1
|
Predicting responses to marine heatwaves using functional traits. Trends Ecol Evol 2021; 37:20-29. [PMID: 34593256 DOI: 10.1016/j.tree.2021.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023]
Abstract
Marine heatwaves (MHWs), discrete but prolonged periods of anomalously warm seawater, can fundamentally restructure marine communities and ecosystems. Although our understanding of these events has improved in recent years, key knowledge gaps hinder our ability to predict how MHWs will affect patterns of biodiversity. Here, we outline a functional trait approach that enables a better understanding of which species and communities will be most vulnerable to MHWs, and how the distribution of species and composition of communities are likely to shift through time. Our perspective allows progress toward unifying extreme events and longer term environmental trends as co-drivers of ecological change, with the incorporation of species traits into our predictions allowing for a greater capacity to make management decisions.
Collapse
|
2
|
McClanahan TR. Coral community life histories and population dynamics driven by seascape bathymetry and temperature variability. ADVANCES IN MARINE BIOLOGY 2020; 87:291-330. [PMID: 33293014 DOI: 10.1016/bs.amb.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature variability, habitat, coral communities, and fishing intensity are important factors influencing coral responses to climate change. Consequently, chronic and acute sea-surface temperatures (SSTs) and their interactions with habitat and fishing were studied along the East African coast (~400km) by evaluating changes over a ~25-year period in two major reef habitats-island and fringing reefs. These habitats had similar mean and standard deviation temperature measurements but differed in that islands had lower ocean heights and flatter and less right-skewed temperature distributions than fringing reefs. These patterns arise because islands are exposed to deep offshore water passing through deep channels while being protected from the open ocean storms and the strong inter-annual current temperature variability. Within these two seascapes, coral communities are shaped by population responses to the variable temperature distributions as determined by the taxa's associations with the competitive-stress-ruderal (CSR) life history groups. For example, competitive taxa were more abundant where temperature distributions were flat and lacked frequent warm water anomalies. In contrast, ruderal, weedy, and generalist taxa were more common where temperature distributions were centralized, standard deviations high, and warm water anomalies more frequent. Finally, stress-resistant taxa were more common in reefs with high temperature skew but flatter temperature distributions. The rare 1998 thermal anomaly impacted and disturbed the ruderal and stressed reef more than the competitive communities. Ruderal became more similar to stressed communities while the stressed community moved further from the mean before recovering towards the competitive community. Competitive taxa were more common on islands and the deeper fringing reef sites while ruderal were dominant in shallow fringing reef lagoons. Over time, islands were less disturbed than fringing reefs and maintained the highest coral cover, numbers of taxa, and most competitive or space-occupying taxa. However, some island reefs with a history of dynamite fishing aligned with the stress-resistant communities over the full study period. Compared to the in situ SST gauges at the study site, temperature proxies with global coverage were often good at estimating mean and standard deviations of the SSTs but much poorer at estimating the shape of the temperature distributions that reflect chronic and acute stress, as reflected by kurtosis and skewness metrics. Given that these stress variables were critical for understanding the impacts of rare climate disturbances, global climate models that use mean conditions are likely to be poor predictors of future impacts on corals, particularly their species and life history composition. Better predictions should be possible if appropriate chronic and acute stress metrics and their proxies are identified and used.
Collapse
Affiliation(s)
- Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States.
| |
Collapse
|
3
|
Changing role of coral reef marine reserves in a warming climate. Nat Commun 2020; 11:2000. [PMID: 32332721 PMCID: PMC7181733 DOI: 10.1038/s41467-020-15863-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/31/2020] [Indexed: 11/14/2022] Open
Abstract
Coral reef ecosystems are among the first to fundamentally change in structure due to climate change, which leads to questioning of whether decades of knowledge regarding reef management is still applicable. Here we assess ecological responses to no-take marine reserves over two decades, spanning a major climate-driven coral bleaching event. Pre-bleaching reserve responses were consistent with a large literature, with higher coral cover, more species of fish, and greater fish biomass, particularly of upper trophic levels. However, in the 16 years following coral mortality, reserve effects were absent for the reef benthos, and greatly diminished for fish species richness. Positive fish biomass effects persisted, but the groups of fish benefiting from marine reserves profoundly changed, with low trophic level herbivores dominating the responses. These findings highlight that while marine reserves still have important roles on coral reefs in the face of climate change, the species and functional groups they benefit will be substantially altered. It is unclear whether rapid climate change will alter the effectiveness of marine reserves. Here Graham et al. use a 20-year time-series from the Seychelles to show that marine reserves may not prevent climate-driven shifts in community composition, and that ecological responses to reserves are substantially altered.
Collapse
|
4
|
França FM, Benkwitt CE, Peralta G, Robinson JPW, Graham NAJ, Tylianakis JM, Berenguer E, Lees AC, Ferreira J, Louzada J, Barlow J. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190116. [PMID: 31983328 PMCID: PMC7017775 DOI: 10.1098/rstb.2019.0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Filipe M. França
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Guadalupe Peralta
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | - Jason M. Tylianakis
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
| | - Alexander C. Lees
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil
- Instituto de Geociências, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Júlio Louzada
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-000, MG, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-000, MG, Brazil
| |
Collapse
|
5
|
Cheng BS, Altieri AH, Torchin ME, Ruiz GM. Can marine reserves restore lost ecosystem functioning? A global synthesis. Ecology 2019; 100:e02617. [DOI: 10.1002/ecy.2617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Brian S. Cheng
- Tennenbaum Marine Observatories Network Smithsonian Institution Washington District of Columbia 20013 USA
- Smithsonian Environmental Research Center Edgewater Maryland 21037 USA
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts 01003 USA
| | - Andrew H. Altieri
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa Republic of Panama
- Department of Environmental Engineering Sciences University of Florida Gainesville Florida 32611 USA
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa Republic of Panama
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center Edgewater Maryland 21037 USA
| |
Collapse
|
6
|
Montero‐Serra I, Garrabou J, Doak DF, Ledoux J, Linares C. Marine protected areas enhance structural complexity but do not buffer the consequences of ocean warming for an overexploited precious coral. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignasi Montero‐Serra
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| | - Joaquim Garrabou
- Institut de Ciències del Mar CSIC Barcelona Spain
- Aix Marseille Université Université de Toulon CNRS, IRD, MIO Marseille France
| | - Daniel F. Doak
- Environmental Studies Program University of Colorado Boulder Colorado
| | - Jean‐Baptiste Ledoux
- Institut de Ciències del Mar CSIC Barcelona Spain
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
7
|
Bruno JF, Côté IM, Toth LT. Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience? ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:307-334. [PMID: 30606097 DOI: 10.1146/annurev-marine-010318-095300] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change-the root cause of global coral decline.
Collapse
Affiliation(s)
- John F Bruno
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA;
| | - Isabelle M Côté
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lauren T Toth
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, Florida 33701, USA
| |
Collapse
|
8
|
Francis F, Filbee-Dexter K, Yan H, Côté I. Invertebrate herbivores: Overlooked allies in the recovery of degraded coral reefs? Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
McClanahan TR, Muthiga NA. Geographic extent and variation of a coral reef trophic cascade. Ecology 2018; 97:1862-1872. [PMID: 27859162 DOI: 10.1890/15-1492.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange-lined triggerfish, an uncommon, slow-growing by-catch species with little monetary value drives the cascade and other predators appear unable to replace its ecological role in the presence of fishing. This suggests that restrictions on the catch of this species could increase the calcification service of coral reefs on a broad scale.
Collapse
Affiliation(s)
- T R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, New York, 10460, USA
| | - N A Muthiga
- Wildlife Conservation Society, Marine Programs, Bronx, New York, 10460, USA.,Wildlife Conservation Society, Marine Programs, POB 99470 - 80107, Mombasa, Kenya
| |
Collapse
|
10
|
Gao L, Hailu A. Site closure management strategies and the responsiveness of conservation outcomes in recreational fishing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:10-22. [PMID: 29149641 DOI: 10.1016/j.jenvman.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/03/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
We develop and use an empirically based model, which integrates fishing behaviour and a coral reef system, to evaluate outcomes from site closure strategies to manage the effects of recreational fishing. The model is designed to estimate management effects in complex settings with two-way feedback effects (between fishing and ecosystem dynamics) as well as spillover effects where the closure of a site (or sites) leads to the redistribution of fishing effort. An iconic coral reef system is used as a case study. The results demonstrate that some site closure strategies provide little incremental benefits over less stringent approaches. They also show that some strategies targeting more sites are actually inferior to more limited strategies, demonstrating that, in the analysis of complex problems involving feedback effects and substitutions, there is little substitute for the use of empirically based and sound modelling as the basis for informed conservation decision making and stakeholder consultation. These findings have direct relevance not only for policies aimed at improving recreational fishing management but also for securing the supply of marine ecosystem services.
Collapse
Affiliation(s)
- Lei Gao
- CSIRO, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Atakelty Hailu
- Agricultural and Resource Economics (ARE), UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| |
Collapse
|
11
|
Hartmann AC, Marhaver KL, Vermeij MJA. Corals in Healthy Populations Produce More Larvae Per Unit Cover. Conserv Lett 2017. [DOI: 10.1111/conl.12410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Aaron C. Hartmann
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography University of California, San Diego La Jolla CA 92093 USA
| | - Kristen L. Marhaver
- University of California, Merced Merced CA 95343 USA
- CARMABI Foundation Piscaderabaai z/n Willemstad Curaçao
| | - Mark J. A. Vermeij
- CARMABI Foundation Piscaderabaai z/n Willemstad Curaçao
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam The Netherlands
| |
Collapse
|
12
|
Ojea E, Pearlman I, Gaines SD, Lester SE. Fisheries regulatory regimes and resilience to climate change. AMBIO 2017; 46:399-412. [PMID: 27854068 PMCID: PMC5385667 DOI: 10.1007/s13280-016-0850-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/25/2016] [Accepted: 10/27/2016] [Indexed: 05/02/2023]
Abstract
Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.
Collapse
Affiliation(s)
- Elena Ojea
- Future Oceans Lab, University of Vigo, Edificio Torre CACTI, Campus Universitario, 36310 Vigo, Spain
- Basque Center for Climate Change (BC3), Bilbao, Spain
| | - Isaac Pearlman
- Bren School of Environmental Science & Management, University of California, 2400 Bren Hall, Santa Barbara, CA 93106-5131 USA
| | - Steven D. Gaines
- Bren School of Environmental Science & Management, University of California, 2400 Bren Hall, Santa Barbara, CA 93106-5131 USA
| | - Sarah E. Lester
- Department of Geography, Florida State University, Bellamy Building, Tallahassee, FL 32306-2190 USA
| |
Collapse
|
13
|
Ateweberhan M, McClanahan TR. Partitioning scleractinian coral diversity across reef sites and regions in the Western Indian Ocean. Ecosphere 2016. [DOI: 10.1002/ecs2.1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mebrahtu Ateweberhan
- Department of Biological Sciences University of Warwick CoventryCV4 7AL UK
- Marine Programs Wildlife Conservation Society BronxNew York 10460 USA
| | | |
Collapse
|
14
|
|
15
|
Croquer A, Cavada-Blanco F, Zubillaga AL, Agudo-Adriani EA, Sweet M. Is Acropora palmata recovering? A case study in Los Roques National Park, Venezuela. PeerJ 2016; 4:e1539. [PMID: 26839742 PMCID: PMC4734436 DOI: 10.7717/peerj.1539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022] Open
Abstract
Eight years ago (2007), the distribution and status of Acropora palmata was quantified throughout Los Roques archipelago in Venezuela. The aim was to produce a baseline study for this species which combined population genetics with demographic data. The results highlighted that A. palmata had the potential to recover in at least 6 out of 10 sites surveyed. Recovery potential was assumed to be high at sites with a relatively high abundance of the coral, low disease prevalence, high genetic diversity, and high rates of sexual reproduction. However, as noted, Zubillaga et al. (2008) realized recovery was still strongly dependent on local and regional stressors. In 2014 (this study), the status of A. palmata was re-evaluated at Los Roques. We increased the number of sites from 10 in the original baseline study to 106. This allowed us to assess the population status throughout the entirety of the MPA. Furthermore, we also identified local threats that may have hindered population recovery. Here, we show that A. palmata now has a relatively restricted distribution throughout the park, only occurring in 15% of the sites surveyed. Large stands of old dead colonies were common throughout the archipelago; a result which demonstrates that this species has lost almost 50% of its original distribution over the past decades. The majority of corals recorded were large adults (∼2 m height), suggesting that these older colonies might be less susceptible or more resilient to local and global threats. However, 45% of these surviving colonies showed evidence of partial mortality and degradation of living tissues. Interestingly, the greatest increase in partial mortality occurred at sites with the lowest levels of protection (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${X}_{o}^{2}=5.4> {X}_{c}^{2}=4.5$\end{document}Xo2=5.4>Xc2=4.5; df = 4, p < 0.05). This may suggest there is a positive role of small scale marine management in assisting reef recovery. We also recorded a significant reduction (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${X}_{\mathrm{exp}}^{2}=126.8> {X}_{\mathrm{cri}}^{2}=15.5$\end{document}Xexp2=126.8>Xcri2=15.5; df = 8; p < 0.05) in the density of A. palmata in sites that had previously been categorized as having a high potential for recovery. One explanation for this continued decline may be due to the fact that over the past 10 years, two massive bleaching events have occurred throughout the Caribbean with records showing that Los Roques has experienced unprecedented declines in overall coral cover. We therefore conclude that although local protection could promote recovery, the impacts from global threats such as ocean warming may hamper the recovery of this threatened species.
Collapse
Affiliation(s)
- Aldo Croquer
- Estudios Ambientales, Universidad Simón Bolívar , Caracas , Venezuela
| | | | | | | | - Michael Sweet
- Environmental Sustainability Research Centre, College of Life and Natural Sciences, University of Derby , Derby , United Kingdom
| |
Collapse
|
16
|
|
17
|
Gilby BL, Maxwell PS, Tibbetts IR, Stevens T. Bottom-Up Factors for Algal Productivity Outweigh No-Fishing Marine Protected Area Effects in a Marginal Coral Reef System. Ecosystems 2015. [DOI: 10.1007/s10021-015-9883-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Hein MY, Lamb JB, Scott C, Willis BL. Assessing baseline levels of coral health in a newly established marine protected area in a global scuba diving hotspot. MARINE ENVIRONMENTAL RESEARCH 2015; 103:56-65. [PMID: 25460062 DOI: 10.1016/j.marenvres.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/08/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
While coral reefs are increasingly threatened worldwide, they are also increasingly used for recreational activities. Given the environmental and socio-economic significance of coral reefs, understanding the links between human activities and coral health and evaluating the efficacy of marine protected areas (MPAs) as a management regime to prevent further deterioration are critically important. The aim of this study was to quantify indicators of coral health at sites inside and outside a newly rezoned MPA framework in the dive tourism hotspot of Koh Tao, Thailand. We found that patterns in the health and diversity of coral communities one year on did not reflect the protected status conferred by newly zoned MPAs, but instead reflected past history of recreational use around the island. Sites characterised as past high-use sites had lower mean percent cover of hard corals overall and of corals in the typically disease- and disturbance-susceptible family Acroporidae, but higher mean cover of species in the more weedy family Agariciidae. Past high use sites also had higher mean prevalence of infectious diseases and other indicators of compromised health. Sites within the newly established MPAs are currently subjected to higher levels of environmental and anthropogenic pressures, with sedimentation, algal overgrowth, feeding scars from Drupella snails, and breakage particularly prevalent compared to sites in non-MPA areas. Given the greater prevalence of these factors within protected sites, the capacity of the MPA framework to effectively prevent further deterioration of Koh Tao's reefs is unclear. Nevertheless, our study constitutes a strong baseline for future long-term evaluations of the potential of MPAs to maintain coral health and diversity on highly threatened reefs.
Collapse
Affiliation(s)
- Margaux Y Hein
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, Townsville, Queensland 4811, Australia.
| | - Joleah B Lamb
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, Townsville, Queensland 4811, Australia; Australian Institute of Marine Science & James Cook University (AIMS@JCU), Townsville, Queensland 4811, Australia
| | - Chad Scott
- New Heaven Reef Conservation Program, 48 Moo 3, Koh Tao, Suratthani, 84360, Thailand
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia; Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, Townsville, Queensland 4811, Australia; Australian Institute of Marine Science & James Cook University (AIMS@JCU), Townsville, Queensland 4811, Australia
| |
Collapse
|
19
|
Houk P, Benavente D, Iguel J, Johnson S, Okano R. Coral reef disturbance and recovery dynamics differ across gradients of localized stressors in the Mariana Islands. PLoS One 2014; 9:e105731. [PMID: 25165893 PMCID: PMC4148314 DOI: 10.1371/journal.pone.0105731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
The individual contribution of natural disturbances, localized stressors, and environmental regimes upon longer-term reef dynamics remains poorly resolved for many locales despite its significance for management. This study examined coral reefs in the Commonwealth of the Northern Mariana Islands across a 12-year period that included elevated Crown-of-Thorns Starfish densities (COTS) and tropical storms that were drivers of spatially-inconsistent disturbance and recovery patterns. At the island scale, disturbance impacts were highest on Saipan with reduced fish sizes, grazing urchins, and water quality, despite having a more favorable geological foundation for coral growth compared with Rota. However, individual drivers of reef dynamics were better quantified through site-level investigations that built upon island generalizations. While COTS densities were the strongest predictors of coral decline as expected, interactive terms that included wave exposure and size of the overall fish assemblages improved models (R2 and AIC values). Both wave exposure and fish size diminished disturbance impacts and had negative associations with COTS. However, contrasting findings emerged when examining net ecological change across the 12-year period. Wave exposure had a ubiquitous, positive influence upon the net change in favorable benthic substrates (i.e. corals and other heavily calcifying substrates, R2 = 0.17 for all reeftypes grouped), yet including interactive terms for herbivore size and grazing urchin densities, as well as stratifying by major reeftypes, substantially improved models (R2 = 0.21 to 0.89, lower AIC scores). Net changes in coral assemblages (i.e., coral ordination scores) were more sensitive to herbivore size or the water quality proxy acting independently (R2 = 0.28 to 0.44). We conclude that COTS densities were the strongest drivers of coral decline, however, net ecological change was most influenced by localized stressors, especially herbivore sizes and grazing urchin densities. Interestingly, fish size, rather than biomass, was consistently a better predictor, supporting allometric, size-and-function relationships of fish assemblages. Management implications are discussed.
Collapse
Affiliation(s)
- Peter Houk
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam; Pacific Marine Resources Institute, Saipan, Northern Mariana Islands
| | - David Benavente
- CNMI Bureau of Environmental and Coastal Quality, Saipan, Northern Mariana Islands
| | - John Iguel
- CNMI Bureau of Environmental and Coastal Quality, Saipan, Northern Mariana Islands
| | - Steven Johnson
- CNMI Bureau of Environmental and Coastal Quality, Saipan, Northern Mariana Islands
| | - Ryan Okano
- CNMI Bureau of Environmental and Coastal Quality, Saipan, Northern Mariana Islands
| |
Collapse
|
20
|
Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS One 2014; 9:e93385. [PMID: 24718371 PMCID: PMC3981710 DOI: 10.1371/journal.pone.0093385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.
Collapse
|
21
|
McClanahan TR, Muthiga NA. Community change and evidence for variable warm-water temperature adaptation of corals in Northern Male Atoll, Maldives. MARINE POLLUTION BULLETIN 2014; 80:107-113. [PMID: 24486038 DOI: 10.1016/j.marpolbul.2014.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
This study provides a descriptive analysis of the North Male, Maldives seven years after the 1998 bleaching disturbance to determine the state of the coral community composition, the recruitment community, evidence for recovery, and adaptation to thermal stress. Overall, hard coral cover recovered at a rate commonly reported in the literature but with high spatial variability and shifts in taxonomic composition. Massive Porites, Pavona, Synarea, and Goniopora were unusually common in both the recruit and adult communities. Coral recruitment was low and some coral taxa, namely Tubipora, Seriatopora, and Stylophora, were rarer than expected. A study of the bleaching response to a thermal anomaly in 2005 indicated that some taxa, including Leptoria, Platygyra, Favites, Fungia, Hydnophora, and Galaxea astreata, bleached as predicted while others, including Acropora, Pocillopora, branching Porites, Montipora, Stylophora, and Alveopora, bleached less than predicted. This indicates variable-adaptation potentials among the taxa and considerable potential for ecological reorganization of the coral community.
Collapse
Affiliation(s)
- T R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States.
| | - N A Muthiga
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States
| |
Collapse
|
22
|
Gurney GG, Melbourne-Thomas J, Geronimo RC, Aliño PM, Johnson CR. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change? PLoS One 2013; 8:e80137. [PMID: 24260347 PMCID: PMC3832406 DOI: 10.1371/journal.pone.0080137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022] Open
Abstract
Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems.
Collapse
Affiliation(s)
- Georgina G. Gurney
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Melbourne-Thomas
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Kingston, Tasmania, Australia
- Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Perry M. Aliño
- Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Craig R. Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Ruiz Sebastián C, McClanahan TR. Description and validation of production processes in the coral reef ecosystem model CAFFEE (Coral–Algae–Fish-Fisheries Ecosystem Energetics) with a fisheries closure and climatic disturbance. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2013.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Smith TB, Brandt ME, Calnan JM, Nemeth RS, Blondeau J, Kadison E, Taylor M, Rothenberger P. Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere 2013. [DOI: 10.1890/es13-00107.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Carassou L, Léopold M, Guillemot N, Wantiez L, Kulbicki M. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific). PLoS One 2013; 8:e60564. [PMID: 23577123 PMCID: PMC3618332 DOI: 10.1371/journal.pone.0060564] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/27/2013] [Indexed: 11/20/2022] Open
Abstract
Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.
Collapse
Affiliation(s)
- Laure Carassou
- Research Unit 227 (Coreus), Institut de Recherche pour le Développement (IRD), Nouméa, New Caledonia.
| | | | | | | | | |
Collapse
|
26
|
The Status of Coral Reef Fish Assemblages in the Chagos Archipelago, with Implications for Protected Area Management and Climate Change. CORAL REEFS OF THE WORLD 2013. [DOI: 10.1007/978-94-007-5965-7_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
27
|
Wilson SK, Graham NAJ, Fisher R, Robinson J, Nash K, Chong-Seng K, Polunin NVC, Aumeeruddy R, Quatre R. Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2012; 26:995-1004. [PMID: 22971046 DOI: 10.1111/j.1523-1739.2012.01926.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/20/2012] [Indexed: 06/01/2023]
Abstract
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life-form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained.
Collapse
Affiliation(s)
- Shaun K Wilson
- Marine Science Program, Department of Environment and Conservation, Kensington, WA, 6151, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McClanahan TR, Donner SD, Maynard JA, MacNeil MA, Graham NAJ, Maina J, Baker AC, Alemu I JB, Beger M, Campbell SJ, Darling ES, Eakin CM, Heron SF, Jupiter SD, Lundquist CJ, McLeod E, Mumby PJ, Paddack MJ, Selig ER, van Woesik R. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS One 2012; 7:e42884. [PMID: 22952618 PMCID: PMC3430673 DOI: 10.1371/journal.pone.0042884] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022] Open
Abstract
Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility and defensibility of including key resilience metrics in evaluations of coral reefs, as well as reduce costs. Adaptation, marine protected areas, priority setting, resistance, recovery.
Collapse
Affiliation(s)
- Tim R McClanahan
- Marine Programs, Wildlife Conservation Society, Bronx, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
van Woesik R, Franklin EC, O'Leary J, McClanahan TR, Klaus JS, Budd AF. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc Biol Sci 2012; 279:2448-56. [PMID: 22337694 PMCID: PMC3350676 DOI: 10.1098/rspb.2011.2621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/27/2012] [Indexed: 11/12/2022] Open
Abstract
The risk of global extinction of reef-building coral species is increasing. We evaluated extinction risk using a biological trait-based resiliency index that was compared with Caribbean extinction during the Plio-Pleistocene, and with extinction risk determined by the International Union for Conservation of Nature (IUCN). Through the Plio-Pleistocene, the Caribbean supported more diverse coral assemblages than today and shared considerable overlap with contemporary Indo-Pacific reefs. A clear association was found between extant Plio-Pleistocene coral genera and our positive resilience scores. Regional extinction in the past and vulnerability in the present suggests that Pocillopora, Stylophora and foliose Pavona are among the most susceptible taxa to local and regional isolation. These same taxa were among the most abundant corals in the Caribbean Pliocene. Therefore, a widespread distribution did not equate with immunity to regional extinction. The strong relationship between past and present vulnerability suggests that regional extinction events are trait-based and not merely random episodes. We found several inconsistencies between our data and the IUCN scores, which suggest a need to critically re-examine what constitutes coral vulnerability.
Collapse
Affiliation(s)
- Robert van Woesik
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Żychaluk K, Bruno JF, Clancy D, McClanahan TR, Spencer M. Data-driven models for regional coral-reef dynamics. Ecol Lett 2011; 15:151-8. [DOI: 10.1111/j.1461-0248.2011.01720.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Lowe PK, Bruno JF, Selig ER, Spencer M. Empirical models of transitions between coral reef states: effects of region, protection, and environmental change. PLoS One 2011; 6:e26339. [PMID: 22073157 PMCID: PMC3206808 DOI: 10.1371/journal.pone.0026339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/25/2011] [Indexed: 12/02/2022] Open
Abstract
There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions. We analyzed reef surveys from the Caribbean and GBR (1996–2006). We defined a set of reef states distinguished by coral and macroalgal cover, and obtained Bayesian estimates of the annual probabilities of transitions between these states. The Caribbean and GBR had different transition probabilities, and therefore different rates of change in reef condition. This could be due to differences in species composition, management or the nature and extent of disturbances between these regions. We then estimated equilibrium probability distributions for reef states, and coral and macroalgal cover under constant environmental conditions. In both regions, the current distributions are close to equilibrium. In the Caribbean, coral cover is much lower and macroalgal cover is higher at equilibrium than in the GBR. We found no evidence for differences in transition probabilities between the first and second halves of our survey period, or between Caribbean reefs inside and outside marine protected areas. However, our power to detect such differences may have been low. We also examined the effects of altering transition probabilities on the community state equilibrium, along a continuum from unfavourable (e.g., increased sea surface temperature) to favourable (e.g., improved management) conditions. Both regions showed similar qualitative responses, but different patterns of uncertainty. In the Caribbean, uncertainty was greatest about effects of favourable changes, while in the GBR, we are most uncertain about effects of unfavourable changes. Our approach could be extended to provide risk analysis for management decisions.
Collapse
Affiliation(s)
- Phillip K Lowe
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | |
Collapse
|
32
|
O'Leary JK, McClanahan TR. Trophic cascades result in large‐scale coralline algae loss through differential grazer effects. Ecology 2010; 91:3584-97. [PMID: 21302830 DOI: 10.1890/09-2059.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jennifer K. O'Leary
- University of California, Santa Cruz, 100 Schaffer Road, Santa Cruz, California 95060 USA
| | | |
Collapse
|
33
|
Evolving science of marine reserves: new developments and emerging research frontiers. Proc Natl Acad Sci U S A 2010; 107:18251-5. [PMID: 20978212 DOI: 10.1073/pnas.1002098107] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks.
Collapse
|
34
|
Houk P, Musburger C, Wiles P. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa. PLoS One 2010; 5:e13913. [PMID: 21085715 PMCID: PMC2978088 DOI: 10.1371/journal.pone.0013913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022] Open
Abstract
Background Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. Methodology/Principal Findings This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Conclusions/Significance Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.
Collapse
Affiliation(s)
- Peter Houk
- Pacific Marine Resources Institute, Saipan, Commonwealth of the Northern Mariana Islands.
| | | | | |
Collapse
|
35
|
Affiliation(s)
- Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | |
Collapse
|
36
|
Darling ES, McClanahan TR, Côté IM. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv Lett 2010. [DOI: 10.1111/j.1755-263x.2009.00089.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Selig ER, Bruno JF. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS One 2010; 5:e9278. [PMID: 20174644 PMCID: PMC2822846 DOI: 10.1371/journal.pone.0009278] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/19/2010] [Indexed: 11/18/2022] Open
Abstract
Background A variety of human activities have led to the recent global decline of reef-building corals [1], [2]. The ecological, social, and economic value of coral reefs has made them an international conservation priority [2], [3]. The success of Marine Protected Areas (MPAs) in restoring fish populations [4] has led to optimism that they could also benefit corals by indirectly reducing threats like overfishing, which cause coral degradation and mortality [2], [5]. However, the general efficacy of MPAs in increasing coral reef resilience has never been tested. Methodology/Principal Findings We compiled a global database of 8534 live coral cover surveys from 1969–2006 to compare annual changes in coral cover inside 310 MPAs to unprotected areas. We found that on average, coral cover within MPAs remained constant, while coral cover on unprotected reefs declined. Although the short-term differences between unprotected and protected reefs are modest, they could be significant over the long-term if the effects are temporally consistent. Our results also suggest that older MPAs were generally more effective in preventing coral loss. Initially, coral cover continued to decrease after MPA establishment. Several years later, however, rates of coral cover decline slowed and then stabilized so that further losses stopped. Conclusions/Significance These findings suggest that MPAs can be a useful tool not only for fisheries management, but also for maintaining coral cover. Furthermore, the benefits of MPAs appear to increase with the number of years since MPA establishment. Given the time needed to maximize MPA benefits, there should be increased emphasis on implementing new MPAs and strengthening the enforcement of existing MPAs.
Collapse
Affiliation(s)
- Elizabeth R Selig
- Curriculum in Ecology, University of North Carolina, Chapel Hill, North Carolina, United States of America.
| | | |
Collapse
|
38
|
Mumby PJ, Harborne AR. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS One 2010; 5:e8657. [PMID: 20066158 PMCID: PMC2799675 DOI: 10.1371/journal.pone.0008657] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
The fisheries and biodiversity benefits of marine reserves are widely recognised but there is mounting interest in exploiting the importance of herbivorous fishes as a tool to help ecosystems recover from climate change impacts. This approach might be particularly suitable for coral reefs, which are acutely threatened by climate change, yet the trophic cascades generated by reserves are strong enough that they might theoretically enhance the rate of coral recovery after disturbance. However, evidence for reserves facilitating coral recovery has been lacking. Here we investigate whether reductions in macroalgal cover, caused by recovery of herbivorous parrotfishes within a reserve, have resulted in a faster rate of coral recovery than in areas subject to fishing. Surveys of ten sites inside and outside a Bahamian marine reserve over a 2.5-year period demonstrated that increases in coral cover, including adjustments for the initial size-distribution of corals, were significantly higher at reserve sites than those in non-reserve sites. Furthermore, macroalgal cover was significantly negatively correlated with the change in total coral cover over time. Recovery rates of individual species were generally consistent with small-scale manipulations on coral-macroalgal interactions, but also revealed differences that demonstrate the difficulties of translating experiments across spatial scales. Size-frequency data indicated that species which were particularly affected by high abundances of macroalgae outside the reserve had a population bottleneck restricting the supply of smaller corals to larger size classes. Importantly, because coral cover increased from a heavily degraded state, and recovery from such states has not previously been described, similar or better outcomes should be expected for many reefs in the region. Reducing herbivore exploitation as part of an ecosystem-based management strategy for coral reefs appears to be justified.
Collapse
Affiliation(s)
- Peter J Mumby
- Marine Spatial Ecology Lab, School of BioSciences, Hatherly Laboratory, University of Exeter, Exeter, United Kingdom.
| | | |
Collapse
|
39
|
Donner SD. Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 2009; 4:e5712. [PMID: 19492060 PMCID: PMC2686172 DOI: 10.1371/journal.pone.0005712] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. METHODOLOGY/PRINCIPAL FINDINGS This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the "committed warming" for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p> or =0.2 year(-1)) thermal stress by 2080. An additional "societal" warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO(2) stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5 degrees C would delay the thermal stress forecast by 50-80 years. CONCLUSIONS/SIGNIFICANCE The results suggest that adaptation -- via biological mechanisms, coral community shifts and/or management interventions -- could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO(2) concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events.
Collapse
Affiliation(s)
- Simon D Donner
- Department of Geography, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Affiliation(s)
- Bernhard Riegl
- National Coral Reef Institute, Nova Southeastern University, Dania, Florida 33004, USA.
| | | | | | | | | |
Collapse
|
41
|
McClanahan TR, Weil E, Cortés J, Baird AH, Ateweberhan M. Consequences of Coral Bleaching for Sessile Reef Organisms. ECOLOGICAL STUDIES 2009. [DOI: 10.1007/978-3-540-69775-6_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Mora C. Degradation of Caribbean coral reefs: focusing on proximal rather than ultimate drivers. Reply to Rogers. Proc Biol Sci 2008. [DOI: 10.1098/rspb.2008.1289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Camilo Mora
- Scripps Institution of Oceanography, University of CaliforniaSan Diego, CA 92093, USA
- Department of Biological Sciences, Dalhousie UniversityHalifax, Nova Scotia, Canada B3H 4J1
| |
Collapse
|
43
|
Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Polunin NVC, Jennings S, Chabanet P, Clark S, Spalding MD, Letourneur Y, Bigot L, Galzin R, Ohman MC, Garpe KC, Edwards AJ, Sheppard CRC. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS One 2008; 3:e3039. [PMID: 18728776 PMCID: PMC2516599 DOI: 10.1371/journal.pone.0003039] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Collapse
Affiliation(s)
- Nicholas A J Graham
- School of Marine Science & Technology, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|