1
|
Eckberg JN, Rodríguez‐Cabal MA, Barrios‐García MN, Sanders NJ. Plant Functional Traits, but Not Community Composition, Are Affected by Summer Precipitation and Herbivory in an Old-Field Ecosystem. Ecol Evol 2025; 15:e71399. [PMID: 40342720 PMCID: PMC12058645 DOI: 10.1002/ece3.71399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Both precipitation and herbivores can independently control plant community composition and ecosystem function. However, few studies have experimentally examined the potential interactive effects of altered precipitation and herbivores on plant communities and plant traits. Here, we manipulated summer precipitation and insect presence in an old-field ecosystem and quantified their interactive effects on plant community structure and functional traits. Overall, the effect of an insect herbivore on the plant community was contingent on the precipitation treatment. There were no experimental effects on total plant biomass or plant species richness, but grass biomass was higher in the absence of insect herbivores only in reduced summer precipitation plots. Furthermore, plant functional diversity and the community-averaged trends of several plant functional traits related to resource use and herbivore resistance varied systematically with reduced precipitation and insect presence. We demonstrate that the effect of reduced precipitation on plant biomass, functional diversity, and the community-averaged trends of plant functional traits can be mediated by the presence of insects. Our findings further suggest that the functional traits of the common plant species in the community are the most affected by the combined manipulation of altered summer precipitation and insect presence.
Collapse
Affiliation(s)
- Julia N. Eckberg
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Mariano A. Rodríguez‐Cabal
- Grupo de Ecología de Invasiones, INIBIOMAUniversidad Nacional del Comahue, CONICETSan Carlos de BarilocheRío NegroArgentina
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - M. Noelia Barrios‐García
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
- CENAC‐APN, CONICETUniversidad Nacional del Comahue (CRUB)San Carlos de BarilocheArgentina
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
3
|
Griffin-Nolan RJ, Felton AJ, Slette IJ, Smith MD, Knapp AK. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia 2023; 201:311-322. [PMID: 36640197 DOI: 10.1007/s00442-023-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment. We expected that traits of species from drier regions would be more responsive to reduced water availability and that this would make these species more resistant to low soil moisture than species from wetter regions. All four species grew taller, produced more biomass, and increased total root length in wetter treatments. Each species reduced its leaf turgor loss point (TLP) in drier conditions, but only two species (one xeric, one mesic) maintained leaf water potential above TLP. We identified a suite of traits that clearly distinguished species from one another, but, surprisingly, these traits were relatively unresponsive to reduced soil moisture. Specifically, more xeric species produced thinner roots with higher specific root length and had a lower root mass fraction. This suggest that root traits are critical for distinguishing species from one another but might not respond strongly to changing water availability, though this warrants further investigation in the field. Overall, we found that NPP of these dominant grass species responded similarly to varying levels of soil moisture despite differences in species morphology, physiology, and habitat of origin.
Collapse
Affiliation(s)
- Robert J Griffin-Nolan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA. .,Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Andrew J Felton
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ingrid J Slette
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Long Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
4
|
Asefa M, Worthy SJ, Cao M, Song X, Lozano YM, Yang J. Above- and below-ground plant traits are not consistent in response to drought and competition treatments. ANNALS OF BOTANY 2022; 130:939-950. [PMID: 36001733 PMCID: PMC9851322 DOI: 10.1093/aob/mcac108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Our understanding of plant responses to biotic and abiotic drivers is largely based on above-ground plant traits, with little focus on below-ground traits despite their key role in water and nutrient uptake. Here, we aimed to understand the extent to which above- and below-ground traits are co-ordinated, and how these traits respond to soil moisture gradients and plant intraspecific competition. METHODS We chose seedlings of five tropical tree species and grew them in a greenhouse for 16 weeks under a soil moisture gradient [low (drought), medium and high (well-watered) moisture levels] with and without intraspecific competition. At harvest, we measured nine above- and five below-ground traits of all seedlings based on standard protocols. KEY RESULTS In response to the soil moisture gradient, above-ground traits are found to be consistent with the leaf economics spectrum, whereas below-ground traits are inconsistent with the root economics spectrum. We found high specific leaf area and total leaf area in well-watered conditions, while high leaf dry matter content, leaf thickness and stem dry matter content were observed in drought conditions. However, below-ground traits showed contrasting patterns, with high specific root length but low root branching index in the low water treatment. The correlations between above- and below-ground traits across the soil moisture gradient were variable, i.e. specific leaf area was positively correlated with specific root length, while it was negatively correlated with root average diameter across moisture levels. However, leaf dry matter content was unexpectedly positively correlated with both specific root length and root branching index. Intraspecific competition has influenced both above- and below-ground traits, but interacted with soil moisture to affect only below-ground traits. Consistent with functional equilibrium theory, more biomass was allocated to roots under drought conditions, and to leaves under sufficient soil moisture conditions. CONCLUSIONS Our results indicate that the response of below-ground traits to plant intraspecific competition and soil moisture conditions may not be inferred using above-ground traits, suggesting that multiple resource use axes are needed to understand plant ecological strategies. Lack of consistent leaf-root trait correlations across the soil moisture gradient highlight the multidimensionality of plant trait relationships which needs more exploration.
Collapse
Affiliation(s)
- Mengesha Asefa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Yudi M Lozano
- Freie Universität Berlin, Institute of Biology, Plant Ecology, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| |
Collapse
|
5
|
Kleppel GS, Frank DA. Structure and functioning of wild and agricultural grazing ecosystems: A comparative review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.945514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For more than 10 million years, large, herd forming ruminants have thrived as parts of sustainable grazing ecosystems. Conversely, since their domestication 8,000–11,000 years ago, cattle, sheep, and goats have often exhibited dysfunctional relationships with the ecosystems they inhabit. A considerable literature, developed over decades, documents the negative impacts of animal agriculture and associated activities (e.g., feed production) on grassland ecosystems. Coincident with the accumulating data documenting the impacts of “conventional” animal agriculture, has been a growing interest in restoring functionality to agricultural grazing ecosystems. These “regenerative” protocols often seek to mimic the structure and functions of wild grazing ecosystems. The objectives of this paper were two-fold: First to review the literature describing the structure and some key functional attributes of wild and agricultural grazing ecosystems; and second, to examine these attributes in conventionally and regeneratively managed grazing ecosystems and, assuming the wild condition to be the standard for sustainable grazer-environment relationships, to ascertain whether similar relationships exist in conventionally or regeneratively managed agricultural grazing ecosystems. Not unexpectedly our review revealed the complexity of both wild and agricultural grazing ecosystems and the interconnectedness of biological, chemical, and physical factors and processes within these systems. Grazers may increase or decrease system functionality, depending upon environmental conditions (e.g., moisture levels). Our review revealed that biodiversity, nitrogen cycling, and carbon storage in regenerative grazing systems more closely resemble wild grazing ecosystems than do conventional grazing systems. We also found multiple points of disagreement in the literature, particularly with respect to aboveground primary production (ANPP). Finally, we acknowledge that, while much has been accomplished in understanding grazing ecosystems, much remains to be done. In particular, some of the variability in the results of studies, especially of meta-analyses, might be reduced if datasets included greater detail on grazing protocols, and a common definition of the term, “grazing intensity.”
Collapse
|
6
|
Schoenecker KA, Zeigenfuss LC, Augustine DJ. Can grazing by elk and bison stimulate herbaceous plant productivity in semiarid ecosystems? Ecosphere 2022. [DOI: 10.1002/ecs2.4025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kathryn A. Schoenecker
- Fort Collins Science Center U.S. Geological Survey Fort Collins Colorado USA
- Ecosystem Science and Sustainability Colorado State University Fort Collins Colorado USA
| | | | - David J. Augustine
- USDA–Agricultural Research Service Rangeland Resources and Systems Research Unit Fort Collins Colorado USA
| |
Collapse
|
7
|
Castillioni K, Patten MA, Souza L. Precipitation effects on grassland plant performance are lessened by hay harvest. Sci Rep 2022; 12:3282. [PMID: 35228587 PMCID: PMC8885915 DOI: 10.1038/s41598-022-06961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/24/2021] [Indexed: 11/09/2022] Open
Abstract
Climate and human management, such as hay harvest, shape grasslands. With both disturbances co-occurring, understanding how these ecosystems respond to these combined drivers may aid in projecting future changes in grasslands. We used an experimental precipitation gradient combined with mimicked acute hay harvest (clipping once a year) to examine (1) whether hay harvest influences precipitation effects on plant performance (cover and height) and (2) the role of inter-specific responses in influencing plant performance. We found that hay harvest reduced the strength of precipitation effects on plant performance through changes in bare-ground soil cover. Species performance were mainly influenced by change in abiotic factors, often responding negatively, as hay harvest increased bare-ground amount. Conversely, altered precipitation without hay harvest promoted plant species performance through abiotic factors change first, followed by biotic. Most species, including the dominant grass Schizachyrium scoparium, increased their performance with greater leaf area index (proxy for canopy structure). Our experiment demonstrates that plant performance responds directly to abiotic factors with hay harvest, but indirectly without hay harvest. Positive effects of increasing precipitation were likely due to microhabitat amelioration and resource acquisition, thus inclusion of hay harvest as a disturbance lessens positive impacts of biotic variables on species performance to climate change.
Collapse
|
8
|
Luo W, Griffin-Nolan RJ, Ma W, Liu B, Zuo X, Xu C, Yu Q, Luo Y, Mariotte P, Smith MD, Collins SL, Knapp AK, Wang Z, Han X. Plant traits and soil fertility mediate productivity losses under extreme drought in C 3 grasslands. Ecology 2021; 102:e03465. [PMID: 34236696 DOI: 10.1002/ecy.3465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022]
Abstract
Extreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C3 -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C3 grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability. Drought treatments differentially affected these two semiarid grasslands, with ANPP of the drier site reduced more than at the wetter site. Structural equation modeling revealed that community-weighted means for some traits modified relationships between soil moisture and ANPP, often due to intraspecific variation. Specifically, drought reduced community mean plant height at both sites, resulting in a reduction in ANPP beyond that attributable to reduced soil moisture alone. Higher community mean leaf carbon content enhanced the negative effects of drought on ANPP at the drier site, and ANPP-soil-moisture relationships were influenced by soil C:N ratio at the wetter site. Importantly, neither species richness nor functional dispersion were significantly correlated with ANPP at either site. Overall, as expected, soil moisture was a dominant, direct driver of ANPP response to drought, but differential sensitivity to drought in these two grasslands was also related to soil fertility and plant traits.
Collapse
Affiliation(s)
- Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Wang Ma
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bo Liu
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahuang Luo
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Pierre Mariotte
- Agroscope, Grazing systems, Route de Duillier 50, 1260, Nyon, Switzerland
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Li X, Zuo X, Yue P, Zhao X, Hu Y, Guo X, Guo A, Xu C, Yu Q. Drought of early time in growing season decreases community aboveground biomass, but increases belowground biomass in a desert steppe. BMC Ecol Evol 2021; 21:106. [PMID: 34074246 PMCID: PMC8170925 DOI: 10.1186/s12862-021-01842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Increasing drought induced by global climate changes is altering the structure and function of grassland ecosystems. However, there is a lack of understanding of how drought affects the trade-off of above- and belowground biomass in desert steppe. We conducted a four-year (2015-2018) drought experiment to examine the responses of community above-and belowground biomass (AGB and BGB) to manipulated drought and natural drought in the early period of growing season (from March to June) in a desert steppe. We compared the associations of drought with species diversity (species richness and density), community-weighted means (CWM) of five traits, and soil factors (soil Water, soil carbon content, and soil nitrogen content) for grass communities. Meanwhile, we used the structural equation modeling (SEM) to elucidate whether drought affects AGB and BGB by altering species diversity, functional traits, or soil factors. RESULTS We found that manipulated drought affected soil water content, but not on soil carbon and nitrogen content. Experimental drought reduced the species richness, and species modified the CWM of traits to cope with a natural drought of an early time in the growing season. We also found that the experimental and natural drought decreased AGB, while natural drought increased BGB. AGB was positively correlated with species richness, density, CWM of plant height, and soil water. BGB was negatively correlated with CWM of plant height, CWM of leaf dry matter content, and soil nitrogen content, while was positively correlated with CWM of specific leaf area, CWM of leaf nitrogen content, soil water, and soil carbon content. The SEM results indicated that the experimental and natural drought indirectly decreased AGB by reducing species richness and plant height, while natural drought and soil nitrogen content directly affected BGB. CONCLUSIONS These results suggest that species richness and functional traits can modulate the effects of drought on AGB, however natural drought and soil nitrogen determine BGB. Our findings demonstrate that the long-term observation and experiment are necessary to understand the underlying mechanism of the allocation and trade-off of community above-and belowground biomass.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Xueyong Zhao
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Ya Hu
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Xinxin Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Aixia Guo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000 China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008 China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008 China
| |
Collapse
|
10
|
Carroll CJW, Slette IJ, Griffin-Nolan RJ, Baur LE, Hoffman AM, Denton EM, Gray JE, Post AK, Johnston MK, Yu Q, Collins SL, Luo Y, Smith MD, Knapp AK. Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia 2021; 197:1017-1026. [PMID: 33416961 DOI: 10.1007/s00442-020-04793-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022]
Abstract
Drought, defined as a marked deficiency of precipitation relative to normal, occurs as periods of below-average precipitation or complete failure of precipitation inputs, and can be limited to a single season or prolonged over multiple years. Grasslands are typically quite sensitive to drought, but there can be substantial variability in the magnitude of loss of ecosystem function. We hypothesized that differences in how drought occurs may contribute to this variability. In four native Great Plains grasslands (three C4- and one C3-dominated) spanning a ~ 500-mm precipitation gradient, we imposed drought for four consecutive years by (1) reducing each rainfall event by 66% during the growing season (chronic drought) or (2) completely excluding rainfall during a shorter portion of the growing season (intense drought). The drought treatments were similar in magnitude but differed in the following characteristics: event number, event size and length of dry periods. We observed consistent drought-induced reductions (28-37%) in aboveground net primary production (ANPP) only in the C4-dominated grasslands. In general, intense drought reduced ANPP more than chronic drought, with little evidence that drought duration altered this pattern. Conversely, belowground net primary production (BNPP) was reduced by drought in all grasslands (32-64%), with BNPP reductions greater in intense vs. chronic drought treatments in the most mesic grassland. We conclude that grassland productivity responses to drought did not strongly differ between these two types of drought, but when differences existed, intense drought consistently reduced function more than chronic drought.
Collapse
Affiliation(s)
- Charles J W Carroll
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Ingrid J Slette
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - Lauren E Baur
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ava M Hoffman
- Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elsie M Denton
- United States Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, 97720, USA
| | - Jesse E Gray
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alison K Post
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Melissa K Johnston
- United States Department of Agriculture, Agricultural Research Service, Central Plains Experimental Range, Fort Collins, CO, 80526, USA
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
11
|
Franco ALC, Gherardi LA, Tomasel CM, Andriuzzi WS, Ankrom KE, Bach EM, Guan P, Sala OE, Wall DH. Root herbivory controls the effects of water availability on the partitioning between above‐ and below‐ground grass biomass. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Laureano A. Gherardi
- School of Life Sciences & Global Drylands Center Arizona State University Tempe AZ USA
| | | | - Walter S. Andriuzzi
- Department of Biology Colorado State University Fort Collins CO USA
- Nature Communications, Nature Research Berlin Germany
| | | | | | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration School of Environment Northeast Normal University Changchun China
| | - Osvaldo E. Sala
- School of Life Sciences School of Sustainability & Global Drylands Center Arizona State University Tempe AZ USA
| | - Diana H. Wall
- Department of Biology & School of Global Environmental Sustainability Colorado State University Fort Collins CO USA
| |
Collapse
|
12
|
Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc Natl Acad Sci U S A 2020; 117:22249-22255. [PMID: 32839346 DOI: 10.1073/pnas.1922030117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the 1930s Dust Bowl drought in the central United States, species with the C3 photosynthetic pathway expanded throughout C4-dominated grasslands. This widespread increase in C3 grasses during a decade of low rainfall and high temperatures is inconsistent with well-known traits of C3 vs. C4 pathways. Indeed, water use efficiency is generally lower, and photosynthesis is more sensitive to high temperatures in C3 than C4 species, consistent with the predominant distribution of C3 grasslands in cooler environments and at higher latitudes globally. We experimentally imposed extreme drought for 4 y in mixed C3/C4 grasslands in Kansas and Wyoming and, similar to Dust Bowl observations, also documented three- to fivefold increases in C3/C4 biomass ratios. To explain these paradoxical responses, we first analyzed long-term climate records to show that under nominal conditions in the central United States, C4 grasses dominate where precipitation and air temperature are strongly related (warmest months are wettest months). In contrast, C3 grasses flourish where precipitation inputs are less strongly coupled to warm temperatures. We then show that during extreme drought years, precipitation-temperature relationships weaken, and the proportion of precipitation falling during cooler months increases. This shift in precipitation seasonality provides a mechanism for C3 grasses to respond positively to multiyear drought, resolving the Dust Bowl paradox. Grasslands are globally important biomes and increasingly vulnerable to direct effects of climate extremes. Our findings highlight how extreme drought can indirectly alter precipitation seasonality and shift ecosystem phenology, affecting function in ways not predictable from key traits of C3 and C4 species.
Collapse
|
13
|
Plant growth and aboveground production respond differently to late-season deluges in a semi-arid grassland. Oecologia 2019; 191:673-683. [PMID: 31571040 DOI: 10.1007/s00442-019-04515-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Semi-arid ecosystems are strongly water-limited and typically quite responsive to changes in precipitation amount and event size. In the C4-dominated shortgrass steppe of the Central US, previous experiments suggest that large rain events more effectively stimulate plant growth and aboveground net primary production (ANPP) than an equal amount of precipitation from smaller events. Responses to naturally occurring large events have generally been consistent with experimental results, with the exception of large events occurring later in the growing season (e.g., August). These have been reported as less effective at increasing net C uptake, despite temperatures optimal for C4 plant growth. Since atmospheric warming is increasing the frequency of statistically extreme rain events (deluges) throughout the growing season, how late-season deluges affect semi-arid ecosystems remains to be resolved. We applied deluges in August of three sizes (1.0-2.5 times average August precipitation) to assess the potential for late-season deluges to stimulate plant growth and ANPP. These late-season deluges led to significant "green-up" of this grassland, with new leaf production, and an increase in flowering of the dominant grass species. Further, these responses increased as deluge size increased, suggesting that larger or multiple deluges may lead to even greater growth responses. However, despite strong plant-level responses, no increase in ANPP was measured. Our results confirm that aboveground plant growth in the C4-dominated shortgrass steppe does respond to late-season deluges; however, if there is an increase in plant biomass, net accumulation aboveground is minimal at this time of year.
Collapse
|
14
|
Okach DO, Ondier JO, Rambold G, Tenhunen J, Huwe B, Jung EY, Otieno DO. Interaction of livestock grazing and rainfall manipulation enhances herbaceous species diversity and aboveground biomass in a humid savanna. JOURNAL OF PLANT RESEARCH 2019; 132:345-358. [PMID: 30980217 DOI: 10.1007/s10265-019-01105-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Understanding of the interaction of livestock grazing and rainfall variability may aid in predicting the patterns of herbaceous species diversity and biomass production. We manipulated the amount of ambient rainfall received in grazed and ungrazed savanna in Lambwe Valley-Kenya. The combined influence of livestock grazing and rainfall on soil moisture, herbaceous species diversity, and aboveground biomass patterns was assessed. We used the number of species (S), Margalef's richness index (Dmg), Shannon index of diversity (H), and Pileou's index of evenness (J) to analyze the herbaceous community structure. S, Dmg, H and J were higher under grazing whereas volumetric soil water contents (VWC) and aboveground biomass (AGB) decreased with grazing. Decreasing (50%) or increasing (150%) the ambient rainfall by 50% lowered species richness and diversity. Seasonality in rainfall influenced the variation in VWC, S, Dmg, H, and AGB but not J (p = 0.43). Overall, Dmg declined with increasing VWC. However, the AGB and Dmg mediated the response of H and J to the changes in VWC. The highest H occurred at AGB range of 400-800 g m-2. We attribute the lower diversity in the ungrazed plots to the dominance (relative abundance > 70%) of Hyparrhenia fillipendulla (Hochst) Stapf. and Brachiaria decumbens Stapf. Grazing exclusion, which controls AGB, hindered the coexistence among species due to the competitive advantage in resource utilization by the more dominant species. Our findings highlight the implication of livestock grazing and rainfall variability in maintaining higher diversity and aboveground biomass production in the herbaceous layer community for sustainable ecosystem management.
Collapse
Affiliation(s)
- Daniel Osieko Okach
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Joseph O Ondier
- Department of Botany, Maseno University, Private Bag, Maseno, Kenya
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, 95447, Bayreuth, Germany
| | - John Tenhunen
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Bernd Huwe
- Department of Soil Physics, University of Bayreuth, 95447, Bayreuth, Germany
| | - Eun Young Jung
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dennis O Otieno
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, 40601-210, Kenya
| |
Collapse
|
15
|
Litter Decomposition in Yellowstone Grasslands: The Roles of Large Herbivores, Litter Quality, and Climate. Ecosystems 2018. [DOI: 10.1007/s10021-018-0310-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
|
17
|
Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill J, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Peñuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo Y. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. GLOBAL CHANGE BIOLOGY 2017; 23:4376-4385. [PMID: 28370946 DOI: 10.1111/gcb.13706] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/23/2017] [Indexed: 06/07/2023]
Abstract
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.
Collapse
Affiliation(s)
- Kevin R Wilcox
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zheng Shi
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Nathan P Lemoine
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Sally E Koerner
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - David L Hoover
- U.S. Department of Agriculture, Agriculture Research Service, Fort Collins, CO, USA
| | - Edward Bork
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kerry M Byrne
- Department of Environmental Science and Management, Humboldt State University, Arcata, CA, USA
| | - James Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Sarah Evans
- Department of Integrative Biology, Department of Microbiology and Molecular Genetics and Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anna K Gilgen
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Lifen Jiang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Alan K Knapp
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Daniel LeCain
- U.S. Department of Agriculture, Agriculture Research Service, Fort Collins, CO, USA
| | - Junyi Liang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Pablo Garcia-Palacios
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - William T Pockman
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Melinda D Smith
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Shanghua Sun
- College of Forestry, Northwest A & F University, Yangling, China
| | - Shannon R White
- Environment and Parks, Government of Alberta, Edmonton, AB, Canada
| | - Laura Yahdjian
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kai Zhu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, University of Texas, Arlington, TX, USA
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
18
|
Zhang J, Zuo X, Zhou X, Lv P, Lian J, Yue X. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:216. [PMID: 28411318 DOI: 10.1007/s10661-017-5947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Understanding the responses of vegetation characteristics and soil properties to grazing disturbance is useful for grassland ecosystem restoration and management in semiarid areas. Here, we examined the effects of long-term grazing on vegetation characteristics, soil properties, and their relationships across four grassland types (meadow, Stipa steppe, scattered tree grassland, and sandy grassland) in the Horqin grassland, northern China. Our results showed that grazing greatly decreased vegetation cover, aboveground plant biomass, and root biomass in all four grassland types. Plant cover and aboveground biomass of perennials were decreased by grazing in all four grasslands, whereas grazing increased the cover and biomass of shrubs in Stipa steppe and of annuals in scattered tree grassland. Grazing decreased soil carbon and nitrogen content in Stipa steppe and scattered tree grassland, whereas soil bulk density showed the opposite trend. Long-term grazing significantly decreased soil pH and electrical conductivity (EC) in annual-dominated sandy grassland. Soil moisture in fenced and grazed grasslands decreased in the following order of meadow, Stipa steppe, scattered tree grassland, and sandy grassland. Correlation analyses showed that aboveground plant biomass was significantly positively associated with the soil carbon and nitrogen content in grazed and fenced grasslands. Species richness was significantly positively correlated with soil bulk density, moisture, EC, and pH in fenced grasslands, but no relationship was detected in grazed grasslands. These results suggest that the soil carbon and nitrogen content significantly maintains ecosystem function in both fenced and grazed grasslands. However, grazing may eliminate the association of species richness with soil properties in semiarid grasslands.
Collapse
Affiliation(s)
- Jing Zhang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, CAS. 320 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, CAS. 320 Donggang West Road, Lanzhou, 730000, People's Republic of China.
| | - Xin Zhou
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, CAS. 320 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Peng Lv
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, CAS. 320 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Jie Lian
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Xiyuan Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, CAS. 320 Donggang West Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
19
|
Novotná K, Klem K, Holub P, Rapantová B, Urban O. Evaluation of drought and UV radiation impacts on above-ground biomass of mountain grassland by spectral reflectance and thermal imaging techniques. ACTA ACUST UNITED AC 2017. [DOI: 10.11118/beskyd201609010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Drought represents one of the major factors limiting productivity of managed and natural ecosystems. Under natural field conditions drought is often associated with other stress factors such as high temperature and UV radiation, which may result in enhancement or vice versa alleviation of drought impact. Remote sensing methods have a large potential to evaluate impacts of drought on plant production at regional scale. The main objective of this study was to analyse the potential of ground-based measurement of spectral reflectance and thermal imaging for monitoring the impacts of drought and UV radiation on above-ground biomass production of mountain grassland ecosystem. Experimental rain-out shelters were used to manipulate incident precipitation and UV radiation for 7 weeks (May–July). A canopy spectral reflectance, thermal images, and total above-ground biomass were determined at the end of drought and UV treatment. Results show that drought led to a significant reduction of above-ground biomass, particularly under ambient UV radiation. In contrary, UV had only negligible effect on biomass production. Canopy temperature as well as selected spectral reflectance indices showed significant response to drought stress and also significant relationships to above-ground biomass. However, the relationship between canopy temperature and above-ground biomass is modified by UV radiation. Best prediction of changes in biomass caused by drought stress was provided by vegetation index NDVI.
Collapse
|
20
|
Frank DA, Wallen RL, White PJ. Ungulate control of grassland production: grazing intensity and ungulate species composition in Yellowstone Park. Ecosphere 2016. [DOI: 10.1002/ecs2.1603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Douglas A. Frank
- Department of Biology Life Sciences Complex Syracuse University Syracuse New York 13244 USA
| | - Rick L. Wallen
- National Park Service P.O. Box 168 Yellowstone National Park Wyoming 82190 USA
| | - P. J. White
- National Park Service P.O. Box 168 Yellowstone National Park Wyoming 82190 USA
| |
Collapse
|
21
|
Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie. Oecologia 2016; 182:899-911. [DOI: 10.1007/s00442-016-3684-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
22
|
Monitoring Grassland Seasonal Carbon Dynamics, by Integrating MODIS NDVI, Proximal Optical Sampling, and Eddy Covariance Measurements. REMOTE SENSING 2016. [DOI: 10.3390/rs8030260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Tape KD, Lord R, Marshall HP, Ruess RW. Snow-mediated ptarmigan browsing and shrub expansion in arctic Alaska. ECOSCIENCE 2015. [DOI: 10.2980/17-2-3323] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Marion B, Bonis A, Bouzillé JB. How much does grazing-induced heterogeneity impact plant diversity in wet grasslands? ECOSCIENCE 2015. [DOI: 10.2980/17-3-3315] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Frank DA, Pontes AW, Maine EM, Fridley JD. Fine-scale belowground species associations in temperate grassland. Mol Ecol 2015; 24:3206-16. [PMID: 25951537 DOI: 10.1111/mec.13232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 12/01/2022]
Abstract
Evaluating how belowground processes contribute to plant community dynamics is hampered by limited information on the spatial structure of root communities at the scale that plants interact belowground. In this study, roots were mapped to the nearest one mm and molecularly identified by species on vertical (0-15 cm deep) surfaces of soil blocks excavated from dry and mesic grasslands in Yellowstone National Park (YNP) to examine the spatial relationships among species at the scale that roots interact. Our results indicated that average interspecific root - root distances for the majority of species were within a distance (3 mm) that roots have been shown to compete for resources. Most species placed their roots at random, although low root numbers for many species probably led to overestimating the occurrence of random patterns. According to theory, we expected that most of the remaining species would segregate their root systems to avoid competition. Instead we found that more species aggregated than segregated from others. Based on previous investigations, we hypothesize that species aggregate to increase uptake of water, nitrogen and/or phosphorus made available by neighbouring roots, or as a consequence of a reduction in the pathogenicity of soil biota growing in multispecies mixtures. Our results indicate that YNP grassland root communities are organized as closely interdigitating networks of species that potentially can support strong interactions among many species combinations. Future root research should address the prevalence and functional consequences of species aggregation across plant communities.
Collapse
Affiliation(s)
- Douglas A Frank
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Alyssa W Pontes
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Jason D Fridley
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
26
|
Holub P, Tůma I, Záhora J, Fiala K. Biomass Production of Different Grassland Communities under Artificially Modified Amount of Rainfall. POLISH JOURNAL OF ECOLOGY 2015. [DOI: 10.3161/15052249pje2015.63.3.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Brookshire ENJ, Weaver T. Long-term decline in grassland productivity driven by increasing dryness. Nat Commun 2015; 6:7148. [PMID: 25972300 PMCID: PMC4479003 DOI: 10.1038/ncomms8148] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Increasing aridity and drought severity forecast for many land areas could reduce the land carbon (C) sink. However, with limited long-term direct measures, it is difficult to distinguish direct drying effects from counter effects of CO2 enrichment and nitrogen (N) deposition. Here, we document a >50% decline in production of a native C3 grassland over four decades and assign the forcing and timing to increasing aridity and specifically to declining late-summer rainfall. Analysis of C and N stable isotopes in biomass suggests that enhanced water use efficiency via CO2 enrichment may have slightly ameliorated the productivity decline but that changes in N had no effects. Identical declines in a long-term snow-addition experiment definitively identified increasing late-summer dryness as the cause. Our results demonstrate lasting consequences of recent climate change on grassland production and underscore the importance of understanding past climate–ecosystem coupling to predicting future responses to changing climate. How primary production is influenced by climatic forcing has not been tested in most ecosystems. Here, the authors study a four-decade record of grassland production and find a sustained decline in above-ground net primary production attributable to increased aridity from declining late-summer rainfall.
Collapse
Affiliation(s)
- E N J Brookshire
- Department of Land Resources and Environmental Sciences, Bozeman, Montana 59715, USA
| | - T Weaver
- Department of Ecology, Montana State University, Bozeman, Montana 59715, USA
| |
Collapse
|
28
|
Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 2015; 177:949-57. [PMID: 25651805 DOI: 10.1007/s00442-015-3233-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.
Collapse
|
29
|
Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. GLOBAL CHANGE BIOLOGY 2015; 21:335-44. [PMID: 25044242 DOI: 10.1111/gcb.12673] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 05/05/2023]
Abstract
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.
Collapse
Affiliation(s)
- Kevin R Wilcox
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | | | | | | | | |
Collapse
|
30
|
Prechsl UE, Burri S, Gilgen AK, Kahmen A, Buchmann N. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland. Oecologia 2014; 177:97-111. [DOI: 10.1007/s00442-014-3092-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
31
|
Koerner SE, Collins SL. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology 2014; 95:98-109. [PMID: 24649650 DOI: 10.1890/13-0526.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Grazing, fire, and climate shape mesic grassland communities. With global change altering all three factors, understanding how grasslands respond to changes in these combined drivers may aid in projecting future changes in grassland ecosystems. We manipulated rainfall and simulated grazing (clipping) in two long-term fire experiments in mesic grasslands in North America (NA) and South Africa (SA). Despite their common drivers, grasslands in NA and SA differ in evolutionary history. Therefore, we expected community structure and production in NA and SA to respond differently to fire, grazing, and drought. Specifically, we hypothesized that NA plant community composition and production would be more responsive than the SA plant communities to changes in the drivers and their interactions, and that despite this expected stability of SA grasslands, drought would be the dominant factor controlling production, but grazing would play the primary role in determining community composition at both sites. Contrary to our hypothesis, NA and SA grasslands generally responded similarly to grazing, drought, and fire. Grazing increased diversity, decreased grass cover and production, and decreased belowground biomass at both sites. Drought alone minimally impacted plant community structure, and we saw similar treatment interactions at the two sites. Drought was not the primary driver of grassland productivity, but instead drought effects were similar to or less than grazing and fire. Even though these grasslands differed in evolutionary history, they responded similarly to our fire, grazing, and climate manipulations. Overall, we found community and ecosystem convergence in NA and SA grasslands. Grazing and fire are as important as climate in controlling mesic grassland ecosystems on both continents.
Collapse
|
32
|
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, Filella I, Jump AS. Evidence of current impact of climate change on life: a walk from genes to the biosphere. GLOBAL CHANGE BIOLOGY 2013; 19:2303-38. [PMID: 23505157 DOI: 10.1111/gcb.12143] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/31/2012] [Accepted: 01/14/2013] [Indexed: 05/19/2023]
Abstract
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.
Collapse
Affiliation(s)
- Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Burnett SA, Hattey JA, Johnson JE, Swann AL, Moore DI, Collins SL. Effects of fire on belowground biomass in Chihuahuan desert grassland. Ecosphere 2012. [DOI: 10.1890/es12-00248.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Fiala K, Tůma I, Holub P. Interannual variation in root production in grasslands affected by artificially modified amount of rainfall. ScientificWorldJournal 2012; 2012:805298. [PMID: 22629201 PMCID: PMC3353563 DOI: 10.1100/2012/805298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/08/2011] [Indexed: 11/17/2022] Open
Abstract
The effect of different amounts of rainfall on the below-ground plant biomass was studied in three grassland ecosystems. Responses of the lowland (dry Festuca grassland), highland (wet Cirsium grassland), and mountain (Nardus grassland) grasslands were studied during five years (2006-2010). A field experiment based on rainout shelters and gravity irrigation simulated three climate scenarios: rainfall reduced by 50% (dry), rainfall increased by 50% (wet), and the natural rainfall of the current growing season (ambient). The interannual variation in root increment and total below-ground biomass reflected the experimentally manipulated amount of precipitation and also the amount of current rainfall of individual years. The effect of year on these below-ground parameters was found significant in all studied grasslands. In comparison with dry Festuca grassland, better adapted to drought, submontane wet Cirsium grassland was more sensitive to the different water inputs forming rather lower amount of below-ground plant matter at reduced precipitation.
Collapse
Affiliation(s)
- Karel Fiala
- Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25, 602 00 Brno, Czech Republic.
| | | | | |
Collapse
|
35
|
|
36
|
Clark MR, Coupe MD, Bork EW, Cahill JF. Interactive effects of insects and ungulates on root growth in a native grassland. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.20177.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Effects of Stress and Defence Allocation on Tree Growth: Simulation Results at the Individual and Stand Level. GROWTH AND DEFENCE IN PLANTS 2012. [DOI: 10.1007/978-3-642-30645-7_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
García-Palacios P, Maestre FT, Gallardo A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. THE JOURNAL OF ECOLOGY 2011; 99:551-562. [PMID: 25914424 PMCID: PMC4407982 DOI: 10.1111/j.1365-2745.2010.01765.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent research has shown that biodiversity may has its greatest impact on ecosystem functioning in heterogeneous environments. However, the role of soil heterogeneity as a modulator of ecosystem responses to changes in biodiversity remains poorly understood, as few biodiversity studies have explicitly considered this important ecosystem feature.We conducted a microcosm experiment over two growing seasons to evaluate the joint effects of changes in plant functional groups (grasses, legumes, non-legume forbs and a combination of them), spatial distribution of soil nutrients (homogeneous and heterogeneous) and nutrient availability (50 and 100 mg of nitrogen [N] added as organic material) on plant productivity and surrogates of carbon, phosphorous and N cycling (β-glucosidase and acid phosphatase enzymes and in situ N availability, respectively).Soil nutrient heterogeneity interacted with nutrient availability and plant functional diversity to determine productivity and nutrient cycling responses. All the functional groups exhibited precise root foraging patterns. Above- and belowground productivity increased under heterogeneous nutrient supply. Surrogates of nutrient cycling were not directly affected by soil nutrient heterogeneity. Regardless of their above- and belowground biomass, legumes increased the availability of soil inorganic N and the activity of the acid phosphatase and β-glucosidase enzymes.Our study emphasizes the role of soil nutrient heterogeneity as a modulator of ecosystem responses to changes in functional diversity beyond the species level. Functional group identity, rather than richness, can play a key role in determining the effects of biodiversity on ecosystem functioning.Synthesis. Our results highlight the importance of explicitly considering soil heterogeneity in diversity-ecosystem functioning experiments, where the identity of the plant functional group is of major importance. Such consideration will improve our ability to fully understand the role of plant diversity on ecosystem functioning in ubiquitous heterogeneous environments.
Collapse
Affiliation(s)
- Pablo García-Palacios
- Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Spain
- Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSIC, C/Serrano 115-bis, 28006 Madrid, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Spain
| | - Antonio Gallardo
- Departmento de Física, Química y Sistemas Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
39
|
Frank DA, Pontes AW, Maine EM, Caruana J, Raina R, Raina S, Fridley JD. Grassland root communities: species distributions and how they are linked to aboveground abundance. Ecology 2010; 91:3201-9. [PMID: 21141181 DOI: 10.1890/09-1831.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is little comprehensive information on the distribution of root systems among coexisting species, despite the expected importance of those distributions in determining the composition and diversity of plant communities. This gap in knowledge is particularly acute for grasslands, which possess large numbers of species with morphologically indistinguishable roots. In this study we adapted a molecular method, fluorescent fragment length polymorphism, to identify root fragments and determine species root distributions in two grasslands in Yellowstone National Park (YNP). Aboveground biomass was measured, and soil cores (2 cm in diameter) were collected to depths of 40 cm and 90 cm in an upland, dry grassland and a mesic, slope-bottom grassland, respectively, at peak foliar expansion. Cores were subdivided, and species that occurred in each 10-cm interval were identified. The results indicated that the average number of species in 10-cm intervals (31 cm3) throughout the sampled soil profile was 3.9 and 2.8 species at a dry grassland and a mesic grassland, respectively. By contrast, there was an average of 6.7 and 14.1 species per 0.5 m2, determined by the presence of shoot material, at dry and mesic sites, respectively. There was no relationship between soil depth and number of species per 10-cm interval in either grassland, despite the exponential decline of root biomass with soil depth at both sites. There also was no relationship between root frequency (i.e., the percentage of samples in which a species occurred) and soil depth for the vast majority of species at both sites. The preponderance of species were distributed throughout the soil profile at both sites. Assembly analyses indicated that species root occurrences were randomly assorted in all soil intervals at both sites, with the exception that Festuca idahoensis segregated from Artemisia tridentata and Pseudoroegnaria spicata in 10-20 cm soil at the dry grassland. Root frequency throughout the entire sampled soil profile was positively associated with shoot biomass among species. Together these results indicated the importance of large, well-proliferated root systems in establishing aboveground dominance. The findings suggest that spatial belowground segregation of species probably plays a minor role in fostering resource partitioning and species coexistence in these YNP grasslands.
Collapse
Affiliation(s)
- Douglas A Frank
- Department of Biology, 107 College Place, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kitajima K, Anderson KE, Allen MF. Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jg001210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Stewart AM, Frank DA. Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia 2008; 157:453-8. [PMID: 18566834 DOI: 10.1007/s00442-008-1088-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 05/28/2008] [Indexed: 11/25/2022]
Abstract
Although root growth and mortality play critical regulatory roles in terrestrial ecosystems, little is known about the temporal scale of these dynamics. In temperate grasslands, root dynamics may be particularly rapid because of the high proportion of production allocated to very fine root biomass. In this study, we used minirhizotron tubes to estimate root growth and mortality in an upland grassland in Yellowstone National Park that was grazed by migratory herds of ungulates. Monthly rates of root growth and mortality were estimated from May to September 2005, by measuring the elongation (growth) and disappearance (mortality) of roots at 3-day intervals. Average daily growth (millimeters of root length) was approximately 5 times greater in May and June than in July, August, and September. Average daily mortality (millimeters of root length) did not differ among months. A comparison of the June-September rates of root growth and mortality derived from sampling at short (3-day) and long (1-month) time intervals indicated that the long sampling intervals underestimated both growth and mortality by approximately 60% relative to the short intervals. These results suggest that estimates of grassland root dynamics from minirhizotrons are influenced significantly by sampling interval length, and that rapid root turnover may play a more critical role in regulating energy and nutrient fluxes in temperate grasslands than has previously been recognized.
Collapse
Affiliation(s)
- Anna M Stewart
- Biological Research Laboratory, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| | | |
Collapse
|
42
|
Czóbel S, Szirmai O, Nagy J, Balogh J, Ürmös Z, Péli E, Tuba Z. Effects of irrigation on community composition and carbon uptake in Pannonian loess grassland monoliths. COMMUNITY ECOL 2008. [DOI: 10.1556/comec.9.2008.s.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|