1
|
Andrade MT, Barbosa NHS, Souza-Junior RCS, Fonseca CG, Damasceno WC, Regina-Oliveira K, Drummond LR, Bittencourt MA, Kunstetter AC, Andrade PVR, Hudson ASR, Prímola-Gomes TN, Teixeira-Coelho F, Coimbra CC, Pires W, Wanner SP. Aerobic performance in rats subjected to incremental-speed running exercise: A multiple regression analysis study emphasizing thermoregulation-related variables. J Therm Biol 2024; 126:104016. [PMID: 39653632 DOI: 10.1016/j.jtherbio.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Single-variable analyses have limited ability to explain complex phenomena such as the regulation of prolonged physical (aerobic) performance. Our study aimed to identify predictors of performance in rats subjected to incremental-speed running exercise. Notably, most variables assessed were associated with rats' thermoregulation. We extracted data from 355 records obtained in 216 adult Wistar rats. Hierarchical multiple linear regression analyses were conducted to identify the predictive power of eight variables. The distance traveled, a performance index, was the dependent variable. The independent variables included body mass, biological sex, body core temperature (TCORE) measurement site, and the following thermoregulation-related variables: ambient temperature (TAMB), initial TCORE, exercise-induced change in TCORE (ΔTCORE), ΔTCORE from 0 to 10 min (ΔTCORE 0-10; when TCORE increase is fastest), and heat loss index (HLI). This analysis with eight variables revealed an adjusted R2 of 0.495; TAMB, ΔTCORE, body mass, and ΔTCORE 0-10 had the highest predictive powers (β values: -0.700, 0.463, -0.353, and -0.130, respectively). Additional analyses consisted of separate regressions for each TCORE index measured: abdominal (TABD), brain (TBRAIN), and colonic (TCOL) temperature. These analyses yielded adjusted R2 values of 0.608 (TABD), 0.550 (TBRAIN), and 0.437 (TCOL). Again, the distance traveled was primarily predicted by body mass and thermoregulation-related variables (TAMB, ΔTCORE, and ΔTCORE 0-10). Among these four variables, ΔTCORE was the only one with a positive β value (directly predicted performance), while the others had negative values. Collectively, these findings advance our understanding of performance regulation in rats, especially regarding the role of thermoregulation-related variables.
Collapse
Affiliation(s)
- Marcelo T Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Psychology Program, Faculdade de Minas (FAMINAS), Belo Horizonte, MG, Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto C S Souza-Junior
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cletiana G Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - William C Damasceno
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kássya Regina-Oliveira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas R Drummond
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physical Education, Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Myla A Bittencourt
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro V R Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre S R Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thales N Prímola-Gomes
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Francisco Teixeira-Coelho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Sport Sciences, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Cândido C Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Physical Activity Laboratory, School of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Madhvapathy SR, Bury MI, Wang LW, Ciatti JL, Avila R, Huang Y, Sharma AK, Rogers JA. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat Biomed Eng 2024; 8:1040-1052. [PMID: 38499643 DOI: 10.1038/s41551-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joanna L Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Pendergrast LA, Ashcroft SP, Ehrlich AM, Treebak JT, Krook A, Dollet L, Zierath JR. Metabolic plasticity and obesity-associated changes in diurnal postexercise metabolism in mice. Metabolism 2024; 155:155834. [PMID: 38479569 DOI: 10.1016/j.metabol.2024.155834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Circadian disruption is widespread and increases the risk of obesity. Timing of therapeutic interventions may promote coherent and efficient gating of metabolic processes and restore energy homeostasis. AIM To characterize the diurnal postexercise metabolic state in mice and to identify the influence of diet-induced obesity on identified outcomes. METHODS C57BL6/NTac male mice (6 wks of age) were fed a standard chow or high-fat diet for 5 weeks. At week 5, mice were subjected to a 60-min (16 m/min, 5 % incline) running bout (or sham) during the early rest (day) or early active (night) phase. Tissue and serum samples were collected immediately post-exercise (n = 6/group). In vivo glucose oxidation was measured after oral administration of 13C-glucose via 13CO2 exhalation analysis in metabolic cages. Basal and isoproterenol-stimulated adipose tissue lipolysis was assessed ex vivo for 1 h following exercise. RESULTS Lean mice displayed exercise-timing-specific plasticity in metabolic outcomes, including phase-specificity in systemic glucose metabolism and adipose-tissue-autonomous lipolytic activity depending on time of day. Conversely, obesity impaired temporal postexercise differences in whole-body glucose oxidation, as well as the phase- and exercise-mediated induction of lipolysis in isolated adipose tissue. This obesity-induced alteration in diurnal metabolism, as well as the indistinct response to exercise, was observed concomitant with disruption of core clock gene expression in peripheral tissues. CONCLUSIONS Overall, high-fat fed obese mice exhibit metabolic inflexibility, which is also evident in the diurnal exercise response. Our study provides physiological insight into exercise timing-dependent aspects in the dynamic regulation of metabolism and the influence of obesity on this biology.
Collapse
Affiliation(s)
- Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Zanetti GDO, Pessoa PWM, Vieira TS, Garcia RDA, Santos Barbosa NH, Arantes RME, Kettelhut IDC, Navegantes LCC, Wanner SP, Soares DD, Gonçalves DAP. Long-term heat acclimation training in mice: Similar metabolic and running performance adaptations despite a lower absolute intensity than training at temperate conditions. J Therm Biol 2024; 119:103797. [PMID: 38340467 DOI: 10.1016/j.jtherbio.2024.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
This study investigated the impact of long-term heat acclimation (HA) training on mouse thermoregulation, metabolism, and running performance in temperate (T) and hot (H) environments. Male Swiss mice were divided into 1) Sedentary (SED) mice kept in T (22 °C; SED/T), 2) Endurance Trained mice (ET, 1 h/day, 5 days/week, 8 weeks, 60 % of maximum speed) in T (ET/T), 3) SED kept in H (32 °C; SED/H), and 4) ET in H (ET/H). All groups performed incremental load tests (ILT) in both environments before (pre-ET) and after four and eight weeks of ET. In the pre-ET period, H impaired (∼30 %) performance variables (maximum speed and external work) and increased (1.3 °C) maximum abdominal body temperature compared with T. In T, after four weeks, although ET/H exercised at a lower (∼30 %) absolute intensity than ET/T, performance variables and aerobic power (peak oxygen uptake, VO2peak) were similarly increased in both ET groups compared with SED/T. After eight weeks, the external work was higher in both ET groups compared with SED/T. Only ET/T significantly increased VO2peak (∼11 %) relative to its pre-ET period. In H, only after eight weeks, both ET groups improved (∼19 %) maximum speed and reduced (∼46 %) post-ILT blood lactate concentrations compared with their respective pre-ET values. Liver glycogen content increased (34 %) in both ET groups and SED/H compared with SED/T. Thus, ET/H was performed at a lower absolute intensity but promoted similar effects to ET/T on metabolism, aerobic power, and running performance. Our findings open perspectives for applying HA training as part of a training program or orthopedic and metabolic rehabilitation programs in injured or even obese animals, reducing mechanical load with equivalent or higher physiological demand.
Collapse
Affiliation(s)
- Gustavo de Oliveira Zanetti
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Pedro William Martins Pessoa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Sambrano Vieira
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo de Almeida Garcia
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isis do Carmo Kettelhut
- Departments of Biochemistry & Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Samuel Penna Wanner
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dawit Albieiro Pinheiro Gonçalves
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Section of Sports Physiology (SFE), Sports Training Center (CTE), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Eizenga MR, Flewwelling LD, Warrier T, Scott GR. Thermal performance curve of endurance running at high temperatures in deer mice. J Exp Biol 2023; 226:286951. [PMID: 36752138 DOI: 10.1242/jeb.244847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The impacts of warming temperatures associated with climate change on performance are poorly understood in most mammals. Thermal performance curves are a valuable means of examining the effects of temperature on performance traits, but they have rarely been used in endotherms. Here, we examined the thermal performance curve of endurance running capacity at high temperatures in the deer mouse (Peromyscus maniculatus). Endurance capacity was measured using an incremental speed test on a treadmill, and subcutaneous temperature in the abdominal region was measured as a proxy for body temperature (Tb). Endurance time at 20°C was repeatable but varied appreciably across individuals, and was unaffected by sex or body mass. Endurance capacity was maintained across a broad range of ambient temperatures (Ta) but was reduced above 35°C. Tb during running varied with Ta, and reductions in endurance were associated with Tb greater than 40°C when Ta was above 35°C. At the high Ta that limited endurance running capacity (but not at lower Ta), Tb tended to rise throughout running trials with increases in running speed. Metabolic and thermoregulatory measurements at rest showed that Tb, evaporative water loss and breathing frequency increased at Ta of 36°C and above. Therefore, the upper threshold temperatures at which endurance capacity is impaired are similar to those inducing heat responses at rest in this species. These findings help discern the mechanisms by which deer mice are impacted by warming temperatures, and provide a general approach for examining thermal breadth of performance in small mammals.
Collapse
Affiliation(s)
- Matthew R Eizenga
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Luke D Flewwelling
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Tanisha Warrier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
6
|
Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
7
|
Andrade MT, Goulart KNO, Barbosa NHS, Soares DD, Andrade AGP, Gonçalves DAP, Mendes TT, Coimbra CC, Wanner SP. Core body temperatures of rats subjected to treadmill exercise to fatigue or exhaustion: The journal Temperature toolbox. Temperature (Austin) 2022; 10:287-312. [PMID: 37554383 PMCID: PMC10405761 DOI: 10.1080/23328940.2022.2115274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022] Open
Abstract
This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine N. O. Goulart
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas H. S. Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G. P. Andrade
- Biomechanics Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador, Brazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Kraemer MB, Silva KC, Kraemer CCF, Pereira JS, dos Reis IGM, Priolli DG, Messias LHD. Validity of the peak velocity to detect physical training improvements in athymic mice. Front Physiol 2022; 13:943498. [PMID: 36091383 PMCID: PMC9451039 DOI: 10.3389/fphys.2022.943498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
This study comprises two complementary experiments with athymic Balb/c (Nu/Nu) mice. In experiment 1, the aim was to verify the reproducibility of the peak velocity (VPeak) determined from the incremental test. The second experiment aimed to assess the VPeak sensitivity to prescribe and detect modulations of the physical training in athymic nude mice. Sixteen mice were submitted to two incremental treadmill tests separated by 48-h (Experiment 1). The test consisted of an initial warm-up of 5 minutes. Subsequently, animals initiated the tests at 8 m min−1 with increments of 2 m min−1 every 3 minutes. The VPeak was determined as the highest velocity attained during the protocol. In experiment 2, these animals were randomly allocated to an exercise group (EG) or a control group (CG). The training protocol consisted of 30-min of treadmill running at 70% of the VPeak five times a week for 4 weeks. High indexes of reproducibility were obtained for VPeak (Test = 19.7 ± 3.6 m min−1; Retest = 19.2 ± 3.4 m min−1; p = 0.171; effect size = 0.142; r = 0.90). Animals from the EG had a significant increase of VPeak (Before = 18.4 ± 2.7 m min−1; After = 24.2 ± 6.0 m min−1; p = 0.023). Conversely, a significant decrease was observed for the CG (Before = 21.1 ± 3.9 m min−1; After = 15.9 ± 2.7 m min−1; p = 0.038). The VPeak is a valid parameter for exercise prescription in studies involving athymic nude mice.
Collapse
Affiliation(s)
- Maurício Beitia Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Karen Christine Silva
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Camila Cunha França Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Juliana Silva Pereira
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Ivan Gustavo Masseli dos Reis
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, São Paulo, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
- *Correspondence: Leonardo Henrique Dalcheco Messias,
| |
Collapse
|
9
|
Reliability of physical performance and thermoregulatory parameters in rats subjected to incremental treadmill running. J Therm Biol 2022; 108:103270. [DOI: 10.1016/j.jtherbio.2022.103270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/02/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
|
10
|
Ribeiro Hudson AS, Nascimento Soares AD, Coelho Horta NA, Fuscaldi LL, Machado-Moreira CA, Soares DD, Coimbra CC, de Oliveira Poletini M, Cardoso VN, Wanner SP. The magnitude of physical exercise-induced hyperthermia is associated with changes in the intestinal permeability and expression of tight junction genes in rats. J Therm Biol 2020; 91:102610. [PMID: 32716860 DOI: 10.1016/j.jtherbio.2020.102610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats' TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.
Collapse
Affiliation(s)
- Alexandre Sérvulo Ribeiro Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Danieli Nascimento Soares
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nayara Abreu Coelho Horta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Lima Fuscaldi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiano Antônio Machado-Moreira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maristela de Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, Tonoli C, Soares DD, Coimbra CC. Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Med 2018; 47:1389-1403. [PMID: 27943148 DOI: 10.1007/s40279-016-0654-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prolonged and strenuous physical exercise increases intestinal permeability, allowing luminal endotoxins to translocate through the intestinal barrier and reach the bloodstream. When recognized by the immune system, these endotoxins trigger a systemic inflammatory response that may affect physical performance and, in severe cases, induce heat stroke. However, it remains to be elucidated whether there is a relationship between the magnitude of exercise-induced hyperthermia and changes in intestinal permeability. OBJECTIVE In this systematic review, we evaluated whether an exercise-induced increase in core body temperature (T Core) is associated with an exercise-induced increase in intestinal permeability. METHODS The present systematic review screened the MEDLINE/PubMed and Web of Science databases in September 2016, without any date restrictions. Sixteen studies that were performed in healthy participants, presented original data, and measured both the exercise-induced changes in T Core and intestinal permeability were selected. These studies assessed intestinal permeability through the measurement of sugar levels in the urine and measurement of intestinal fatty acid binding protein or lipopolysaccharide levels in the blood. RESULTS Exercise increased both T Core and intestinal permeability in most of the 16 studies. In addition, a positive and strong correlation was observed between the two parameters (r = 0.793; p < 0.001), and a T Core exceeding 39 °C was always associated with augmented permeability. CONCLUSION The magnitude of exercise-induced hyperthermia is directly associated with the increase in intestinal permeability.
Collapse
Affiliation(s)
- Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Christiano E Veneroso
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P Wanner
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo A S Pacheco
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele C Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fabiano T Amorim
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.,Department of Health, Exercise Science and Sport, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cajsa Tonoli
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Danusa D Soares
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Zheng X, Takatsu S, Ishikawa R, Hasegawa H. Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J Therm Biol 2017; 71:123-127. [PMID: 29301680 DOI: 10.1016/j.jtherbio.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
Thermoeffector responses and core body temperature (Tcore) homeostasis during exercise are affected by both ambient temperature and exercise intensity. We have previously reported that Tcore, heat loss responses, and catecholamine release in the preoptic area and anterior hypothalamus (PO/AH) increased during incremental treadmill running. However, no previous study has examined whether changes in the thermoregulatory responses at warm ambient temperature are related to catecholamine responses during moderate intensity exercise in rats. Therefore, the aim of the present study was to investigate the responsiveness of neurotransmission in the PO/AH to moderate intensity exercise at different ambient temperatures, and to relate this to changes in thermoregulation. We measured the monoamine levels in the PO/AH and the thermoregulatory responses in exercising rats simultaneously using a combination of methods, including in vivo microdialysis, biotelemetry, and animal O2/CO2 metabolism measuring system. On the day of experiments, rats ran for 60min at a speed of 18mmin-1 on a treadmill at a 5% gradient, in an ambient temperature of 23°C or 30°C. Tcore, tail skin temperature (Ttail; an index of heat loss), and oxygen consumption (V̇O2: an index of heat production) were monitored. Dopamine (DA), noradrenaline (NA), and serotonin (5-HT) levels were measured by high performance liquid chromatography (HPLC) with electrochemical detection. Exercise significantly increased the Tcore, Ttail, and V̇O2 values, as well as DA and NA release in the PO/AH at both temperatures, and the increases were more pronounced at the warm ambient temperature. The results suggest that the increase in the Tcore, heat production, and heat loss responses even during moderate intensity running in a warm environment are likely associated with an increase in DA and NA release in the PO/AH region.
Collapse
Affiliation(s)
- Xinyan Zheng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu, Shanghai 200438, China
| | - Satomi Takatsu
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan
| | - Ryo Ishikawa
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan
| | - Hiroshi Hasegawa
- Graduate School of Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
13
|
Müller-Ribeiro FC, Wanner SP, Santos WHM, Malheiros-Lima MR, Fonseca IAT, Coimbra CC, Pires W. Changes in systolic arterial pressure variability are associated with the decreased aerobic performance of rats subjected to physical exercise in the heat. J Therm Biol 2016; 63:31-40. [PMID: 28010813 DOI: 10.1016/j.jtherbio.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control.
Collapse
Affiliation(s)
- Flávia C Müller-Ribeiro
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley H M Santos
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene R Malheiros-Lima
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivana A T Fonseca
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil.
| |
Collapse
|
14
|
Wanner SP, Prímola-Gomes TN, Pires W, Guimarães JB, Hudson ASR, Kunstetter AC, Fonseca CG, Drummond LR, Damasceno WC, Teixeira-Coelho F. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology. Temperature (Austin) 2015; 2:457-75. [PMID: 27227066 PMCID: PMC4844073 DOI: 10.1080/23328940.2015.1119615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023] Open
Abstract
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.
Collapse
Affiliation(s)
- Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Thales Nicolau Prímola-Gomes
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - Washington Pires
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Juliana Bohnen Guimarães
- Laboratório de Fisiologia do Exercício; Universidade Estadual de Minas Gerais ; Ibirité (MG), Brazil
| | - Alexandre Sérvulo Ribeiro Hudson
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Ana Cançado Kunstetter
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Cletiana Gonçalves Fonseca
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Lucas Rios Drummond
- Laboratório de Biologia do Exercício; Departamento de Educação Física; Universidade Federal de Viçosa ; Viçosa (MG), Brazil
| | - William Coutinho Damasceno
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais ; Belo Horizonte (MG), Brazil
| | - Francisco Teixeira-Coelho
- Laboratório de Fisiologia do Exercício; Departamento de Educação Física; Universidade Federal de Minas Gerais; Belo Horizonte (MG), Brazil; Centro de Formação de Professores; Universidade Federal do Recôncavo da Bahia; Amargosa (BA), Brazil
| |
Collapse
|
15
|
Zheng X, Hasegawa H. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci 2015; 16:818-28. [PMID: 26581447 DOI: 10.1080/17461391.2015.1111938] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia.
Collapse
Affiliation(s)
- Xinyan Zheng
- a Graduate School of Integrated Arts and Sciences, Hiroshima University , Higashihiroshima , Japan
| | - Hiroshi Hasegawa
- a Graduate School of Integrated Arts and Sciences, Hiroshima University , Higashihiroshima , Japan
| |
Collapse
|
16
|
Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B 2015; 185:709-27. [PMID: 26025431 DOI: 10.1007/s00360-015-0909-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.
Collapse
Affiliation(s)
- Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
17
|
Shirey MJ, Smith JB, Kudlik DE, Huo BX, Greene SE, Drew PJ. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J Neurophysiol 2015; 114:309-22. [PMID: 25972579 DOI: 10.1152/jn.00046.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.
Collapse
Affiliation(s)
- Michael J Shirey
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Jared B Smith
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania;
| | - D'Anne E Kudlik
- Center for Neural Engineering, Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania; and
| | - Bing-Xing Huo
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania; Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
18
|
Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. Br J Nutr 2014; 112:1601-10. [PMID: 25322775 DOI: 10.1017/s0007114514002608] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.
Collapse
|
19
|
Kunstetter AC, Wanner SP, Madeira LG, Wilke CF, Rodrigues LOC, Lima NRV. Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment. ACTA ACUST UNITED AC 2014; 47:679-88. [PMID: 25003543 PMCID: PMC4165295 DOI: 10.1590/1414-431x20143561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
There is evidence that brain temperature (Tbrain) provides a more
sensitive index than other core body temperatures in determining physical
performance. However, no study has addressed whether the association between
performance and increases in Tbrain in a temperate environment is
dependent upon exercise intensity, and this was the primary aim of the present study.
Adult male Wistar rats were subjected to constant exercise at three different speeds
(18, 21, and 24 m/min) until the onset of volitional fatigue. Tbrain was
continuously measured by a thermistor inserted through a brain guide cannula.
Exercise induced a speed-dependent increase in Tbrain, with the fastest
speed associated with a higher rate of Tbrain increase. Rats subjected to
constant exercise had similar Tbrain values at the time of fatigue,
although a pronounced individual variability was observed (38.7-41.7°C). There were
negative correlations between the rate of Tbrain increase and performance
for all speeds that were studied. These results indicate that performance during
constant exercise is negatively associated with the increase in Tbrain,
particularly with its rate of increase. We then investigated how an incremental-speed
protocol affected the association between the increase in Tbrain and
performance. At volitional fatigue, Tbrain was lower during incremental
exercise compared with the Tbrain resulting from constant exercise
(39.3±0.3 vs 40.3±0.1°C; P<0.05), and no association between the
rate of Tbrain increase and performance was observed. These findings
suggest that the influence of Tbrain on performance under temperate
conditions is dependent on exercise protocol.
Collapse
Affiliation(s)
- A C Kunstetter
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S P Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - L G Madeira
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C F Wilke
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - L O C Rodrigues
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - N R V Lima
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|