1
|
Chin ARO, Gessler A, Laín O, Østerlund I, Schaub M, Théroux-Rancourt G, Voggeneder K, Lambers JHR. The memory of past water abundance shapes trees 7 years later. AMERICAN JOURNAL OF BOTANY 2025; 112:e16452. [PMID: 39716401 DOI: 10.1002/ajb2.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/25/2024]
Abstract
PREMISE Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown. METHODS In an 18-year forest irrigation experiment, we explored the lasting structural impact of past water richness on leaves and twigs of Pinus sylvestris using synchrotron-based X-ray microscopy. We compared 47 anatomical traits among never-irrigated control trees, trees irrigated for 18 years, and formerly irrigated trees, 7 years after their return to control-level water availability in this naturally dry forest. RESULTS We found that legacy effects induced by a period of experimental irrigation continue to shape the structure of new leaves and twigs long after a sharp decrease in water availability. Legacy effects shaping twigs were present but dissipating, while leaf traits displayed long-lasting effects on structural strategy, with extreme values for traits associated with high water stress and low productivity. CONCLUSIONS Mature trees acclimating to an increasingly dry world may be at a disadvantage compared to young trees that have known only chronic drought. However, these young trees may be capable of thriving in sites of drought-related forest decline especially if planted while larger individuals are still present to support tree establishment. Without a legacy of past water abundance, trees in future forests may be better equipped to cope with our rapidly changing climate.
Collapse
Affiliation(s)
- Alana R O Chin
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
- ETH-Zürich, Institute for Terrestrial Ecology, Zürich, Switzerland
| | - Omar Laín
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Isabella Østerlund
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Guillaume Théroux-Rancourt
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Klara Voggeneder
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Mašek J, Dorado-Liñán I, Treml V. Responses of stem growth and canopy greenness of temperate conifers to dry spells. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1533-1544. [PMID: 38630139 PMCID: PMC11281975 DOI: 10.1007/s00484-024-02682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/28/2024]
Abstract
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.
Collapse
Affiliation(s)
- Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| |
Collapse
|
3
|
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Čada V, Cavin L, Claessens H, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Martinez Del Castillo E, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayatov M, Petritan AM, Petritan IC, Popa I, Roibu CC, Rubio-Cuadrado Á, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, van der Maaten-Theunissen M, van der Maaten E, Weigel R, Wilmking M, Zlatanov T, Rammig A, Zang CS. Identifying drivers of non-stationary climate-growth relationships of European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173321. [PMID: 38782287 DOI: 10.1016/j.scitotenv.2024.173321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Collapse
Affiliation(s)
- Christopher Leifsson
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Allan Buras
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Claudia Baittinger
- The National Museum of Denmark, Environmental Archaeology and Materials Science, I.C. Modewegs Vej 11, DK - 2800 Kgs. Lyngby, Denmark
| | - Banzragch Bat-Enerel
- Plant Ecology, University of Goettingen, 37073 Goettingen, Germany; Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | | | - Franco Biondi
- DendroLab, Dept. of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Branko Stajić
- University of Belgrade, Faculty of Forestry, Belgrade, Serbia
| | - Marius Budeanu
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Hugues Claessens
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin de Luis
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Choimaa Dulamsuren
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | - Balázs Garamszegi
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Grabner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Hartl
- Nature Rings - Environmental Research & Education, 55118 Mainz, Germany
| | - Weiwei Huang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | - Florian Knutzen
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
| | - Jürgen Kreyling
- University of Greifswald, Experimental Plant Ecology, Soldmannstraße 15, 17498 Greifswald, Germany
| | - Alexander Land
- University of Hohenheim, Institute of Biology (190a), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Nicolas Latte
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | - Luis A Longares
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | | | - Annette Menzel
- Technical University of Munich, TUM School of Life Sciences, Ecoclimatology, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Renzo Motta
- Department of Agricoltural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lena Muffler-Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paola Nola
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
| | - Momchil Panayatov
- University of Forestry, Dendrology Department, Forest Faculty, Sofia, Bulgaria
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Transilvania University of Braşov, Braşov, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania; Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | - Cǎtǎlin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Universitatii street, no. 13, Suceava RO720229, Romania
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miloš Rydval
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Tobias Scharnweber
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE), CSIC, Avda. Montañana 1005, 50080 Zaragoza, Spain
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Elvin Toromani
- Department of Forestry, Agricultural University Tirana, Tirana, Albania
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | | | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | - Robert Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Martin Wilmking
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Anja Rammig
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian S Zang
- Weihenstephan-Triesdorf University of Applied Sciences, Department of Forestry, Hans-Carl-v.-Carlowitz-Platz 3, 85354 Freising, Germany
| |
Collapse
|
4
|
Ma D, Yu Y, Hui Y, Kannenberg SA. Compensatory response of ecosystem carbon-water cycling following severe drought in Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165718. [PMID: 37487900 DOI: 10.1016/j.scitotenv.2023.165718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Climate change has increased the frequency and length of droughts, but many uncertainties remain regarding the impacts of this aridification on terrestrial ecosystem function. Vegetation water use efficiency and carbon sequestration capacity are crucial determinants that both respond to and mediate the effects of drought. However, it is important to note that the consequences of drought on these processes can persist for years. A deeper exploration of these "drought legacy effects" will help improve our understanding of how climate change alter ecosystem carbon-water cycling. Here, we investigate the spatial patterns of drought legacy effects on remotely-sensed vegetation greenness (NDVI), net primary productivity (NPP) and water use efficiency (WUE) in southwestern China, a biodiversity hotspot that was impacted by an extreme drought in 2009-2010, with a particular focus on the tradeoff between WUE and NPP. Despite widespread negative drought legacy effects in NDVI (impacting 61.26 % of the study region), there was a general increase in NPP (58.68 %) and a decrease in WUE (67.53 %) in the year following drought (2011). This drought legacy effect was most evident in forests, while drought legacies in grasslands were less common. Drought legacies were also most apparent in relatively warm and humid areas. During the study period (2002 to 2018), we found that drought impacts on WUE also lagged behind changes in NPP by 1-2 years in forests, which highlights how drought legacies may manifest differently across ecosystem processes. Our study demonstrated that severe drought conditions may significantly affect the carbon sequestration capacity and water use efficiency of vegetation in southwestern China, and that forests may compensate for the detrimental effects of water stress by increasing water use and biomass growth after drought episodes.
Collapse
Affiliation(s)
- Daoming Ma
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Yiying Hui
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Steven A Kannenberg
- Department of Biology, West Virginia University, Morgantown, WV, USA; Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
6
|
Pohl F, Werban U, Kumar R, Hildebrandt A, Rebmann C. Observational evidence of legacy effects of the 2018 drought on a mixed deciduous forest in Germany. Sci Rep 2023; 13:10863. [PMID: 37407831 DOI: 10.1038/s41598-023-38087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Forests play a major role in the global carbon cycle, and droughts have been shown to explain much of the interannual variability in the terrestrial carbon sink capacity. The quantification of drought legacy effects on ecosystem carbon fluxes is a challenging task, and research on the ecosystem scale remains sparse. In this study we investigate the delayed response of an extreme drought event on the carbon cycle in the mixed deciduous forest site 'Hohes Holz' (DE-HoH) located in Central Germany, using the measurements taken between 2015 and 2020. Our analysis demonstrates that the extreme drought and heat event in 2018 had strong legacy effects on the carbon cycle in 2019, but not in 2020. On an annual basis, net ecosystem productivity was [Formula: see text] higher in 2018 ([Formula: see text]) and [Formula: see text] lower in 2019 ([Formula: see text]) compared to pre-drought years ([Formula: see text]). Using spline regression, we show that while current hydrometeorological conditions can explain forest productivity in 2020, they do not fully explain the decrease in productivity in 2019. Including long-term drought information in the statistical model reduces overestimation error of productivity in 2019 by nearly [Formula: see text]. We also found that short-term drought events have positive impacts on the carbon cycle at the beginning of the vegetation season, but negative impacts in later summer, while long-term drought events have generally negative impacts throughout the growing season. Overall, our findings highlight the importance of considering the diverse and complex impacts of extreme events on ecosystem fluxes, including the timing, temporal scale, and magnitude of the events, and the need to use consistent definitions of drought to clearly convey immediate and delayed responses.
Collapse
Affiliation(s)
- Felix Pohl
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Ulrike Werban
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Rohini Kumar
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anke Hildebrandt
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Geoscience, Burgweg 11, 07749, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Corinna Rebmann
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
7
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
8
|
Urrutia-Jalabert R, Barichivich J, Szejner P, Rozas V, Lara A. Ecophysiological responses of Nothofagus obliqua forests to recent climate drying across the Mediterranean-Temperate biome transition in south-central Chile. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 128:2022jg007293. [PMID: 37484604 PMCID: PMC7614787 DOI: 10.1029/2022jg007293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 07/25/2023]
Abstract
The forests of south-central Chile are facing a drying climate and a megadrought that started in 2010. This study addressed the physiological responses of five Nothofagus obliqua stands across the Mediterranean-Temperate gradient (35.9 ° -40.3° S) using carbon isotope discrimination (Δ13 C) and intrinsic water use efficiency (iWUE) in tree rings during 1967-2017. Moreover, δ18O was evaluated in the northernmost site to better understand the effects of the megadrought in this drier location. These forests have become more efficient in their use of water. However, trees from the densest stand are discriminating more against 13C, probably due to reduced photosynthetic rates associated with increasing competition. The strongest associations between climate and Δ13C were found in the northernmost stand, suggesting that warmer and drier conditions could have reduced 13C discrimination. Tree growth in this site has not decreased, and δ18O was negatively related to annual rainfall. However, a shift in this relationship was found since 2007, when both precipitation and δ18O decreased, while correlations between δ18O and growth increased. This implies that tree growth and δ18O are coupled in recent years, but precipitation is not the cause, suggesting that trees probably changed their water source to deeper and more depleted pools. Our research demonstrates that forests are not reducing their growth in central Chile, mainly due to a shift towards the use of deeper water sources. Despite a common climate trend across the gradient, there is a non-uniform response of N. obliqua forests to climate drying, being their response site specific. Keywords: Tree rings, stable isotopes, tree physiology, climate gradient, megadrought, climate change.
Collapse
Affiliation(s)
- Rocío Urrutia-Jalabert
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Jonathan Barichivich
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CRNS/CEA/UVSQ, France
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paul Szejner
- Departamento de Ciencias Ambientales y del suelo, Instituto de Geología, Universidad Nacional Autónoma de México. Ciudad Universitaria CDMX, México
| | - Vicente Rozas
- iuFOR-EiFAB, Área de Botánica, Campus Duques de Soria, Universidad de Valladolid, 42004 Soria, Spain
| | - Antonio Lara
- Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| |
Collapse
|
9
|
Dong B, Yu Y, Pereira P. Non-growing season drought legacy effects on vegetation growth in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157334. [PMID: 35842151 DOI: 10.1016/j.scitotenv.2022.157334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Water availability influences terrestrial ecosystems' composition, structure, and function. Recently, climate change increased drought periods frequency and length in many parts of the world, including southwestern China, a biodiversity hotspot. Although the drought impacts on ecosystems are well known, studies are scarce in subtropical areas of China. This work studied the drought legacy effects on vegetation growth in southwestern China using Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI), with a particular focus on non-growing season extreme drought events. Pervasive non-growing season drought legacy effects were found in the first growing season in most parts of southwestern China. The highest impacts were identified in forests, while the effects in grass were less severe. At the regional scale, horizontal and vertical spatial patterns of drought legacy effects were heterogeneous, and the highest impacts were found in warmer and wetter forests and alpine grasslands. Our study highlights that severe drought conditions may dramatically affect vegetation growth in southwestern China.
Collapse
Affiliation(s)
- Bogang Dong
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, China.
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, LT-08303 Vilnius, Lithuania
| |
Collapse
|
10
|
Xu G, Liu X, Hu J, Dorado-Liñán I, Gagen M, Szejner P, Chen T, Trouet V. Intra-annual tree-ring δ18O and δ13C reveal a trade-off between isotopic source and humidity in moist environments. TREE PHYSIOLOGY 2022; 42:2203-2223. [PMID: 35796563 DOI: 10.1093/treephys/tpac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Tree-ring intra-annual stable isotopes (δ13C and δ18O) are powerful tools for revealing plant ecophysiological responses to climatic extremes. We analyzed interannual and fine-scale intra-annual variability of tree-ring δ13C and δ18O in Chinese red pine (Pinus massoniana) from southeastern China to explore environmental drivers and potential trade-offs between the main physiological controls. We show that wet season relative humidity (May-October RH) drove interannual variability of δ18O and intra-annual variability of tree-ring δ18O. It also drove intra-annual variability of tree-ring δ13C, whereas interannual variability was mainly controlled by February-May temperature and September-October RH. Furthermore, intra-annual tree-ring δ18O variability was larger during wet years compared with dry years, whereas δ13C variability was lower during wet years compared with dry years. As a result of these differences in intra-annual variability amplitude, process-based models (we used the Roden model for δ18O and the Farquhar model for δ13C) captured the intra-annual δ18O pattern better in wet years compared with dry years, whereas intra-annual δ13C pattern was better simulated in dry years compared with wet years. This result suggests a potential asymmetric bias in process-based models in capturing the interplay of the different mechanistic processes (i.e., isotopic source and leaf-level enrichment) operating in dry versus wet years. We therefore propose an intra-annual conceptual model considering a dynamic trade-off between the isotopic source and leaf-level enrichment in different tree-ring parts to understand how climate and ecophysiological processes drive intra-annual tree-ring stable isotopic variability under humid climate conditions.
Collapse
Affiliation(s)
- Guobao Xu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaohong Liu
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Hu
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mary Gagen
- Department of Geography, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Paul Szejner
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, México City 04510, México
| | - Tuo Chen
- National Field Science Observation and Research Station of Yulong Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Valerie Trouet
- Laboratory of Tree-Ring Research, University of Arizona, Tucson 85721, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson 85721, USA
| |
Collapse
|
11
|
Williams J, Stella JC, Voelker SL, Lambert AM, Pelletier LM, Drake JE, Friedman JM, Roberts DA, Singer MB. Local groundwater decline exacerbates response of dryland riparian woodlands to climatic drought. GLOBAL CHANGE BIOLOGY 2022; 28:6771-6788. [PMID: 36045489 PMCID: PMC9804274 DOI: 10.1111/gcb.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13 C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13 C) during peak drought years. However, patterns of radial growth and Δ13 C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13 C for individual trees, and higher inter-correlation of Δ13 C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year-1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.
Collapse
Affiliation(s)
- Jared Williams
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - John C. Stella
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
- Department of Sustainable Resources ManagementState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Steven L. Voelker
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMichiganUSA
| | - Adam M. Lambert
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Cheadle Center for Biodiversity and Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Lissa M. Pelletier
- Graduate Program in Environmental ScienceCollege of Environmental Science and Forestry, State University of New YorkSyracuseNew YorkUSA
| | - John E. Drake
- Department of Sustainable Resources ManagementState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | | | - Dar A. Roberts
- Department of GeographyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Michael Bliss Singer
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- School of Earth and Environmental SciencesCardiff UniversityCardiffUK
- Water Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
12
|
Peltier DMP, Anderegg WRL, Guo JS, Ogle K. Contemporary tree growth shows altered climate memory. Ecol Lett 2022; 25:2663-2674. [PMID: 36257775 DOI: 10.1111/ele.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Trees are long-lived organisms, exhibiting temporally complex growth arising from strong climatic "memory." But conditions are becoming increasingly arid in the western USA. Using a century-long tree-ring network, we find altered climate memory across the entire range of a widespread western US conifer: growth is supported by precipitation falling further into the past (+15 months), while increasingly impacted by more recent temperature conditions (-8 months). Tree-ring datasets can be biased, so we confirm altered climate memory in a second, ecologically-sampled tree-ring network. Predicted drought responses show trees may have also become more sensitive to repeat drought. Finally, plots near sites with relatively longer precipitation memory and shorter temperature memory had significantly lower recent mortality rates (R2 = 0.61). We argue that increased drought frequency has altered climate memory, demonstrate how non-stationarity may arise from failure to account for memory, and suggest memory length may be predictive of future tree mortality.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Jessica S Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA.,School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
13
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
14
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
15
|
Kannenberg SA, Maxwell JT. Disentangling the drivers of non-stationarity in tree growth. TREE PHYSIOLOGY 2022; 42:1128-1130. [PMID: 35298647 DOI: 10.1093/treephys/tpac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Steven A Kannenberg
- School of Biological Sciences, University of Utah, Salt Lake City, 84112 UT, USA
| | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
16
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
17
|
Schnabel F, Purrucker S, Schmitt L, Engelmann RA, Kahl A, Richter R, Seele-Dilbat C, Skiadaresis G, Wirth C. Cumulative growth and stress responses to the 2018-2019 drought in a European floodplain forest. GLOBAL CHANGE BIOLOGY 2022; 28:1870-1883. [PMID: 34927360 DOI: 10.1111/gcb.16028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Droughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13 C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13 C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
Collapse
Affiliation(s)
- Florian Schnabel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Sarah Purrucker
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Lara Schmitt
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Anja Kahl
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Geoinformatics and Remote Sensing, Leipzig University, Leipzig, Germany
| | - Carolin Seele-Dilbat
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Department of Conservation Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Georgios Skiadaresis
- Chair of Silviculture, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Max-Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
18
|
Keen RM, Voelker SL, Wang SYS, Bentz BJ, Goulden ML, Dangerfield CR, Reed CC, Hood SM, Csank AZ, Dawson TE, Merschel AG, Still CJ. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. GLOBAL CHANGE BIOLOGY 2022; 28:1119-1132. [PMID: 34735729 DOI: 10.1111/gcb.15973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought-related mortality derived from measurements of tree-ring growth (ring width index; RWI) and carbon isotope discrimination (∆13 C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012-2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13 C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13 C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine-dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management-particularly in drier regions-may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.
Collapse
Affiliation(s)
- Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Steven L Voelker
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - S-Y Simon Wang
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Barbara J Bentz
- USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, USA
| | - Michael L Goulden
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Cody R Dangerfield
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Charlotte C Reed
- Fire Sciences Laboratory, USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Sharon M Hood
- Fire Sciences Laboratory, USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| | - Adam Z Csank
- Department of Geography, University of Nevada, Reno, Nevada, USA
| | - Todd E Dawson
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA
| | - Andrew G Merschel
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Christopher J Still
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
19
|
Lee EH, Beedlow PA, Brooks JR, Tingey DT, Wickham C, Rugh W. Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios. TREE PHYSIOLOGY 2022; 42:5-25. [PMID: 34528693 PMCID: PMC9394118 DOI: 10.1093/treephys/tpab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2020] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Swiss needle cast (SNC), caused by a fungal pathogen, Nothophaeocryptopus gaeumannii, is a major forest disease of Douglas-fir (Pseudotsuga menziesii) stands of the Pacific Northwest (PNW). There is mounting concern that the current SNC epidemic occurring in Oregon and Washington will continue to increase in severity, frequency and spatial extent with future warming. Nothophaeocryptopus gaeumannii occurs wherever its host is found, but very little is known about the history and spatial distribution of SNC and its effects on growth and physiological processes of mature and old-growth forests within the Douglas-fir region of the PNW. Our findings show that stem growth and physiological responses of infected Douglas-fir to climate and SNC were different between sites, growth periods and disease severity based on cellulosic stable carbon and oxygen isotope ratios and ring width data in tree rings. At a coastal Oregon site within the SNC impact zone, variations in stem growth and Δ13C were primarily influenced by disproportional reductions in stomatal conductance (gs) and assimilation (A) caused by a loss of functioning stomates through early needle abscission and stomatal occlusion by pseudothecia of N. gaeumannii. At the less severely infected inland sites on the west slopes of Oregon's Cascade Range, stem growth correlated negatively with δ18O and positively with Δ13C, indicating that gs decreased in response to high evaporative demand with a concomitant reduction in A. Current- and previous-years summer vapor pressure deficit was the principal seasonal climatic variable affecting radial stem growth and the dual stable isotope ratios at all sites. Our results indicate that rising temperatures since the mid-1970s has strongly affected Douglas-fir growth in the PNW directly by a physiological response to higher evaporative demand during the annual summer drought and indirectly by a major SNC epidemic that is expanding regionally to higher latitudes and higher elevations.
Collapse
Affiliation(s)
- Edward Henry Lee
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - Peter A. Beedlow
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - J. Renée Brooks
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| | - David T. Tingey
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
- Retired
| | - Charlotte Wickham
- Oregon State University, Department of Statistics, Weniger Hall Room 255, Corvallis, OR 97331, USA
| | - William Rugh
- US Environmental Protection Agency, 200 SW 35 Street, Corvallis, OR 97333, USA
| |
Collapse
|
20
|
Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc Natl Acad Sci U S A 2021; 118:2118052118. [PMID: 34930849 DOI: 10.1073/pnas.2118052118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.
Collapse
|
21
|
Rubio-Cuadrado Á, Camarero JJ, Rodríguez-Calcerrada J, Perea R, Gómez C, Montes F, Gil L. Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. TREE PHYSIOLOGY 2021; 41:2279-2292. [PMID: 34046675 DOI: 10.1093/treephys/tpab076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Rear-edge tree populations forming the equatorward limit of distribution of temperate species are assumed to be more adapted to climate variability than central (core) populations. However, climate is expected to become more variable and the frequency of climate extremes is forecasted to increase. Climatic extreme events such as heat waves, dry spells and spring frosts could become more frequent, and negatively impact and jeopardize rear-edge stands. To evaluate these ideas, we analyzed the growth response of trees to successive spring frosts in a mixed forest, where two temperate deciduous species, Fagus sylvatica L. (European beech) and Quercus petraea (Matt.) Liebl. (sessile oak), both at their southernmost edge, coexist with the Mediterranean Quercus pyrenaica Willd. (Pyrenean oak). Growth reductions in spring-frost years ranked across species as F. sylvatica > Q. petraea > Q. pyrenaica. Leaf flushing occurred earlier in F. sylvatica and later in Q. pyrenaica, suggesting that leaf phenology was a strong determinant of spring frost damage and stem growth reduction. The frost impact depended on prior climate conditions, since warmer days prior to frost occurrence predisposed to frost damage. Autumn Normalized Difference Vegetation Index data showed delayed leaf senescence in spring-frost years and subsequent years as compared with pre-frost years. In the studied forest, the negative impact of spring frosts on Q. petraea and especially on F. sylvatica growth, was considerably higher than the impacts due to drought. The succession of four spring frosts in the last two decades determined a trend of decreasing resistance of radial growth to frosts in F. sylvatica. The increased frequency of spring frosts might prevent the expansion and persistence of F. sylvatica in this rear-edge Mediterranean population.
Collapse
Affiliation(s)
- Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/ José Antonio Novais, 10, Madrid 28040, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, Zaragoza 50080, Spain
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/ José Antonio Novais, 10, Madrid 28040, Spain
| | - Ramón Perea
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/ José Antonio Novais, 10, Madrid 28040, Spain
| | - Cristina Gómez
- iuFOR-EiFAB, Campus Duques de Soria, Universidad de Valladolid, Soria 42004, Spain
| | - Fernando Montes
- INIA, Forest Research Centre, Department of Silviculture and Forest Management, Crta La Coruña km 7.5, Madrid 28040, Spain
| | - Luis Gil
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/ José Antonio Novais, 10, Madrid 28040, Spain
| |
Collapse
|
22
|
Pompa-García M, Camarero JJ, Colangelo M, González-Cásares M. Inter and intra-annual links between climate, tree growth and NDVI: improving the resolution of drought proxies in conifer forests. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2111-2121. [PMID: 34264389 PMCID: PMC8566664 DOI: 10.1007/s00484-021-02170-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The inter- and intra-annual variability in radial growth reflects responses to climatic variability and water shortage, especially in areas subjected to seasonal drought. However, it is unknown how this variability is related to forest productivity, which can be assessed by measuring changes in canopy greenness and cover through remote sensing products as the Normalized Difference Vegetation Index (NDVI). We combine xylogenesis with measurements of inter-annual changes in seasonal wood production (earlywood width, adjusted latewood width) and NDVI to improve the understanding of climate and drought impacts on growth and forest productivity in a Pinus teocote stand located in northern Mexico. Cambial dynamics accelerated in March and a high production of radially enlarging and thickening tracheids were observed from April to October and from June to October, respectively. Tracheid maturation was very active in October when latewood production peaked. Wet conditions in winter-spring and summer-autumn enhanced earlywood and latewood production, respectively. Earlywood and latewood were constrained by long (4-10 months) and short (2-3 months) droughts, respectively. The earlywood production depended on April soil moisture, which agrees with the peak of radially enlarging tracheid production found during that month. Aligning drought proxies at inter- and intra-annual scales by using growth and productivity measures improves our understanding of conifer forest responses to water shortage.
Collapse
Affiliation(s)
- Marín Pompa-García
- Facultad de Ciencias Forestales de la, Universidad Juárez del Estado de Durango, Río Papaloapan Y Blvd., Durango S/N Col. Valle del Sur, Durango, México
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, 50192 Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, 50192 Zaragoza, Spain
- School of Agricultural, Forest, Food and Environmental Sciences, Univ. Basilicata, Potenza, Italy
| | - Marcos González-Cásares
- Facultad de Ciencias Forestales de la, Universidad Juárez del Estado de Durango, Río Papaloapan Y Blvd., Durango S/N Col. Valle del Sur, Durango, México
| |
Collapse
|
23
|
Detecting drought regulators using stochastic inference in Bayesian networks. PLoS One 2021; 16:e0255486. [PMID: 34398879 PMCID: PMC8367000 DOI: 10.1371/journal.pone.0255486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
Drought is a natural hazard that affects crops by inducing water stress. Water stress, induced by drought accounts for more loss in crop yield than all the other causes combined. With the increasing frequency and intensity of droughts worldwide, it is essential to develop drought-resistant crops to ensure food security. In this paper, we model multiple drought signaling pathways in Arabidopsis using Bayesian networks to identify potential regulators of drought-responsive reporter genes. Genetically intervening at these regulators can help develop drought-resistant crops. We create the Bayesian network model from the biological literature and determine its parameters from publicly available data. We conduct inference on this model using a stochastic simulation technique known as likelihood weighting to determine the best regulators of drought-responsive reporter genes. Our analysis reveals that activating MYC2 or inhibiting ATAF1 are the best single node intervention strategies to regulate the drought-responsive reporter genes. Additionally, we observe simultaneously activating MYC2 and inhibiting ATAF1 is a better strategy. The Bayesian network model indicated that MYC2 and ATAF1 are possible regulators of the drought response. Validation experiments showed that ATAF1 negatively regulated the drought response. Thus intervening at ATAF1 has the potential to create drought-resistant crops.
Collapse
|
24
|
Szejner P, Belmecheri S, Babst F, Wright WE, Frank DC, Hu J, Monson RK. Stable isotopes of tree rings reveal seasonal-to-decadal patterns during the emergence of a megadrought in the Southwestern US. Oecologia 2021; 197:1079-1094. [PMID: 33870457 DOI: 10.1007/s00442-021-04916-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.
Collapse
Affiliation(s)
- Paul Szejner
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. .,Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.
| | - Soumaya Belmecheri
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Flurin Babst
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,W. Szafer Institute of Botany, Polish Academy of Science, ul. Lubicz 46, 31-512, Krakow, Poland.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - William E Wright
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - David C Frank
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Jia Hu
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Russell K Monson
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
25
|
Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. FORESTS 2020. [DOI: 10.3390/f11091002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systematic forest networks of health monitoring have been established to follow changes in tree vigor and mortality. These networks often lack long-term growth data, but they could be complemented with tree ring data, since both defoliation and radial growth are proxies of changes in tree vigor. For instance, a severe water shortage should reduce growth and increase tree defoliation in drought-prone areas. However, the effects of climatic stress and drought on growth and defoliation could also depend on tree age. To address these issues, we compared growth and defoliation data with recent climate variability and drought severity in Abies pinsapo old and young trees sampled in Southern Spain, where a systematic health network (Andalucía Permanent Plot Network) was established. Our aims were: (i) to assess the growth sensitivity of old and young A. pinsapo trees and (ii) to test if relative changes in radial growth were related with recent defoliation, for instance, after severe droughts. We also computed the resilience indices to quantify how old and young trees recovered growth after recent droughts. Wet-cool conditions during the prior autumn and the current early summer improved the growth of old trees, whereas late-spring wet conditions enhanced the growth of young trees. Old trees were more sensitive to wet and sunny conditions in the early summer than young trees. Old and young trees were more responsive to the Standardized Precipitation-Evapotranspiration Index drought index of June–July and July–August calculated at short (one–three months) and mid (three–six months) time scales, respectively. Old trees presented a higher resistance to a severe drought in 1995 than young trees. A positive association was found between stand defoliation and relative growth. Combining monitoring and tree ring networks is useful for the detection of early warning signals of dieback in similar drought-prone forests.
Collapse
|
26
|
Zweifel R, Etzold S, Sterck F, Gessler A, Anfodillo T, Mencuccini M, von Arx G, Lazzarin M, Haeni M, Feichtinger L, Meusburger K, Knuesel S, Walthert L, Salmon Y, Bose AK, Schoenbeck L, Hug C, De Girardi N, Giuggiola A, Schaub M, Rigling A. Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. THE NEW PHYTOLOGIST 2020; 227:1081-1096. [PMID: 32259280 PMCID: PMC7383578 DOI: 10.1111/nph.16582] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Frank Sterck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forest Ecology and Management GroupWageningen University6701Wageningenthe Netherlands
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversity of Padova35020LegnaroItaly
| | - Maurizio Mencuccini
- ICREA08010BarcelonaSpain
- CREAFUniversidad Autonoma de Barcelona08193BarcelonaSpain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Martina Lazzarin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Horticulture and Product PhysiologyWageningen UniversityWageningen6701the Netherlands
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Linda Feichtinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Simon Knuesel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/PhysicsUniversity of Helsinki00100HelsinkiFinland
- Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of Helsinki00100HelsinkiFinland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna University9208KhulnaBangladesh
| | - Leonie Schoenbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Christian Hug
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Nicolas De Girardi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Arnaud Giuggiola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| |
Collapse
|
27
|
Bose AK, Gessler A, Bolte A, Bottero A, Buras A, Cailleret M, Camarero JJ, Haeni M, Hereş A, Hevia A, Lévesque M, Linares JC, Martinez‐Vilalta J, Matías L, Menzel A, Sánchez‐Salguero R, Saurer M, Vennetier M, Ziche D, Rigling A. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. GLOBAL CHANGE BIOLOGY 2020; 26:4521-4537. [PMID: 32388882 PMCID: PMC7383776 DOI: 10.1111/gcb.15153] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 05/11/2023]
Abstract
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees' phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980-1999 to 2000-2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Collapse
Affiliation(s)
- Arun K. Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - Andreas Bolte
- Thünen Institute of Forest EcosystemsEberswaldeGermany
| | - Alessandra Bottero
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - Allan Buras
- Land Surface‐Atmosphere InteractionsTechnische Universitat MünchenFreisingGermany
| | - Maxime Cailleret
- UMR RECOVER/Ecosystèmes Méditerranéens et RisquesINRAEAix‐en‐Provencecedex 5France
| | | | - Matthias Haeni
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
| | - Ana‐Maria Hereş
- Department of Forest SciencesTransilvania University of BraşovBraşovRomania
- BC3 ‐ Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryLeioaSpain
| | - Andrea Hevia
- Departamento de Ciencias AgroforestalesUniversidad de HuelvaPalos de la FronteraSpain
| | | | - Juan C. Linares
- Depto. Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Jordi Martinez‐Vilalta
- CREAFBellaterra (Cerdanyola del Vallès)Spain
- Universitat Autònoma de BarcelonaBellaterra (Cerdanyola del Vallès)Spain
| | - Luis Matías
- Departamento de Biología Vegetal y EcologíaFacultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Annette Menzel
- EcoclimatologyTechnische Universität MünchenFreisingGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
| | - Raúl Sánchez‐Salguero
- Depto. Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
| | - Michel Vennetier
- UMR RECOVER/Ecosystèmes Méditerranéens et RisquesINRAEAix‐en‐Provencecedex 5France
| | - Daniel Ziche
- Thünen Institute of Forest EcosystemsEberswaldeGermany
- Faculty of Forest and EnvironmentEberswalde University for Sustainable DevelopmentEberswaldeGermany
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| |
Collapse
|
28
|
Drought Resistance of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. From Evidence at the Tree Level to Relevance at the Stand Level. FORESTS 2020. [DOI: 10.3390/f11060639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frequency of drought years is expected to increase through climate warming. Mixed stands have often shown to be more productive than monospecific stands in terms of yield and of resistance against windthrows and bark beetle attacks. Mixture of beech and spruce is of particular interest. However, little is known about its growth reaction to drought. Therefore, we investigated the drought reaction of beech and spruce in mixed vs. monospecific stands along an ecological gradient. In particular, we sought evidence for mixture-related resilience on the individual tree level. Therefore, we quantified the response of tree ring width to drought. Moreover, we attempted to explain the relevance of individual tree response on the stand level by quantifying the stand level loss of volume growth after drought. At the individual tree level, beech was found to be more resilient and resistant in pure vs. mixed stands. Spruce, in contrast, was favored by mixture, and this was especially evident on drier sites. Along the gradient, growth losses at stand level increased in both mixed and pure stands in 2015, with growth gains on the drier sites observed in the same drought year, in accordance with the Stress Gradient Hypothesis. However, the stand level difference of growth loss between mixed and pure stands was not statistically significant. Mitigating mixture effects on the level of the individual tree thus did not become evident on the level of the whole stand.
Collapse
|
29
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|