1
|
Karssemeijer PN, Croijmans L, Gajendiran K, Gols R, van Apeldoorn DF, van Loon JJA, Dicke M, Poelman EH. Diverse cropping systems lead to higher larval mortality of the cabbage root fly ( Delia radicum). JOURNAL OF PEST SCIENCE 2023:1-17. [PMID: 37360044 PMCID: PMC10161186 DOI: 10.1007/s10340-023-01629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
Root herbivores pose a major threat to agricultural crops. They are difficult to control and their damage often goes unnoticed until the larvae reach their most devastating late instar stages. Crop diversification can reduce pest pressure, generally without compromising yield. We studied how different diversified cropping systems affected the oviposition and abundance of the specialist cabbage root fly Delia radicum, the most important root herbivore in Brassica crops. The cropping systems included a monoculture, pixel cropping, and four variations of strip cropping with varying intra- and interspecific crop diversity, fertilization and spatial configuration. Furthermore, we assessed whether there was a link between D. radicum and other macroinvertebrates associated with the same plants. Cabbage root fly oviposition was higher in strip cropping designs compared to the monoculture and was highest in the most diversified strip cropping design. Despite the large number of eggs, there were no consistent differences in the number of larvae and pupae between the cropping systems, indicative of high mortality of D. radicum eggs and early instars especially in the strip cropping designs. D. radicum larval and pupal abundance positively correlated with soil-dwelling predators and detritivores and negatively correlated with other belowground herbivores. We found no correlations between the presence of aboveground insect herbivores and the number of D. radicum on the roots. Our findings indicate that root herbivore presence is determined by a complex interplay of many factors, spatial configuration of host plants, and other organisms residing near the roots. Supplementary Information The online version contains supplementary material available at 10.1007/s10340-023-01629-1.
Collapse
Affiliation(s)
- Peter N. Karssemeijer
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Karthick Gajendiran
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Dirk F. van Apeldoorn
- Farming Systems Ecology, Wageningen University & Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
- Field Crops, Wageningen University & Research, Edelhertweg 10, 8200 AK Lelystad, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
2
|
Shi JH, Liu H, Pham TC, Hu XJ, Liu L, Wang C, Foba CN, Wang SB, Wang MQ. Volatiles and hormones mediated root-knot nematode induced wheat defense response to foliar herbivore aphid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152840. [PMID: 34995605 DOI: 10.1016/j.scitotenv.2021.152840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Plant root-leaf communication signals are critical for plant defense. Numerous studies show that belowground organisms can alter systemically resistance traits in aboveground parts against herbivores. However, there are limited studies on root-knot nematode-aphid interaction. Moreover, the impact of nematode's initial density and infection time on plant defense is poorly understood. Here we aim to examine the induced defense responses by root-knot nematode Meloidogyne incognita against aboveground feeding aphid Sitobion avenae in wheat. Further, we investigated the influence of the nematode infection density as well as the length of infection in these interactions. We tested the direct and indirect defense responses triggered by M. incognita against S. avenae as well as how the responses affect the preference of Harmonia axyridis. Plant volatiles and hormones were determined to explore plant defense mechanisms that mediate aboveground-belowground defense. The photosynthetic rate was tested to examine plant tolerance strategy. We found that, both low and high densities M. incognita root infection at 7 days post inoculation (dpi) reduced the feeding of the aphid S. avenae. Behavioral assay showed that H. axyridis preferred plants co-damaged by both M. incognita and S. avenae at 7 dpi. M. incognita infection induced the changes of jasmonic acid, salicylic acid and volatile content, which mediated plant response to S. avenae. Furthermore, photosynthetic rate in wheat increased at 5 dpi under 300 M. incognita or 1000 M. incognita infection. These results suggest that plant roots induced multiple defense strategies against foliar herbivores as damages increased. Our study provides evidence of a complex dynamic response of wheat aboveground defense against aphids in response to belowground nematode damage on a temporal scale.
Collapse
Affiliation(s)
- Jin-Hua Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - The Cuong Pham
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Jun Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caroline Ngichop Foba
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Bo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Karssemeijer PN, Winzen L, van Loon JJA, Dicke M. Leaf-chewing herbivores affect preference and performance of a specialist root herbivore. Oecologia 2022; 199:243-255. [PMID: 35192063 PMCID: PMC9226102 DOI: 10.1007/s00442-022-05132-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
Plants interact with a diversity of phytophagous insects above- and belowground. By inducing plant defence, one insect herbivore species can antagonize or facilitate other herbivore species feeding on the same plant, even when they are separated in space and time. Through systemic plant-mediated interactions, leaf-chewing herbivores may affect the preference and performance of root-feeding herbivores. We studied how six different leaf-chewing herbivore species of Brassica oleracea plants affected oviposition preference and larval performance of the root-feeding specialist Delia radicum. We expected that female D. radicum flies would oviposit where larval performance was highest, in accordance with the preference–performance hypothesis. We also assessed how the different leaf-chewing herbivore species affected defence-related gene expression in leaves and primary roots of B. oleracea, both before and after infestation with the root herbivore. Our results show that leaf-chewing herbivores can negatively affect the performance of root-feeding D. radicum larvae, although the effects were relatively weak. Surprisingly, we found that adult D. radicum females show a strong preference to oviposit on plants infested with a leaf-chewing herbivore. Defence-related genes in primary roots of B. oleracea plants were affected by the leaf-chewing herbivores, but these changes were largely overridden upon local induction by D. radicum. Infestation by leaf herbivores makes plants more attractive for oviposition by D. radicum females, while decreasing larval performance. Therefore, our findings challenge the preference–performance hypothesis in situations where other herbivore species are present.
Collapse
Affiliation(s)
- Peter N Karssemeijer
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Laura Winzen
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
5
|
Mbaluto CM, Ahmad EM, Mädicke A, Grosser K, van Dam NM, Martínez-Medina A. Induced Local and Systemic Defense Responses in Tomato Underlying Interactions Between the Root-Knot Nematode Meloidogyne incognita and the Potato Aphid Macrosiphum euphorbiae. FRONTIERS IN PLANT SCIENCE 2021; 12:632212. [PMID: 33936126 PMCID: PMC8081292 DOI: 10.3389/fpls.2021.632212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/11/2021] [Indexed: 05/05/2023]
Abstract
Plants mediate interactions between different herbivores that attack simultaneously or sequentially aboveground (AG) and belowground (BG) organs. The local and systemic activation of hormonal signaling pathways and the concomitant accumulation of defense metabolites underlie such AG-BG interactions. The main plant-mediated mechanisms regulating these reciprocal interactions via local and systemic induced responses remain poorly understood. We investigated the impact of root infection by the root-knot nematode (RKN) Meloidogyne incognita at different stages of its infection cycle, on tomato leaf defense responses triggered by the potato aphid Macrosiphum euphorbiae. In addition, we analyzed the reverse impact of aphid leaf feeding on the root responses triggered by the RKN. We focused specifically on the signaling pathways regulated by the phytohormones jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and indole-3-acetic acid (IAA) as well as steroidal glycoalkaloids as induced defense compounds. We found that aphid feeding did not induce AG hormonal signaling, but it repressed steroidal glycoalkaloids related responses in leaves, specifically when feeding on plants in the vegetative stage. Root infection by the RKN impeded the aphid-triggered repression of the steroidal glycoalkaloids-related response AG. In roots, the RKN triggered the SA pathway during the entire infection cycle and the ABA pathway specifically during its reproduction stage. RKN infection also elicited the steroidal glycoalkaloids related gene expression, specifically when it was in the galling stage. Aphid feeding did not systemically alter the RKN-induced defense responses in roots. Our results point to an asymmetrical interaction between M. incognita and Ma. euphorbiae when co-occurring in tomato plants. Moreover, the RKN seems to determine the root defense response regardless of a later occurring attack by the potato aphid AG.
Collapse
Affiliation(s)
- Crispus M. Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Esraa M. Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Anne Mädicke
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Katharina Grosser
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
6
|
Wang D, Wang Q, Sun X, Gao Y, Ding J. Potato Tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechioidea) Leaf Infestation Effects Performance of Conspecific Larvae on Harvested Tubers by Inducing Chemical Defenses. INSECTS 2020; 11:E633. [PMID: 32942700 PMCID: PMC7564594 DOI: 10.3390/insects11090633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
Conspecific aboveground and belowground herbivores can interact with each other, mediated by plant secondary chemicals; however, little attention has been paid to the interaction between leaf feeders and tuber-feeders. Here, we evaluated the effect of the foliar feeding of P. operculella larvae on the development of conspecific larvae feeding on harvested tubers by determining the nutrition and defense metabolites in the whole plant (leaf, root and tuber). We found that leaf feeding negatively affected tuber larval performance by increasing the female larval developmental time and reducing the male pupal weight. In addition, aboveground herbivory increased α-chaconine and glycoalkaloids in tubers and α-solanine in leaves, but decreased α-chaconine and glycoalkaloids in leaves. Aboveground herbivory also altered the levels of soluble sugar, soluble protein, starch, carbon (C), nitrogen (N), as well as the C:N ratio in both leaves and tubers. Aboveground P. operculella infestations could affect the performance of conspecific larvae feeding on harvested tubers by inducing glycoalkaloids in the host plant. Our findings indicate that field leaf herbivory should be considered when assessing the quality of potato tubers and their responses to pests during storage.
Collapse
Affiliation(s)
- Dingli Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China; (D.W.); (Q.W.); (X.S.)
| | - Qiyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China; (D.W.); (Q.W.); (X.S.)
| | - Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China; (D.W.); (Q.W.); (X.S.)
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China; (D.W.); (Q.W.); (X.S.)
| |
Collapse
|
7
|
Karssemeijer PN, Reichelt M, Gershenzon J, van Loon J, Dicke M. Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. PLANT, CELL & ENVIRONMENT 2020; 43:775-786. [PMID: 31873957 PMCID: PMC7065167 DOI: 10.1111/pce.13707] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
Plant-mediated interactions are an important force in insect ecology. Through such interactions, herbivores feeding on leaves can affect root feeders. However, the mechanisms regulating the effects of above-ground herbivory on below-ground herbivores are poorly understood. Here, we investigated the performance of cabbage root fly larvae (Delia radicum) on cabbage plants (Brassica oleracea) previously exposed to above ground herbivores belonging to two feeding guilds: leaf chewing diamondback moth caterpillars (Plutella xylostella) or phloem-feeding cabbage aphids (Brevicoryne brassicae). Our study focusses on root-herbivore performance and defence signalling in primary roots by quantifying phytohormones and gene expression. We show that leaf herbivory by caterpillars, but not by aphids, strongly attenuates root herbivore performance. Above-ground herbivory causes changes in primary roots in terms of gene transcripts and metabolites involved in plant defence. Feeding by below-ground herbivores strongly induces the jasmonate pathway in primary roots. Caterpillars feeding on leaves cause a slight induction of the primary root jasmonate pathway and interact with plant defence signalling in response to root herbivores. In conclusion, feeding by a leaf chewer and a phloem feeder differentially affects root-herbivore performance, root-herbivore-induced phytohormonal signalling, and secondary metabolites.
Collapse
Affiliation(s)
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Joop van Loon
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
8
|
Fagundes Matioli T, Zanuzo Zanardi O, Takao Yamamoto P. Impacts of seven insecticides on Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1210-1219. [PMID: 31691907 DOI: 10.1007/s10646-019-02129-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The endoparasitoid wasp Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) is inundatively released in Brazilian sugarcane plantations to control the sugarcane borers Diatraea saccharalis (Fabricius) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). In conjunction with these releases, several synthetic insecticides are used to control the neonate larvae of these pests. We assessed the lethal and transgenerational sublethal effects of seven of these insecticides on C. flavipes. Leaf discs were sprayed at the highest field concentrations of chlorantraniliprole, lambda-cyhalothrin + chlorantraniliprole, chlorfluazuron, triflumuron, lambda-cyhalothrin + thiamethoxam, tebufenozide, and novaluron. Distilled water was used as a negative control. Newly emerged females (24 h old) were placed in Petri dishes containing the treated leaves, and the lethal and transgenerational sublethal effects were assessed for the next two generations. Lambda-cyhalothrin + chlorantraniliprole and lambda-cyhalothrin + thiamethoxam caused 100% mortality of the parasitoid and were highly persistent, causing more than 30% mortality at 30 days after spraying. Chlorantraniliprole, chlorfluazuron, novaluron, and triflumuron did not cause significant mortality compared to the negative control, but did have transgenerational sublethal effects. The length of the tibia of the right posterior leg, used as a growth measurement, was reduced in the progeny (F1 generation) of exposed female parasitoids. In addition, chlorantraniliprole increased and chlorfluazuron reduced the proportion of females in the F1 generation, whereas novaluron reduced the proportion of females in the F2 generation. Overall, only tebufenozide was considered harmless to C. flavipes. The results of this study suggest that lambda-cyhalothrin + chlorantraniliprole and lambda-cyhalothrin + thiamethoxam are harmful to C. flavipes, although field studies are needed to obtain results for actual sugarcane crops.
Collapse
Affiliation(s)
- Thaís Fagundes Matioli
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, 13418-900, Brazil.
| | - Odimar Zanuzo Zanardi
- Department of Entomology, Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo, 14708-040, Brazil
| | - Pedro Takao Yamamoto
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
9
|
Reduced caterpillar damage can benefit plant bugs in Bt cotton. Sci Rep 2019; 9:2727. [PMID: 30804420 PMCID: PMC6390097 DOI: 10.1038/s41598-019-38917-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bt cotton was genetically modified to produce insecticidal proteins targeting Lepidopteran pests and is therefore only minimally affected by caterpillar damage. This could lead to reduced levels of inherent, systemically inducible defensive compounds in Bt cotton which might benefit other important cotton herbivores such as plant bugs. We studied the effects of plant defense induction on the performance of the plant bug Lygus hesperus by caging nymphs on different food sources (bolls/squares) of Bt and non-Bt cotton which were either undamaged, damaged by Bt tolerant caterpillars, or treated with jasmonic acid (JA). Terpenoid induction patterns of JA-treated and L. hesperus-damaged plants were characterized for different plant structures and artificial diet assays using purified terpenoids (gossypol/heliocide H1/4) were conducted. Nymphs were negatively affected if kept on plants damaged by caterpillars or sprayed with JA. Performance of nymphs was increased if they fed on squares and by the Bt-trait which had a positive effect on boll quality as food. In general, JA-sprayed plants (but not L. hesperus infested plants) showed increased levels of terpenoids in the plant structures analyzed, which was especially pronounced in Bt cotton. Nymphs were not negatively affected by terpenoids in artificial diet assays indicating that other inducible cotton responses are responsible for the found negative effects on L. hesperus. Overall, genetically engineered plant defenses can benefit plant bugs by releasing them from plant-mediated indirect competition with lepidopterans which might contribute to increasing numbers of hemipterans in Bt cotton.
Collapse
|
10
|
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM. Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 2018; 188:801-811. [PMID: 30109421 PMCID: PMC6208702 DOI: 10.1007/s00442-018-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Plants actively interact with antagonists and beneficial organisms occurring in the above- and belowground domains of terrestrial ecosystems. In the past decade, studies have focused on the role of plant-soil feedbacks (PSF) in a broad range of ecological processes. However, PSF and its legacy effects on plant defense traits, such as induction of defense-related genes and production of defensive secondary metabolites, have not received much attention. Here, we study soil legacy effects created by twelve common grassland plant species on the induction of four defense-related genes, involved in jasmonic acid signaling, related to chewing herbivore defense (LOX2, PPO7), and in salicylic acid signaling, related to pathogen defense (PR1 and PR2) in Plantago lanceolata in response to aboveground herbivory by Mamestra brassicae. We also assessed soil legacy and herbivory effects on the production of terpenoid defense compounds (the iridoid glycosides aucubin and catalpol) in P. lanceolata. Our results show that both soil legacy and herbivory influence phenotypes of P. lanceolata in terms of induction of Pl PPO7 and Pl LOX2, whereas the expression of Pl PR1 and Pl PR2-1 is not affected by soil legacies, nor by herbivory. We also find species-specific soil legacy effects on the production of aucubin. Moreover, P. lanceolata accumulates more catalpol when they are grown in soils conditioned by grass species. Our study highlights that PSF can influence aboveground plant-insect interactions through the impacts on plant defense traits and suggests that aboveground plant defense responses can be determined, at least partly, by plant-specific legacy effects induced by belowground organisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
| | - Robin Heinen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martijn van der Sluijs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands
| |
Collapse
|
11
|
Furlong MJ, Ang GCK, Silva R, Zalucki MP. Bringing Ecology Back: How Can the Chemistry of Indirect Plant Defenses Against Herbivory Be Manipulated to Improve Pest Management? FRONTIERS IN PLANT SCIENCE 2018; 9:1436. [PMID: 30319681 PMCID: PMC6170791 DOI: 10.3389/fpls.2018.01436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Research on insect-plant interactions has highlighted the intricacies of constitutive and induced plant defenses. Of particular interest has been the relationship of natural enemies (especially parasitic hymenoptera) to herbivore induced changes to plants, especially their responses to herbivore induced plant volatiles (HIPVs). In recent decades this has been a fertile area for research, with elegant experiments showing that HIPVs are important in attracting natural enemies to plants. We critically appraise the application of work on HIPVs in plant-insect-natural enemy interactions. The promise of applications to improve pest management has not been forthcoming. We attribute this to a failure to include the multifaceted aspects of natural enemy-prey interactions - attraction, location, subjugation and experience. Attraction in an olfactometer by naïve parasitoids has not been translated to methodologically sound field-based estimates of higher parasitism rates. We highlight what needs to be done to better understand the information that HIPVs convey, how this is utilized by parasitoids and how a greater understanding of these interactions might lead to the development of new strategies so that this knowledge can be effectively deployed for improved pest management.
Collapse
Affiliation(s)
- Michael J. Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | | | | | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Bernaola L, Cosme M, Schneider RW, Stout M. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms. FRONTIERS IN PLANT SCIENCE 2018; 9:747. [PMID: 29922319 PMCID: PMC5996305 DOI: 10.3389/fpls.2018.00747] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/15/2018] [Indexed: 05/22/2023]
Abstract
Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil (Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm (Spodoptera frugiperda, FAW), and against infection by sheath blight (Rhizoctonia solani, ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens.
Collapse
Affiliation(s)
- Lina Bernaola
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Marco Cosme
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Raymond W. Schneider
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Michael Stout
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Machado RAR, Arce CCM, McClure MA, Baldwin IT, Erb M. Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation. PLANT, CELL & ENVIRONMENT 2018; 41:797-808. [PMID: 29327360 DOI: 10.1111/pce.13143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Different plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata. Simulated M. sexta attack increased the abundance of root parasitic nematodes in the field and facilitated Meloidogyne incognita reproduction in the glasshouse. Intact jasmonate biosynthesis was found to be required for both effects. Flower counts revealed that the jasmonate-dependent facilitation of nematode infestation following simulated leaf attack reduces the plant's reproductive potential to a greater degree than would be expected from the additive effects of the individual stresses. This work reveals that jasmonates mediate the interaction between a leaf herbivore and root parasitic nematodes and illustrates how plant-mediated interactions can alter plant's reproductive potential. The selection pressure resulting from the demonstrated fitness effects is likely to influence the evolution of plant defense traits in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Functional and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Michael A McClure
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
14
|
Lachaise T, Ourry M, Lebreton L, Guillerm-Erckelboudt AY, Linglin J, Paty C, Chaminade V, Marnet N, Aubert J, Poinsot D, Cortesero AM, Mougel C. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape. INSECT SCIENCE 2017; 24:1045-1056. [PMID: 28544806 DOI: 10.1111/1744-7917.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground.
Collapse
Affiliation(s)
- Tom Lachaise
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Morgane Ourry
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Lionel Lebreton
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | | | - Juliette Linglin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| | - Chrystelle Paty
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Valérie Chaminade
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Nathalie Marnet
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
- INRA, UR1268 BIA-Le Rheu, France
| | - Julie Aubert
- INRA-AgroParisTech, UMR 518 Applied Mathematics and Computer Sciences-Paris, France
| | - Denis Poinsot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Anne-Marie Cortesero
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| | - Christophe Mougel
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
15
|
Mundim FM, Alborn HT, Vieira-Neto EHM, Bruna EM. A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense. Ecology 2016; 98:70-78. [DOI: 10.1002/ecy.1619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Fabiane M. Mundim
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
| | - Hans T. Alborn
- Center for Medical, Agricultural and Veterinary Entomology; Agricultural Research Service; U.S. Department of Agriculture; Gainesville Florida 32608 USA
| | - Ernane H. M. Vieira-Neto
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
| | - Emilio M. Bruna
- Department of Wildlife Ecology and Conservation; University of Florida; Gainesville Florida 32611-0430 USA
- Center for Latin American Studies; University of Florida Gainesville; Gainesville Florida 32611-5530 USA
| |
Collapse
|
16
|
Ataide LMS, Pappas ML, Schimmel BCJ, Lopez-Orenes A, Alba JM, Duarte MVA, Pallini A, Schuurink RC, Kant MR. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:300-310. [PMID: 27717467 DOI: 10.1016/j.plantsci.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 05/20/2023]
Abstract
Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.
Collapse
Affiliation(s)
- Livia M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria L Pappas
- Department of Agricultural Development, Laboratory of Agricultural Entomology and Zoology, Democritus University of Thrace, Pantazidou 193, 68 200, Orestiada, Greece
| | - Bernardus C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Antonio Lopez-Orenes
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marcus V A Duarte
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Li X, Guo W, Siemann E, Wen Y, Huang W, Ding J. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense. Oecologia 2016; 182:1107-1115. [PMID: 27623939 DOI: 10.1007/s00442-016-3719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022]
Abstract
Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.
Collapse
Affiliation(s)
- Xiaoqiong Li
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Wenfeng Guo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, 77005, USA
| | - Yuanguang Wen
- College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
18
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
19
|
Differences in interactions of aboveground and belowground herbivores on the invasive plant Alternanthera philoxeroides and native host A. sessilis. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1234-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lu J, Robert CAM, Lou Y, Erb M. A conserved pattern in plant-mediated interactions between herbivores. Ecol Evol 2016; 6:1032-40. [PMID: 26811746 PMCID: PMC4720690 DOI: 10.1002/ece3.1922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023] Open
Abstract
Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.
Collapse
Affiliation(s)
- Jing Lu
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Insect Sciences Zhejiang University Zijingang Campus, Yuhangtang Road 866 Hangzhou 310058 China
| | - Christelle A M Robert
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Plant Sciences University of Bern Altenbergrain 213013 Bern Switzerland
| | - Yonggen Lou
- Institute of Insect Sciences Zhejiang University Zijingang Campus, Yuhangtang Road 866 Hangzhou 310058 China
| | - Matthias Erb
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Plant Sciences University of Bern Altenbergrain 213013 Bern Switzerland
| |
Collapse
|
21
|
Erb M, Robert CAM, Marti G, Lu J, Doyen GR, Villard N, Barrière Y, French BW, Wolfender JL, Turlings TCJ, Gershenzon J. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. PLANT PHYSIOLOGY 2015; 169:2884-94. [PMID: 26430225 PMCID: PMC4677881 DOI: 10.1104/pp.15.00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Guillaume Marti
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jing Lu
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Gwladys R Doyen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Neil Villard
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Yves Barrière
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - B Wade French
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jean-Luc Wolfender
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Ted C J Turlings
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| | - Jonathan Gershenzon
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland (M.E., C.A.M.R.);Root-Herbivore Interactions Group, Department of Biochemistry (M.E., C.A.M.R., J.L.), and Department of Biochemistry (J.G.), Max Planck Institute for Chemical Ecology, DE-07745 Jena, Germany;Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, CH-2009 Neuchatel, Switzerland (M.E., C.A.M.R., G.R.D., N.V., T.C.J.T.);Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland (G.M., J.-L.W.);Unité de Génétique et d'Amélioration des Plantes Fourragères, INRA, 86600 Lusignan, France (Y.B.); andUnited States Department of Agriculture, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, South Dakota 57006 (B.W.F.)
| |
Collapse
|
22
|
Pangesti N, Weldegergis BT, Langendorf B, van Loon JJA, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 2015. [PMID: 25783487 DOI: 10.1007/s00442-015-3277-3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
23
|
Pangesti N, Weldegergis BT, Langendorf B, van Loon JJA, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia 2015; 178:1169-80. [PMID: 25783487 PMCID: PMC4506461 DOI: 10.1007/s00442-015-3277-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | | | - Benjamin Langendorf
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
24
|
Van Geem M, Harvey JA, Cortesero AM, Raaijmakers CE, Gols R. Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage. J Chem Ecol 2015; 41:696-707. [PMID: 26271671 PMCID: PMC4568014 DOI: 10.1007/s10886-015-0605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/10/2015] [Accepted: 07/04/2015] [Indexed: 11/30/2022]
Abstract
Plants are attacked by both above- and belowground herbivores. Toxic secondary compounds are part of the chemical defense arsenal of plants against a range of antagonists, and are subject to genetic variation. Plants also produce primary metabolites (amino acids, nutrients, sugars) that function as essential compounds for growth and survival. Wild cabbage populations growing on the Dorset coast of the UK exhibit genetically different chemical defense profiles, even though they are located within a few kilometers of each other. As in other Brassicaceae, the defensive chemicals in wild cabbages constitute, among others, secondary metabolites called glucosinolates. Here, we used five Dorset populations of wild cabbage to study the effect of belowground herbivory by the cabbage root fly on primary and secondary chemistry, and whether differences in chemistry affected the performance of the belowground herbivore. There were significant differences in total root concentrations and chemical profiles of glucosinolates, amino acids, and sugars among the five wild cabbage populations. Glucosinolate concentrations not only differed among the populations, but also were affected by root fly herbivory. Amino acid and sugar concentrations also differed among the populations, but were not affected by root fly herbivory. Overall, population-related differences in plant chemistry were more pronounced for the glucosinolates than for amino acids and sugars. The performance of the root herbivore did not differ among the populations tested. Survival of the root fly was low (<40%), suggesting that other belowground factors may override potential differences in effects related to primary and secondary chemistry.
Collapse
Affiliation(s)
- Moniek Van Geem
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University, Amsterdam, The Netherlands
| | - Anne Marie Cortesero
- Institute of Genetics, Environment and Plant Protection, Rennes University, Rennes, France
| | - Ciska E Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Pashalidou FG, Frago E, Griese E, Poelman EH, van Loon JJA, Dicke M, Fatouros NE. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecol Lett 2015; 18:927-36. [DOI: 10.1111/ele.12470] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/24/2015] [Accepted: 06/01/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Foteini G. Pashalidou
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Agricultural Sciences; Biocommunication & Entomology; ETH Zürich; 8092 Zürich Switzerland
| | - Enric Frago
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Eddie Griese
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Biology; Dahlem Centre of Plant Sciences; Freie Universität Berlin; 12163 Berlin Germany
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
| | - Nina E. Fatouros
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700AA Wageningen The Netherlands
- Institute of Biology; Dahlem Centre of Plant Sciences; Freie Universität Berlin; 12163 Berlin Germany
| |
Collapse
|
26
|
Milano NJ, Barber NA, Adler LS. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore. ENVIRONMENTAL ENTOMOLOGY 2015; 44:317-324. [PMID: 26313185 DOI: 10.1093/ee/nvv003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.
Collapse
Affiliation(s)
- N J Milano
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| | - N A Barber
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., DeKalb, IL 60115.
| | - L S Adler
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| |
Collapse
|
27
|
Huang W, Siemann E, Xiao L, Yang X, Ding J. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions. Nat Commun 2014; 5:4851. [PMID: 25241651 PMCID: PMC4199110 DOI: 10.1038/ncomms5851] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023] Open
Abstract
Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase conspecific adult feeding, but decrease heterospecific aboveground insect feeding and abundance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow herbivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and belowground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. It is unclear how herbivores determine community structure. Here the authors show how interactions between aboveground adults and belowground larvae of a tree flea beetle and multiple heterospecific aboveground species interact via plant defence responses to determine herbivore performance.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Li Xiao
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefang Yang
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
28
|
Gols R. Direct and indirect chemical defences against insects in a multitrophic framework. PLANT, CELL & ENVIRONMENT 2014; 37:1741-52. [PMID: 24588731 DOI: 10.1111/pce.12318] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/26/2014] [Indexed: 05/20/2023]
Abstract
Plant secondary metabolites play an important role in mediating interactions with insect herbivores and their natural enemies. Metabolites stored in plant tissues are usually investigated in relation to herbivore behaviour and performance (direct defence), whereas volatile metabolites are often studied in relation to natural enemy attraction (indirect defence). However, so-called direct and indirect defences may also affect the behaviour and performance of the herbivore's natural enemies and the natural enemy's prey or hosts, respectively. This suggests that the distinction between these defence strategies may not be as black and white as is often portrayed in the literature. The ecological costs associated with direct and indirect chemical defence are often poorly understood. Chemical defence traits are often studied in two-species interactions in highly simplified experiments. However, in nature, plants and insects are often engaged in mutualistic interactions with microbes that may also affect plant secondary chemistry. Moreover, plants are challenged by threats above- and belowground and herbivory may have consequences for plant-insect multitrophic interactions in the alternative compartment mediated by changes in plant secondary chemistry. These additional associations further increase the complexity of interaction networks. Consequently, the effect of a putative defence trait may be under- or overestimated when other interactions are not considered.
Collapse
Affiliation(s)
- Rieta Gols
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
29
|
Wang M, Biere A, Van der Putten WH, Bezemer TM. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance. Oecologia 2014; 175:187-98. [PMID: 24448700 DOI: 10.1007/s00442-014-2885-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands,
| | | | | | | |
Collapse
|
30
|
Stevens MT, Gusse AC, Lindroth RL. Root Chemistry in Populus tremuloides: Effects of Soil Nutrients, Defoliation, and Genotype. J Chem Ecol 2014; 40:31-8. [DOI: 10.1007/s10886-013-0371-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/25/2013] [Accepted: 12/01/2013] [Indexed: 11/24/2022]
|
31
|
Root and shoot jasmonic acid induced plants differently affect the performance of Bemisia tabaci and its parasitoid Encarsia formosa. Basic Appl Ecol 2013. [DOI: 10.1016/j.baae.2013.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
van Geem M, Gols R, van Dam NM, van der Putten WH, Fortuna T, Harvey JA. The importance of aboveground-belowground interactions on the evolution and maintenance of variation in plant defense traits. FRONTIERS IN PLANT SCIENCE 2013; 4:431. [PMID: 24348484 PMCID: PMC3842511 DOI: 10.3389/fpls.2013.00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 05/10/2023]
Abstract
Over the past two decades a growing body of empirical research has shown that many ecological processes are mediated by a complex array of indirect interactions occurring between rhizosphere-inhabiting organisms and those found on aboveground plant parts. Aboveground-belowground studies have thus far focused on elucidating processes and underlying mechanisms that mediate the behavior and performance of invertebrates in opposite ecosystem compartments. Less is known about genetic variation in plant traits such as defense as that may be driven by above- and belowground trophic interactions. For instance, although our understanding of genetic variation in aboveground plant traits and its effects on community-level interactions is well developed, little is known about the importance of aboveground-belowground interactions in driving this variation. Plant traits may have evolved in response to selection pressures from above- and below-ground interactions from antagonists and mutualists. Here, we discuss gaps in our understanding of genetic variation in plant-related traits as they relate to aboveground and belowground multitrophic interactions. When metabolic resources are limiting, multiple attacks by antagonists in both domains may lead to trade-offs. In nature, these trade-offs may critically depend upon their effects on plant fitness. Natural enemies of herbivores may also influence selection for different traits via top-down control. At larger scales these interactions may generate evolutionary "hotspots" where the expression of various plant traits is the result of strong reciprocal selection via direct and indirect interactions. The role of abiotic factors in driving genetic variation in plant traits is also discussed.
Collapse
Affiliation(s)
- Moniek van Geem
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Nicole M. van Dam
- Radboud University Nijmegen, Institute for Water and Wetland ResearchNijmegen, Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Laboratory of Nematology, Wageningen UniversityWageningen, Netherlands
| | - Taiadjana Fortuna
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Department of Ecological Sciences, Animal Ecology, VU UniversityAmsterdam, Netherlands
| |
Collapse
|
33
|
Orrell P, Bennett AE. How can we exploit above-belowground interactions to assist in addressing the challenges of food security? FRONTIERS IN PLANT SCIENCE 2013; 4:432. [PMID: 24198821 PMCID: PMC3812866 DOI: 10.3389/fpls.2013.00432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 05/10/2023]
Abstract
Can above-belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above-belowground interactions and food security. We propose that above-belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above-belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above-belowground interactions) and breeding for traits that promote beneficial above-belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above-belowground interactions to contribute to food security.
Collapse
|
34
|
McKenzie SW, Hentley WT, Hails RS, Jones TH, Vanbergen AJ, Johnson SN. Global climate change and above- belowground insect herbivore interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:412. [PMID: 24155750 PMCID: PMC3804764 DOI: 10.3389/fpls.2013.00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/29/2013] [Indexed: 05/08/2023]
Abstract
Predicted changes to the Earth's climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.
Collapse
Affiliation(s)
- Scott W. McKenzie
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | - William T. Hentley
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - T. Hefin Jones
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western SydneySydney, NSW, Australia
| |
Collapse
|
35
|
Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS One 2013; 8:e69013. [PMID: 23894394 PMCID: PMC3716814 DOI: 10.1371/journal.pone.0069013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.
Collapse
|
36
|
Plant-mediated interactions between shoot-feeding aphids and root-feeding nematodes depend on nitrate fertilization. Oecologia 2013; 173:1367-77. [DOI: 10.1007/s00442-013-2712-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023]
|
37
|
Soler R, Erb M, Kaplan I. Long distance root-shoot signalling in plant-insect community interactions. TRENDS IN PLANT SCIENCE 2013; 18:149-56. [PMID: 22989699 DOI: 10.1016/j.tplants.2012.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/23/2012] [Indexed: 05/03/2023]
Abstract
Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground-belowground interactions that can be extrapolated to general plant-insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant-insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.
Collapse
Affiliation(s)
- Roxina Soler
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | |
Collapse
|
38
|
Marti G, Erb M, Boccard J, Glauser G, Doyen GR, Villard N, Robert CAM, Turlings TCJ, Rudaz S, Wolfender JL. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. PLANT, CELL & ENVIRONMENT 2013; 36:621-39. [PMID: 22913585 DOI: 10.1111/pce.12002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
Collapse
Affiliation(s)
- Guillaume Marti
- School of Pharmaceutical Sciences, EPGL, University of Geneva and University of Lausanne, Geneva Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS. Foliar herbivory triggers local and long distance defense responses in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:103-12. [PMID: 23265323 DOI: 10.1016/j.plantsci.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 05/09/2023]
Abstract
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State University, MS, United States.
| | | | | | | | | |
Collapse
|
40
|
Huang W, Carrillo J, Ding J, Siemann E. Invader partitions ecological and evolutionary responses to above- and belowground herbivory. Ecology 2012; 93:2343-52. [PMID: 23236906 DOI: 10.1890/11-1964.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
| | | | | | | |
Collapse
|
41
|
Kutyniok M, Müller C. Crosstalk between above- and belowground herbivores is mediated by minute metabolic responses of the host Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6199-210. [PMID: 23045608 PMCID: PMC3481212 DOI: 10.1093/jxb/ers274] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are frequently under attack by multiple herbivores and can be infested at their shoots as well as their roots. As a consequence, plant metabolites are readily induced, mediated by phytohormones such as salicylic acid and jasmonic acid. Thereby, cross-talk between signal transduction pathways may occur if different herbivores attack the plant simultaneously. In turn, modifications in the plant metabolic pattern can affect herbivores infesting local and systemic tissue. Here, an integrative approach combining metabolomics and performance experiments was used to study the induction of plant metabolites in Arabidopsis thaliana by the specialist aphid Brevicoryne brassicae feeding on shoots and the generalist nematode Heterodera schachtii infesting root tissue. In contrast to most other studies, low infestation rates typical for the decisive early stages of infestation were used. Moreover, the consequences of induction responses on plant-mediated indirect interactions between these herbivores were investigated. In aphid-treated plants, several metabolites including glucosinolates, important defence compounds of Brassicaceae, were reduced in the shoot, but only minute changes took part in the systemic root tissue. Primary metabolites as well as phytohormones were not altered 3 days post infestation. In contrast, nematodes did not evoke significant metabolic alterations locally or systemically. In accordance, nematode presence did not affect aphid population growth, whereas aphids mediated a considerably reduced nematode infestation. These results demonstrate that plants respond in a very fine-tuned way to different challenges. Although they show only minute systemic responses to low herbivore stress, these changes can have pronounced effects on plant-mediated interactions between herbivores.
Collapse
Affiliation(s)
- Magdalene Kutyniok
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, D-33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, D-33615 Bielefeld, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Kostenko O, van de Voorde TFJ, Mulder PPJ, van der Putten WH, Martijn Bezemer T. Legacy effects of aboveground-belowground interactions. Ecol Lett 2012; 15:813-21. [PMID: 22594311 DOI: 10.1111/j.1461-0248.2012.01801.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/02/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and belowground organisms interact when they feed on plant individuals that grow after each other in the same soil. We show that feeding by aboveground and belowground insect herbivores on ragwort (Jacobaea vulgaris) plants exert unique soil legacy effects, via herbivore-induced changes in the composition of soil fungi. These changes in the soil biota induced by aboveground and belowground herbivores of preceding plants greatly influenced the pyrrolizidine alkaloid content, biomass and aboveground multitrophic interactions of succeeding plants. We conclude that plant-mediated interactions between aboveground and belowground insects are also important when they do not feed simultaneously on the same plant.
Collapse
Affiliation(s)
- Olga Kostenko
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst. J Chem Ecol 2012; 38:629-40. [DOI: 10.1007/s10886-012-0107-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022]
|
44
|
Exotic herbivores on a shared native host: tissue quality after individual, simultaneous, and sequential attack. Oecologia 2012; 169:1015-24. [PMID: 22311255 DOI: 10.1007/s00442-012-2267-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Plants in nature are often attacked by multiple enemies whose effect on the plant cannot always be predicted based on the outcome of individual attacks. We investigated how two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) (HWA) and the elongate hemlock scale (Fiorinia externa) (EHS), alter host plant quality (measured as amino acid concentration and composition) when feeding individually or jointly on eastern hemlock (Tsuga canadensis), an important long-lived forest tree that is in severe decline. The joint herbivore treatments included both simultaneous and sequential infestations by the two herbivores. We expected resource depletion over time, particularly in response to feeding by HWA. In contrast, HWA dramatically increased the concentration and altered the composition of individual free amino acids. Compared to control trees, HWA increased total amino acid concentration by 330% after 1 year of infestation. Conversely, EHS had a negligible effect when feeding individually. Interestingly, there was a marginally significant HWA × EHS interaction that suggests the potential for EHS presence to reduce the impact of HWA on foliage quality when the two species co-occur. We suggest indirect effects of water stress as a possible physiological mechanism for our results. Understanding how species interactions change the physiology of a shared host is crucial to making more accurate predictions about host mortality and subsequent changes in affected communities and ecosystems, and to help design appropriate management plans.
Collapse
|
45
|
Veen GFC, Geuverink E, Olff H. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition. Oecologia 2012; 168:511-8. [PMID: 21863246 PMCID: PMC3261403 DOI: 10.1007/s00442-011-2093-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 07/19/2011] [Indexed: 11/28/2022]
Abstract
Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground-belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant-soil-vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground-belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground-belowground interactions for small-scale plant community composition.
Collapse
Affiliation(s)
- G F Ciska Veen
- Community and Conservation Ecology Group, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands.
| | | | | |
Collapse
|
46
|
Cosme M, Stout MJ, Wurst S. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus). MYCORRHIZA 2011; 21:651-658. [PMID: 21755406 DOI: 10.1007/s00572-011-0399-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/23/2011] [Indexed: 05/11/2023]
Abstract
Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference-performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions.
Collapse
Affiliation(s)
- Marco Cosme
- Institut für Biologie, Freie Universität Berlin, Altensteinstraße 6, 14195, Berlin, Germany.
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Susanne Wurst
- Institut für Biologie, Freie Universität Berlin, Altensteinstraße 6, 14195, Berlin, Germany
| |
Collapse
|
47
|
Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Mølmann J, Seljåsen R, Smart LE, Stewart D. Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice. PHYTOCHEMISTRY 2011; 72:538-56. [PMID: 21315385 DOI: 10.1016/j.phytochem.2011.01.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/13/2010] [Accepted: 01/11/2011] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO(2) are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists.
Collapse
Affiliation(s)
- Maria Björkman
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Plant Health and Plant Protection Division, Høgskoleveien 7, N-1432 Ås, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pierre PS, Jansen JJ, Hordijk CA, van Dam NM, Cortesero AM, Dugravot S. Differences in volatile profiles of turnip plants subjected to single and dual herbivory above- and belowground. J Chem Ecol 2011; 37:368-77. [PMID: 21448706 PMCID: PMC3197925 DOI: 10.1007/s10886-011-9934-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/31/2011] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
Abstract
Plants attacked by herbivorous insects emit volatile organic compounds that are used by natural enemies to locate their host or prey. The composition of the blend is often complex and specific. It may vary qualitatively and quantitatively according to plant and herbivore species, thus providing specific information for carnivorous arthropods. Most studies have focused on simple interactions that involve one species per trophic level, and typically have investigated the aboveground parts of plants. These investigations need to be extended to more complex networks that involve multiple herbivory above- and belowground. A previous study examined whether the presence of the leaf herbivore Pieris brassicae on turnip plants (Brassica rapa subsp. rapa) influences the response of Trybliographa rapae, a specialist parasitoid of the root feeder Delia radicum. It showed that the parasitoid was not attracted by volatiles emitted by plants under simultaneous attack. Here, we analyzed differences in the herbivore induced plant volatile (HIPV) mixtures that emanate from such infested plants by using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). This multivariate model focuses on the differences between odor blends, and highlights the relative importance of each compound in an HIPV blend. Dual infestation resulted in several HIPVs that were present in both isolated infestation types. However, HIPVs collected from simultaneously infested plants were not the simple combination of volatiles from isolated forms of above- and belowground herbivory. Only a few specific compounds characterized the odor blend of each type of damaged plant. Indeed, some compounds were specifically induced by root herbivory (4-methyltridecane and salicylaldehyde) or shoot herbivory (methylsalicylate), whereas hexylacetate, a green leaf volatile, was specifically induced after dual herbivory. It remains to be determined whether or not these minor quantitative variations, within the background of more commonly induced odors, are involved in the reduced attraction of the root feeder’s parasitoid. The mechanisms involved in the specific modification of the odor blends emitted by dual infested turnip plants are discussed in the light of interferences between biosynthetic pathways linked to plant responses to shoot or root herbivory.
Collapse
Affiliation(s)
- Prisca S Pierre
- UMR 1099 BiO3P, University of Rennes 1, INRA, Agrocampus Ouest, 263 avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
49
|
Gill TA, Sandoya G, Williams P, Luthe DS. Belowground resistance to western corn rootworm in lepidopteran-resistant maize genotypes. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:299-307. [PMID: 21404871 DOI: 10.1603/ec10117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several maize, Zea mays L., inbred lines developed from an Antiguan maize population have been shown to exhibit resistance to numerous aboveground lepidopteran pests. This study shows that these genotypes are able to significantly reduce the survival of two root feeding pests, western corn rootworm, Diabrotica virgifera virgifera LeConte, and southern corn rootworm, Diabrotica undecimpunctata howardi Barber. The results also demonstrated that feeding by the aboveground herbivore fall armyworm, Spodoptera frugiperda (J. E. Smith), before infestation by western corn rootworm reduced survivorship of western corn rootworm in the root tissues of some, but not all, genotypes. Likewise, the presence of western corn rootworm in the soil seemed to increase resistance to fall armyworm in the whorl in several genotypes. However, genotypes derived from the Antiguan germplasm with genetic resistance to lepidopterans were still more resistant to the fall armyworm and both rootworm species than the susceptible genotypes even after defense induction. These results suggest that there may be intraplant communication that alters plant responses to aboveground and belowground herbivores.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Crop and Soil Science, 116 ASI Bldg., The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
50
|
Ali JG, Alborn HT, Stelinski LL. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. JOURNAL OF ECOLOGY 2011; 99:26-35. [PMID: 0 DOI: 10.1111/j.1365-2745.2010.01758.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|