1
|
Das S, Palaka BK, Kuiry R, Roy Choudhury S. Insights into the interactions of RWP-RK and their targets: Role of serine and its conservation across species. Biochem Biophys Res Commun 2025; 763:151750. [PMID: 40228386 DOI: 10.1016/j.bbrc.2025.151750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
The RWP-RK domain is a key DNA-binding domain found in all NIN (Nodule Inception)/NLP (NIN-like proteins) and RKD (RWP-RK Domain Containing) transcription factors (TFs). The RWP-RK domain in NINs/NLPs contains a highly evolutionarily conserved sequence, RWPSRK, while in RKDs, the fourth serine (S) amino acid is substituted with either tyrosine (Y) or histidine (H). To regulate autoregulation of nodulation, the RWP-RK domain of NIN TF binds to the promoter region of CLE peptides but not RKDs. Therefore, investigating the protein-DNA interaction from a structural perspective is essential to understand the evolutionary significance of the serine (S) residue of the RWP-RK domain. Herein, we have modelled both the wild type (WT) and the variant RWP-RK domains containing substitutions like glutamic acid (E), tyrosine (Y), and histidine (H) and docked them with the modelled pCLE13 cis-element. Our docking results revealed that a helix-turn-helix (HTH) motif of the RWP-RK domain interacts with pCLE13. The WT HTH-DNA complex exhibited the most negative binding free energy, indicating a strong interaction, particularly hydrogen bonds acting between them. Simulation analysis of WT and variant models provided deeper insights into protein-DNA binding dynamics. The hydrogen bond occupancy percentage indicated that the fourth serine (S) residue is vital for maintaining a significant percentage of hydrogen bonds with DNA. The variants substituting this conserved serine (S) residue displayed energetic frustration upon binding to DNA and lost correlation among their residues. Overall, it suggested that serine (S) residue of the RWP-RK domain of all NINs/NLPs is crucial for appropriate protein-DNA interaction, which might be required for their biological relevance.
Collapse
Affiliation(s)
- Souvik Das
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Bhagath Kumar Palaka
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Raju Kuiry
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| |
Collapse
|
2
|
Yu TY, Wang P, Lv Y, Wang B, Zhao MR, Dong XW. Auxin Orchestrates Germ Cell Specification in Arabidopsis. Int J Mol Sci 2025; 26:3257. [PMID: 40244090 PMCID: PMC11989617 DOI: 10.3390/ijms26073257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The initiation and specification of germline cells are crucial for plant reproduction and the continuity of species. In Arabidopsis thaliana, auxin plays a vital role in guiding the transition of somatic cells into germline fate, orchestrating the specification of both male archesporial cells and female megaspore mother cells. This process is regulated through interaction with the transcription factor Sporocyteless/Nozzle, which forms a feedback mechanism that modulates germ cell specialization. Auxin biosynthesis, polar transport, and signal transduction pathways collectively ensure the accurate determination of germ cell fate. Furthermore, the coordination of auxin signaling with epigenetic regulation and miRNA-mediated control fine-tunes the differentiation between germline and somatic cells. This review discusses the mechanisms underlying auxin-guided germ cell specification. It proposes future research directions, including studies on PIN-FORMED-mediated polar transport, the role of the YUCCA family in auxin biosynthesis, and the involvement of the Transport Inhibitors Response 1/Auxn Signaling F-Box-Auxin Response Factor (TIR1/AFB-ARF) signaling pathway in germ cell fate determination. These insights will enhance our understanding of plant reproductive biology and provide new strategies for crop breeding.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | | | | | | | | | - Xin-Wei Dong
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Liu Q, Han D, Cheng D, Chen J, Tian S, Wang J, Liu M, Yuan L. AtRKD5 inhibits the parthenogenic potential mediated by AtBBM. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1517-1531. [PMID: 38818961 DOI: 10.1111/jipb.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Parthenogenesis, the development of unfertilized egg cells into embryos, is a key component of apomixis. AtBBM (BABY BOOM), a crucial regulator of embryogenesis in Arabidopsis, possesses the capacity to shift nutritional growth toward reproductive growth. However, the mechanisms underlying AtBBM-induced parthenogenesis remain largely unexplored in dicot plants. Our findings revealed that in order to uphold the order of sexual reproduction, the embryo-specific promoter activity of AtBBM as well as repressors that inhibit its expression in egg cells combine to limiting its ability to induce parthenogenesis. Notably, AtRKD5, a RWP-RK domain-containing (RKD) transcription factor, binds to the 3' end of AtBBM and is identified as one of the inhibitory factors for AtBBM expression in the egg cell. In the atrkd5 mutant, we successfully achieved enhanced ectopic expression of AtBBM in egg cells, resulting in the generation of haploid offspring via parthenogenesis at a rate of 0.28%. Furthermore, by introducing chimeric Arabidopsis and rice BBM genes into the egg cell, we achieved a significant 4.6-fold enhancement in haploid induction through the atdmp8/9 mutant. These findings lay a strong foundation for further exploration of the BBM-mediated parthenogenesis mechanism and the improvement of haploid breeding efficiency mediated by the dmp8/9 mutant.
Collapse
Affiliation(s)
- Qiyan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dongfen Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jinfan Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Man Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
4
|
Binmöller L, Volkert C, Kiefer C, Zühl L, Slawinska MW, Loreth A, Nauerth BH, Ibberson D, Martinez R, Mandakova TM, Zipper R, Schmidt A. Differential expression and evolutionary diversification of RNA helicases in Boechera sexual and apomictic reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2451-2469. [PMID: 38263359 DOI: 10.1093/jxb/erae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.
Collapse
Affiliation(s)
- Laura Binmöller
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christiane Kiefer
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anna Loreth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Berit H Nauerth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Rafael Martinez
- Centre for Organismal Studies Heidelberg, Department of Developmental Biology, Heidelberg University, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany
| | - Terezie M Mandakova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Reinhard Zipper
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| |
Collapse
|
5
|
Zhai X, Bai J, Xu W, Yang X, Jia Z, Xia W, Wu X, Liang Q, Li B, Jia N. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1677-1698. [PMID: 37294615 DOI: 10.1111/tpj.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Arabidopsis mitochondria-targeted heat shock protein 70 (mtHSC70-1) plays important roles in the establishment of cytochrome c oxidase-dependent respiration and redox homeostasis during the vegetative growth of plants. Here, we report that knocking out the mtHSC70-1 gene led to a decrease in plant fertility; the fertility defect of the mutant was completely rescued by introducing the mtHSC70-1 gene. mtHSC70-1 mutants also showed defects in female gametophyte (FG) development, including delayed mitosis, abnormal nuclear position, and ectopic gene expression in the embryo sacs. In addition, we found that an Arabidopsis mitochondrial J-protein gene (DjA30) mutant, j30+/- , had defects in FG development and fertility similar to those of mtHSC70-1 mutant. mtHSC70-1 and DjA30 had similar expression patterns in FGs and interacted in vivo, suggesting that these two proteins might cooperate during female gametogenesis. Further, respiratory chain complex IV activity in mtHSC70-1 and DjA30 mutant embryo sacs was markedly downregulated; this led to the accumulation of mitochondrial reactive oxygen species (ROS). Scavenging excess ROS by introducing Mn-superoxide dismutase 1 or catalase 1 gene into the mtHSC70-1 mutant rescued FG development and fertility. Altogether, our results suggest that mtHSC70-1 and DjA30 are essential for the maintenance of ROS homeostasis in the embryo sacs and provide direct evidence for the roles of ROS homeostasis in embryo sac maturation and nuclear patterning, which might determine the fate of gametic and accessory cells.
Collapse
Affiliation(s)
- Xiaoting Zhai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenyan Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiujuan Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zichao Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxuan Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqing Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Rojek J, Ohad N. The phenomenon of autonomous endosperm in sexual and apomictic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4324-4348. [PMID: 37155961 PMCID: PMC10433939 DOI: 10.1093/jxb/erad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Kaur D, Moreira D, Coimbra S, Showalter AM. Hydroxyproline- O-Galactosyltransferases Synthesizing Type II Arabinogalactans Are Essential for Male Gametophytic Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:935413. [PMID: 35774810 PMCID: PMC9237623 DOI: 10.3389/fpls.2022.935413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 05/25/2023]
Abstract
In flowering plants, male reproductive function is determined by successful development and performance of stamens, pollen grains, and pollen tubes. Despite the crucial role of highly glycosylated arabinogalactan-proteins (AGPs) in male gamete formation, pollen grain, and pollen tube cell walls, the underlying mechanisms defining these functions of AGPs have remained elusive. Eight partially redundant Hyp-galactosyltransferases (named GALT2-GALT9) genes/enzymes are known to initiate Hyp-O-galactosylation for Hyp-arabinogalactan (AG) production in Arabidopsis thaliana. To assess the contributions of these Hyp-AGs to male reproductive function, we used a galt2galt5galt7galt8galt9 quintuple Hyp-GALT mutant for this study. Both anther size and pollen viability were compromised in the quintuple mutants. Defects in male gametogenesis were observed in later stages of maturing microspores after meiosis, accompanied by membrane blebbing and numerous lytic vacuoles. Cytological and ultramicroscopic observations revealed that pollen exine reticulate architecture and intine layer development were affected such that non-viable collapsed mature pollen grains were produced, which were devoid of cell content and nuclei, with virtually no intine. AGP immunolabeling demonstrated alterations in cell wall architecture of the anther, pollen grains, and pollen tube. Specifically, the LM2 monoclonal antibody (which recognized β-GlcA epitopes on AGPs) showed a weak signal for the endothecium, microspores, and pollen tube apex. Pollen tube tips also displayed excessive callose deposition. Interestingly, expression patterns of pollen-specific AGPs, namely AGP6, AGP11, AGP23, and AGP40, were determined to be higher in the quintuple mutants. Taken together, our data illustrate the importance of type-II AGs in male reproductive function for successful fertilization.
Collapse
Affiliation(s)
- Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Diana Moreira
- Departamento de Biología, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biología, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Allan M. Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| |
Collapse
|
9
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
10
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
11
|
González-Gutiérrez AG, Gutiérrez-Mora A, Verdín J, Rodríguez-Garay B. An F-Actin Mega-Cable Is Associated With the Migration of the Sperm Nucleus During the Fertilization of the Polarity-Inverted Central Cell of Agave inaequidens. FRONTIERS IN PLANT SCIENCE 2021; 12:774098. [PMID: 34899803 PMCID: PMC8652256 DOI: 10.3389/fpls.2021.774098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 05/15/2023]
Abstract
Asparagaceae's large embryo sacs display a central cell nucleus polarized toward the chalaza, which means the sperm nucleus that fuses with it during double fertilization migrates an atypical long distance before karyogamy. Because of the size and inverted polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization process is supported by an F-actin machinery different from the short-range F-actin structures observed in Arabidopsis and other plant models. Here, we analyzed the F-actin dynamics of Agave inaequidens, a classical Asparagaceae, before, during, and after the central cell fertilization. Several parallel F-actin cables, spanning from the central cell nucleus to the micropylar pole, and enclosing the vacuole, were observed. As fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared, connecting the central cell nucleus with the micropylar pole near the egg cell. This mega-cable wrapped the sperm nucleus in transit to fuse with the central cell nucleus. Once karyogamy finished, and the endosperm started to develop, the mega-cable disassembled, but new F-actin structures formed. These observations suggest that Asparagaceae, and probably other plant species with similar embryo sacs, evolved an F-actin machinery specifically adapted to support the migration of the fertilizing sperm nucleus within a large-sized and polarity-inverted central cell.
Collapse
Affiliation(s)
- Alejandra G. González-Gutiérrez
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Antonia Gutiérrez-Mora
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
- *Correspondence: Jorge Verdín,
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
- Benjamín Rodríguez-Garay,
| |
Collapse
|
12
|
Abstract
Mutations in numerous genes affect reproduction in Arabidopsis leading to sterility and abortion of seed development, respectively. These include mutations in regulators of reproductive development and fertilization, but also in house-keeping genes lacking mutant phenotypes during vegetative development. However, during the haploid phase of germline development or during seed development, lethality or failures become visible when gene activity is needed. Plant reproduction is complex and includes many processes from flowering and flower organ development toward the formation of seeds after a double fertilization process. For those who are less familiar with the various reproductive processes in Arabidopsis and who aim to study the cause of reproductive defects during germline development and function, fertilization, or embryogenesis in a given mutant, we provide here a step-by-step guideline and basic protocols to elucidate the reproductive process affected.
Collapse
|
13
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
14
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
15
|
Zühl L, Volkert C, Ibberson D, Schmidt A. Differential activity of F-box genes and E3 ligases distinguishes sexual versus apomictic germline specification in Boechera. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5643-5657. [PMID: 31294816 PMCID: PMC6812705 DOI: 10.1093/jxb/erz323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Germline specification is the first step during sexual and apomictic plant reproduction, and takes place in the nucellus of the ovule, a specialized domain of the reproductive flower tissues. In each case, a sporophytic cell is determined to form the sexual megaspore mother cell (MMC) or an apomictic initial cell (AIC). These differ in their developmental fates: while the MMC undergoes meiosis, the AIC modifies or omits meiosis to form the female gametophyte. Despite great interest in these distinct developmental processes, little is known about their gene regulatory basis. To elucidate the gene regulatory networks underlying germline specification, we conducted tissue-specific transcriptional profiling using laser-assisted microdissection and RNA sequencing to compare the transcriptomes of nucellar tissues between different sexual and apomictic Boechera accessions representing four species and two ploidy levels. This allowed us to distinguish between expression differences caused by genetic background or reproductive mode. Statistical data analysis revealed 45 genes that were significantly differentially expressed, and which potentially play a role for determination of the reproductive mode. Based on annotations, these included F-box genes and E3 ligases that most likely relate to genes previously described as regulators important for germline development. Our findings provide novel insights into the transcriptional basis of sexual and apomictic reproduction.
Collapse
Affiliation(s)
- Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
- Present address: Max Planck Institute for Plant Breeding Research, Department of Comparative Development and Genetics, Carl-von-Linné-Weg 10, D-50829 Cologne
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld, Heidelberg
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld, Heidelberg
- Correspondence:
| |
Collapse
|
16
|
Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S. Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. PLANT REPRODUCTION 2019; 32:15-27. [PMID: 30707279 DOI: 10.1007/s00497-019-00361-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 05/27/2023]
Abstract
A protocol for the isolation of egg apparatus cells from the basal angiosperm Amborella trichopoda to generate RNA-seq data for evolutionary studies of fertilization-associated genes. Sexual reproduction is particularly complex in flowering plants (angiosperms). Studies in eudicot and monocot model species have significantly contributed to our knowledge on cell fate specification of gametophytic cells and on the numerous cellular communication events necessary to deliver the two sperm cells into the embryo sac and to accomplish double fertilization. However, for a deeper understanding of the evolution of these processes, morphological, genomic and gene expression studies in extant basal angiosperms are inevitable. The basal angiosperm Amborella trichopoda is of special importance for evolutionary studies, as it is likely sister to all other living angiosperms. Here, we report about a method to isolate Amborella egg apparatus cells and on genome-wide gene expression profiles in these cells. Our transcriptomics data revealed Amborella-specific genes and genes conserved in eudicots and monocots. Gene products include secreted proteins, such as small cysteine-rich proteins previously reported to act as extracellular signaling molecules with important roles during double fertilization. The detection of transcripts encoding EGG CELL 1 (EC1) and related prolamin-like family proteins in Amborella egg cells demonstrates the potential of the generated data set to study conserved molecular mechanisms and the evolution of fertilization-related genes and their encoded proteins.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Laboratory of Molecular Bacteriology (Rega Institute), KU Leuven, Louvain, Belgium
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Charles P Scutt
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Université de Lyon, Lyon, France
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
17
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Abstract
SummaryFertilization in higher plants induces many structural and physiological changes in the fertilized egg, and represents the transition from the haploid female gamete to the diploid zygote, the first cell of a sporophyte. Some changes are induced extremely rapidly following fusion with sperm cells and are the preclusions of egg activation. This review focuses on the early changes that occur in the egg after fusion with sperm cells, but before nuclear fusion. Reported changes include cell shrinkage, cell wall formation, polarity change, oscillation in Ca2+ concentration, and DNA synthesis. In addition, the current understanding of egg activation is summarized and the possible functional relevance of the changes is explored.
Collapse
|
19
|
Abstract
The haploid female gametophyte (embryo sac) is an essential reproductive unit of flowering plants, usually comprising four specialized cell types, including the female gametes (egg cell and central cell). The differentiation of these cells relies on spatial signals which pattern the gametophyte along a proximal-distal axis, but the molecular and genetic mechanisms by which cell identities are determined in the embryo sac have long been a mystery. Recent identification of key genes for cell fate specification and their relationship to hormonal signaling pathways that act on positional cues has provided new insights into these processes. A model for differentiation can be devised with egg cell fate as a default state of the female gametophyte and with other cell types specified by the action of spatially regulated factors. Cell-to-cell communication within the gametophyte is also important for maintaining cell identity as well as facilitating fertilization of the female gametes by the male gametes (sperm cells).
Collapse
Affiliation(s)
- Debra J Skinner
- Department of Plant Biology, University of California-Davis, Davis, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California-Davis, Davis, USA.,Department of Plant Sciences, University of California-Davis, Davis, USA
| |
Collapse
|
20
|
Zhou LZ, Juranić M, Dresselhaus T. Germline Development and Fertilization Mechanisms in Maize. MOLECULAR PLANT 2017; 10:389-401. [PMID: 28267957 DOI: 10.1016/j.molp.2017.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 05/06/2023]
Abstract
Maize is the most important agricultural crop used for food, feed, and biofuel as well as a raw material for industrial products such as packaging material. To increase yield and to overcome hybridization barriers, studies of maize gamete development, the pollen tube journey, and fertilization mechanisms were initiated more than a century ago. In this review, we summarize and discuss our current understanding of the regulatory components for germline development including sporogenesis and gametogenesis, the progamic phase of pollen germination and pollen tube growth and guidance, as well as fertilization mechanisms consisting of pollen tube arrival and reception, sperm cell release, fusion with the female gametes, and egg cell activation. Mechanisms of asexual seed development are not considered here. While only a few molecular players involved in these processes have been described to date and the underlying mechanisms are far from being understood, maize now represents a spearhead of reproductive research for all grass species. Recent development of essentially improved transformation and gene-editing systems may boost research in this area in the near future.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martina Juranić
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
21
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
22
|
Slane D, Bürgel P, Bayer M. Staining and Clearing of Arabidopsis Reproductive Tissue for Imaging of Fluorescent Proteins. Methods Mol Biol 2017; 1669:87-94. [PMID: 28936652 DOI: 10.1007/978-1-4939-7286-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Imaging of fluorescent proteins in whole-mount tissue is a powerful tool to understand growth and developmental processes, not only in plants. With the advent of genetically encoded fluorescent reporters, which specifically label reproductive cells in Arabidopsis, deep tissue imaging has become increasingly important for the study of plant reproduction. To penetrate the surrounding layers of maternal tissue, however, the tissue has to be cleared by homogenizing the refractive index of the sample, often leading to inactivation of fluorescent proteins. 2,2'-thiodiethanol (TDE) has recently been introduced as a clearing agent that allows the imaging of fluorescent proteins in a cleared plant tissue. Here, we describe a simple protocol that combines TDE-based tissue clearing with cell wall staining to outline cells that enable deep tissue imaging in reproductive structures of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany
| | - Patrick Bürgel
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tuebingen, Germany.
| |
Collapse
|
23
|
Bartoli G, Felici C, Ruffini Castiglione M. Female gametophyte and embryo development in Helleborus bocconei Ten. (Ranunculaceae). PROTOPLASMA 2017; 254:491-504. [PMID: 27048178 DOI: 10.1007/s00709-016-0969-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
In this study, we investigated cytohistochemistry, cycle progression, and relative DNA content of the female gametophyte cells of Helleborus bocconei Ten. before and after fertilization process. The early stages of embryo development were also investigated. H. bocconei possesses a monosporic seven-celled/eight-nucleate Polygonum type female gametophyte, characterized by a morpho-functional polarity. The cells of the embryo sac showed abundant reserves of polysaccharides, strongly increasing in the egg cell just before fertilization. With different timing in DNA replication during cell cycle progression, synergids, egg cells, and polar nuclei showed a haploid DNA content at the end of their differentiation, while antipodes underwent three DNA endoreduplication cycles. Programmed cell death symptoms were detectable in synergid and antipodal cells. After double fertilization, the central cell quickly underwent many mitotic cycles forming the endosperm, which exhibited a progressive increase in protein bodies and starch grains. Close to the developing embryo, the endosperm differentiated a well-defined region rich in a fibrillar carbohydrate matrix. The zygote, that does not start immediately to divide after double fertilization, developed in to an embryo that reached the heart stage at fruit maturation time. A weakly differentiated embryo at this time indicates a morpho-physiological dormancy of seeds, as a survival strategy imposed by the life cycle of this plant with seed dispersal in spring and their germination in the following winter.
Collapse
Affiliation(s)
- Giacomo Bartoli
- Department of Biology, University of Pisa, via Ghini 13, Pisa, I-56126, Italy
| | - Cristiana Felici
- Department of Biology, University of Pisa, via Ghini 13, Pisa, I-56126, Italy
| | | |
Collapse
|
24
|
Englhart M, Šoljić L, Sprunck S. Manual Isolation of Living Cells from the Arabidopsis thaliana Female Gametophyte by Micromanipulation. Methods Mol Biol 2017; 1669:221-234. [PMID: 28936662 DOI: 10.1007/978-1-4939-7286-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The few-celled female gametophyte, or embryo sac, of flowering plants is not easily accessible as it is buried within the sporophytic tissues of the ovule. Nevertheless, it has become an attractive model system to study the molecular mechanisms underlying patterning and cell type specification, as well as fertilization of the two female gametes, the egg and the central cell. While female gametes, zygotes, and early embryos can be manually isolated from the embryo sacs in maize, wheat, tobacco, and rice by micromanipulation, this approach had been considered impossible for the much smaller embryo sac of the model plant Arabidopsis thaliana. Here, we describe a method to isolate living cells from the Arabidopsis female gametophyte by micromanipulation. The manual isolation of egg cells, central cells, and synergid cells is a technique that enables a number of important studies such as cell-type-specific transcriptional profiling or the analysis of DNA methylation profiles. It also offers the possibility to use isolated female gametes for in vitro fertilization studies.
Collapse
Affiliation(s)
- Maria Englhart
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Lucija Šoljić
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
25
|
Abstract
Visualization of the intact embryo sac within the ovular/gynoecial tissues and clear identification of cell types can be logistically difficult and subject to interpretation. Cellular marker technologies have been available for the embryo sac, but have typically labeled only one cell type in a particular line. Here, we describe techniques for simultaneous labeling each cell type in the embryo sac and visualization methods for such in Arabidopsis, soybean, maize, and sorghum.
Collapse
|
26
|
An Efficient Antipodal Cell Isolation Method for Screening of Cell Type-Specific Genes in Arabidopsis thaliana. PLoS One 2016; 11:e0166390. [PMID: 27875553 PMCID: PMC5119737 DOI: 10.1371/journal.pone.0166390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
In flowering plants, the mature embryo sac consists of seven cells, namely two synergid cells and an egg cell at the micropylar end, one central cell, and three antipodal cells at the chalazal end. Excluding the antipodal cell, as a model for the study of cell fate determination and cell type specification, the roles of these embryo sac component cells in fertilization and seed formation have been widely investigated. At this time, little is known regarding the function of antipodal cells and their cell type-specific gene expression patterns. One reason for this is difficulties related to the observation and isolation of cells for detailed functional analyses. Here, we report a method for antipodal cell isolation and transcriptome analysis. We identified antipodal cell-specific marker line K44-1, and based on this marker line, established a procedure allowing us to isolate antipodal cells with both high quality and quantity. PCR validation of antipodal-specific genes from antipodal cell cDNA showed that the isolated cells are qualified and can be used for transcriptome analysis and screening of cell type-specific marker genes. The isolated cells could keep viable for a week in culture condition. This method can be used to efficiently isolate antipodal cells of high quality and will promote the functional investigation of antipodal cells in Arabidopsis thaliana. This increases our understanding of the molecular regulatory mechanism of antipodal cell specification.
Collapse
|
27
|
Abstract
Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
28
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Hands P, Rabiger DS, Koltunow A. Mechanisms of endosperm initiation. PLANT REPRODUCTION 2016; 29:215-25. [PMID: 27450467 PMCID: PMC4978757 DOI: 10.1007/s00497-016-0290-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule. Knowledge of the molecular events underlying this developmental window of events has significantly increased with the combined use of mutants, cell specific markers, and plant hormone sensing reporters. Here, we review recent discoveries concerning the developmental events and signalling of FG maturation, fertilization, and endosperm development. We focus on the regulation of the initiation of endosperm development with and without fertilization in Arabidopsis and the apomict Hieracium, comparing this to what is known in monocots where distinct differences in developmental patterning may underlie alternative mechanisms of suppression and initiation. The Polycomb Repressive Complex 2 (PRC2), plant hormones, and transcription factors are iteratively involved in early fertilization-induced endosperm formation in Arabidopsis. Auxin increases and PRC2 complex inactivation can also induce fertilization-independent endosperm proliferation in Arabidopsis. Function of the PRC2 complex member FERTILIZATION-INDEPENDENT ENDOSPERM and two loci AutE and LOP are required for autonomous endosperm development in apomictic Hieracium. A comparative understanding of cues required for early endosperm development will facilitate genetic engineering approaches for the development of resilient seed crops, especially if an option for fertilization-independent endosperm formation was possible to combat stress-induced crop failure.
Collapse
Affiliation(s)
- Philip Hands
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - David S Rabiger
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
30
|
The CKI1 Histidine Kinase Specifies the Female Gametic Precursor of the Endosperm. Dev Cell 2016; 37:34-46. [PMID: 27046830 DOI: 10.1016/j.devcel.2016.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/20/2016] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Since the discovery of double fertilization, it has been recognized that flowering plants produce two highly dimorphic female gametes, the egg cell and central cell. These give rise, respectively, to the embryo and the endosperm, a nourishing tissue unique to flowering plants. Here we show that in Arabidopsis, endosperm formation requires the CYTOKININ INDEPENDENT 1 (CKI1) histidine kinase, an activator of the cytokinin signaling pathway, which specifies central cells and restricts egg cell fate. Dimorphism of the two adjacent gametes is mechanistically established in the syncytial embryo sac by spatially restricted CKI1 expression, followed by translocation of ER-localized CKI1 protein via nuclear migration. Cell specification by CKI1 likely involves activation of the cytokinin signaling pathway mediated by histidine phosphotransferases. Ectopic CKI1 expression generates non-propagating seeds with dual fertilized endosperms and no embryos. We conclude that CKI1-directed specification of the endosperm precursor central cell results in seeds containing an embryo and an endosperm.
Collapse
|
31
|
Rövekamp M, Bowman JL, Grossniklaus U. Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization. Curr Biol 2016; 26:1782-1789. [PMID: 27345166 DOI: 10.1016/j.cub.2016.05.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Unlike in animals, the life cycle of land plants alternates between two multicellular generations, the haploid gametophyte and the diploid sporophyte [1]. Gamete differentiation initiates the transition from the gametophyte to the sporophyte generation and, upon maturation, the egg cell establishes a quiescent state that is maintained until fertilization. This quiescence represents a hallmark of the gametophyte-sporophyte transition. The underlying molecular mechanisms are complex and best characterized in the flowering plant Arabidopsis thaliana [2-4]. However, only few genes with egg cell-specific expression or defects have been identified [5-10]. Intriguingly, ectopic expression of members of a clade of RWP-RK domain (RKD)-containing transcription factors, which are absent from animal genomes [11-13], can induce an egg cell-like transcriptome in sporophytic cells of A. thaliana. Yet, to date, loss-of-function experiments have not produced phenotypes affecting the egg cell, likely due to genetic redundancy and/or cross-regulation among the five RKD genes of A. thaliana [10]. To reduce genetic complexity, we explored the genome of Marchantia polymorpha, a liverwort belonging to the basal lineage of extant land plants [14-17]. Based on sequence homology, we identified a single M. polymorpha RKD gene, MpRKD, which is orthologous to all five A. thaliana RKD genes. Analysis of the MpRKD expression pattern and characterization of lines with reduced MpRKD activity indicate that it functions as a regulator of gametophyte development and the gametophyte-sporophyte transition. In particular, MpRKD is required to establish and/or maintain the quiescent state of the egg cell in the absence of fertilization.
Collapse
Affiliation(s)
- Moritz Rövekamp
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zürich, Switzerland.
| |
Collapse
|
32
|
Figueiredo DD, Köhler C. Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:16-20. [PMID: 26658334 DOI: 10.1016/j.pbi.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/08/2023]
Abstract
In seed plants, as in placental animals, gamete formation and zygotic development take place within the parental tissues. To ensure timely onset and to coordinate the development of the new generation, communication between the parent plant with the filial tissues and its precursors is of utmost importance. During female gametogenesis the maternal tissues tightly regulate megagametophyte formation and the interplay between the sporophyte and the fertilization products, embryo and endosperm, has major implications in the formation of a viable seed. We review the current knowledge on these interactions and highlight the many questions that still remain unanswered, in particular the nature of the pathways involved in these signaling events.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden.
| |
Collapse
|
33
|
Musielak TJ, Schenkel L, Kolb M, Henschen A, Bayer M. A simple and versatile cell wall staining protocol to study plant reproduction. PLANT REPRODUCTION 2015; 28:161-9. [PMID: 26454832 PMCID: PMC4623088 DOI: 10.1007/s00497-015-0267-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
The optical brightener SCRI Renaissance 2200 can be used as versatile dye to study various aspects of plant reproduction by confocal laser scanning microscopy. The study of sexual reproduction of plants has traditionally relied on light microscopy in combination with a variety of staining methods. Transgenic lines that label specific cell or tissue types with fluorescent proteins in combination with confocal laser scanning microscopy were an important development to visualize gametophyte development, the fertilization process, and to follow cell differentiation in the early embryo. Staining the cell perimeter to identify surrounding tissue is often a necessary prerequisite to put the fluorescent signal in the right context. Here, we present SCRI Renaissance 2200 (SR2200) as a versatile dye to study various aspects of plant reproduction ranging from pollen tube growth, guidance and reception to the early patterning process in the developing embryo of Arabidopsis thaliana. Furthermore, we demonstrate that SR2200 can be combined with a wide variety of fluorescent proteins. If spectral information can be recorded, even double labeling with dyes that have very similar emission spectra such as 4',6-diamidin-2-phenylindol (DAPI) is possible. The presented staining method can be a single, easy-to-use alternative for a range of other staining protocols commonly used for microscopic analyses in plant reproductive biology.
Collapse
Affiliation(s)
- Thomas J Musielak
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Laura Schenkel
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Martina Kolb
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Agnes Henschen
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|
34
|
Schmid MW, Schmidt A, Grossniklaus U. The female gametophyte: an emerging model for cell type-specific systems biology in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:907. [PMID: 26579157 PMCID: PMC4630298 DOI: 10.3389/fpls.2015.00907] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/10/2015] [Indexed: 05/03/2023]
Abstract
Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods ("omics") now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.
Collapse
Affiliation(s)
| | | | - Ueli Grossniklaus
- Department of Plant & Microbial Biology and Zurich-Basel Plant Science Center, University of ZurichZurich, Switzerland
| |
Collapse
|
35
|
Baroux C, Grossniklaus U. The Maternal-to-Zygotic Transition in Flowering Plants: Evidence, Mechanisms, and Plasticity. Curr Top Dev Biol 2015; 113:351-71. [PMID: 26358878 DOI: 10.1016/bs.ctdb.2015.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The maternal-to-zygotic transition (MZT) defines a developmental phase during which the embryo progressively emancipates itself from a developmental control relying largely on maternal information. The MZT is a functional readout of two processes: the clearance of maternally derived information and the de novo expression of the inherited, parental alleles enabled by zygotic genome activation (ZGA). In plants, for many years the debate about whether the MZT exists at all focused on the ZGA alone. However, several recent studies provide evidence for a progressive alleviation of the maternal control over embryogenesis that is correlated with a gradual ZGA, a process that is itself maternally controlled. Yet, several examples of zygotic genes that are expressed and/or functionally required early in embryogenesis demonstrate a certain flexibility in the dynamics and kinetics of the MZT among plant species and also intraspecific hybrids.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Same same but different: sperm-activating EC1 and ECA1 gametogenesis-related family proteins. Biochem Soc Trans 2015; 42:401-7. [PMID: 24646251 DOI: 10.1042/bst20140039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During double fertilization in Arabidopsis thaliana, the egg cell secretes small cysteine-rich EC1 (egg cell 1) proteins, which enable the arriving sperm pair to rapidly interact with the two female gametes. EC1 proteins are members of the large and unexplored group of ECA1 (early culture abundant 1) gametogenesis-related family proteins, characterized by a prolamin-like domain with six conserved cysteine residues that may form three pairs of disulfide bonds. The distinguishing marks of egg-cell-expressed EC1 proteins are, however, two short amino acid sequence motifs present in all EC1-like proteins. EC1 genes appear to encode the major CRPs (cysteine-rich proteins) expressed by the plant egg cell, and they are restricted to flowering plants, including the most basal extant flowering plant Amborella trichopoda. Many other ECA1 gametogenesis-related family genes are preferentially expressed in the synergid cell. Functional diversification among the ECA1 gametogenesis-related family is suggested by the different patterns of expression in the female gametophyte and the low primary sequence conservation.
Collapse
|
37
|
Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms. Biochem Soc Trans 2015; 42:332-9. [PMID: 24646240 DOI: 10.1042/bst20140036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The FG (female gametophyte) of flowering plants (angiosperms) is a simple highly polar structure composed of only a few cell types. The FG develops from a single cell through mitotic divisions to generate, depending on the species, four to 16 nuclei in a syncytium. These nuclei are then partitioned into three or four distinct cell types. The mechanisms underlying the specification of the nuclei in the FG has been a focus of research over the last decade. Nevertheless, we are far from understanding the patterning mechanisms that govern cell specification. Although some results were previously interpreted in terms of static positional information, several lines of evidence now show that local interactions are important. In the present article, we revisit the available data on developmental mutants and cell fate markers in the light of theoretical frameworks for biological patterning. We argue that a further dissection of the mechanisms may be impeded by the combinatorial and dynamical nature of developmental cues. However, accounting for these properties of developing systems is necessary to disentangle the diversity of the phenotypic manifestations of the underlying molecular interactions.
Collapse
|
38
|
Kawashima T, Berger F. The central cell nuclear position at the micropylar end is maintained by the balance of F-actin dynamics, but dispensable for karyogamy in Arabidopsis. PLANT REPRODUCTION 2015; 28:103-10. [PMID: 25698518 DOI: 10.1007/s00497-015-0259-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Advances in Fertilization. In flowering plants, fertilization is initiated by the delivery of immotile sperm cells to the boundary between two female gametes, the egg cell and the central cell. During female gamete development in Arabidopsis, the nucleus of the central cell becomes positioned toward this boundary. How this specific polarized nuclear position is maintained is unclear and whether it plays a role in successful fertilization remains to be determined. By disrupting and manipulating F-actin dynamics in the central cell, we identified that the balance of F-actin dynamics is important for nuclear positioning in the central cell and that the presence of intact F-actin cables in the central cell correlates with successful karyogamy regardless of the central cell nuclear position. We also report that the surface of the central cell nucleus is enriched in F-actin. Thus, the central cell nucleus might also serve as a site that organizes F-actin cytoskeleton to promote sperm cell nucleus movement and karyogamy.
Collapse
|
39
|
Susaki D, Takeuchi H, Tsutsui H, Kurihara D, Higashiyama T. Live Imaging and Laser Disruption Reveal the Dynamics and Cell-Cell Communication During Torenia fournieri Female Gametophyte Development. PLANT & CELL PHYSIOLOGY 2015; 56:1031-41. [PMID: 25713175 DOI: 10.1093/pcp/pcv031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/14/2015] [Indexed: 05/08/2023]
Abstract
The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri.
Collapse
Affiliation(s)
- Daichi Susaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Hidenori Takeuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Hiroki Tsutsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| |
Collapse
|
40
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
41
|
Köhler C, Lafon-Placette C. Evolution and function of epigenetic processes in the endosperm. FRONTIERS IN PLANT SCIENCE 2015; 6:130. [PMID: 25806038 PMCID: PMC4353180 DOI: 10.3389/fpls.2015.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/18/2015] [Indexed: 05/22/2023]
Abstract
The endosperm is an ephemeral tissue surrounding the embryo that is essential for its development. Aside from the embryo nourishing function, the endosperm serves as a battlefield for epigenetic processes that have been hypothesized to reinforce transposable element silencing in the embryo. Specifically, global DNA demethylation in the central cell may serve to produce small RNAs that migrate to egg cell and embryo to induce de novo DNA methylation. The Polycomb Repressive Complex 2 (PRC2) is particularly targeted to DNA hypomethylated regions, possibly alleviating the negative effects associated with loss of DNA methylation in the endosperm. The functional requirement of the PRC2 in the endosperm can be bypassed by increasing the maternal genome dosage in the endosperm, suggesting a main functional role of the endosperm PRC2 in reducing sexual conflict. We therefore propose that the functional requirement of an endosperm PRC2 was coupled to the evolution of a sexual endosperm and mechanisms enforcing transposon silencing in the embryo. The evolutionary consequences of this scenario for genome expansion will be discussed.
Collapse
Affiliation(s)
- Claudia Köhler
- *Correspondence: Claudia Köhler, Department of Plant Biology, Uppsala BioCenter, Linnean Center of Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, Almas Allé 5, SE-75007 Uppsala, Sweden e-mail:
| | | |
Collapse
|
42
|
Song X, Yuan L, Sundaresan V. Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. PLANT REPRODUCTION 2014; 27:197-203. [PMID: 25389024 DOI: 10.1007/s00497-014-0251-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 05/09/2023]
Abstract
The female gametophyte of most flowering plants forms four cell types after cellularization, namely synergid cell, egg cell, central cell and antipodal cell. Of these, only the antipodal cells have no established functions, and it has been proposed that in many plants including Arabidopsis, the antipodal cells undergo programmed cell death during embryo sac maturation and prior to fertilization. Here, we examined the expression of female gametophyte-specific fluorescent reporters in mature embryo sacs of Arabidopsis, and in developing seeds shortly after fertilization. We observed expression of the fluorescence from the reporter genes in the three antipodal cells in the mature stage embryo sac, and continuing through the early syncytial endosperm stages. These observations suggest that rather than undergoing programmed cell death and degenerating at the mature stage of female gametophyte as previously supposed, the antipodal cells in Arabidopsis persist beyond fertilization, even when the other cell types are no longer present. The results support the concept that the Arabidopsis female gametophyte at maturity should be considered to be composed of seven cells and four cell types, rather than the previously prevailing view of four cells and three cell types.
Collapse
Affiliation(s)
- Xiaoya Song
- Department of Plant Biology, University of California-Davis, One Shields Ave., Davis, CA, 95616, USA
| | | | | |
Collapse
|
43
|
Sehgal A, Mann N, Mohan Ram HY. Structural and developmental variability in the female gametophyte of Griffithella hookeriana, Polypleurum stylosum, and Zeylanidium lichenoides and its bearing on the occurrence of single fertilization in Podostemaceae. PLANT REPRODUCTION 2014; 27:205-23. [PMID: 25394544 DOI: 10.1007/s00497-014-0252-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/30/2014] [Indexed: 05/20/2023]
Abstract
Angiosperms are characterized by the phenomenon of double fertilization with Podostemaceae as an exception that appears to extend to the entire family. Our earlier work demonstrated the cause of failure of double fertilization and ascertained the occurrence of single fertilization in Dalzellia zeylanica (Tristichoideae, Podostemaceae). In continuation with this work, three more members, i.e., Griffithella hookeriana (Tul.) Warming, Polypleurum stylosum (Wight) Hall, and Zeylanidium lichenoides (Kurz) Engl. (Podostemoideae), have been investigated in the present work. We studied the ontogenetic development of female gametophyte and tracked the path of the two sperm cells from the time of their formation in the pollen tube through their entry into the synergid and gamete fusion. We report the occurrence of a remarkably reduced 3-nucleate, 3-celled mature female gametophyte consisting of an egg cell and two synergids in all the three genera. Interestingly, the central cell is formed during female gametophyte development, but exhibits a species-specific, limited life span, and eventually degenerates prior to the entry of the pollen tube into the synergid, resulting in a failure of double fertilization. Sperm dimorphism on the basis of fluorochrome stainability has been recorded in Z. lichenoides. Further, morphogenetic constraints on the part of male (sperm selection, functional reductionism) and female gametophyte (structural reductionism, inaccessibility of central cell) presumably ensure the failure of double fertilization in these species. Thus, loss of double fertilization in this family is likely a derived condition.
Collapse
Affiliation(s)
- Anita Sehgal
- Department of Botany, Miranda House, University of Delhi, Delhi, 110007, India,
| | | | | |
Collapse
|
44
|
Chardin C, Girin T, Roudier F, Meyer C, Krapp A. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5577-87. [PMID: 24987011 DOI: 10.1093/jxb/eru261] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.
Collapse
Affiliation(s)
- Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Christian Meyer
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
45
|
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 2014; 10:e1004476. [PMID: 25010342 PMCID: PMC4091798 DOI: 10.1371/journal.pgen.1004476] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. In flowering plants, asexual reproduction through seeds (apomixis) likely evolved from sexual ancestors several times independently. Only three key developmental steps differ between sexual reproduction and apomixis. In contrast to sexual reproduction, in apomicts the first cell of the female reproductive lineage omits or aborts meiosis (apomeiosis) to initiate gamete formation. Subsequently, the egg cell develops into an embryo without fertilization (parthenogenesis), and endosperm formation can either be autonomous or depend on fertilization. Consequently, the offspring of apomicts is genetically identical to the mother plant. The production of clonal seeds bears great promise for agricultural applications. However, the targeted manipulation of reproductive pathways for seed production has proven difficult as knowledge about the underlying gene regulatory processes is limited. We performed cell type-specific transcriptome analyses to study apomictic germline development in Boechera gunnisoniana, an apomictic species closely related to Arabidopsis thaliana. To facilitate these analyses, we first characterized a floral reference transcriptome. In comparison, we identified several regulatory pathways, including core cell cycle regulation, protein degradation, transcription factor activity, and hormonal pathways to be differentially regulated between sexual and apomictic plants. Apart from new insights into the underlying transcriptional networks, our dataset provides a valuable starting point for functional investigations.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| | - Marc W. Schmid
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zürich, UZH/ETH Zürich, Zürich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christian Sailer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Manuel Waller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| |
Collapse
|
46
|
Abstract
During early embryogenesis, flowering plants establish their principal body plan starting with an apical–basal axis. An asymmetric division of the zygote gives rise to apical and basal cells with different developmental fates. Besides WOX (WUSCHEL-RELATED HOMEOBOX) transcription factors and the plant hormone auxin, the YDA (YODA)/MAPK (mitogen-activated protein kinase) pathway plays a major role in establishing different cell fates after the first zygotic division. In the present review, we summarize the available data on YDA signalling during embryogenesis. The role of YDA in other developmental processes was taken into account to highlight possible implications for this pathway in the embryo.
Collapse
|
47
|
Heydlauff J, Groß-Hardt R. Love is a battlefield: programmed cell death during fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1323-30. [PMID: 24567492 DOI: 10.1093/jxb/eru030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.
Collapse
Affiliation(s)
- Juliane Heydlauff
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | |
Collapse
|
48
|
She W, Baroux C. Chromatin dynamics during plant sexual reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:354. [PMID: 25104954 PMCID: PMC4109563 DOI: 10.3389/fpls.2014.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
Plants have the remarkable ability to establish new cell fates throughout their life cycle, in contrast to most animals that define all cell lineages during embryogenesis. This ability is exemplified during sexual reproduction in flowering plants where novel cell types are generated in floral tissues of the adult plant during sporogenesis, gametogenesis, and embryogenesis. While the molecular and genetic basis of cell specification during sexual reproduction is being studied for a long time, recent works disclosed an unsuspected role of global chromatin organization and its dynamics. In this review, we describe the events of chromatin dynamics during the different phases of sexual reproduction and discuss their possible significance particularly in cell fate establishment.
Collapse
Affiliation(s)
| | - Célia Baroux
- *Correspondence: Célia Baroux, Institute of Plant Biology – Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland e-mail:
| |
Collapse
|
49
|
MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana. PLoS Genet 2013; 9:e1003783. [PMID: 24068955 PMCID: PMC3778002 DOI: 10.1371/journal.pgen.1003783] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022] Open
Abstract
In angiosperms, the egg cell forms within the multicellular, haploid female gametophyte. Female gametophyte and egg cell development occurs through a unique process in which a haploid spore initially undergoes several rounds of synchronous nuclear divisions without cytokinesis, resulting in a single cell containing multiple nuclei. The developing gametophyte then forms cell walls (cellularization) and the resulting cells differentiate to generate the egg cell and several accessory cells. The switch between free nuclear divisions and cellularization-differentiation occurs during developmental stage FG5 in Arabidopsis, and we refer to it as the FG5 transition. The molecular regulators that initiate the FG5 transition during female gametophyte development are unknown. In this study, we show using mutant analysis that two closely related MYB transcription factors, MYB64 and MYB119, act redundantly to promote this transition. MYB64 and MYB119 are expressed during the FG5 transition, and most myb64 myb119 double mutant gametophytes fail to initiate the FG5 transition, resulting in uncellularized gametophytes with supernumerary nuclei. Analysis of cell-specific markers in myb64 myb119 gametophytes that do cellularize suggests that gametophytic polarity and differentiation are also affected. We also show using multiple-mutant analysis that MYB119 expression is regulated by the histidine kinase CKI1, the primary activator of two-component signaling (TCS) during female gametophyte development. Our data establish a molecular pathway regulating the FG5 transition and implicates CKI1-dependent TCS in the promotion of cellularization, differentiation, and gamete specification during female gametogenesis. Female gamete formation in angiosperms occurs through a unique process in which a haploid spore initially undergoes a series of free nuclear divisions without cytokinesis, resulting in a single cell containing multiple nuclei. The nuclei then differentiate and are partitioned with cell walls to generate the egg cell and several accessory cells. The molecular regulators that initiate the switch between free nuclear divisions and differentiation during female gametophyte development are unknown. In this study we show that two transcription factors, MYB64 and MYB119, redundantly act to promote this process in the model organism Arabidopsis. We also show that one of them, MYB119, is transcriptionally regulated by the histidine-kinase CKI1. Our data establish the framework of a gene regulatory network required to promote cellularization, differentiation, and gamete specification during female gametogenesis.
Collapse
|
50
|
Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. PLANT REPRODUCTION 2013; 26:125-137. [PMID: 23539301 DOI: 10.1007/s00497-013-0215-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.
Collapse
Affiliation(s)
- Shai J Lawit
- Agricultural Biotechnology, DuPont Pioneer, Johnston, IA 50131-1004, USA.
| | | | | | | | | |
Collapse
|