1
|
McQueen A, Klaassen M, Tattersall GJ, Ryding S, Atkinson R, Jessop R, Hassell CJ, Christie M, Fröhlich A, Symonds MRE. Shorebirds Are Shrinking and Shape-Shifting: Declining Body Size and Lengthening Bills in the Past Half-Century. Ecol Lett 2024; 27:e14513. [PMID: 39739314 DOI: 10.1111/ele.14513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 01/02/2025]
Abstract
Animals are predicted to shrink and shape-shift as the climate warms, declining in size, while their appendages lengthen. Determining which types of species are undergoing these morphological changes, and why, is critical to understanding species responses to global change, including potential adaptation to climate warming. We examine body size and bill length changes in 25 shorebird species using extensive field data (> 200,000 observations) collected over 46 years (1975-2021) by community scientists. We show widespread body size declines over time, and after short-term exposure to warmer summers. Meanwhile, shorebird bills are lengthening over time but shorten after hot summers. Shrinking and shape-shifting patterns are consistent across ecologically diverse shorebirds from tropical and temperate Australia, are more pronounced in smaller species and vary according to migration behaviour. These widespread morphological changes could be explained by multiple drivers, including adaptive and maladaptive responses to nutritional stress, or by thermal adaptation to climate warming.
Collapse
Affiliation(s)
- A McQueen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - M Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - G J Tattersall
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada
| | - S Ryding
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - R Atkinson
- BirdLife Australia, Carlton, Victoria, Australia
| | - R Jessop
- BirdLife Australia, Carlton, Victoria, Australia
| | - C J Hassell
- Global Flyway Network, Broome, Western Australia, Australia
| | - M Christie
- Friends of Shorebirds SE, Carpenter Rocks, South Australia, Australia
| | - A Fröhlich
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - M R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
2
|
Russo D, Jones G, Martinoli A, Preatoni DG, Spada M, Pereswiet‐Soltan A, Cistrone L. Climate is changing, are European bats too? A multispecies analysis of trends in body size. Ecol Evol 2024; 14:e10872. [PMID: 38333101 PMCID: PMC10850807 DOI: 10.1002/ece3.10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
- School of Biological SciencesUniversity of BristolBristolUK
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | - Damiano G. Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | | | | | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
| |
Collapse
|
3
|
Persson E, Ó Cuív C, Nord A. Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail. J Exp Biol 2024; 227:jeb246876. [PMID: 38073475 PMCID: PMC10906667 DOI: 10.1242/jeb.246876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Changes in environmental temperature during development can affect growth, metabolism and temperature tolerance of the offspring. We know little about whether such changes remain to adulthood, which is important to understand the links between climate change, development and fitness. We investigated whether phenotypic consequences of the thermal environment in early life remained in adulthood in two studies on Japanese quail (Coturnix japonica). Birds were raised under simulated heatwave, cold snap or control conditions, from hatching until halfway through the growth period, and then in common garden conditions until reproductively mature. We measured biometric and thermoregulatory [metabolic heat production (MHP), evaporative water and heat loss (EWL, EHL) and body temperature] responses to variation in submaximal air temperature at the end of the thermal acclimation period and in adulthood. Warm birds had lower MHP than control birds at the end of the thermal acclimation period and, in the warmest temperature studied (40°C), also had higher evaporative cooling capacity compared with controls. No analogous responses were recorded in cold birds, although they had higher EWL than controls in all but the highest test temperature. None of the effects found at the end of the heatwave or cold snap period remained until adulthood. This implies that chicks exposed to higher temperatures could be more prepared to counter heat stress as juveniles but that they do not enjoy any advantages of such developmental conditions when facing high temperatures as adults. Conversely, cold temperature does not seem to confer any priming effects in adolescence.
Collapse
Affiliation(s)
- Elin Persson
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| | - Ciarán Ó Cuív
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 63 Lund, Sweden
| |
Collapse
|
4
|
Maldonado-Coelho M, Dos Santos SS, Isler ML, Svensson-Coelho M, Sotelo-Muñoz M, Miyaki CY, Ricklefs RE, Blake JG. Evolutionary and Ecological Processes Underlying Geographic Variation in Innate Bird Songs. Am Nat 2023; 202:E31-E52. [PMID: 37531273 DOI: 10.1086/725016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractEcological and evolutionary processes underlying spatial variation in signals involved in mate recognition and reproductive isolation are crucial to understanding the causes of population divergence and speciation. Here, to test hypotheses concerning the causes of song divergence, we examine how songs of two sister species of Atlantic Forest suboscine birds with innate songs, the Pyriglena fire-eye antbirds, vary across their ranges. Specifically, we evaluated the influence of isolation by distance and introgressive hybridization, as well as morphological and environmental variation, on geographic variation in male songs. Analyses based on 496 male vocalizations from 63 locations across a 2,200-km latitudinal transect revealed clinal changes in the structure of songs and showed that introgressive hybridization increases both the variability and the homogenization of songs in the contact zone between the two species. We also found that isolation by distance, morphological constraints, the environment, and genetic introgression independently predicted song variation across geographic space. Our study shows the importance of an integrative approach that investigates the roles of distinct ecological and evolutionary processes that influence acoustic signal evolution.
Collapse
|
5
|
Andrade-González VM, Vázquez-Miranda H, Ornelas-García CP, Sosa-López JR. Ecological factors drive the divergence of morphological, colour and behavioural traits in cactus wrens (Aves, Troglodytidae). Proc Biol Sci 2023; 290:20230215. [PMID: 37312552 PMCID: PMC10265019 DOI: 10.1098/rspb.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The study of ecological mechanisms influencing organisms' phenotypic variation is a central subject of evolutionary biology. In this study, we characterized morphological, plumage colour and acoustic variation in cactus wrens Campylorhynchus brunneicapillus throughout its distribution. We assessed whether Gloger's, Allen's and Bergmann's ecogeographical rules, and the acoustic adaptation hypothesis relate to geographical trait variation. We analysed specimen coloration in belly and crown plumage, beak shape and structural song characteristics. We tested whether the subspecific classification or the peninsular/mainland groups mirrored the geographical variation in phenotypes and whether ecological factors were associated with patterns of trait variation. Our results suggest that colour, beak shape and acoustic traits varied across the range, in agreement with two lineages described by genetics. The simple versions of Gloger's and Allen's rules are related to variations in colour traits and morphology. Conversely, patterns of phenotypic variation did not support Bergmann's rule. The acoustic adaptation hypothesis supported song divergence for frequency-related traits. Phenotypic variation supports the hypothesis of two taxa: C. affinis in the Baja California peninsula and C. brunneicapillus in the mainland. The ecological factors are associated with phenotypic trait adaptations, suggesting that divergence between lineages could result from ecological divergence.
Collapse
Affiliation(s)
- Violeta Monserrath Andrade-González
- Colección Nacional de Aves, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
| | - Hernán Vázquez-Miranda
- Colección Nacional de Aves, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
| | - José Roberto Sosa-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca (CIIDIR), Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, CP 71230, México
| |
Collapse
|
6
|
Test of Ecogeographical Rules on Sparrows (Passer spp.) along the Elevation Gradient of the Himalaya in Central Nepal. ECOLOGIES 2022. [DOI: 10.3390/ecologies3040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Animals inhabiting colder climates have a larger body size (Bergmann’s rule) and smaller body extremities (Allen’s rule), which help homeothermic animals to retain heat. Such ecogeographical phenomena have frequently been observed in animals along the latitudinal gradient and have occasionally been tested along the elevational gradient. This study tested whether these ecogeographic rules hold true for the morphology of sparrows (Passer spp.) along the elevational gradient offered by the Himalaya in central Nepal. Seventy house sparrows and twenty-eight tree sparrows were captured from 22 different localities of central Nepal between 100 and 3400 m asl, and morphological traits such as body size (body mass, tarsus length, wing length and tail length) and body extremities (bill length and bill width) were measured. Linear regression analysis was used to test the association of morphological measurements with elevation and climatic variables. House sparrows (Passer domesticus) had a wider elevational distribution range and exhibited significantly larger body sizes than the Eurasian tree sparrows (P. montanus). House sparrows had larger body sizes and smaller bills at higher elevations in adherence to Bergmann’s rule and Allen’s rule. Bill length in house sparrows showed a positive association with the temperature following the proposition of Allen’s rule. However, the morphological measurements in Eurasian tree sparrows did not show a distinct pattern with elevation and climatic variables. Therefore, this study concludes that ecogeographical phenomena such as Bergmann’s rule and Allen’s rule could be species-specific based on their biological and ecological characteristics.
Collapse
|
7
|
Davy CM, von Zuben V, Kukka PM, Gerber BD, Slough BG, Jung TS. Rapidly declining body size in an insectivorous bat is associated with increased precipitation and decreased survival. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2639. [PMID: 35443093 PMCID: PMC10078423 DOI: 10.1002/eap.2639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 05/30/2023]
Abstract
Reduced food availability is implicated in declines in avian aerial insectivores, but the effect of nutritional stress on mammalian aerial insectivores is unclear. Unlike birds, insectivorous bats provision their young through lactation, which might protect nursing juveniles when prey availability is low but could increase the energetic burden on lactating females. We analyzed a 15-year capture-mark-recapture data set from 5312 individual little brown myotis (Myotis lucifugus) captured at 11 maternity colonies in northwestern Canada, to test the hypothesis that nutritional stress is impacting these mammalian aerial insectivores. We used long-bone (forearm [FA]) length as a proxy for relative access to nutrition during development, and body mass as a proxy for access to nutrition prior to capture. Average FA length and body mass both decreased significantly over the study period in adult females and juveniles, suggesting decreased access to nutrition. Effect sizes were very small, similar to those reported for declining body size in avian aerial insectivores. Declines in juvenile body mass were only observed in individuals captured in late summer when they were foraging independently, supporting our hypothesis that lactation provides some protection to nursing young during periods of nutritional stress. Potential drivers of the decline in bat size include one or both of (1) declining insect (prey) abundance, and (2) declining prey availability. Echolocating insectivorous bats cannot forage effectively during rainfall, which is increasing in our study area. The body mass of captured adult females and juveniles in our study was lower, on average, after periods of high rainfall, and higher after warmer-than-average periods. Finally, survival models revealed a positive association between FA length and survival, suggesting a fitness consequence to declines in body size. Our study area has not yet been impacted by bat white-nose syndrome (WNS), but research elsewhere has suggested that fatter bats are more likely to survive infection. We found evidence for WNS-independent shifts in the body size of little brown myotis, which can inform studies investigating population responses to WNS. More broadly, the cumulative effects of multiple stressors (e.g., disease, nutritional stress, climate change, and other pressures) on mammalian aerial insectivores require urgent attention.
Collapse
Affiliation(s)
- Christina M. Davy
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Northern Development, Mines, Natural Resources and ForestryPeterboroughOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Valerie von Zuben
- Wildlife Research and Monitoring SectionOntario Ministry of Northern Development, Mines, Natural Resources and ForestryPeterboroughOntarioCanada
| | - Piia M. Kukka
- Department of EnvironmentGovernment of YukonWhitehorseYukon TerritoryCanada
| | - Brian D. Gerber
- Department of Natural Resources ScienceUniversity of Rhode IslandKingstonRhode IslandUSA
| | | | - Thomas S. Jung
- Department of EnvironmentGovernment of YukonWhitehorseYukon TerritoryCanada
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
8
|
Warming temperatures drive at least half of the magnitude of long-term trait changes in European birds. Proc Natl Acad Sci U S A 2022; 119:e2105416119. [PMID: 35238646 PMCID: PMC8915791 DOI: 10.1073/pnas.2105416119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Climate change is impacting wild populations, but its relative importance compared to other causes of change is still unclear. Many studies assume that changes in traits primarily reflect effects of climate change, but this assumption is rarely tested. We show that in European birds global warming was likely the single most important contributor to temporal trends in laying date, body condition, and offspring number. However, nontemperature factors were also important and acted in the same direction, implying that attributing temporal trends solely to rising temperatures overestimates the impact of climate warming. Differences among species in the amount of trait change were predominantly determined by these nontemperature effects, suggesting that species differences are not due to variation in sensitivity to temperature. Many wild populations are experiencing temporal changes in life-history and other phenotypic traits, and these changes are frequently assumed to be driven by climate change rather than nonclimatic drivers. However, this assumption relies on three conditions: that local climate is changing, traits are sensitive to climate variability, and other drivers are not also changing over time. Although many studies acknowledge one or more of these conditions, all three are rarely checked simultaneously. Consequently, the relative contribution of climate change to trait change, and the variation in this contribution across traits and species, remain unclear. We used long-term datasets on 60 bird species in Europe to test the three conditions in laying date, offspring number, and body condition and used a method that quantifies the contribution of warming temperatures to changes in traits relative to other effects. Across species, approximately half of the magnitude of changes in traits could be attributed to rising mean temperature, suggesting that increasing temperatures are likely the single most important contributor to temporal trends and emphasizes the impact that global warming is having on natural populations. There were also substantial nontemperature-related temporal trends (presumably due to other changes such as urbanization), which generally caused trait change in the same direction as warming. Attributing temporal trends solely to warming thus overestimates the impact of warming. Furthermore, contributions from nontemperature drivers explained most of the interspecific variation in trait changes, raising concerns about comparative studies that attribute differences in temporal trends to species differences in climate-change sensitivity.
Collapse
|
9
|
Sætre CLC, Eroukhmanoff F, Rönkä K, Kluen E, Thorogood R, Torrance J, Tracey A, Chow W, Pelan S, Howe K, Jakobsen KS, Tørresen OK. A Chromosome-Level Genome Assembly of the Reed Warbler (Acrocephalus scirpaceus). Genome Biol Evol 2021; 13:6367782. [PMID: 34499122 PMCID: PMC8459166 DOI: 10.1093/gbe/evab212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The reed warbler (Acrocephalus scirpaceus) is a long-distance migrant passerine with a wide distribution across Eurasia. This species has fascinated researchers for decades, especially its role as host of a brood parasite, and its capacity for rapid phenotypic change in the face of climate change. Currently, it is expanding its range northwards in Europe, and is altering its migratory behavior in certain areas. Thus, there is great potential to discover signs of recent evolution and its impact on the genomic composition of the reed warbler. Here, we present a high-quality reference genome for the reed warbler, based on PacBio, 10×, and Hi-C sequencing. The genome has an assembly size of 1,075,083,815 bp with a scaffold N50 of 74,438,198 bp and a contig N50 of 12,742,779 bp. BUSCO analysis using aves_odb10 as a model showed that 95.7% of BUSCO genes were complete. We found unequivocal evidence of two separate macrochromosomal fusions in the reed warbler genome, in addition to the previously identified fusion between chromosome Z and a part of chromosome 4A in the Sylvioidea superfamily. We annotated 14,645 protein-coding genes, and a BUSCO analysis of the protein sequences indicated 97.5% completeness. This reference genome will serve as an important resource, and will provide new insights into the genomic effects of evolutionary drivers such as coevolution, range expansion, and adaptations to climate change, as well as chromosomal rearrangements in birds.
Collapse
Affiliation(s)
| | | | - Katja Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Edward Kluen
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - James Torrance
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| |
Collapse
|
10
|
Reiner R, Zedrosser A, Zeiler H, Hackländer K, Corlatti L. Forests buffer the climate-induced decline of body mass in a mountain herbivore. GLOBAL CHANGE BIOLOGY 2021; 27:3741-3752. [PMID: 33993622 PMCID: PMC8361913 DOI: 10.1111/gcb.15711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Climate change is known to affect key life-history traits, such as body mass, reproduction, and survival in many species. Animal populations inhabiting mountain habitats are adapted to extreme seasonal environmental conditions but are also expected to be especially vulnerable to climate change. Studies on mountain ungulates typically focus on populations or sections of populations living above the tree line, whereas populations inhabiting forested habitats are largely understudied. Here, we investigate whether forested areas can mitigate the impact of climatic change on life-history traits by evaluating the interactive effects of temperature and habitat characteristics on body mass variation in the Alpine chamois Rupicapra rupicapra rupicapra. We examined data of 20,573 yearling chamois collected from 1993 to 2019 in 28 mountain ranges in the Austrian Eastern Alps, characterized by different proportion of forest cover. Our results show that the temporal decline of chamois body mass is less pronounced in areas with greater proportion of forest cover. For chamois living in forest habitats only, no significant temporal change in body mass was detected. Variation in body mass was affected by the interaction between density and snow cover, as well as by the interaction between spring temperatures and forest cover, supporting the role of forests as thermal buffer against the effects of increasing temperatures on life-history traits in a mountain ungulate. In turn, this study suggests a buffering effect of forests against climate change impacts. Assessments of the consequences of climate change on the life-history traits and population dynamics of mountain-dwelling species should thus consider the plasticity of the species with respect to the use and availability of different habitat types.
Collapse
Affiliation(s)
- Rudolf Reiner
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life SciencesViennaAustria
- Berchtesgaden National ParkBerchtesgadenGermany
| | - Andreas Zedrosser
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life SciencesViennaAustria
- Department of Natural Sciences and Environmental HealthUniversity of South‐Eastern NorwayBø i TelemarkNorway
| | | | - Klaus Hackländer
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life SciencesViennaAustria
| | - Luca Corlatti
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| |
Collapse
|
11
|
Youtz J, Miller KD, Bowers EK, Rogers SL, Bulluck LP, Johnson M, Peer BD, Percy KL, Johnson EI, Ames EM, Tonra CM, Boves TJ. Bergmann's rule is followed at multiple stages of postembryonic development in a long-distance migratory songbird. Ecol Evol 2020; 10:10672-10686. [PMID: 33072288 PMCID: PMC7548171 DOI: 10.1002/ece3.6721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Bergmann’s rule is a well‐established, ecogeographical principle that states that body size varies positively with latitude, reflecting the thermoregulatory benefits of larger bodies as temperatures decline. However, this principle does not seem to easily apply to migratory species that are able to avoid the extreme temperatures during winter at higher latitudes. Further, little is known about the ontogeny of this relationship across life stages or how it is influenced by ongoing global climate change. To address these knowledge gaps, we assessed the contemporary relationship between latitude and body size in a long‐distance migratory species, the prothonotary warbler (Protonotaria citrea) across life stages (egg to adult) on their breeding grounds. We also measured historic eggs (1865‐1961) to assess if the relationship between latitude and size during this life stage has changed over time. In accordance with Bergmann’s rule, we found a positive relationship between latitude and body mass during all post‐embryonic life stages, from early nestling stage through adulthood. We observed this same predicted pattern with historic eggs, but contemporary eggs exhibited the reverse (negative) relationship. We suggest that these results indicate a genetic component to this pattern and speculate that selection for larger body size in altricial nestlings as latitude increases may possibly drive the pattern in migratory species as even rare extreme cold weather events may cause mortality during early life stages. Furthermore, the opposite relationships observed in eggs, dependent on time period, may be related to the rapidly warming environments of higher latitudes that is associated with climate change. Although it is unclear what mechanism(s) would allow for this recent reversal in eggs (but still allow for its maintenance in later life stages). This evidence of a reversal suggests that anthropogenic climate change may be in the process of altering one of the longest‐standing principles in ecology.
Collapse
Affiliation(s)
- Joseph Youtz
- Department of Biological Sciences Arkansas State University State University Arkansas USA
| | - Kelly D Miller
- Department of Biological Sciences and Center for Biodiversity Research University of Memphis Memphis Tennessee USA
| | - Emerson K Bowers
- Department of Biological Sciences and Center for Biodiversity Research University of Memphis Memphis Tennessee USA
| | - Samantha L Rogers
- Center for Environmental Studies Virginia Commonwealth University Richmond Virginia USA.,Integrative Life Sciences Doctoral Program Virginia Commonwealth University Richmond Virginia USA
| | - Lesley P Bulluck
- Center for Environmental Studies Virginia Commonwealth University Richmond Virginia USA
| | - Matthew Johnson
- Audubon South Carolina National Audubon Society Harleyville South Carolina USA
| | - Brian D Peer
- Department of Biological Sciences Western Illinois University Moline Illinois USA
| | - Katie L Percy
- Audubon Louisiana National Audubon Society Baton Rouge Louisiana USA
| | - Erik I Johnson
- Audubon Louisiana National Audubon Society Baton Rouge Louisiana USA
| | - Elizabeth M Ames
- School of Environment and Natural Resources The Ohio State University Columbus Ohio USA
| | - Christopher M Tonra
- School of Environment and Natural Resources The Ohio State University Columbus Ohio USA
| | - Than J Boves
- Department of Biological Sciences Arkansas State University State University Arkansas USA
| |
Collapse
|
12
|
Weeks BC, Willard DE, Zimova M, Ellis AA, Witynski ML, Hennen M, Winger BM. Shared morphological consequences of global warming in North American migratory birds. Ecol Lett 2019; 23:316-325. [PMID: 31800170 DOI: 10.1111/ele.13434] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four-decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40-year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length - an index of body shape that impacts numerous aspects of avian ecology and behaviour - has consistently increased across species. Our findings suggest that warming-induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming-induced morphological changes is important for predicting biotic responses to global change.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA.,Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - David E Willard
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Aspen A Ellis
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Max L Witynski
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Mary Hennen
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Johnson DS, Crowley C, Longmire K, Nelson J, Williams B, Wittyngham S. The fiddler crab, Minuca pugnax, follows Bergmann's rule. Ecol Evol 2019; 9:14489-14497. [PMID: 31938535 PMCID: PMC6953695 DOI: 10.1002/ece3.5883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Bergmann's rule predicts that organisms at higher latitudes are larger than ones at lower latitudes. Here, we examine the body size pattern of the Atlantic marsh fiddler crab, Minuca pugnax (formerly Uca pugnax), from salt marshes on the east coast of the United States across 12 degrees of latitude. We found that M. pugnax followed Bergmann's rule and that, on average, crab carapace width increased by 0.5 mm per degree of latitude. Minuca pugnax body size also followed the temperature-size rule with body size inversely related to mean water temperature. Because an organism's size influences its impact on an ecosystem, and M. pugnax is an ecosystem engineer that affects marsh functioning, the larger crabs at higher latitudes may have greater per-capita impacts on salt marshes than the smaller crabs at lower latitudes.
Collapse
Affiliation(s)
| | | | | | | | | | - Serina Wittyngham
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVAUSA
| |
Collapse
|
14
|
Delgado MDM, Bettega C, Martens J, Päckert M. Ecotypic changes of alpine birds to climate change. Sci Rep 2019; 9:16082. [PMID: 31695069 PMCID: PMC6834662 DOI: 10.1038/s41598-019-52483-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/18/2019] [Indexed: 11/10/2022] Open
Abstract
In endotherm animals, several traits are related to climate. For example, Bergmann’s rule predicts a decrease in body size within species and across closely related species with increasing temperature, whereas Gloger’s rule states that birds and mammals should be darker in humid and warm environments compared to colder and drier areas. However, it is still not clear whether ecotypic responses to variation in the local environment can also apply to morphological and colouration changes through time in response to climate change. We present a 100-year-long time series on morphological and melanin-based colours of snowfinch (325 Montifringilla, 92 Pyrgilauda and 30 Onychostruthus) museum specimens. Here we show that the tarsus length of the species has decreased and the saturation of the melanin-based colour has increased, which was correlated with the increase of temperature and precipitations. As ecotypic variations are tightly linked to individual behavioural and physiological responses to environmental variations, differently sized and coloured individuals are expected to be differently penalized by global changes. This study opens the pertinent question about whether ecotypic responses can enhance population persistence in the context of global change.
Collapse
Affiliation(s)
- Maria Del Mar Delgado
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University - Campus Mieres, 33600, Mieres, Spain.
| | - Chiara Bettega
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University - Campus Mieres, 33600, Mieres, Spain
| | - Jochen Martens
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum für Tierkunde, Koenigsbruecker Landstraße 159, 01109, Dresden, Germany
| |
Collapse
|
15
|
Møller AP, Erritzøe J, van Dongen S. Body size, developmental instability, and climate change. Evolution 2018; 72:2049-2056. [PMID: 30095156 DOI: 10.1111/evo.13570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Development is often temperature-dependent. We hypothesized smaller size and larger asymmetry with increasing temperatures. However, we also predicted associations with asymmetry to differ among traits that differ in their degree of functional importance (especially the functional wings in migratory birds were predicted to be more canalized), timing of development (skeletal [femur, tarsus, and humerus] vs. feather [wing and tail traits]). We analyzed a large dataset of which we included species with at least 20 specimens resulting in 5533 asymmetry values in 1593 individuals from 66 species. There was a consistent significant decrease in size with temperature across all traits. Fluctuating asymmetry (FA) for wings and femur was on average lower, suggesting higher canalization, and it decreased with migration distance, however that was not the case for the other traits. FA increased with increasing temperature for wings, but not for the other characters, where the different responses of different characters to temperature were significant. Because there was no significant three-way interaction between temperature, migration distance, and character, the asymmetry-temperature response was similar in migratory and resident species. These findings imply that climate warming reduces size of all traits and decreases developmental instability of wings in birds.
Collapse
Affiliation(s)
- Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | | | - Stefan van Dongen
- Department of Biology, University of Antwerp, Campus Drie Eiken, Building D. D. 137, Universitetsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
16
|
McLean N, van der Jeugd HP, van de Pol M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS One 2018; 13:e0192401. [PMID: 29466460 PMCID: PMC5821336 DOI: 10.1371/journal.pone.0192401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/23/2018] [Indexed: 01/18/2023] Open
Abstract
It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology.
Collapse
Affiliation(s)
- Nina McLean
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| | - Henk P. van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martijn van de Pol
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, Australia
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
17
|
Møller AP, Rubolini D, Saino N. Morphological constraints on changing avian migration phenology. J Evol Biol 2017; 30:1177-1184. [DOI: 10.1111/jeb.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- A. P. Møller
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay Cedex France
- Dipartimento di Scienze e Politiche Ambientali; Università degli Studi di Milano; Milan Italy
| | - D. Rubolini
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay Cedex France
- Dipartimento di Scienze e Politiche Ambientali; Università degli Studi di Milano; Milan Italy
| | - N. Saino
- Dipartimento di Scienze e Politiche Ambientali; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
18
|
Collins MD, Relyea GE, Blustein EC, Badami SM. Neotropical Migrants Exhibit Variable Body-Size Changes Over Time and Space. Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michael D. Collins
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112
| | - George E. Relyea
- School of Public Health, University of Memphis, Memphis, TN 38152
| | - Erica C. Blustein
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112
| | - Steven M. Badami
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112
| |
Collapse
|
19
|
Rapid adaptive phenotypic change following colonization of a newly restored habitat. Nat Commun 2017; 8:14159. [PMID: 28106055 PMCID: PMC5263874 DOI: 10.1038/ncomms14159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022] Open
Abstract
Real-time observation of adaptive evolution in the wild is rare and limited to cases of marked, often anthropogenic, environmental change. Here we present the case of a small population of reed warblers (Acrocephalus scirpaceus) over a period of 19 years (1996–2014) after colonizing a restored wetland habitat in Malta. Our data show a population decrease in body mass, following a trajectory consistent with a population ascending an adaptive peak, a so-called Ornstein–Uhlenbeck process. We corroborate these findings with genetic and ecological data, revealing that individual survival is correlated with body mass, and more than half of the variation in mean population fitness is explained by variation in body mass. Despite a small effective population size, an adaptive response has taken place within a decade. A founder event from a large, genetically variable source population to the southern range margin of the reed warbler distribution likely facilitated this process. Rapid local adaptation could potentially facilitate the recolonization of restored habitats. Here, the authors show that reed warblers have undergone substantial adaptive change in body mass in only 19 years after colonizing a restored wetland in Malta.
Collapse
|
20
|
Canale CI, Ozgul A, Allainé D, Cohas A. Differential plasticity of size and mass to environmental change in a hibernating mammal. GLOBAL CHANGE BIOLOGY 2016; 22:3286-3303. [PMID: 26994312 DOI: 10.1111/gcb.13286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Morphological changes following changes in species' distribution and phenology have been suggested to be the third universal response to global environmental change. Although structural size and body mass result from different genetic, physiological, and ecological mechanisms, they are used interchangeably in studies evaluating population responses to environmental change. Using a 22-year (1991-2013) dataset including 1768 individuals, we investigated the coupled dynamics of size and mass in a hibernating mammal, the Alpine marmot (Marmota marmota), in response to local environmental conditions. We (i) quantified temporal trends in both traits, (ii) determined the environmental drivers of trait dynamics, and (iii) identified the life-history processes underlying the observed changes. Both phenotypic traits were followed through life: we focused on the initial trait value (juvenile size and mass) and later-life development (annual change in size [Δsize] and mass [Δmass]). First, we demonstrated contrasting dynamics between size and mass over the study period. Juvenile size and subsequent Δsize showed significant declines, whereas juvenile mass and subsequent Δmass remained constant. As a consequence of smaller size associated with a similar mass, individuals were in better condition in recent years. Second, size and mass showed different sensitivities to environmental variables. Both traits benefited from early access to resources in spring, whereas Δmass, particularly in early life, also responded to summer and winter conditions. Third, the interannual variation in both traits was caused by changes in early life development. Our study supports the importance of considering the differences between size and mass responses to the environment when evaluating the mechanisms underlying population dynamics. The current practice of focusing on only one trait in population modeling can lead to misleading conclusions when evaluating species' resilience to contemporary climate change.
Collapse
Affiliation(s)
- Cindy I Canale
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dominique Allainé
- UMR-CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard, Lyon 1, 43 Bd. du 11 novembre 1918, F-69622, Villeurbanne Cedex, France
| | - Aurelie Cohas
- UMR-CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard, Lyon 1, 43 Bd. du 11 novembre 1918, F-69622, Villeurbanne Cedex, France
| |
Collapse
|
21
|
Affiliation(s)
- Volker Salewski
- Michael-Otto-Inst. im NABU; Goosstroot 1 DE-24861 Bergenhusen Germany
| | - Cortney Watt
- Dept of Zoology; Univ. of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
22
|
du Feu CR, Clark JA, Schaub M, Fiedler W, Baillie SR. The EURING Data Bank – a critical tool for continental-scale studies of marked birds. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/03078698.2016.1195205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Kruuk LEB, Osmond HL, Cockburn A. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird. GLOBAL CHANGE BIOLOGY 2015; 21:2929-41. [PMID: 26058467 DOI: 10.1111/gcb.12926] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 05/27/2023]
Abstract
Despite extensive research on the topic, it has been difficult to reach general conclusions as to the effects of climate change on morphology in wild animals: in particular, the effects of warming temperatures have been associated with increases, decreases or stasis in body size in different populations. Here, we use a fine-scale analysis of associations between weather and offspring body size in a long-term study of a wild passerine bird, the cooperatively breeding superb fairy-wren, in south-eastern Australia to show that such variation in the direction of associations occurs even within a population. Over the past 26 years, our study population has experienced increased temperatures, increased frequency of heatwaves and reduced rainfall - but the mean body mass of chicks has not changed. Despite the apparent stasis, mass was associated with weather across the previous year, but in multiple counteracting ways. Firstly, (i) chick mass was negatively associated with extremely recent heatwaves, but there also positive associations with (ii) higher maximum temperatures and (iii) higher rainfall, both occurring in a period prior to and during the nesting period, and finally (iv) a longer-term negative association with higher maximum temperatures following the previous breeding season. Our results illustrate how a morphological trait may be affected by both short- and long-term effects of the same weather variable at multiple times of the year and that these effects may act in different directions. We also show that climate within the relevant time windows may not be changing in the same way, such that overall long-term temporal trends in body size may be minimal. Such complexity means that analytical approaches that search for a single 'best' window for one particular weather variable may miss other relevant information, and is also likely to make analyses of phenotypic plasticity and prediction of longer-term population dynamics difficult.
Collapse
Affiliation(s)
- Loeske E B Kruuk
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Helen L Osmond
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andrew Cockburn
- Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
|
25
|
Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS One 2014; 9:e101927. [PMID: 25019159 PMCID: PMC4096916 DOI: 10.1371/journal.pone.0101927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 06/13/2014] [Indexed: 11/30/2022] Open
Abstract
Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.
Collapse
|
26
|
Gardner JL, Amano T, Mackey BG, Sutherland WJ, Clayton M, Peters A. Dynamic size responses to climate change: prevailing effects of rising temperature drive long-term body size increases in a semi-arid passerine. GLOBAL CHANGE BIOLOGY 2014; 20:2062-2075. [PMID: 25602089 DOI: 10.1111/gcb.12507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Changes in animal body size have been widely reported as a correlate of contemporary climate change. Body size affects metabolism and fitness, so changing size has implications for resilience, yet the climatic factors that drive size variation remain poorly understood. We test the role of mean and extreme temperature, rainfall, and remotely sensed primary productivity (NDVI) as drivers of body size in a sedentary, semi-arid Australian passerine, Ptilotula (Lichenostomus)penicillatus, over 23 years. To distinguish effects due to differential growth from changes in population composition, we analysed first-year birds and adults separately and considered climatic variation at three temporal scales (current, previous, and preceding 5 years). The strongest effects related to temperature: in both age classes, larger size was associated with warmer mean temperatures in the previous year, contrary to Bergmann's Rule. Moreover, adults were larger in warmer breeding seasons, while first years was larger after heat waves; these effects are more likely to be mediated through size-dependent mortality, highlighting the role of body size in determining vulnerability to extinction. In addition to temperature, larger adult size was associated with lower primary productivity, which may reflect a trade-off between vegetative growth and nectar production, on which adults rely. Finally, lower rainfall was associated with decreasing size in first year and adults, most likely related to decreased food availability. Overall,body size increased over 23 years, strongly in first-year birds (2.7%) compared with adults (1%), with size outcomes a balance between competing drivers. As rainfall declined over time and productivity remained fairly stable, the temporal increase in body size appears largely driven by rising mean temperature and temperature extremes. Body size responses to environmental change are thus complex and dynamic, driven by effects on growth as well as mortality.
Collapse
Affiliation(s)
- Janet L Gardner
- School of Biological Sciences, Monash University, Melbourne, Vic. 3168, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Gienapp P, Merilä J. Disentangling plastic and genetic changes in body mass of Siberian jays. J Evol Biol 2014; 27:1849-58. [DOI: 10.1111/jeb.12438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/10/2014] [Accepted: 05/19/2014] [Indexed: 01/15/2023]
Affiliation(s)
- P. Gienapp
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; Helsinki Finland
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - J. Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
28
|
Salewski V, Hochachka WM, Fiedler W. Multiple weather factors affect apparent survival of European passerine birds. PLoS One 2013; 8:e59110. [PMID: 23593131 PMCID: PMC3620169 DOI: 10.1371/journal.pone.0059110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for phenotypic and microevolutionary adaptations.
Collapse
Affiliation(s)
- Volker Salewski
- Department of Migration and Immuno-ecology, Max-Planck-Institute for Ornithology, Radolfzell, Germany.
| | | | | |
Collapse
|
29
|
Lurgi M, López BC, Montoya JM. Novel communities from climate change. Philos Trans R Soc Lond B Biol Sci 2013; 367:2913-22. [PMID: 23007079 DOI: 10.1098/rstb.2012.0238] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.
Collapse
Affiliation(s)
- Miguel Lurgi
- Ecological Networks and Global Change Group, Instituto de Ciencias del Mar (CSIC), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Pienaar J, Ilany A, Geffen E, Yom-Tov Y. Macroevolution of life-history traits in passerine birds: adaptation and phylogenetic inertia. Ecol Lett 2013; 16:571-6. [PMID: 23489254 DOI: 10.1111/ele.12077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/06/2012] [Accepted: 12/16/2012] [Indexed: 11/26/2022]
Abstract
We used a recent passerine phylogeny and comparative method to evaluate the macroevolution of body and egg mass, incubation and fledging periods, time to independence and time with parents of the main passerine lineages. We hypothesised that passerine reproductive traits are affected by adaptation to both past and present environmental factors and phenotypic attributes such as body mass. Our results suggest that the evolution of body and egg mass, time to independence, incubation and fledging times are affected by strong phylogenetic inertia and that these breeding traits are all affected by body mass. Time with parents, where major lineages exhibit their own fixed optima and body mass does not have an effect, and clutch size which is affected by body mass and additionally by climate regimes, do not exhibit any phylogenetic inertia.
Collapse
Affiliation(s)
- Jason Pienaar
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | |
Collapse
|
31
|
Pautasso M. Observed impacts of climate change on terrestrial birds in Europe: an overview. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.627381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
McCoy DE. Connecticut Birds and Climate Change: Bergmann's Rule in the Fourth Dimension. Northeast Nat (Steuben) 2012. [DOI: 10.1656/045.019.0213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Abstract
AbstractGlobal environmental processes like climate change could severely affect population level migratory behaviour of long range migrant birds. We analyzed changes in migration phenology and biometrics of three closely-related long-distance migrant Acrocephalus species. We used the records of 12 063 Sedge, 12 913 Reed, and 5 409 Marsh Warblers caught and ringed between 1989–2009, at a Hungarian stopover site. Quantile regressions were used to analyse the changes in spring and autumn migration phenology. Median spring arrival date of Sedge and Reed Warblers shifted 6.5 and 7.5 days earlier, respectively. Autumn arrival of all species shifted one (Reed and Marsh Warblers) or two (Sedge Warbler) weeks later. Mean body mass of adult Reed and Marsh Warblers decreased in spring (by 0.3 and 0.2 grams, respectively) and in autumn (by 0.8 and 0.2 grams, respectively) while body mass of adult Sedge Warblers decreased only in autumn (by 0.4 grams). Mean wing length of all species increased significantly (range of change: 0.6–1 mm). Despite the fact that the studied species are closely related, all three have remarkably different migration strategies. However, similar patterns can be observed in the studied parameters, indicating that global processes may have general effects on these species, albeit through markedly different mechanisms.
Collapse
|
34
|
Husby A, Hille SM, Visser ME. Testing Mechanisms of Bergmann’s Rule: Phenotypic Decline but No Genetic Change in Body Size in Three Passerine Bird Populations. Am Nat 2011; 178:202-13. [DOI: 10.1086/660834] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Kuparinen A, Björklund M. Theory put into practice: An R implementation of the infinite-dimensional model. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, Sutherland WJ, Bach LA, Coppack T, Ergon T, Gienapp P, Gill JA, Gordo O, Hedenström A, Lehikoinen E, Marra PP, Møller AP, Nilsson ALK, Péron G, Ranta E, Rubolini D, Sparks TH, Spina F, Studds CE, Saether SA, Tryjanowski P, Stenseth NC. Challenging claims in the study of migratory birds and climate change. Biol Rev Camb Philos Soc 2011; 86:928-46. [PMID: 21489123 DOI: 10.1111/j.1469-185x.2011.00179.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.
Collapse
Affiliation(s)
- Endre Knudsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. Declining body size: a third universal response to warming? Trends Ecol Evol 2011; 26:285-91. [PMID: 21470708 DOI: 10.1016/j.tree.2011.03.005] [Citation(s) in RCA: 586] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 11/29/2022]
Abstract
A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change.
Collapse
Affiliation(s)
- Janet L Gardner
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
38
|
Yom-Tov Y, Geffen E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol Rev Camb Philos Soc 2010; 86:531-41. [PMID: 21070587 DOI: 10.1111/j.1469-185x.2010.00168.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geographical and temporal variations in body size are common phenomena among organisms and may evolve within a few years. We argue that body size acts much like a barometer, fluctuating in parallel with changes in the relevant key predictor(s), and that geographical and temporal changes in body size are actually manifestations of the same drivers. Frequently, the principal predictors of body size are food availability during the period of growth and ambient temperature, which often affects food availability. Food availability depends on net primary productivity that, in turn, is determined by climate and weather (mainly temperature and precipitation), and these depend mainly on solar radiation and other solar activities. When the above predictors are related to latitude the changes have often been interpreted as conforming to Bergmann's rule, but in many cases such interpretations should be viewed with caution due to the interrelationships among various environmental predictors. Recent temporal changes in body size have often been related to global warming. However, in many cases the above key predictors are not related to either latitude and/or year, and it is the task of the researcher to determine which particular environmental predictor is the one that determines food availability and, in turn, body size. The chance of discerning a significant change in body size depends to a large extent on sample size (specimens/year). The most recent changes in body size are probably phenotypic, but there are some cases in which they are partly genetic.
Collapse
Affiliation(s)
- Yoram Yom-Tov
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
39
|
Alho JS, Herczeg G, Laugen AT, Räsänen K, Laurila A, Merilä J. Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. J Evol Biol 2010; 24:59-70. [PMID: 20964781 DOI: 10.1111/j.1420-9101.2010.02141.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ecogeographical rules linking climate to morphology have gained renewed interest because of climate change. Yet few studies have evaluated to what extent geographical trends ascribed to these rules have a genetic, rather than environmentally determined, basis. This applies especially to Allen's rule, which states that the relative extremity length decreases with increasing latitude. We studied leg length in the common frog (Rana temporaria) along a 1500 km latitudinal gradient utilizing wild and common garden data. In the wild, the body size-corrected femur and tibia lengths did not conform to Allen's rule but peaked at mid-latitudes. However, the ratio of femur to tibia length increased in the north, and the common garden data revealed a genetic cline consistent with Allen's rule in some trait and treatment combinations. While selection may have shortened the leg length in the north, the genetic trend seems to be partially masked by environmental effects.
Collapse
Affiliation(s)
- J S Alho
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|