the past.
Collapse
Affiliation(s)
- Ying Deng
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Natural History Research Center, Shanghai Natural History Museum, Shanghai 200041, China
| | - Oliver Bossdorf
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
| | - J F Scheepens
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| |
Collapse
|
17
|
Xu W, Deng X, Xu B, Palta JA, Chen Y. Soil Water Availability Changes in Amount and Timing Favor the Growth and Competitiveness of Grass Than a Co-dominant Legume in Their Mixtures. FRONTIERS IN PLANT SCIENCE 2021; 12:723839. [PMID: 34745160 PMCID: PMC8569297 DOI: 10.3389/fpls.2021.723839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The grasslands on the semi-arid Loess Plateau of China are expected to be particularly responsive to the size and frequency changes of extreme precipitation events because their ecological processes are largely driven by distinct soil moisture pulses. However, the plant growth and competitiveness of co-dominant species in response to the changes in the amount and timing of soil water are still unclear. Thus, two co-dominant species, Bothriochloa ischaemum and Lespedeza davurica, were grown in seven mixture ratios under three watering regimes [80 ± 5% pot soil capacity (FC) (high watering), 60 ± 5% FC (moderate watering), and 40 ± 5% FC (low watering)] in a pot experiment. The soil water contents were rapidly improved from low to moderate water and from moderate to high water, respectively, at the heading, flowering, and maturity stages of B. ischaemum, and were maintained until the end of the growing season of each species. The biomass production of both species increased significantly with the increased soil water contents, particularly at the heading and flowering periods, with a more pronounced increase in B. ischaemum in the mixtures. The root/shoot ratio of both species was decreased when the soil water availability increased at the heading or flowering periods. The total biomass production, water use efficiency (WUE), and relative yield total (RYT) increased gradually with the increase of B. ischaemum in the mixtures. The relative competition intensity was below zero in B. ischaemum, and above zero in L. davurica. The competitive balance index calculated for B. ischaemum was increased with the increase of the soil water contents. Bothriochloa ischaemum responded more positively to the periodical increase in soil water availability than L. davurica, indicating that the abundance of B. ischaemum could increase in relatively wet seasons or plenty-rainfall periods. In addition, the mixture ratio of 10:2 (B. ischaemum to L. davurica) was the most compatible combination for the improved biomass production, WUE, and RYTs across all soil water treatments.
Collapse
Affiliation(s)
- Weizhou Xu
- College of Life Sciences, Yulin University, Yulin, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jairo A. Palta
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- CSIRO Agriculture and Food, Wembley, WA, Australia
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Changes in Meadow Phenology in Response to Grazing Management at Multiple Scales of Measurement. REMOTE SENSING 2021. [DOI: 10.3390/rs13204028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Riparian and ground-water dependent ecosystems found in the Great Basin of North America are heavily utilized by livestock and wildlife throughout the year. Due to this constant pressure, grazing can be a major influence on many groundwater dependent resources. It is important for land managers to understand how intensity and timing of grazing affect the temporal availability of these commodities (i.e., biodiversity, water filtration, forage, habitat). Shifts in forage or water availability could potentially be harmful for fauna that rely on them at specific times of the year. Seven meadow communities, each consisting of three distinct vegetative communities, were grazed at three intensities to determine the relationship between grazing management and phenological timing of vegetation. The agreement of on-the-ground measurements, near-surface digital cameras (phenocams), and satellite-based indices of greenness was examined for a two-year period (2019–2020) over these grazing and vegetative community gradients. Field determined phenology, phenocam Green Chromatic Coordinate (GCC), and Landsat Normalized Difference Vegetation Index (NDVI) were all highly correlated and the relationship did not change across the treatments. Timing of growth varied in these ecosystems depending on yearly precipitation and vegetative type. Communities dominated by mesic sedges had growing seasons which stopped earlier in the year. Heavier grazing regimes, however, did not equate to significant changes in growing season. Ultimately, shifts in phenology occurred and were successfully monitored at various spatial and temporal scales.
Collapse
|
19
|
Long-Term Population Dynamics of Namib Desert Tenebrionid Beetles Reveal Complex Relationships to Pulse-Reserve Conditions. INSECTS 2021; 12:insects12090804. [PMID: 34564244 PMCID: PMC8469250 DOI: 10.3390/insects12090804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022]
Abstract
Noy-Meir's paradigm concerning desert populations being predictably tied to unpredictable productivity pulses was tested by examining abundance trends of 26 species of flightless detritivorous tenebrionid beetles (Coleoptera, Tenebrionidae) in the hyper-arid Namib Desert (MAP = 25 mm). Over 45 years, tenebrionids were continuously pitfall trapped on a gravel plain. Species were categorised according to how their populations increased after 22 effective rainfall events (>11 mm in a week), and declined with decreasing detritus reserves (97.7-0.2 g m-2), while sustained by nonrainfall moisture. Six patterns of population variation were recognised: (a) increases triggered by effective summer rainfalls, tracking detritus over time (five species, 41% abundance); (b) irrupting upon summer rainfalls, crashing a year later (three, 18%); (c) increasing gradually after series of heavy (>40 mm) rainfall years, declining over the next decade (eight, 15%); (d) triggered by winter rainfall, population fluctuating moderately (two, 20%); (e) increasing during dry years, declining during wet (one, 0.4%); (f) erratic range expansions following heavy rain (seven, 5%). All species experienced population bottlenecks during a decade of scant reserves, followed by the community cycling back to its earlier composition after 30 years. By responding selectively to alternative configurations of resources, Namib tenebrionids showed temporal patterns and magnitudes of population fluctuation more diverse than predicted by Noy-Meir's original model, underpinning high species diversity.
Collapse
|
20
|
Larson JE, Ebinger KR, Suding KN. Water the odds? Spring rainfall and emergence‐related seed traits drive plant recruitment. OIKOS 2021. [DOI: 10.1111/oik.08638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Julie E. Larson
- Dept of Ecology and Evolutionary Biology, Univ. of Colorado at Boulder Boulder CO USA
- Inst. of Arctic and Alpine Research, Univ. of Colorado at Boulder Boulder CO USA
| | - Kathleen R. Ebinger
- Dept of Ecology and Evolutionary Biology, Univ. of Colorado at Boulder Boulder CO USA
- Master of Environmental Management Program, School of the Environment, Yale Univ. New Haven CT USA
| | - Katharine N. Suding
- Dept of Ecology and Evolutionary Biology, Univ. of Colorado at Boulder Boulder CO USA
- Inst. of Arctic and Alpine Research, Univ. of Colorado at Boulder Boulder CO USA
| |
Collapse
|
21
|
Liu H, Chen Y, Zhang L, Baskin JM, Baskin CC, Zhang L, Liu Y, Zhang D, Zhang Y. Is the Life History Flexibility of Cold Desert Annuals Broad Enough to Cope with Predicted Climate Change? The Case of Erodium oxyrhinchum in Central Asia. BIOLOGY 2021; 10:biology10080780. [PMID: 34440013 PMCID: PMC8389623 DOI: 10.3390/biology10080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Interannual seasonal variability in precipitation may strongly affect the life history and growth of desert annual plants. We compared the effects of dry and wet springs and dry and wet autumns on growth and F2 seed dormancy of plants from spring (SG)- and autumn (AG)-germinated seeds of the cold desert annual Erodium oxyrhinchum. Vegetative and reproductive growth and F2 seed dormancy and germination were monitored from September 2016 to November 2020 in the sandy Gurbantunggut Desert in NW China in Central Asia. Dry autumns decreased the density of AG plants, and dry springs decreased the density of SG plants and growth of SG and AG plants. In dry springs, SG plants were more sensitive to precipitation than AG plants, while in wet springs SG and AG plants had similar responses to precipitation. During growth in both dry and wet springs, most morphological characters of SG and AG plants initially increased rapidly in size/number and then plateaued or decreased, except for SG plants in dry springs. In dry springs, most morphological characters of AG plants were larger or more numerous than those of SG plants, and they were larger/more numerous for SG plants in wet than in dry springs. The percentage biomass allocated to reproduction in SG plants was slightly higher in a wet than in a dry spring. A much higher proportion of dormant seeds was produced by AG plants in a wet spring than in a dry spring. Projected changes in precipitation due to climate change in NW China are not likely to have much of an effect on the biology of this common desert annual plant.
Collapse
Affiliation(s)
- Huiliang Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan 835800, China
| | - Yanfeng Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China;
| | - Lingwei Zhang
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Life Sciences, Xinjiang Agricultural University, Urümqi 830052, China; (L.Z.); (L.Z.)
| | - Jerry M. Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (J.M.B.); (C.C.B.)
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (J.M.B.); (C.C.B.)
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Lan Zhang
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Life Sciences, Xinjiang Agricultural University, Urümqi 830052, China; (L.Z.); (L.Z.)
| | - Yan Liu
- School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China;
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Correspondence:
| |
Collapse
|
22
|
Soares M, Campos C, Carneiro P, Barroso H, Marins R, Teixeira C, Menezes M, Pinheiro L, Viana M, Feitosa C, Sánchez-Botero J, Bezerra L, Rocha-Barreira C, Matthews-Cascon H, Matos F, Gorayeb A, Cavalcante M, Moro M, Rossi S, Belmonte G, Melo V, Rosado A, Ramires G, Tavares T, Garcia T. Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
23
|
Meeran K, Ingrisch J, Reinthaler D, Canarini A, Müller L, Pötsch EM, Richter A, Wanek W, Bahn M. Warming and elevated CO 2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. GLOBAL CHANGE BIOLOGY 2021; 27:3230-3243. [PMID: 33811716 DOI: 10.1111/gcb.15628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.
Collapse
Affiliation(s)
| | | | - David Reinthaler
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lena Müller
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Erich M Pötsch
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Ecosystem-Dependent Responses of Vegetation Coverage on the Tibetan Plateau to Climate Factors and Their Lag Periods. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10060394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spatiotemporal variation characteristics of the Normalized Difference Vegetation Index (NDVI) and its climate response patterns are of significance in deepening our understanding of regional vegetation and climate change. The response of vegetation to climate factors varies spatially and may have lag periods. In this paper, we studied the spatiotemporal responses of vegetation to climatic factors on an ecosystem-dependent scale using GIMMS NDVI3g data and climatic parameters. Pure pixels with a single vegetation type were firstly extracted to reduce the influence of mixed vegetation types. Then, a lag correlation analysis was used to explore the lag effects of climatic parameters affecting NDVI. Finally, the stepwise regression method was adopted to calculate the regression equation for NDVI and meteorological data with the consideration of effect lag times. The results show that precipitation has significant lag effects on vegetation. Temperature is the main climatic factor that affects most vegetation types at the start of growing season. At the end of growing season, the temperate desert, temperate steppe, and temperate desert steppe are greatly affected by precipitation. Moreover, the alpine steppe, alpine desert, alpine meadow, and alpine sparse vegetation are greatly affected by temperature. The needleleaf forest, subalpine scrub, and broadleaf evergreen forest are sensitive to sunshine percentage during almost the whole growing season. These findings could contribute to a better understanding of the drivers and mechanisms of vegetation degradation on the Tibetan Plateau.
Collapse
|
25
|
Han F, Yan J, Ling HB. Variance of vegetation coverage and its sensitivity to climatic factors in the Irtysh River basin. PeerJ 2021; 9:e11334. [PMID: 33996282 PMCID: PMC8106391 DOI: 10.7717/peerj.11334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Climate change is an important factor driving vegetation changes in arid areas. Identifying the sensitivity of vegetation to climate variability is crucial for developing sustainable ecosystem management strategies. The Irtysh River is located in the westerly partition of China, and its vegetation cover is more sensitive to climate change. However, previous studies rarely studied the changes in the vegetation coverage of the Irtysh River and its sensitivity to climate factors from a spatiotemporal perspective. Methods We adopted a vegetation sensitivity index based on remote sensing datasets of high temporal resolution to study the sensitivity of vegetation to climatic factors in the Irtysh River basin, then reveal the driving mechanism of vegetation cover change. Results The results show that 88.09% of vegetated pixels show an increasing trend in vegetation coverage, and the sensitivity of vegetation to climate change presents spatial heterogeneity. Sensitivity of vegetation increases with the increase of coverage. Temperate steppe in the northern mountain and herbaceous swamp and broadleaf forest in the river valley, where the normalized difference vegetation index is the highest, show the strongest sensitivity, while the desert steppe in the northern plain, where the NDVI is the lowest, shows the strongest memory effect (or the strongest resilience). Relatively, the northern part of this area is more affected by a combination of precipitation and temperature, while the southern plains dominated by desert steppe are more sensitive to precipitation. The central river valley dominated by herbaceous swamp is more sensitive to temperature-vegetation dryness index. This study underscores that the sensitivity of vegetation cover to climate change is spatially differentiated at the regional scale.
Collapse
Affiliation(s)
- Feifei Han
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, Xinjiang, China.,College of Water and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, China
| | - Junjie Yan
- Institute of Resources and Ecology, Yili Normal University, Yining, Xinjiang, China
| | - Hong-Bo Ling
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi, Xinjiang, China
| |
Collapse
|
26
|
Association between irrigation thresholds and promotion of soil organic carbon decomposition in sandy soil. Sci Rep 2021; 11:6733. [PMID: 33762664 PMCID: PMC7990959 DOI: 10.1038/s41598-021-86106-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
Soil organic carbon (SOC) has a significant effect on the carbon cycle, playing a vital role in environmental services and crop production. Increasing SOC stock is identified as an effective way to improve carbon dioxide sequestration, soil health, and plant productivity. Knowing soil water is one of the primary SOC decomposition driver, periods in the crops growth stages with increased water movement might influence the SOC dynamics. Here, we evaluate the temporal effect of four precision irrigation thresholds (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-15$$\end{document}-15, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-30$$\end{document}-30, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-45$$\end{document}-45, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-60$$\end{document}-60 kPa) in potato crop on SOC dynamics using the Partial Least Square algorithm and the Tea Bag Index in a sandy soil under potato production. The difference of SOC decomposition rate between the precision irrigation thresholds is developed in the second quarter of the growing season, between 38 and 53 days after planting. This critical period occurred in a stage of strong vegetative growth and rapid irrigation cycles. The precision irrigation threshold affected the decomposition rate of SOC. A faster decomposition of labile organic carbon was promoted by water excess (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-15$$\end{document}-15 kPa). The dryer (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-30$$\end{document}-30, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-45$$\end{document}-45, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-60$$\end{document}-60 kPa) precision irrigation thresholds did not show any differences. The advancement of this knowledge may promote soil health conservation and carbon sequestration in agricultural soil.
Collapse
|
27
|
Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community. Sci Rep 2021; 11:3099. [PMID: 33542350 PMCID: PMC7862631 DOI: 10.1038/s41598-021-82571-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
Population persistence is strongly determined by climatic variability. Changes in the patterns of climatic events linked to global warming may alter population dynamics, but their effects may be strongly modulated by biotic interactions. Plant populations interact with each other in such a way that responses to climate of a single population may impact the dynamics of the whole community. In this study, we assess how climate variability affects persistence and coexistence of two dominant plant species in a semiarid shrub community on gypsum soils. We use 9 years of demographic data to parameterize demographic models and to simulate population dynamics under different climatic and ecological scenarios. We observe that populations of both coexisting species may respond to common climatic fluctuations both similarly and in idiosyncratic ways, depending on the yearly combination of climatic factors. Biotic interactions (both within and among species) modulate some of their vital rates, but their effects on population dynamics highly depend on climatic fluctuations. Our results indicate that increased levels of climatic variability may alter interspecific relationships. These alterations might potentially affect species coexistence, disrupting competitive hierarchies and ultimately leading to abrupt changes in community composition.
Collapse
|
28
|
Jovanne Rivera-Rivera M, Cuevas E. First Insights into the Resilience of the Soil Microbiome of a Tropical Dry Forest in Puerto Rico. Microorganisms 2020. [DOI: 10.5772/intechopen.90395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
29
|
Jiang P, Wang H, Meinzer FC, Kou L, Dai X, Fu X. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. THE NEW PHYTOLOGIST 2020; 225:222-233. [PMID: 31247133 DOI: 10.1111/nph.16027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| |
Collapse
|
30
|
Pellegrini AF, Jackson RB. The long and short of it: A review of the timescales of how fire affects soils using the pulse-press framework. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Mapping Periodic Patterns of Global Vegetation Based on Spectral Analysis of NDVI Time Series. REMOTE SENSING 2019. [DOI: 10.3390/rs11212497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vegetation seasonality assessment through remote sensing data is crucial to understand ecosystem responses to climatic variations and human activities at large-scales. Whereas the study of the timing of phenological events showed significant advances, their recurrence patterns at different periodicities has not been widely study, especially at global scale. In this work, we describe vegetation oscillations by a novel quantitative approach based on the spectral analysis of Normalized Difference Vegetation Index (NDVI) time series. A new set of global periodicity indicators permitted to identify different seasonal patterns regarding the intra-annual cycles (the number, amplitude, and stability) and to evaluate the existence of pluri-annual cycles, even in those regions with noisy or low NDVI. Most of vegetated land surface (93.18%) showed one intra-annual cycle whereas double and triple cycles were found in 5.58% of the land surface, mainly in tropical and arid regions along with agricultural areas. In only 1.24% of the pixels, the seasonality was not statistically significant. The highest values of amplitude and stability were found at high latitudes in the northern hemisphere whereas lowest values corresponded to tropical and arid regions, with the latter showing more pluri-annual cycles. The indicator maps compiled in this work provide highly relevant and practical information to advance in assessing global vegetation dynamics in the context of global change.
Collapse
|
32
|
The response of root traits to precipitation change of herbaceous species in temperate steppes. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Bai J, Shi H, Yu Q, Xie Z, Li L, Luo G, Jin N, Li J. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:862-871. [PMID: 31096416 DOI: 10.1016/j.scitotenv.2018.12.418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Ecosystems in arid and semi-arid regions are vulnerable to climatic and anthropogenic disturbances. However, our understanding of vegetation stability (including resistance and resilience, which are the abilities of ecosystems to resist perturbations and return to pre-disturbance structure or function, respectively) in response to environmental changes in dryland ecosystems remains insufficient, particularly in the absence of large-scale observations of water availability. Here we introduced GRACE monthly total water storage anomaly (TWSA) data into an autoregressive model with remote sensed EVI, air temperature and precipitation to investigate the short-term vegetation stability and its influencing factors in Central Asia (CA) during 2003-2015. The results showed that the grid-level vegetation resilience in CA increased logarithmically as mean annual precipitation (R2 = 0.33, P < 0.05) but decreased linearly with increasing mean annual temperature (R2 = 0.41, P < 0.05). Vegetation resilience was not correlated with TWSA, due to the decoupling of TWSA with precipitation both spatially and temporally in the majority of CA. At the biome level, vegetation resilience also increased as a logarithmical function of aridity index (R2 = 0.80, P < 0.05). Vegetation resistance to TWSA showed minor difference across biomes, while vegetation resistance to precipitation functioned as a parabolic curve along the aridity gradient (R2 = 0.59, P < 0.05). Our results suggest that accounting for the effects of total water column instead of precipitation only is critical in understanding vegetation-water relationships in drylands. The steep decrease in vegetation resilience in areas with high temperature and low water availability implies a high risk of collapse for these water-limited ecosystems if there are severe droughts. Furthermore, reduction in total water storage, induced by, e.g., large-scale extraction of surface runoff or shallow-layer groundwater for irrigation, can result in negative influences to natural biomes in dryland regions.
Collapse
Affiliation(s)
- Jie Bai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hao Shi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China.
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; School of Life Sciences, University of Technology Sydney, Sydney 2000, Australia; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zunyi Xie
- Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Longhui Li
- Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing 210023, China
| | - Geping Luo
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ning Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China
| | - Jun Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda. CLIMATE 2019. [DOI: 10.3390/cli7030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term trend analysis at local scale for rainfall and temperature is critical for detecting climate change patterns. This study analysed historical (1980–2009), near future (2010–2039), mid- (1940–2069) and end-century (2070–2099) rainfall and temperature over Karamoja sub-region. The Modern Era-Retrospective Analysis for Research and Applications (MERRA) daily climate data provided by the Agricultural Model Inter-comparison and Improvement Project (AgMIP) was used. The AgMIP delta method analysis protocol was used for an ensemble of 20 models under two representative concentration pathways (RCPs 4.5 and 8.5). Historical mean rainfall was 920.1 ± 118.9 mm and minimum, maximum and mean temperature were 16.8 ± 0.5 °C, 30.6 ± 0.4 °C and 32.0 ± 0.7 °C, respectively. Minimum temperature over the historical period significantly rose between 2000 and 2008. Near future rainfall varied by scenario with 1012.9 ± 146.3 mm and 997.5 ± 144.7 mm for RCP4.5 and RCP8.5 respectively; with a sharp rise predicted in 2017. In the mid-century, mean annual rainfall will be 1084.7 ± 137.4 mm and 1205.5 ± 164.9 mm under RCP4.5 and RCP8.5 respectively. The districts of Kaabong and Kotido are projected to experience low rainfall total under RCP4.5 (mid-century) and RCP8.5 (end-century). The minimum temperature is projected to increase by 1.8 °C (RCP4.5) and 2.1 °C (RCP8.5) in mid-century, and by 2.2 °C (RCP4.5) and 4.0 °C (RCP8.5) in end-century.
Collapse
|
35
|
Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China. WATER 2019. [DOI: 10.3390/w11020198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neither single nor discontinuous hydrological observation data can truly reflect periodic changes in soil moisture under natural conditions or interrelationships between various water sources. Therefore, in this study, precipitation pulse characteristics and variations in the soil water content (SWC) and actual evapotranspiration (ETa) in relation to pulses are explored through a field multi-water continuous observation system set in desert steppe in Inner Mongolia, China. A comparison between precipitation events in the growing seasons of 2016 and 2017 shows that precipitation events that are greater than 10 mm are the main cause of dramatic interannual precipitation variations in this region. A single small precipitation event has a limited impact on SWC and provides no obvious increase in the SWC within the top 10 cm soil layer. The precipitation interval ratio (P/I) is suitable for comparing water stresses of different drying-wetting cycles, and correlations between soil layers are found to be closer in humid years than in dry years. In this study, three modes of interpulse ETa in the desert steppe are discussed: a stable ETa mode under a water-sufficient condition, an attenuation ETa mode, and a stable ETa mode under extreme drought conditions.
Collapse
|
36
|
Feldman AF, Short Gianotti DJ, Konings AG, McColl KA, Akbar R, Salvucci GD, Entekhabi D. Moisture pulse-reserve in the soil-plant continuum observed across biomes. NATURE PLANTS 2018; 4:1026-1033. [PMID: 30518832 DOI: 10.1038/s41477-018-0304-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The degree to which individual pulses of available water drive plant activity across diverse biomes and climates is not well understood. It has previously only been investigated in a few dryland locations. Here, plant water uptake following pulses of surface soil moisture, an indicator for the pulse-reserve hypothesis, is investigated across South America, Africa and Australia with satellite-based estimates of surface soil and canopy water content. Our findings show that this behaviour is widespread: occurring over half of the vegetated landscapes. We estimate spatially varying soil moisture thresholds at which plant water uptake ceases, noting dependence on soil texture and proximity to the wilting point. The soil type and biome-dependent soil moisture threshold and the plant soil water uptake patterns at the scale of Earth system models allow a unique opportunity to test and improve model parameterization of vegetation function under water limitation.
Collapse
Affiliation(s)
- Andrew F Feldman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Daniel J Short Gianotti
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Kaighin A McColl
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ruzbeh Akbar
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guido D Salvucci
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Dara Entekhabi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
37
|
Arce MI, von Schiller D, Bengtsson MM, Hinze C, Jung H, Alves RJE, Urich T, Singer G. Drying and Rainfall Shape the Structure and Functioning of Nitrifying Microbial Communities in Riverbed Sediments. Front Microbiol 2018; 9:2794. [PMID: 30519221 PMCID: PMC6250940 DOI: 10.3389/fmicb.2018.02794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Non-flow periods in fluvial ecosystems are a global phenomenon. Streambed drying and rewetting by sporadic rainfalls could drive considerable changes in the microbial communities that govern stream nitrogen (N) availability at different temporal and spatial scales. We performed a microcosm-based experiment to investigate how dry period duration (DPD) (0, 3, 6, and 9 weeks) and magnitude of sporadic rewetting by rainfall (0, 4, and 21 mm applied at end of dry period) affected stocks of N in riverbed sediments, ammonia-oxidizing bacteria (AOB) and archaea (AOA) and rates of ammonia oxidation (AO), and emissions of nitrous oxide (N2O) to the atmosphere. While ammonium (NH4 +) pool size decreased, nitrate (NO3 -) pool size increased in sediments with progressive drying. Concomitantly, the relative and absolute abundance of AOB and, especially, AOA (assessed by 16S rRNA gene sequencing and quantitative PCR of ammonia monooxygenase genes) increased, despite an apparent decrease of AO rates with drying. An increase of N2O emissions occurred at early drying before substantially dropping until the end of the experiment. Strong rainfall of 21 mm increased AO rates and NH4 + in sediments, whereas modest rainfall of 4 mm triggered a notable increase of N2O fluxes. Interestingly, such responses were detected only after 6 and 9 weeks of drying. Our results demonstrate that progressive drying drives considerable changes in in-stream N cycling and the associated nitrifying microbial communities, and that sporadic rainfall can modulate these effects. Our findings are particularly relevant for N processing and transport in rivers with alternating dry and wet phases - a hydrological scenario expected to become more important in the future.
Collapse
Affiliation(s)
- Maria Isabel Arce
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Daniel von Schiller
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Mia M. Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hoseung Jung
- Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt University of Berlin, Berlin, Germany
| | - Ricardo J. Eloy Alves
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gabriel Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
38
|
Duniway MC, Petrie MD, Peters DPC, Anderson JP, Crossland K, Herrick JE. Soil water dynamics at 15 locations distributed across a desert landscape: insights from a 27-yr dataset. Ecosphere 2018. [DOI: 10.1002/ecs2.2335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael C. Duniway
- Southwest Biological Science Center; US Geological Survey; Moab Utah 84532 USA
| | - Matthew D. Petrie
- Department of Plant and Environmental Sciences; New Mexico State University; Las Cruces New Mexico 88003 USA
- Jornada Basin LTER Program; New Mexico State University; Las Cruces New Mexico 88003 USA
| | - Debra P. C. Peters
- USDA-ARS Jornada Experimental Range; New Mexico State University; Las Cruces New Mexico 88003 USA
| | - John P. Anderson
- Jornada Basin LTER Program; New Mexico State University; Las Cruces New Mexico 88003 USA
- Jornada Experimental Range Department; New Mexico State University; Las Cruces New Mexico 88003 USA
| | - Keith Crossland
- Natural Resources Conservation Service; Richfield Utah 84701 USA
| | - Jeffrey E. Herrick
- USDA-ARS Jornada Experimental Range; New Mexico State University; Las Cruces New Mexico 88003 USA
| |
Collapse
|
39
|
Munson SM, Reed SC, Peñuelas J, McDowell NG, Sala OE. Ecosystem thresholds, tipping points, and critical transitions. THE NEW PHYTOLOGIST 2018; 218:1315-1317. [PMID: 29738091 DOI: 10.1111/nph.15145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Seth M Munson
- US Geological Survey, Southwest Biological Science Center, 2255 N Gemini Dr., Flagstaff, AZ, 86001, USA
| | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, 2290 SW Resource Blvd, Moab, UT, 84532, USA
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Catalonia, E-08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, E-08193, Spain
| | | | - Osvaldo E Sala
- Global Drylands Center, School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
40
|
Germination heterochrony in annual plants of Salsola L.: an effective survival strategy in changing environments. Sci Rep 2018; 8:6576. [PMID: 29700346 PMCID: PMC5920052 DOI: 10.1038/s41598-018-23319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
Germination heterochrony refers to germination of seeds dispersed in a single growing season, which is different from delayed germination. We studied two year’s demographic characteristics, characteristics of fruit heteromorphism, the relationship between fruit heteromorphism and germination heterochrony, effects of moisture and temperature on germination characteristics, as well as seed longevity of four annual Salsola L. species to analyze the adaptive significance and causes of germination heterochrony. We found that the number of individuals of all populations changed drastically in one year. Approximately 41.6–100% of seedlings germinated in spring died. The number of fruit types varied with interspecies and intraspecies. Despite the wide range of germination temperature of different fruit types (0–35 °C), the germination percentage at 0–15 °C was the highest. When the soil moisture content was 20%, the germination percentage was the highest, reaching 50% within the shortest time. The contrary was the case with the decreasing of soil moisture. The seed longevity of the four species was one year. Fruit heteromorphism had no direct relationship to germination heterochrony. Germination heterochrony was caused by precipitation characteristics and short seed longevity of annual Salsola L., which was an effective survival strategy for plant to adapt to the changing environments in arid area.
Collapse
|
41
|
Schofield EJ, Rowntree JK, Paterson E, Brooker RW. Temporal Dynamism of Resource Capture: A Missing Factor in Ecology? Trends Ecol Evol 2018; 33:277-286. [PMID: 29429765 DOI: 10.1016/j.tree.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Emily J Schofield
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Manchester Metropolitan University, School of Science and the Environment, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Jennifer K Rowntree
- Manchester Metropolitan University, School of Science and the Environment, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Eric Paterson
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Rob W Brooker
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| |
Collapse
|
42
|
Plant Water Use Strategy in Response to Spatial and Temporal Variation in Precipitation Patterns in China: A Stable Isotope Analysis. FORESTS 2018. [DOI: 10.3390/f9030123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Cross AT, Lambers H. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:168-175. [PMID: 28689121 DOI: 10.1016/j.scitotenv.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the mining industry, and successful restoration on alkaline tailings likely depends upon careful management of substrate chemical conditions by targeted amendments.
Collapse
Affiliation(s)
- Adam T Cross
- Centre for Mine Site Restoration, Department of Environment and Agriculture, Curtin University, GPO Box U1987, Bentley, WA 6102, Perth, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Perth, Australia; Kings Park and Botanic Garden, Kings Park, WA 6005, Perth, Australia.
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Perth, Australia
| |
Collapse
|
44
|
Cui X, Yue P, Gong Y, Li K, Tan D, Goulding K, Liu X. Impacts of water and nitrogen addition on nitrogen recovery in Haloxylon ammodendron dominated desert ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1280-1288. [PMID: 28605846 DOI: 10.1016/j.scitotenv.2017.05.202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Desert ecosystems are likely to change in response to global climate change and nitrogen (N) deposition. The effects of increased precipitation and N deposition on plant growth and the N cycle largely depend on N allocation and N recovery efficiency in the plant-soil ecosystem, but there is limited research on this in desert ecosystems. Here we report results using double-labeled 15NH415NO3 (30 and 60kgNha-1yr-1) as a tracer under ambient (no additional water addition) and enhanced precipitation (60mm water addition) in a Haloxylon ammodendron dominated ecosystem in the Gurbantunggut Desert of Northwest China. Herbaceous plants were a significantly larger sink for added 15N than the H. ammodendron trees, and N retention varied with water and N addition, relative to growing season precipitation. The retention of added 15N varied within the components of H. ammodendron, with the stems retaining most, followed by the assimilation branches. Soil was the dominant sink for added 15N, in which the topsoil and subsoil respond differently to water and N addition over the two-year period. Nitrogen relative recovery percentage in the whole ecosystem ranged from 43% to 61%, lower than average recovery rate in temperate forests; N tracer recovery percentage significantly increased with water addition but decreased with enhanced N deposition. Future N cycling in central Asian deserts will depend on changes in precipitation.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Key Laboratory of Plant-Soil Interactions of MOE, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ping Yue
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yanming Gong
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dunyan Tan
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Keith Goulding
- The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Xuejun Liu
- Key Laboratory of Plant-Soil Interactions of MOE, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Xiong P, Shu J, Zhang H, Jia Z, Song J, Palta JA, Xu B. Small rainfall pulses affected leaf photosynthesis rather than biomass production of dominant species in semiarid grassland community on Loess Plateau of China. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1229-1242. [PMID: 32480647 DOI: 10.1071/fp17040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/30/2017] [Indexed: 06/11/2023]
Abstract
In the semiarid region Loess Plateau of China, rainfall events, typically characterised as pulses, affect photosynthesis and plant community characteristics. The response of dominant species and grassland community to rainfall pulses was evaluated through a simulation experiment with five pulse sizes (0, 5, 10, 20 and 30mm) in the semiarid Loess Plateau of China in June and August of 2013. The study was conducted in a natural grassland community dominated by Bothrichloa ischaemum (L.)Keng and Lespedeza davurica (Lax.) Schindl. In June, the leaf photosynthetic rate (Pn), transpiration rate, stomatal conductance, intercellular CO2 concentration of both species and soil water content increased rapidly after rainfall pulses. B. ischaemum was more sensitive to the pulses and responded significantly to 5mm rainfall, whereas L. davurica responded significantly only to rainfall events greater than 5mm. The magnitude and duration of the photosynthetic responses of the two species to rainfall pulse gradually increased with rainfall sizes. The maximum Pn of B. ischaemum appeared on the third day under 30mm rainfall, whereas for L. davurica it appeared on the second day under 20mm rainfall. Soil water storage (0-50cm) was significantly affected under 10, 20 and 30mm rainfall. Only large pulses (20, 30mm) increased community biomass production by 21.3 and 27.6% respectively. In August, the effect of rainfall on the maximum Pn and community characteristics was generally not significant. Rainfall pulses affected leaf photosynthesis because of a complex interplay between rainfall size, species and season, but might not induce a positive community-level feedback under changing rainfall patterns.
Collapse
Affiliation(s)
- Peifeng Xiong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiali Shu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - He Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhao Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinxi Song
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jairo A Palta
- The University of Western Australia Institute of Agriculture and School of Agriculture and Environment, LB 5005 Perth, WA 6001, Australia
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
46
|
Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 2017; 185:437-452. [DOI: 10.1007/s00442-017-3958-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
47
|
Mares R, Doutrelant C, Paquet M, Spottiswoode CN, Covas R. Breeding decisions and output are correlated with both temperature and rainfall in an arid-region passerine, the sociable weaver. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170835. [PMID: 28989782 PMCID: PMC5627122 DOI: 10.1098/rsos.170835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/09/2017] [Indexed: 05/23/2023]
Abstract
Animal reproductive cycles are commonly triggered by environmental cues of favourable breeding conditions. In arid environments, rainfall may be the most conspicuous cue, but the effects on reproduction of the high inter- and intra-annual variation in temperature remain poorly understood, despite being relevant to the current context of global warming. Here, we conducted a multiyear examination of the relationships between a suite of measures of temperature and rainfall, and the onset and length of the breeding season, the probability of breeding and reproductive output in an arid-region passerine, the sociable weaver (Philetairus socius). As expected, reproductive output increased with rainfall, yet specific relationships were conditional on the timing of rainfall: clutch production was correlated with rainfall throughout the season, whereas fledgling production was correlated with early summer rainfall. Moreover, we reveal novel correlations between aspects of breeding and temperature, indicative of earlier laying dates after warmer springs, and longer breeding seasons during cooler summers. These results have implications for understanding population trends under current climate change scenarios and call for more studies on the role of temperature in reproduction beyond those conducted on temperate-region species.
Collapse
Affiliation(s)
- Rafael Mares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- INDICASAT-AIP, Ciudad del Saber, Panama City 0843-01103, Panama
| | - Claire Doutrelant
- CEFE-CNRS, 1919 Route de Mende, 34293 Montpellier, France
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Matthieu Paquet
- CEFE-CNRS, 1919 Route de Mende, 34293 Montpellier, France
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Claire N. Spottiswoode
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Rita Covas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
48
|
Dal Bello M, Rindi L, Benedetti-Cecchi L. Legacy effects and memory loss: how contingencies moderate the response of rocky intertidal biofilms to present and past extreme events. GLOBAL CHANGE BIOLOGY 2017; 23:3259-3268. [PMID: 28181716 DOI: 10.1111/gcb.13656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Understanding how historical processes modulate the response of ecosystems to perturbations is becoming increasingly important. In contrast to the growing interest in projecting biodiversity and ecosystem functioning under future climate scenarios, how legacy effects originating from historical conditions drive change in ecosystems remains largely unexplored. Using experiments in combination with stochastic antecedent modelling, we evaluated how extreme warming, sediment deposition and grazing events modulated the ecological memory of rocky intertidal epilithic microphytobenthos (EMPB). We found memory effects in the non-clustered scenario of disturbance (60 days apart), where EMPB biomass fluctuated in time, but not under clustered disturbances (15 days apart), where EMPB biomass was consistently low. A massive grazing event impacted on EMPB biomass in a second run of the experiment, also muting ecological memory. Our results provide empirical support to the theoretical expectation that stochastic fluctuations promote ecological memory, but also show that contingencies may lead to memory loss.
Collapse
Affiliation(s)
- Martina Dal Bello
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | - Luca Rindi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| | | |
Collapse
|
49
|
Ryan EM, Ogle K, Peltier D, Walker AP, De Kauwe MG, Medlyn BE, Williams DG, Parton W, Asao S, Guenet B, Harper AB, Lu X, Luus KA, Zaehle S, Shu S, Werner C, Xia J, Pendall E. Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. GLOBAL CHANGE BIOLOGY 2017; 23:3092-3106. [PMID: 27992952 DOI: 10.1111/gcb.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.
Collapse
Affiliation(s)
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Drew Peltier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Martin G De Kauwe
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - William Parton
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Shinichi Asao
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Bertrand Guenet
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Anna B Harper
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Xingjie Lu
- CSIRO Ocean and Atmosphere, PBM #1, Aspendale, Vic., 3195, Australia
| | - Kristina A Luus
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Shijie Shu
- Department of Atmospheric Sciences, University of Illinois, 105 South Gregory Street, Urbana, IL, 61801-3070, USA
| | - Christian Werner
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Jianyang Xia
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Research Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, 200062, China
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Botany, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
50
|
Zhang B, Zhu J, Pan Q, Liu Y, Chen S, Chen D, Yan Y, Dou S, Han X. Grassland species respond differently to altered precipitation amount and pattern. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2017; 137:166-176. [PMID: 0 DOI: 10.1016/j.envexpbot.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|