1
|
Joshi JS, Fladung L, Kruse O, Patel A. Novel Co-Cultivation Bioprocess with Immobilized Paenibacillus polymyxa and Scenedesmus obliquus for Lipid and Butanediol Production. Microorganisms 2025; 13:606. [PMID: 40142499 PMCID: PMC11945626 DOI: 10.3390/microorganisms13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Microalgal biotechnology is gaining attention due to its potential to produce pigments, lipids, biofuels, and value-added products. However, challenges persist in terms of the economic viability of microalgal lipid production in photobioreactors due to slow growth rates, expensive media, complex downstream processing, limited product yields, and contamination risks. Recent studies suggest that co-cultivating microalgae with bacteria can enhance the profitability of microalgal bioprocesses. Immobilizing bacteria offers advantages such as protection against shear forces, the prevention of overgrowth, and continuous product secretion. Previous work has shown that biopolymeric immobilization of Paenibacillus polymyxa enhances 2,3-butanediol production. In this study, a novel co-fermentation process was developed by exploiting the chemical crosstalk between a freshwater microalga Scenedesmus obliquus, also known as Tetradesmus obliquus, and an immobilized plant-growth-promoting bacterium, Paenibacillus polymyxa. This co-cultivation resulted in increased metabolite production, with a 1.5-fold increase in the bacterial 2,3-butanediol concentration and a 3-fold increase in the microalgal growth rates compared to these values in free-cell co-cultivation. Moreover, the co-culture with the immobilized bacterium exhibited a 5-fold increase in the photosynthetic pigments and a 3-fold increase in the microalgal lipid concentration compared to these values in free-cell co-cultivation. A fixed bed photobioreactor was further constructed, and the co-cultivation bioprocess was implemented to improve the bacterial 2,3-butanediol and microalgal lipid production. In conclusion, this study provides conclusive evidence for the potential of co-cultivation and biopolymeric immobilization techniques to enhance 2,3-butanediol and lipid production.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Laura Fladung
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Olaf Kruse
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Anant Patel
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
| |
Collapse
|
2
|
Abbas M, Ni L, Du C. Using PyCaret to model Chlorella vulgaris's growth response to salinity and oil contamination for crude oil bioremediation. ENVIRONMENTAL TECHNOLOGY 2025; 46:977-990. [PMID: 38972299 DOI: 10.1080/09593330.2024.2374027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024]
Abstract
Crude oil spills significantly impact aquatic ecosystems, necessitating innovative remediation strategies. Microalgae-based bioremediation, particularly with Chlorella vulgaris, offers a promising solution. This study introduces a novel framework that evaluates the combined effects of selected environmental stressors on microalgal adaptability, advancing beyond traditional isolated factor analyses. By integrating a factorial experimental design with a machine learning approach using PyCaret AutoML and SHAP values, we provide a detailed examination of how crude oil concentration, salinity, and exposure duration affect C. vulgaris growth. The Extra Trees Regressor model emerged as highly accurate in predicting biomass concentration, a crucial adaptability indicator, achieving an MAE of 0.0202, RMSE of 0.029, and an R² of 0.8875. SHAP analysis highlighted salinity and crude oil as significant growth influencers, with exposure duration playing a minor role. Notably, C. vulgaris exhibited more sensitivity to salinity than to crude oil, indicating potential high-salinity challenges but also a strong tolerance to oil pollutants. These findings enhance our understanding of microalgal responses in polluted environments and suggest improved bioremediation approaches for saline waters affected by oil spills, leveraging the synergy of environmental factors and machine learning insights.
Collapse
Affiliation(s)
- Mohamed Abbas
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE; School of Environment, Hohai University, Nanjing, People's Republic of China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE; School of Environment, Hohai University, Nanjing, People's Republic of China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE; School of Environment, Hohai University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Foroutan F, Davardoostmanesh M, Ahmadzadeh H. Water desalination and methylene blue dye removal by microalgae-based membrane: performance and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8084-8097. [PMID: 40057643 DOI: 10.1007/s11356-025-36166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
The present work describes the preparation of a biocomposite membrane by coating of Scenedesmus sp. microalgae on the surface of stainless steel mesh. The prepared membrane was used for both water desalination and methylene blue dye removal. Some effective parameters on the bioremediation performance such as the number of mesh layers, salt and dye concentrations, and the number of desalination cycles were optimized. Under the optimum conditions, the algae-coated mesh exhibited salt rejection and dye removal of 89.4 ± 1.2% and 97.9 ± 0.6%, respectively. The results confirmed the high stability and reusability of algae-coated mesh after 20 cycles of the desalination process. The prepared membrane showed outstanding mechanical strength with corrosion resistance and tensile strength of 96.7% and 38.1 MPa, respectively. The algae-coated mesh has the ability to successfully remove salinity agent cations from well water with the yields of above 87.0%. Based on the results, the salt removal was better fitted with Temkin adsorption isotherm, while the methylene blue dye removal was compatible with the Langmuir isotherm model.
Collapse
Affiliation(s)
- Fahimeh Foroutan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Maryam Davardoostmanesh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hossein Ahmadzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| |
Collapse
|
4
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
5
|
Tripathi G, Hussain A, Irum, Firdaus S, Dubey P, Ahmad S, Ashfaque M, Mishra V, Farooqui A. Current Scenario and Global Perspective of Sustainable Algal Biofuel Production. Recent Pat Biotechnol 2025; 19:276-300. [PMID: 39390829 DOI: 10.2174/0118722083322399240927051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Industrialization and globalization have increased the demand for petroleum products that has increased a load on natural energy resources. The escalating fossil fuel utilization has resulted in surpassing the Earth's capacity to absorb greenhouse gases, necessitating the exploration of sustainable bioenergy alternatives to mitigate emissions. Biofuels, derived from algae, offer promising solutions to alleviate fossil fuel dependency. Algae, often regarded as third-generation biofuels, present numerous advantages owing to their high biomass production rates. While algae have been utilized for their bioactive compounds, their capability as biomass for the production of biofuel has gained traction among researchers. Various biofuels such as bio-hydrogen, bio-methane, bio-ethanol, bio-oil, and bio-butanol can be derived from algae through diverse processes like fermentation, photolysis, pyrolysis, and transesterification. Despite the enormous commercial potential of algae-derived biofuels, challenges such as high cultivation costs persist. However, leveraging the utilization of algae byproducts could improve economic viability of biofuel production. Moreover, algae derived biofuels offer environmental sustainability, cost-effectiveness, and waste reduction benefits, promising novel opportunities for a more sustainable energy future. Moreover, advancements in the field could lead to patents that drive innovation and commercialization in algae-based biofuel technologies.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Akhtar Hussain
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Irum
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Saba Firdaus
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Priyanka Dubey
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Ashfaque
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vishal Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
6
|
Eungrasamee K, Lindblad P, Jantaro S. Triple-Gene Overexpression of the AcrA-AcrB-TolC Transporter System in Synechocystis sp. PCC 6803 Contributes to a Higher Secretion of Free Fatty Acids in Response to Nitrogen Shortage and Salt Stress. Int J Mol Sci 2024; 25:12131. [PMID: 39596198 PMCID: PMC11594277 DOI: 10.3390/ijms252212131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
One important aspect of cyanobacterial homoeostasis is reducing the toxicity of excess free fatty acids (FFAs) generated in the cells by means of both secreting these into the medium and recycling them toward membrane lipid synthesis. In this study, the cyanobacterium Synechocystis sp. PCC 6803 served to implement the overexpression of native genes of the transportation system. Specifically, we worked with the Sll0180-Slr2131-Slr1270 homologs of Escherichia coli AcrA-AcrB-TolC, respectively, to create single- and triple-overexpressing strains of OA, OB, OC, and OABC. Remarkably, the OABC strain that triply overexpressed the sll0180_slr2131_slr1270 genes acquired a significant amount of intracellular lipids, up to 23.5% of dry cell weight, under the normal condition. Nitrogen-deficient stress undoubtedly raised extracellular FFAs and intracellular lipids in overexpressing strains, especially in the OABC strain, which exhibited 33.9% and 41.5% of dry cell weight, respectively. During the first 5 days of treatment, salt stress at 256 mM significantly increased the FFA efflux, notably for the OB strain, but had no effect on intracellular lipids. It is noteworthy that the OA and OABC strains outperformed all other strains in terms of growth throughout the 16 days of nitrogen shortage. Furthermore, in comparison to the wild-type control, all the overexpressing strains exhibited a considerable increase in carotenoid accumulation. Thus, our results point to the effective role of the sll0180_slr2131_slr1270 transportation system in facilitating FFA secretion, especially in response to environmental stressors.
Collapse
Affiliation(s)
- Kamonchanock Eungrasamee
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry—Ångström, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Bellido-Pedraza CM, Torres MJ, Llamas A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024; 13:1137. [PMID: 38994989 PMCID: PMC11240456 DOI: 10.3390/cells13131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.
Collapse
Affiliation(s)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain; (C.M.B.-P.); (M.J.T.)
| |
Collapse
|
8
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
9
|
Kihika JK, Pearman JK, Wood SA, Rhodes LL, Smith KF, Miller MR, Butler J, Ryan KG. Fatty acid production and associated gene pathways are altered by increased salinity and dimethyl sulfoxide treatments during cryopreservation of Symbiodinium pilosum (Symbiodiniaceae). Cryobiology 2024; 114:104855. [PMID: 38301952 DOI: 10.1016/j.cryobiol.2024.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The Symbiodinium genus is ancestral among other Symbiodiniaceae lineages with species that are both symbiotic and free living. Changes in marine ecosystems threaten their existence and crucial ecological roles. Cryopreservation offers an avenue for their long-term storage for future habitat restoration after coral bleaching. In our previous study we demonstrated that high salinity treatments of Symbiodiniaceae isolates led to changes in their fatty acid (FA) profiles and higher cell viabilities after cryopreservation. In this study, we investigated the role of increased salinity on FA production and the genes involved in FA biosynthesis and degradation pathways during the cryopreservation of Symbiodinium pilosum. Overall, there was a twofold increase in mass of FAs produced by S. pilosum after being cultured in medium with increased salinity (54 parts per thousand; ppt). Dimethyl sulfoxide (Me2SO) led to a ninefold increase of FAs in standard salinity (SS) treatment, compared to a fivefold increase in increased salinity (IS) treatments. The mass of the FA classes returned to baseline during recovery. Transcriptomic analyses showed an acyl carrier protein gene was significantly upregulated after Me2SO treatment in the SS cultures. Cytochrome P450 reductase genes were significantly down regulated after Me2SO addition in SS treatment preventing FA degradation. These changes in the expression of FA biosynthesis and degradation genes contributed to more FAs in SS treated isolates. Understanding how increased salinity changes FA production and the roles of specific genes in regulating FA pathways will help improve current freezing protocols for Symbiodiniaceae and other marine microalgae.
Collapse
Affiliation(s)
- Joseph K Kihika
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Lesley L Rhodes
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - Juliette Butler
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
10
|
El-Sheekh MM, Galal HR, Mousa ASH, Farghl AAM. Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. Sci Rep 2024; 14:2725. [PMID: 38302601 PMCID: PMC11310393 DOI: 10.1038/s41598-024-53216-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Microalgal lipids are precursors to the production of biodiesel, as well as a source of valuable dietary components in the biotechnological industries. So, this study aimed to assess the effects of nutritional (nitrogen, and phosphorus) starvations and salinity stress (NaCl) on the biomass, lipid content, fatty acids profile, and predicted biodiesel properties of green microalga Monoraphidium braunii. The results showed that biomass, biomass productivity, and photosynthetic pigment contents (Chl. a, b, and carotenoids) of M. braunii were markedly decreased by nitrogen and phosphorus depletion and recorded the maximum values in cultures treated with full of N and P concentrations (control, 100%). These parameters were considerably increased at the low salinity level (up to 150 mM NaCl), while an increasing salinity level (up to 250 mM NaCl) reduces the biomass, its productivity, and pigment contents. Nutritional limitations and salt stress (NaCl) resulted in significantly enhanced accumulation of lipid and productivity of M. braunii, which represented more than twofold of the control. Furthermore, these conditions have enhanced the profile of fatty acid and biodiesel quality-related parameters. The current study exposed strategies to improve M. braunii lipid productivity for biodiesel production on a small scale in vitro in terms of fuel quality under low nutrients and salinity stress.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hamdy R Galal
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Amal Sh H Mousa
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Abla A M Farghl
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
11
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Bai S, Zhang J, Qi X, Zeng J, Wu S, Peng X. Changes of In Situ Prokaryotic and Eukaryotic Communities in the Upper Sanya River to the Sea over a Nine-Hour Period. Microorganisms 2023; 11:microorganisms11020536. [PMID: 36838501 PMCID: PMC9964997 DOI: 10.3390/microorganisms11020536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The transition areas of riverine, estuarine, and marine environments are particularly valuable for the research of microbial ecology, biogeochemical processes, and other physical-chemical studies. Although a large number of microbial-related studies have been conducted within such systems, the vast majority of sampling have been conducted over a large span of time and distance, which may lead to separate batches of samples receiving interference from different factors, thus increasing or decreasing the variability between samples to some extent. In this study, a new in situ filtration system was used to collect membrane samples from six different sampling sites along the Sanya River, from upstream freshwater to the sea, over a nine-hour period. We used high-throughput sequencing of 16S and 18S rRNA genes to analyze the diversity and composition of prokaryotic and eukaryotic communities. The results showed that the structures of these communities varied according to the different sampling sites. The α-diversity of the prokaryotic and eukaryotic communities both decreased gradually along the downstream course. The structural composition of prokaryotic and eukaryotic communities changed continuously with the direction of river flow; for example, the relative abundances of Rhodobacteraceae and Flavobacteriaceae increased with distance downstream, while Sporichthyaceae and Comamonadaceae decreased. Some prokaryotic taxa, such as Phycisphaeraceae and Chromobacteriaceae, were present nearly exclusively in pure freshwater environments, while some additional prokaryotic taxa, including the SAR86 clade, Clade I, AEGEAN-169 marine group, and Actinomarinaceae, were barely present in pure freshwater environments. The eukaryotic communities were mainly composed of the Chlorellales X, Chlamydomonadales X, Sphaeropleales X, Trebouxiophyceae XX, Annelida XX, and Heteroconchia. The prokaryotic and eukaryotic communities were split into abundant, common, and rare communities for NCM analysis, respectively, and the results showed that assembly of the rare community assembly was more impacted by stochastic processes and less restricted by species dispersal than that of abundant and common microbial communities for both prokaryotes and eukaryotes. Overall, this study provides a valuable reference and new perspectives on microbial ecology during the transition from freshwater rivers to estuaries and the sea.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Correspondence: (S.B.); (X.P.)
| | - Jian Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxue Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Juntao Zeng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Wu
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xiaotong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Correspondence: (S.B.); (X.P.)
| |
Collapse
|
13
|
Bo Y, Chu R, Sun D, Deng X, Zhou C, Yan X, Ruan R, Cheng P. Mixotrophic culture of bait microalgae for biomass and nutrients accumulation and their synergistic carbon metabolism. BIORESOURCE TECHNOLOGY 2023; 367:128301. [PMID: 36370937 DOI: 10.1016/j.biortech.2022.128301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae cannot meet the bait demand for aquaculture due to light intensity limitation and other disadvantageous conditions. This research selected 6 mixotrophic microalgae, and the optimal strains and organic carbon were screened. The results showed that Thalassiosira pseudonana and Chlorella sp. are suitable for mixotrophic culture. The maximum cell density of Thalassiosira pseudonana was found to be 1.67 times than that of the photoautotrophic group when glycerol was added. The maximum cell density of Chlorella sp. with acetic acid was 1.69 times than that of the photoautotrophic group. When the concentration of acetic acid was 5.0 g·L-1 and the concentration of KNO3 was 0.2 g·L-1, the maximum biomass of Chlorella sp. could reach 3.54 × 107 cells·mL-1; the maximum biomass of Thalassiosira pseudonana was 5.53 × 106 cells·mL-1 with 10.0 g·L-1 glycerol and 0.2 g·L-1 KNO3. Metabolomic analysis further revealed that mixotrophic bait microalgae could promote the accumulation of lipids and amino acids.
Collapse
Affiliation(s)
- Yahui Bo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ruirui Chu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Danni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
14
|
Hasan J, Islam Z, Rabby AF, Sonia SS, Aktaruzzaman M, Rahman T, Rahman S, Mahmud Y. Dataset describing the growth pattern, amino acid and fatty acid profile of five indigenous marine microalgae species of Bangladesh. Data Brief 2022; 45:108643. [PMID: 36425970 PMCID: PMC9679473 DOI: 10.1016/j.dib.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
This paper presents the data on the growth pattern, amino acid, and fatty acid profile of five (5) selected indigenous marine microalgae (Chaetoceros sp.; Isochrysis sp.; Skeletonema sp.; Nannochloropsis sp.; and Tetraselmis sp.) of Bay of Bengal, Bangladesh. The microalgae species were cultured in f/2 Guillard's medium with maintaining standard physico-chemical parameters. The growth pattern was determined for all the microalgae as a prerequisite for further necessary experimental works. All the species were mass cultured using the same culture medium and harvested (centrifuging method), and dried (60 ℃ for 12 h) at their stationary phase. Finally, the amino acid and fatty acid analyses were performed. In many contexts, the amino acid and fatty acid data showed significant differences (p < 0.05) among these experimental species. However, by understanding these experimental species' nutritional profiles, one can easily choose the desired one that is most appropriate for their intended application.
Collapse
Affiliation(s)
- Jakia Hasan
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Zahidul Islam
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Ahmad Fazley Rabby
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Saima Sultana Sonia
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Md. Aktaruzzaman
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Turabur Rahman
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Shafiqur Rahman
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Yahia Mahmud
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| |
Collapse
|
15
|
Zafar AM, Javed MA, Aly Hassan A, Sahle-Demessie E, Harmon S. Biodesalination using halophytic cyanobacterium Phormidium keutzingianum from brackish to the hypersaline water. CHEMOSPHERE 2022; 307:136082. [PMID: 36028126 PMCID: PMC10875329 DOI: 10.1016/j.chemosphere.2022.136082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The biodesalination potential at different levels of salinity of Phormidium keutzingianum (P. keutzingianum) was investigated. A wide range of salinity from brackish to hypersaline water was explored in this study to ensure the adaptability of P. keutzingianum in extreme stress conditions. Brackish to hypersaline salt solutions were tested at selected NaCl concentrations 10, 30, 50, and 70 g.L-1. Chloride, pH, nitrate, and phosphate were the main parameters measured throughout the duration of the experiment. Biomass growth estimation revealed that the studied strain is adaptable to all the salinities inoculated. During the first growth phase (till day 20), chloride ion was removed up to 43.52% and 45.69% in 10 and 30 g.L-1 of salinity, respectively. Fourier transform infrared spectrometry analysis performed on P. keutzingianum showed the presence of active functional groups at all salinity levels, which resulted in biosorption leading to the bioaccumulation process. Samples for scanning electron microscopy (SEM) analysis supported with electron dispersive X-ray spectroscopy analysis (EDS) showed NaCl on samples already on day 0. This ensures the occurrence of the biosorption process. SEM-EDS results on 10th d showed evidence of additional ions deposited on the outer surface of P. keutzingianum. Calcium, magnesium, potassium, sodium, chloride, phosphorus, and iron were indicated in SEM-EDS analysis proving the occurrence of the biomineralization process. These findings confirmed that P. keutzingianum showed biomass production, biosorption, bioaccumulation, and biomineralization in all salinities; hence, the strain affirms the biodesalination process.
Collapse
Affiliation(s)
- Abdul Mannan Zafar
- Civil and Environmental Engineering Department and National Water & Energy Center, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates.
| | - Muhammad Asad Javed
- Civil and Environmental Engineering Department and National Water & Energy Center, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates.
| | - Ashraf Aly Hassan
- Civil and Environmental Engineering Department and National Water & Energy Center, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates.
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Responses, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Stephen Harmon
- Center for Environmental Solutions and Emergency Responses, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| |
Collapse
|
16
|
Ghalhari MA, Mafigholami R, Takdastan A, Khoshmaneshzadeh B. Optimization of the biological salt removal process from artificial industrial wastewater with high TDS by Spirulina microalga using the response surface method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1168-1180. [PMID: 36358053 DOI: 10.2166/wst.2022.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aimed to examine the direct applicability of Spirulina maxima as a new conceptual method for removing total dissolved solids (TDS) from artificial industrial wastewater (AIW). In this study, live microalgal cells were used in a photobioreactor for TDS removal. The effects of TDS levels, pH, light intensity, and light retention time on microalgal growth and TDS removal were investigated, and optimal conditions were determined using the response surface method and Box-Behnken Design (RSM-BBD). The calculated values of coefficient of determination (R2), adjusted R2, and predicted R2 were 0.9754, 0.9508, and 0.636, respectively, which are close to the R2 values and validated the proposed statistical model. A second-order model could optimally determine the interactions between the studied variables according to the one-way analysis of variance (ANOVA). The results showed that increasing TDS levels reduced microalgal growth and TDS removal efficiency in AIW. S. maxima reduced TDS by 76% and 47% at TDS concentrations of 2,000-4,000 mg/L, respectively, when used in AIW. Maximum biomass efficiency (1.8 g/L) was obtained at a TDS concentration of 2,000 mg/L with other parameters optimized.
Collapse
Affiliation(s)
- Maryam Asadi Ghalhari
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| | - Afshin Takdastan
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Khoshmaneshzadeh
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran E-mail:
| |
Collapse
|
17
|
Papry RI, Miah S, Hasegawa H. Integrated environmental factor-dependent growth and arsenic biotransformation by aquatic microalgae: A review. CHEMOSPHERE 2022; 303:135164. [PMID: 35654229 DOI: 10.1016/j.chemosphere.2022.135164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a toxic metalloid posing harming the human food chain through trophic transfer. Microalgae are primary producers, ensuring bioaccumulation and biogeochemical cycling of As in water environment. They are highly efficient at removing As from the environment, making these microscopic organisms eco-friendly and money saving method in As remediation process. However, microalgal growth and As biotransformation potential relies greatly on individual and integrated environmental factors. This review scrutinizes the available literature on the As biotransformation potentials of various marine and freshwater microalgae under individual and integrated stresses of such factors. Various combinations of important factors such as temperature, salinity, concentrations of As (V) and PO43─, pH, light intensity, and length of exposure period are summarized along with the optimum conditions for different microalgae. The effects of environmental factors on microalgal growth, changes in cell shape, and the relationship between As biotransformation and other activities are discussed in detail. Time-dependent As speciation pattern by aquatic microalgae are reviewed. Conceptual models highlighting the microalgal species particularly linked with environmental factor-dependent As biotransformation mechanisms are also summarized. This review will contribute to an in depth understanding of the connection between environmental factors, As uptake, and the biotransformation mechanism of marine and freshwater microalgae from the perspective of As remediation process.
Collapse
Affiliation(s)
- Rimana Islam Papry
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Sohag Miah
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
18
|
A novel tubular photobioreactor immersed in open waters for passive temperature control and operated with the microalga Tetradesmus obliquus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Kona R, Katakojwala R, Pallerla P, Sripadi P, Mohan SV. High oleic acid biosynthesis and its absolute quantification by GC/MS in oleaginous Scenedesmus sp. SVMIICT1 cultivated in dual stress phase. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Prihanto AA, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of researchers have predicted that the current food crisis is predicted to worsen in 2050. The prediction of this crisis is aligned with climate change causing increases in some basic foodstuff prices. Therefore, everyone should prepare to consume alternative foods at an early stage. Alternative foods have been widely developed, one of which involves microalgae. However, the type of microalgae produced by some countries on a large scale consists of only oceanic/seawater microalgae. This will have an impact on and hinder development in countries that do not have these resources. Therefore, it is necessary to explore the use of microalgae derived from freshwater. Unfortunately, freshwater microalgae are still rarely investigated for use as alternative foods. However, there is considerable potential to utilize freshwater microalgae, and these algae are very abundant and diverse. In terms of nutritional properties, compared to oceanic / seawater microalgae, freshwater microalgae contain nearly the same protein and amino acids, lipids and fatty acids, carbohydrates, and vitamins. There are even more species whose composition is similar to those currently consumed foods, such as beef, chicken, beans, eggs, and corn. In addition to dietary properties, freshwater microalgae also have functional properties, due to the presence of pigments, sterols, fatty acids, and polyphenols. Given the potential of freshwater microalgae, these aquatic resources need to be developed for potential use as future food resources.
Collapse
|
21
|
Russell C, Rodriguez C, Yaseen M. Microalgae for lipid production: Cultivation, extraction & detection. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
23
|
Jain P, Minhas AK, Shukla S, Puri M, Barrow CJ, Mandal S. Bioprospecting Indigenous Marine Microalgae for Polyunsaturated Fatty Acids Under Different Media Conditions. Front Bioeng Biotechnol 2022; 10:842797. [PMID: 35372289 PMCID: PMC8971906 DOI: 10.3389/fbioe.2022.842797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Marine microalgae produce a number of valuable compounds that have significant roles in the pharmaceutical, biomedical, nutraceutical, and food industries. Although there are numerous microalgal germplasms available in the marine ecosystem, only a small number of strains have been recognized for their commercial potential. In this study, several indigenous microalgal strains were isolated from the coast of the Arabian Sea for exploring the presence and production of high-value compounds such as polyunsaturated fatty acids (PUFAs). PUFAs are essential fatty acids with multiple health benefits. Based on their high PUFA content, two isolated strains were identified by ITS sequencing and selected for further studies to enhance PUFAs. From molecular analysis, it was found both the strains were green microalgae: one of them was a Chlorella sp., while the other was a Planophila sp. The two isolated strains, together with a control strain known for yielding high levels of PUFAs, Nannochloropsis oculata, were grown in three different nutrient media for PUFA augmentation. The relative content of α-linolenic acid (ALA) as a percentage of total fatty acids reached a maximum of 50, 36, and 50%, respectively, in Chlorella sp., Planophila sp., and N. oculata. To the best of our knowledge, this is the first study in exploring fatty acids in Planophila sp. The obtained results showed a higher PUFA content, particularly α-linolenic acid at low nutrients in media.
Collapse
Affiliation(s)
- Priyanshu Jain
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India.,School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Amritpreet Kaur Minhas
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Sadhana Shukla
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Shovon Mandal
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
24
|
Zhang LY, Xing ZT, Chen LQ, Zhang XJ, Fan SJ. Comprehensive Time-Course Transcriptome and Co-expression Network Analyses Identify Salt Stress Responding Mechanisms in Chlamydomonas reinhardtii Strain GY-D55. FRONTIERS IN PLANT SCIENCE 2022; 13:828321. [PMID: 35283918 PMCID: PMC8908243 DOI: 10.3389/fpls.2022.828321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
It is highly necessary to understand the molecular mechanism underlying the salt stress response in green algae, which may contribute to finding the evolutionary cues of abiotic stress response in plants. Here, we reported a comprehensive temporal investigation of transcriptomes using data at eight different time points, from an early stage (2 h) to a late stage (up to 96 h) in Chlamydomonas reinhardtii GY-D55 cells. The principal component analysis (PCA) of transcriptome profiles showed that the samples of the early and late stages were well separated. A total of 12,445 genes were detected as differentially expressed genes. There were 1,861/2,270 common upregulated/downregulated genes for each time point compared with control samples. Samples treated with salt for 2, 8, and 24 h had a relatively large number of characteristic upregulated/downregulated genes. The functional enrichment analysis highlighted the timing of candidate regulatory mechanisms for salt stress responses in GY-D55 cells. Short time exposure to salt stress impaired oxidation-reduction, protein synthesis and modification, and photosynthesis. The algal cells promoted transcriptional regulation and protein folding to deal with protein synthesis/modification impairments and rapidly accumulated glycerol in the early stage (2-4 h) to cope with osmotic stress. At 12 and 24 h, GY-D55 cells showed increased expressions of signaling and photosynthetic genes to deal with the damage of photosynthesis. The co-expression module blue was predicted to regulate endoplasmic reticulum (ER) stress at early time points. In addition, we identified a total of 113 transcription factors (TFs) and predicted the potential roles of Alfin, C2C2, and the MYB family TFs in algal salt stress response.
Collapse
|
25
|
Enhancement of Astaxanthin and Fatty Acid Production in Haematococcus pluvialis Using Strigolactone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Improving the production rate of high-value nutraceutical compounds, such as astaxanthin and polyunsaturated fatty acids (PUFAs), is important for the commercialization of Haematococcus pluvialis biorefineries. Here, the effects of a phytohormone, strigolactone analog rac-GR24, on cell growth and astaxanthin and fatty acid biosynthesis in H. pluvialis were investigated. Four concentrations (2, 4, 6, and 8 µM) of rac-GR24 were initially added during 30 days of photoautotrophic cultivation. The addition of rac-GR24 improved cell number density and chlorophyll concentration in H. pluvialis cultures compared to the control; the optimal concentration was 8 µM. Despite a slightly reduced astaxanthin content of 30-d-old cyst cells, the astaxanthin production (26.1 ± 1.7 mg/L) improved by 21% compared to the rac-GR24-free control (21.6 ± 1.5 mg/L), owing to improved biomass production. Notably, at the highest dosage of 8 µM rac-GR24, the total fatty acid content of the treated H. pluvialis cells (899.8 pg/cell) was higher than that of the untreated cells (762.5 pg/cell), resulting in a significant increase in the total fatty acid production (361.6 ± 48.0 mg/L; 61% improvement over the control). The ratio of PUFAs, such as linoleic (C18:2) and linolenic (C18:3) acids, among total fatty acids was high (41.5–44.6% w/w) regardless of the rac-GR24 dose.
Collapse
|
26
|
Seemashree M, Chauhan V, Sarada R. Phytohormone supplementation mediated enhanced biomass production, lipid accumulation, and modulation of fatty acid profile in Porphyridium purpureum and Dunaliella salina cultures. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Fal S, Aasfar A, Rabie R, Smouni A, Arroussi HEL. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon 2022; 8:e08811. [PMID: 35118209 PMCID: PMC8792077 DOI: 10.1016/j.heliyon.2022.e08811] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Salinity is one of the most significant environmental factors limiting microalgal biomass productivity. In the present study, the model microalga Chlamydomonas reinhardtii (C. reinhardtii) was exposed to 200 mM NaCl for eight days to explore the physiological, biochemical and metabolomic changes. C. reinhradtii exhibited a significant decrease in growth rate, and Chl a and Chl b levels. 200 mM NaCl induced ROS generation in C. reinhardtii with increase in H2O2 content. This caused lipid peroxidation with increase in MDA levels. C. reinhardtii also exhibited an increase in carbohydrate and lipid accumulation under 200 mM NaCl conditions as storage molecules in cells to maintain microalgal survival. In addition, NaCl stress increased the content of carotenoids, polyphenols and osmoprotectant molecules such as proline. SOD and APX activities decreased, while ROS-scavenger enzymes (POD and CAT) decreased. Metabolomic response showed an accumulation of the major molecules implicated in membrane remodelling and stress resistance such oleic acid (40.29%), linolenic acid (19.29%), alkanes, alkenes and phytosterols. The present study indicates the physiological, biochemical and metabolomic responses of C. reinhardtii to salt stress.
Collapse
Affiliation(s)
- Soufiane Fal
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Abderahim Aasfar
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
| | - Reda Rabie
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- University Sidi Mohamed Ben Abdellah, Faculty of Sciences and Techniques of Fez, Laboratory of Applied Organic Chemistry, Fez, Morocco
| | - Abelaziz Smouni
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hicham EL. Arroussi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
28
|
Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment. ENERGIES 2021. [DOI: 10.3390/en14227687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microalgae are unicellular photosynthetic eukaryotes that can treat wastewater and provide us with biofuel. Microalgae cultivation utilizing wastewater is a promising approach for synchronous wastewater treatment and biofuel production. However, previous studies suggest that high microalgae biomass production reduces lipid production and vice versa. For cost-effective biofuel production from microalgae, synchronous lipid and biomass enhancement utilizing wastewater is necessary. Therefore, this study brings forth a comprehensive review of synchronous microalgal lipid and biomass enhancement strategies for biofuel production and wastewater treatment. The review emphasizes the appropriate synergy of the microalgae species, culture media, and synchronous lipid and biomass enhancement conditions as a sustainable, efficient solution.
Collapse
|
30
|
Salinity stress as a critical factor to trigger lipid accumulation in a freshwater microalga Lobochlamys sp. GUEco1006. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Song Y, Wang X, Cui H, Ji C, Xue J, Jia X, Ma R, Li R. Enhancing growth and oil accumulation of a palmitoleic acid-rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113273. [PMID: 34311253 DOI: 10.1016/j.jenvman.2021.113273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A palmitoleic acid-rich Scenedesmus obliquus strain SXND-02 was isolated from ammonium-containing wastewater. Biomass and lipid production were examined for this microalgal strain in photoautotrophic, heterotrophic, and mixotrophic cultivations, respectively, in order to extend its application in wastewater purification coupled with production of valued bio-products. Among the tested conditions, the microalga had better growth and higher lipid accumulation in mixotrophy. NH4Cl inhibited the microalgal growth in photoautotrophic cultivation. However, NaAc alleviated this inhibition in both heterotrophy and mixotrophy. Using 7 g L-1 NaAc and 0.5 g L-1 NH4Cl as carbon and nitrogen sources significantly increased the algal biomass and lipid yields under mixotrophic cultivation, with the highest levels up to 1.0 g L-1 and 59.88%, respectively. Fatty acid profiling indicated that palmitoleic acid was 23% in the S. obliquus SXND-02 under mixotrophic condition, which was about 21-fold higher than that in the control S. obliquus. Furthermore, this microalgal strain was tested in the chicken farm wastewater (CFW) containing high ammonium. Compared with other treatments, the S. obliquus SXND-02 cultivated in the 1/2 CFW + NaAc medium produced larger amounts of biomass (2.18 g L-1) and lipids (50.22%), and simultaneously higher removal rates of total nitrogen (TN) (80%), total ammonium nitrogen (TAN) (68%), total phosphate (TP) (82%), biological oxygen demand (BOD) (86%) and chemical oxygen demand (COD) (89%) from wastewater. The present data indicate that this excellent microalga can be used in mixotrophic cultivation for wastewater purification coupled with commercial production of valued biomass and high-quality algal oils.
Collapse
Affiliation(s)
- Yanan Song
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaodan Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoyun Jia
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
32
|
Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH. Salinity-induced microalgal-based mariculture wastewater treatment combined with biodiesel production. BIORESOURCE TECHNOLOGY 2021; 340:125638. [PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
33
|
Kumar Patel A, Tseng YS, Rani Singhania R, Chen CW, Chang JS, Di Dong C. Novel application of microalgae platform for biodesalination process: A review. BIORESOURCE TECHNOLOGY 2021; 337:125343. [PMID: 34120057 DOI: 10.1016/j.biortech.2021.125343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Freshwater demand is rising worldwide due to largely increasing population and industrialization. Latest focus is to explore the Ocean and saline effluent from industries to produce freshwater in a sustainable way via algal desalination. Current physicochemical desalination technology is not only an energy-intensive and expensive process but also gives severe environmental impact from brine and GHGs emissions. Therefore, it is neither environmentally-friendly nor feasible to countries with limited resources. Biodesalination could be an attractive technology with recent breakthroughs in algal bioprocess with fast growth rate under highly saline conditions to effectively remove salts optimally 50-67% from saline water. Algal desalination mainly occurs through biosorption and bioaccumulation which governs by biotic and abiotic factors e.g., strain, temperature, pH, light and nutrients etc. This review provides a current scenario of this novel technology by an in-depth assessment of technological advancement, social impact, possible risks and scope for policy implications.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157 Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157 Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157 Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157 Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157 Taiwan.
| |
Collapse
|
34
|
He J, Liu C, Du M, Zhou X, Hu Z, Lei A, Wang J. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front Bioeng Biotechnol 2021; 9:662655. [PMID: 34354984 PMCID: PMC8329484 DOI: 10.3389/fbioe.2021.662655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
Collapse
Affiliation(s)
- Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - ChenChen Liu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mengzhe Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiyi Zhou
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
Vilakazi H, Olasehinde TA, Olaniran AO. Chemical Characterization, Antiproliferative and Antioxidant Activities of Polyunsaturated Fatty Acid-Rich Extracts from Chlorella sp. S14. Molecules 2021; 26:molecules26144109. [PMID: 34299383 PMCID: PMC8303589 DOI: 10.3390/molecules26144109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.
Collapse
Affiliation(s)
- Hlengiwe Vilakazi
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
| | - Tosin A. Olasehinde
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos PMB 21023, Nigeria
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (H.V.); (T.A.O.)
- Correspondence:
| |
Collapse
|
36
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
37
|
Xu X, Zhang H, Gao T, Teng J. Impacts of applied voltage on forward osmosis process harvesting microalgae: Filtration behaviors and lipid extraction efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145678. [PMID: 33940758 DOI: 10.1016/j.scitotenv.2021.145678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Microalgae are promising source of biofuels, while harvesting process is the obstacle for the further development. Herein, a treatment system that combined electrochemical process with forward osmosis (FO) membrane filtration process was developed to achieve microalgae harvesting. The conductive FO membranes were used as both electrode materials and basic separation system. With -5 V electric field being applied, 57.6% of reduction in water flux loss was observed, while microalgae recovery efficiency increased by 17.3%. The lipid content also increased to nearly 38%. Meanwhile, the inevitable reverse diffusion of solutes in the FO process and the concentration process of the microalgae solution increased the salinity of the microalgae solution, which is generally regarded as an obstacle for the application of FO. However, in the electrically-assisted FO system, it not only improved the efficiency of the electrochemical process, but also can increase the lipid content. The lipid extraction efficiency of the -5 V electric field increased from 17.7% and 28.5% to 20.4% and 31.1%, respectively, with one and two times extractions. The synergistic effect of the reverse diffusion of Cl- and electrochemical process was conducive for the improvement of the lipid extraction efficiency, and is expected to reduce the energy consumption of the lipid extraction process.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
38
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
39
|
Maneechote W, Cheirsilp B. Stepwise-incremental physicochemical factors induced acclimation and tolerance in oleaginous microalgae to crucial outdoor stresses and improved properties as biodiesel feedstocks. BIORESOURCE TECHNOLOGY 2021; 328:124850. [PMID: 33611021 DOI: 10.1016/j.biortech.2021.124850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Stress-tolerant oleaginous microalgae are promising for economical outdoor cultivation and biofuel production. This study aimed to induce acclimation and adaptive evolution of oleaginous Scenedesmus sp. SPP to tolerate crucial outdoor stresses by stepwise increasing of physicochemical factors: salinity, light intensity and temperature. The acclimatized strains showed better growth and accumulated 20-30% higher contents of lipids and chlorophylls. The adaptive-evolved strain showed greater tolerance to culture stresses by giving > 2-fold higher biomass under nitrogen rich and accumulating > 1.5-fold higher lipid content under nitrogen starvation compared to the parental strain. Moreover, stepwise increasing of multi-stresses successfully induced the multi-tolerance of the adaptive-evolved strain and gave the highest lipid content of 44.1 ± 1.5%. The extracted lipids from acclimatized/evolved strains show improved prospect fuel properties in terms of high cetane number and oxidative stability. These results show the effectiveness of stepwise-incremental physicochemical factors to intensify potential of microalgae for outdoor cultivation and as biodiesel feedstocks.
Collapse
Affiliation(s)
- Wageeporn Maneechote
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
40
|
Pascoal PV, Ribeiro DM, Cereijo CR, Santana H, Nascimento RC, Steindorf AS, Calsing LCG, Formighieri EF, Brasil BSAF. Biochemical and phylogenetic characterization of the wastewater tolerant Chlamydomonas biconvexa Embrapa|LBA40 strain cultivated in palm oil mill effluent. PLoS One 2021; 16:e0249089. [PMID: 33826653 PMCID: PMC8026047 DOI: 10.1371/journal.pone.0249089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
The increasing demand for water, food and energy poses challenges for the world´s sustainability. Tropical palm oil is currently the major source of vegetable oil worldwide with a production that exceeds 55 million tons per year, while generating over 200 million tons of palm oil mill effluent (POME). It could potentially be used as a substrate for production of microalgal biomass though. In this study, the microalgal strain Chlamydomonas biconvexa Embrapa|LBA40, originally isolated from a sugarcane vinasse stabilization pond, was selected among 17 strains tested for growth in POME retrieved from anaerobic ponds of a palm oil industrial plant located within the Amazon rainforest region. During cultivation in POME, C. biconvexa Embrapa|LBA40 biomass productivity reached 190.60 mgDW • L-1 • d-1 using 15L airlift flat plate photobioreactors. Carbohydrates comprised the major fraction of algal biomass (31.96%), while the lipidic fraction reached up to 11.3% of dry mass. Reductions of 99% in ammonium and nitrite, as well as 98% reduction in phosphate present in POME were detected after 5 days of algal cultivation. This suggests that the aerobic pond stage, usually used in palm oil industrial plants to reduce POME inorganic load, could be substituted by high rate photobioreactors, significantly reducing the time and area requirements for wastewater treatment. In addition, the complete mitochondrial genome of C. biconvexa Embrapa|LBA40 strain was sequenced, revealing a compact mitogenome, with 15.98 kb in size, a total of 14 genes, of which 9 are protein coding genes. Phylogenetic analysis confirmed the strain taxonomic status within the Chlamydomonas genus, opening up opportunities for future genetic modification and molecular breeding programs in these species.
Collapse
Affiliation(s)
- Patrícia Verdugo Pascoal
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Dágon Manoel Ribeiro
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Universidade Zambeze, Sofala, Mozambique
| | | | - Hugo Santana
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
| | - Rodrigo Carvalho Nascimento
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Tocantins, Gurupi, Tocantins, Brazil
| | | | | | | | - Bruno S. A. F. Brasil
- Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
41
|
Fallahi A, Hajinajaf N, Tavakoli O, Sarrafzadeh MH. Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2586. [PMID: 34056025 PMCID: PMC8148641 DOI: 10.30498/ijb.2020.2586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Microalgal biotechnology has gained much attention previously. Monoculture algae cultivation has been carried out extensively in the last decades. However, although the mixed microalgae cultivation has some advantageous over pure cultures, there is still a lack of knowledge about the performance of mixed cultures. OBJECTIVE In this study, it has been tried to investigate all growth aspects of marine and freshwater microalgal species in a mixed culture and their biological effects on biomass growth and composition based on wastewater nutrient consumption. MATERIAL AND METHODS Three algal species of Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis sp. were cultivated in saline wastewater individually, then the effects of mixing the three strains on biomass productivity, nutrient removal efficiency, chlorophyll, carotenoid, and lipid content were investigated. RESULTS The obtained results revealed that the mixed culture of three strains showed the highest biomass productivity of 191 mg. L-1.d-1. Also, while there were no significant differences between the performance of mono and mixed culture of algal species in the removal efficiency of wastewater nutrients, the three-strain microalgal mixed culture showed the highest values of 3.5 mg.L-1.d-1 and 5.75 mg.L-1.d-1 in the removal rate of phosphate and nitrate, respectively. In terms of total chlorophyll and carotenoid per produced biomass, however, the mixed culture of three species showed the lowest values of 4.08 and 0.6 mg. g biomass-1, respectively. CONCLUSIONS The finding proves the potential of attractive and economically feasible mixed microalgae cultivation for high percentage nutrient removal and microalgal biomass production.
Collapse
Affiliation(s)
- Alireza Fallahi
- Green Technology Laboratory (GTL), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Nima Hajinajaf
- Green Technology Laboratory (GTL), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Omid Tavakoli
- Green Technology Laboratory (GTL), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse (UCWR), School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
42
|
Morales-Sánchez D, Schulze PS, Kiron V, Wijffels RH. Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Comparative analysis of microalgae metabolism on BBM and municipal wastewater during salt induced lipid accumulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Xu P, Fang S, Chen H, Cai W. The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:59-75. [PMID: 32656780 DOI: 10.1111/tpj.14905] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 05/14/2023]
Abstract
Lateral roots (LRs) are the main component of the root system architecture in Arabidopsis. The plasticity of LR development has an important role in improving plant survival in response to the external environment. Previous studies have revealed a number of genetic pathways that control plant growth in response to environmental stimuli. Here, we find that the xyloglucan endotransglucosylase 19 (XTH19) and XTH23 genes are involved in LR development under salt stress. The density of LRs was decreased in the xth23 single mutant, which was also more sensitive to salt than the wild type, and the xth19xth23 double mutant exhibited additive downregulated LR initiation and salt sensitivity compared with the single mutant. On the contrary, constitutive overexpression of XTH19 or XTH23 caused increased LR densities. Furthermore, XTH19 and XTH23 were induced by salt via the key brassinosteroid signaling pathway transcription factor BES1. In addition, we found that 35S::BES1 increased salt tolerance and the phenotype of xth19xth23 & 35S::BES1 was partially complementary to the wild-type level. In vivo and in vitro assays demonstrated that BES1 acts directly upstream of XTH19 and XTH23 to control their expression. Overall, our results revealed that XTH19 and XTH23 are involved in LR development via the BES1-dependent pathway, and contribute to LR adaptation to salt.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 BaoDe Road, Shanghai, 200443, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
45
|
A Review of Algae-Based Produced Water Treatment for Biomass and Biofuel Production. WATER 2020. [DOI: 10.3390/w12092351] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Produced water (PW), the largest waste stream generated in oil and gas industries, has the potential to be a harmless product rather than being a waste. Biological processes using microorganisms have proven useful to remediate PW contaminated by petroleum hydrocarbons, complex organic chemicals, and solvents. In particular, the bioremediation of PW using algae is an eco-friendly and low-cost approach due to algae’s ability to utilize certain pollutants as nutrient sources. Therefore, the utilization of PW as an algal growth medium has a great potential to eliminate chemicals from the PW and minimize the large volumes of freshwater needed for cultivation. Although several reviews describing the bioremediation of PW have been published, to the best of our knowledge, no review has exclusively focused on the algae-based PW treatment. Therefore, the present review is dedicated to filling this gap by portraying the many different facets of the algae cultivation in PW. Several algal species that are known to thrive in a wide range of salinity and the critical steps for their cultivation in hypersaline PW have been identified. Overall, this comprehensive review highlights the PW bioremediation using algae and brings attention to utilizing PW to grow biomass that can be processed to generate biofuels and useful bioproducts.
Collapse
|
46
|
Morando-Grijalva CA, Vázquez-Larios AL, Alcántara-Hernández RJ, Ortega-Clemente LA, Robledo-Narváez PN. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28575-28584. [PMID: 32212076 DOI: 10.1007/s11356-020-08308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In the present study, isolated strains of the microalgae Chlamydomonas sp. (CH) and Chlorella vulgaris (CV) were used to treat aquaculture wastewater and to obtain fatty acids and from a fattening culture of tilapia. The microalgae were cultivated for 11 days in tubular photobioreactors with an operating volume of 2 L, constant aeration and illumination. High removal rates of NO3- and PO43- were achieved for both Chlamydomonas sp. (84.7% and 96%, respectively) and Chlorella vulgaris (94.6 and 97.9%, respectively). The maximum biomass productivity achieved by Chlamydomonas sp. was 0.06 and 0.10 gL-1d-1 for Chlorella vulgaris. Therefore, tilapia wastewater contained the necessary nutrient concentration for algal growth and development. Chlamydomonas sp. biomass lipid content was 69%, while that of Chlorella vulgaris was 40%. The lipid profile of both microalgae was abundant in palmitic acid (78% for Chlamydomonas sp. and 35% for Chlorella vulgaris). This fatty acid is suitable for biodiesel production. Tilapia wastewater is low-cost alternative culture medium as it contains the necessary nutrient concentration for microalgae development and growth.
Collapse
|
47
|
Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. SUSTAINABILITY 2020. [DOI: 10.3390/su12135445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The microalgal strain Scenedesmus rubescens KNUA042 was identified in freshwater in Korea and characterized by evaluating its stress responses in an effort to increase lipid and carotenoid production. Under a two-stage cultivation process, the algal strain that generally exhibits optimal growth at a nitrate (source of nitrogen) concentration of 0.25 g L−1 was challenged to different exogenous stimuli—salinity (S), light intensity (L), combined L and S (LS), and nitrogen deficiency (C)—for 14 days. Lipid production and carotenoid concentration increased in a time-dependent manner under these physicochemical conditions during the culture periods. Lipid accumulation was confirmed by thin layer chromatography, BODIPY staining, and fatty acid composition analysis, which showed no differences in the algal cells tested under all four (C, S, L, and LS) conditions. The quality of biodiesel produced from the biomass of the algal cells met the American Society for Testing and Materials and the European standards. Total carotenoid content was increased in the LS-treated algal cells (6.94 mg L−1) compared with that in the C-, S-, and L-treated algal cells 1.75, 4.15, and 1.32 mg L−1, respectively). Accordingly, the concentration of canthaxanthin and astaxanthin was also maximized in the LS-treated algal cells at 1.73 and 1.11 mg g−1, respectively, whereas lutein showed no differences in the cells analyzed. Conversely, chlorophyll a level was similar among the C-, S-, and LS-treated algal cells, except for the L-treated algal cells. Thus, our results suggested that S. rubescens KNUA042 was capable of producing carotenoid molecules, which led to the maximum values of canthaxanthin and astaxanthin concentrations when exposed to the combined LS condition compared with that observed when exposed to the salinity condition alone. This indicates that the algal strain could be used for the production of high-value products as well as biofuel. Furthermore, this article provides the first evidence of carotenoid production in S. rubescens KNUA042.
Collapse
|
48
|
An assessment of heterotrophy and mixotrophy in Scenedesmus and its utilization in wastewater treatment. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 2020; 41:107545. [PMID: 32272160 DOI: 10.1016/j.biotechadv.2020.107545] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
This work reviews applications of high added value molecules produced from microalgae. Older forms of valorization - health food and quality feed, polyunsaturated fatty acids, pigments, carbohydrates - are currently penetrating their markets. They are driven by desirable properties: texturer and dye for food industry, antioxidant for cosmetics and the appetite of the general public for biosourced compounds. Most recent developments, such as peptides, vitamins, polyphenols, phytosterols and phytohormones, are struggling to meet their market and reach economical competitiveness. Still they are pushed forward by the very powerful driver that is pharmaceutical industry. In addition this work also proposes to link microalgae phyla and related potential applications. This is done through highlighting of which bioactive compounds can be found in which phyla. While some seem to be restricted to aquaculture, Cyanobacteria, Chlorophyta and Rhodophyta show great promises.
Collapse
|
50
|
Hlaing SAA, Sadiq MB, Anal AK. Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1090-1099. [PMID: 32123430 PMCID: PMC7026320 DOI: 10.1007/s13197-019-04144-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/13/2019] [Accepted: 10/28/2019] [Indexed: 01/13/2023]
Abstract
The freshwater green microalga Scenedesmus obliquus was cultivated to enhance the contents of proteins, carbohydrates and lipids by using Box-Behnken experimental design. S. obliquus was cultured under phototrophic conditions by using Bold's Basal Medium with different cultivation parameters including pH (7, 8 and 9), salinity (10, 30 and 50 mM), and nitrogen source (0.125, 0.5 and 1 g/L). The highest biomass yield (64.9 ± 0.94 mg/L/day) was obtained by using optimized medium at a salinity concentration of 30 mM (w/v), and nitrogen sources of 0.125 g/L. The maximum content of protein, lipid and carbohydrates from S. obliquus optimized medium were 342.19 ± 0.28 mg/g, 241.41 ± 4.32 mg/g and 288.05 ± 1.12 mg/g of dry wt. respectively. The amino acid and fatty acid analysis of S. obliquus biomass indicated the presence of significant amount of essential amino acids and essential fatty acids. Furthermore, chocolate crispy bar was developed by fortification with encapsulated freeze-dried S. obliquus and evaluated for its oxidative stability and sensory analysis. The chocolate fortified with microalgae can be a potential source of essential fatty acids and amino acids in addition to other bioactive compounds.
Collapse
Affiliation(s)
- Su Aye Aye Hlaing
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, PO Box 4, Klongluang, Pathum Thani 12120 Thailand
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, PO Box 4, Klongluang, Pathum Thani 12120 Thailand
| |
Collapse
|