1
|
Sarkar S. Pathological role of RAGE underlying progression of various diseases: its potential as biomarker and therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3467-3487. [PMID: 39589529 DOI: 10.1007/s00210-024-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor with several structural types, performing a myriad of molecular mechanisms. The RAGE-ligand interactions play important roles in maintaining latent chronic inflammation, and oxidative damage underlying various pathological conditions like metabolic syndrome (MetS), neurodegenerative diseases, stroke, cardiovascular disorders, pulmonary disorders, cancer and infections. RAGE is thoroughly explored in knockout animals and human trials, targeted by small molecule inhibitors, peptides, diet, and natural compounds. But it is yet to be incorporated in the mainstream management of any ailment. This review performs an appraisal of the pathological mechanisms influenced by RAGE to uncover its prospects as a biomarker while also assessing its power to become a promising therapeutic target.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be-University, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Garcia-Campoy AH, Perez Gutierrez RM, Garcia Báez EV, Muñiz-Ramírez A. El extracto metanólico de <i>Tillandsia recurvata</i> reduce los niveles de glucosa, triglicéridos y colesterol en sangre. BOTANICAL SCIENCES 2024; 102:1251-1264. [DOI: 10.17129/botsci.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: Tillandsia recurvata collected in San Luis Potosí does not have studies focused on its use as an adjuvant in treating diabetes mellitus.
Questions and / or Hypotheses: Will Tillandsia recurvata L. (Bromeliaceae) have antidiabetic activity in vitro and in vivo?
Studied species: Tillandsia recurvata L. (Bromeliaceae)
Study site and dates: T. recurvata was collected in Guadalcázar municipality, San Luis Potosí, México, in December 2021.
Methods: The antidiabetic potential of Tillandsia recurvata methanol extract (TRM) was evaluated using in vitro and in vivo models, and its secondary metabolite content was analyzed using Gas chromatography-mass spectrometry.
Results: Results demonstrate that extract reduces blood glucose, triglyceride, and cholesterol levels in vivo. In addition, in vitro tests showed that extract diminished the formation of advanced glycation end products, methylglyoxal concentrations, and glycosylated hemoglobin levels. Gas chromatography-mass spectrometry analysis identified several compounds in the extract, including 2-methylbenzaldehyde, 4-hydroxy-2-methylacetophenone, 3',5' dimethoxyacetophenone, pentanoic acid, palmitic acid, linoleic acid, phytol, margaric acid, oleamide, cis-11-eicosenamide, stearic acid, 13-docosenamide, (Z), campesterol, and β-sitosterol.
Conclusions: These results highlight the potential of T. recurvata collected in San Luis Potosi as an adjuvant in treatment of diabetes mellitus.
Collapse
|
3
|
Banfi C, Piarulli F, Ragazzi E, Ghilardi S, Greco A, Lapolla A, Sartore G. Immature Surfactant Protein Type B and Surfactant Protein Type D Correlate with Coronary Heart Disease in Patients with Type 2 Diabetes. Life (Basel) 2024; 14:886. [PMID: 39063639 PMCID: PMC11277833 DOI: 10.3390/life14070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Different specific surfactant proteins (SPs) have been associated with various pathological conditions, not only of the respiratory system, but also more recently with cardiovascular diseases, such as heart failure. The aim of the present study was to evaluate the role of SP-A, SP-D, and the precursor protein of SP-B (proSP-B) in the pathogenesis of cardiovascular damage in patients affected by type 2 diabetes (T2D). METHODS The study considered 31 patients with T2D (DN group), 34 patients with both T2D and coronary heart disease (CHD) (DC group), and 30 patients without diabetes but with a diagnosis of CHD (NC group). SP-A, SP-D, and proSP-B concentrations were determined in plasma samples, and were statistically compared using parametric and multivariate methods. RESULTS Higher plasma concentrations of SP-D and proSP-B were found in patients affected by both T2D and CHD (DC group), and in patients with CHD without diabetes (NC group), in comparison to T2D patients (DN group). A significant correlation, both with linear regression (r = 0.3565, p = 0.001) and Principal Component Analysis (PCA), was found between the plasma levels of SP-D and proSP-B in the overall cohort of patients. No differences in SP-A were observed among the three groups of subjects. CONCLUSION The present study extends the knowledge on the role of plasma SPs' levels as possible indicators of the risk of CHD being linked to T2D disease progression.
Collapse
Affiliation(s)
- Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Francesco Piarulli
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| | - Eugenio Ragazzi
- Studium Patavinum, University of Padova, 35122 Padova, Italy;
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Annunziata Lapolla
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| | - Giovanni Sartore
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| |
Collapse
|
4
|
Goldney J, Sargeant JA, Davies MJ. Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia 2023; 66:1832-1845. [PMID: 37597048 PMCID: PMC10474214 DOI: 10.1007/s00125-023-05988-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/21/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs, incretin mimetics) and dipeptidyl peptidase-4 inhibitors (DPP-4is, incretin enhancers) are glucose-lowering therapies with proven cardiovascular safety, but their effect on microvascular disease is not fully understood. Both therapies increase GLP-1 receptor agonism, which is associated with attenuation of numerous pathological processes that may lead to microvascular benefits, including decreased reactive oxygen species (ROS) production, decreased inflammation and improved vascular function. DPP-4is also increase stromal cell-derived factor-1 (SDF-1), which is associated with neovascularisation and tissue repair. Rodent studies demonstrate several benefits of these agents in the prevention or reversal of nephropathy, retinopathy and neuropathy, but evidence from human populations is less clear. For nephropathy risk in human clinical trials, meta-analyses demonstrate that GLP-1RAs reduce the risk of a composite renal outcome (doubling of serum creatinine, eGFR reduction of 30%, end-stage renal disease or renal death), whereas the benefits of DPP-4is appear to be limited to reductions in the risk of albuminuria. The relationship between GLP-1RAs and retinopathy is less clear. Many large trials and meta-analyses show no effect, but an observed increase in the risk of retinopathy complications with semaglutide therapy (a GLP-1RA) in the SUSTAIN-6 trial warrants caution, particularly in individuals with baseline retinopathy. Similarly, DPP-4is are associated with increased retinopathy risk in both trials and meta-analysis. The association between GLP-1RAs and peripheral neuropathy is unclear due to little trial evidence. For DPP-4is, one trial and several observational studies show a reduced risk of peripheral neuropathy, with others reporting no effect. Evidence in other less-established microvascular outcomes, such as microvascular angina, cerebral small vessel disease, skeletal muscle microvascular disease and autonomic neuropathies (e.g. cardiac autonomic neuropathy, gastroparesis, erectile dysfunction), is sparse. In conclusion, GLP-1RAs are protective against nephropathy, whereas DPP-4is are protective against albuminuria and potentially peripheral neuropathy. Caution is advised with DPP-4is and semaglutide, particularly for patients with background retinopathy, due to increased risk of retinopathy. Well-designed trials powered for microvascular outcomes are needed to clarify associations of incretin therapies and microvascular diseases.
Collapse
Affiliation(s)
- Jonathan Goldney
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
5
|
Ragazzi E, Burlina S, Cosma C, Chilelli NC, Lapolla A, Sartore G. Anti-diabetic combination therapy with pioglitazone or glimepiride added to metformin on the AGE-RAGE axis: a randomized prospective study. Front Endocrinol (Lausanne) 2023; 14:1163554. [PMID: 37635976 PMCID: PMC10453795 DOI: 10.3389/fendo.2023.1163554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The ratio between advanced glycation end products (AGEs) and soluble form of receptor (s-RAGE) has been proposed as a risk marker for renal and cardiovascular diseases. The aim of this study was to evaluate in the diabetes condition the influence of two different oral anti-diabetic treatments on the AGE/s-RAGE ratio, during a 5-year observation period. Methods Seventy-three patients with type 2 diabetes mellitus were randomly assigned to a drug therapy with pioglitazone or glimepiride, combined to metformin. Each subject was evaluated at baseline and after 5 years of treatment. Results In both groups s-RAGE levels did not significantly vary, while the levels of AGE and AGE/s-RAGE were both significantly reduced, basal compared to 5-year values. Within pioglitazone group, as well within glimepiride group, significant variations (Δ, as difference between 5 years of treatment minus basal) were observed for AGE (Δ= -21.1±13.4 µg/ml, P<0.001 for pioglitazone; Δ= -14.4±11.4 µg/ml, P<0.001 for glimepiride) and in AGE/s-RAGE (Δ= -0.037±0.022 µg/pg, P<0.001 for pioglitazone; Δ= -0.024±0.020µg/pg, P<0.001 for glimepiride), suggesting an average decrease of the parameters by more than 50% in both treatments. Pioglitazone was more effective than glimepiride in reducing AGE/s-RAGE ratio after 5 years of therapy. Conclusion These data can help to explain the benefits of oral anti-diabetic therapy in relation to the reduction of cardiovascular risk, as suggested by variations in AGE/s-RAGE ratio as biochemical marker of endothelial function; in particular, treatment with pioglitazone seems to offer greater long-term benefit on AGE-RAGE axis.
Collapse
Affiliation(s)
- Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Burlina
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Chiara Cosma
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | | | | | - Giovanni Sartore
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Lapolla A. Thirty years of fruitful collaborations between a physician and mass spectrometrists in diabetes field. MASS SPECTROMETRY REVIEWS 2023; 42:1086-1112. [PMID: 34747543 DOI: 10.1002/mas.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/07/2023]
Abstract
The nonenzymatic protein glycation and the subsequent formation of advanced glycation end products is a process involved in the long-term complications of diabetes. In this context the collaboration, in the last 30 years, between my research group, operating in the DPT of Medicine of Padua University, and the mass spectrometric group, operating in CNR of Padua, are described and discussed. The development of new mass spectrometric techniques has allowed investigation more indepth, starting from the applications on small molecules responsible for the browning observed in the interactions between sugars and proteins, and growing up to intact proteins as albumin, immunoglobulin, hemoglobin, and so forth, with the determination of their glycation levels as well as their glycation sites. This study has helped to clarify the role of advanced glycation end products in the pathogenesis of the chronic complications of diabetes. In particular the results obtained in diabetic nephropathy, diabetic cardiovascular disease and in placenta samples of patients affected by gestational diabetes are described in this review.
Collapse
|
7
|
Zheng W, Li H, Go Y, Chan XH(F, Huang Q, Wu J. Research Advances on the Damage Mechanism of Skin Glycation and Related Inhibitors. Nutrients 2022; 14:4588. [PMID: 36364850 PMCID: PMC9655929 DOI: 10.3390/nu14214588] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Our skin is an organ with the largest contact area between the human body and the external environment. Skin aging is affected directly by both endogenous factors and exogenous factors (e.g., UV exposure). Skin saccharification, a non-enzymatic reaction between proteins, e.g., dermal collagen and naturally occurring reducing sugars, is one of the basic root causes of endogenous skin aging. During the reaction, a series of complicated glycation products produced at different reaction stages and pathways are usually collectively referred to as advanced glycation end products (AGEs). AGEs cause cellular dysfunction through the modification of intracellular molecules and accumulate in tissues with aging. AGEs are also associated with a variety of age-related diseases, such as diabetes, cardiovascular disease, renal failure (uremia), and Alzheimer's disease. AGEs accumulate in the skin with age and are amplified through exogenous factors, e.g., ultraviolet radiation, resulting in wrinkles, loss of elasticity, dull yellowing, and other skin problems. This article focuses on the damage mechanism of glucose and its glycation products on the skin by summarizing the biochemical characteristics, compositions, as well as processes of the production and elimination of AGEs. One of the important parts of this article would be to summarize the current AGEs inhibitors to gain insight into the anti-glycation mechanism of the skin and the development of promising natural products with anti-glycation effects.
Collapse
Affiliation(s)
- Wenge Zheng
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Huijuan Li
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyo Go
- Royal Victoria Hospital, BT12 6BA Belfast, Northern Ireland, UK
| | | | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Acute Methylglyoxal-Induced Damage in Blood-Brain Barrier and Hippocampal Tissue. Neurotox Res 2022; 40:1337-1347. [PMID: 36057040 DOI: 10.1007/s12640-022-00571-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl compound formed mostly via the glycolytic pathway. Elevated blood glucose levels can cause MG accumulation in plasma and cerebrospinal fluid in patients with diabetes mellitus and Alzheimer's disease. Under these disease conditions, the high reactivity of MG leads to modification of proteins and other biomolecules, generating advanced glycation end products (AGEs), which are considered mediators in neurodegenerative diseases. We investigated the integrity of the blood-brain barrier (BBB) and astrocyte response in the hippocampus to acute insult induced by MG when it was intracerebroventricularly administered to rats. Seventy-two hours later, BBB integrity was lost, as assessed by the entry of Evans dye into the brain tissue and albumin in the cerebrospinal fluid, and a decrease in aquaporin-4 and connexin-43 in the hippocampal tissue. MG did not induce changes in the hippocampal contents of RAGE in this short interval, but decreased the expression of S100B, an astrocyte-secreted protein that binds RAGE. The expression of two important transcription factors of the antioxidant response, NF-κB and Nrf2, was unchanged. However, hemeoxigenase-1 was upregulated in the MG-treated group. These data corroborate the idea that hippocampal cells are targets of MG toxicity and that BBB dysfunction and specific glial alterations induced by this compound may contribute to the behavioral and cognitive alterations observed in these animals.
Collapse
|
9
|
Legaard GE, Feineis CS, Johansen MY, Hansen KB, Vaag AA, Larsen EL, Poulsen HE, Almdal TP, Karstoft K, Pedersen BK, Ried-Larsen M. Effects of an exercise-based lifestyle intervention on systemic markers of oxidative stress and advanced glycation endproducts in persons with type 2 diabetes: Secondary analysis of a randomised clinical trial. Free Radic Biol Med 2022; 188:328-336. [PMID: 35764194 DOI: 10.1016/j.freeradbiomed.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS This secondary analysis aimed to investigate the effects of a 12 months intensive exercise-based lifestyle intervention on systemic markers of oxidative stress in persons with type 2 diabetes. We hypothesized lifestyle intervention to be superior to standard care in decreasing levels of oxidative stress. METHODS The study was based on the single-centre, assessor-blinded, randomised, controlled U-turn trial (ClinicalTrial.gov NCT02417012). Persons with type 2 diabetes ˂ 10 years, ˂ 3 glucose lowering medications, no use of insulin, BMI 25-40 kg/m2 and no severe diabetic complications were included. Participants were randomised (2:1) to either intensive exercise-based lifestyle intervention and standard (n = 64) or standard care alone (n = 34). Standard care included individual education in diabetes management, advice on a healthy lifestyle and regulation of medication by a blinded endocrinologist. The lifestyle intervention included five to six aerobic exercise sessions per week, combined with resistance training two to three times per week and an adjunct dietary intervention aiming at reduction of ∼500 kcal/day (month 0-4). The diet was isocaloric from months 5-12. The primary outcome of this secondary analysis was change in oxidative stress measured by 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and secondarily in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as markers of RNA and DNA oxidation, respectively, from baseline to 12-months follow-up. RESULTS A total of 77 participants, 21 participants receiving standard care and 56 participants receiving the lifestyle intervention, were included in the analysis. Mean age at baseline was 54.1 years (SD 9.1), 41% were women and mean duration of type 2 diabetes was 5.0 years (SD 2.8). From baseline to follow-up the lifestyle group experienced a 7% decrease in 8-oxoGuo (-0.15 nmol/mmol creatinine [95% CI -0.27, -0.03]), whereas standard care conversely was associated with a 8.5% increase in 8-oxoGuo (0.19 nmol/mmol creatinine [95% CI 0.00, 0.40]). The between group difference in 8-oxoGuo was -0.35 nmol/mmol creatinine [95% CI -0.58, -0.12,], p = 0.003. No between group difference was observed in 8-oxodG. CONCLUSION/INTERPRETATION A 12 months intensive exercise-based lifestyle intervention was associated with a decrease in RNA, but not DNA, oxidation in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Camilla S Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Y Johansen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Denmark; Department of Immunology & Microbiology, University of Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
The Burden of Impaired Serum Albumin Antioxidant Properties and Glyco-Oxidation in Coronary Heart Disease Patients with and without Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081501. [PMID: 36009220 PMCID: PMC9404962 DOI: 10.3390/antiox11081501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Human serum albumin (HSA) has an important antioxidant activity due to the presence of the reduced cysteine at position 34, which represents the most abundant free thiol in the plasma. In oxidative-based diseases, HSA undergoes S-thiolation (THIO-HSA) with changes in the antioxidant function of albumin that could contribute to the progression of the disease. The aim of this study was to verify, for the first time, the different burdens of THIO-HSA, glycated HSA (GLY-HSA), and advanced glycation end products (AGE) accumulation both in type 2 diabetes mellitus (T2DM) patients and in non-diabetic patients, with or without coronary heart disease (CHD). In this study, we assessed the presence of modified forms of HSA, THIO-HSA, and GLY-HSA by means of mass spectrometry in 33 patients with both T2DM and CHD, in 31 patients with T2DM and without CHD, in 30 patients without diabetes with a history of CHD, and 27 subjects without diabetes and CHD. All the patients’ anthropometric and clinical data were recorded including age, sex, duration of diabetes, body mass index (BMI), blood pressure, and history of CHD defined with anamnestic data. Metabolic parameters, such as fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), lipids, pentosidine, AGE, receptor for advanced glycation end-products (RAGE) and its soluble form (sRAGE), were measured. AGE and pentosidine are significantly higher in T2DM patients with and without CHD with respect to non-diabetic patients with CHD and control subjects. RAGE levels are significantly higher in T2DM patients with respect to non-diabetic patients, and among T2DM patients, the group with CHD showed significantly higher RAGE levels than those without CHD (217 ± 171 pg/mL and 140 ± 61 pg/mL, respectively). Albumin isoforms discriminate between non-diabetic patients with CHD and T2DM patients with and without CHD and control subjects, with GLY-HSA levels higher in T2DM with and without CHD, and THIO-HSA higher in CHD patients without T2DM. Finally, we demonstrated that the oxidized forms of HSA can increase the expression of the inflammatory cytokine Tumor Necrosis Factor-alpha (TNFα) in monocytic cells. In patients with CHD, GLY-HSA and THIO-HSA have a different prevalent distribution, the first one prevailing in patients with T2DM and the second one in patients without T2DM. These findings suggest that albumin quality and homeostasis balance between glyco-oxidation and thiolation might have an impact on the antioxidant defense system in cardiovascular diseases.
Collapse
|
11
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
12
|
Abdel-Razik A, Shabana W, El Nakib AM, Abdelsalam M, Abdelwahab A, Hasan AS, Elzehery R, Elhelaly R, Fathy AA, Mostafa SA, El-Wakeel N, Moemen D, Eldars W, Yassen AH. De Novo Hepatocellular Carcinoma in Hepatitis C-Related Cirrhosis: Are Advanced Glycation End Products a Key Driver? Front Cell Infect Microbiol 2021; 11:662431. [PMID: 34660332 PMCID: PMC8517490 DOI: 10.3389/fcimb.2021.662431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose The advanced glycation end products (AGEs) have been implicated in different diseases’ pathogenesis, but their role in hepatocellular carcinoma (HCC) is still a matter of debate. This study aims to investigate the association of AGEs with HCC development in patients with hepatitis C-related cirrhosis. Methods Only 153 of the 181 non-diabetic patients with cirrhosis were consecutively involved in this pilot cohort prospective study, along with 34 healthy control participants. Demographic characteristics, biochemical parameters, clinical data, and AGEs levels in all subjects at the starting point and every year after that for two years were assessed. Multivariable Cox regression analysis was used to settle variables that could predict HCC development within this period. Results HCC developed in 13 (8.5%) patients. Univariate Cox regression analysis reported that body mass index (P=0.013), homeostatic model assessment-insulin resistance (P=0.006), alpha-fetoprotein (P <0.001), and AGEs levels (P <0.001) were related to HCC development. After adjusting multiple confounders, the multivariable Cox regression model has revealed that AFP and AGEs were the powerful parameters related to the HCC occurrence (all P<0.05). AGEs at a cutoff value of more than 79.6 ng/ml had 100% sensitivity, 96.4% specificity, and 0.999 area under the curve (all P<0.001), using the receiver operating characteristic curve, for prediction of HCC development. Conclusion This work suggests that AGEs are associated with an increased incidence of HCC, particularly in cirrhosis, which is encouraging in decreasing the risk of HCC in these patients.
Collapse
Affiliation(s)
- Ahmed Abdel-Razik
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Walaa Shabana
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed Mohamed El Nakib
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed Abdelwahab
- Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmad S Hasan
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Rasha Elzehery
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Rania Elhelaly
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Aya Ahmed Fathy
- Public Health and Community Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Niveen El-Wakeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Dalia Moemen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Waleed Eldars
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed H Yassen
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| |
Collapse
|
13
|
Kim YH, Her AY, Jeong MH, Kim BK, Hong SJ, Kim S, Ahn CM, Kim JS, Ko YG, Choi D, Hong MK, Jang Y. Comparative effect of statin intensity between prediabetes and type 2 diabetes mellitus after implanting newer-generation drug-eluting stents in Korean acute myocardial infarction patients: a retrospective observational study. BMC Cardiovasc Disord 2021; 21:386. [PMID: 34372778 PMCID: PMC8351104 DOI: 10.1186/s12872-021-02198-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background Comparative studies regarding the long-term clinical outcomes of statin intensity between acute myocardial infarction (AMI) patients with prediabetes and those with type 2 diabetes mellitus (T2DM), after successful implantation of newer-generation drug-eluting stents (DES) with statin treatment, are limited. We compared the 2-year clinical outcomes between these patients. Methods A total of 11,612 AMI patients were classified as statin users (n = 9893) and non-users (n = 1719). Thereafter, statin users were further divided into high-intensity (n = 2984) or low-moderate-intensity statin (n = 6909) treatment groups. Those in these two groups were further classified into patients with normoglycemia, prediabetes, and T2DM. The major outcomes were the occurrence of major adverse cardiac events (MACE), defined as all-cause death, recurrent myocardial infarction (Re-MI), or any repeat coronary revascularization. Results After adjusting for both high-intensity and low-moderate-intensity statin users, the cumulative incidences of MACE (p = 0.737, p = 0.062, respectively), all-cause death, Re-MI, and any repeat revascularization were similar between the prediabetes and T2DM groups. In the total study population, both high-intensity and low-moderate-intensity statin treatments showed comparable results. However, in the patients who enrolled after October 2012, the cumulative incidences of MACE (aHR 1.533; 95% CI 1.144–2.053; p = 0.004) and any repeat revascularization (aHR, 1.587; 95% CI 1.026–2.456; p = 0.038) were significantly lower in high-intensity statin users than in low-moderate intensity statin users. The beneficial effects of high-intensity compared to low-moderate-intensity statin therapy were more apparent in the normoglycemia group than hyperglycemia group, as it reduced the cumulative incidences of MACE (aHR 1.903; 95% CI 1.203–3.010; p = 0.006) and any repeat revascularization (aHR 3.248; 95% CI 1.539–6.854; p = 0.002). Conclusions In this retrospective registry study, prediabetes and T2DM groups showed comparable clinical outcomes, after administering both high-intensity and low-moderate-intensity statin treatments. However, these results are likely to be clearly proved by further studies, especially in patients with AMI who are being treated in contemporary practice. Trial registration Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02198-w.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, 156 Baengnyeong Road, 24289, Chuncheon City, Gangwon Province, South Korea.
| | - Ae-Young Her
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, 156 Baengnyeong Road, 24289, Chuncheon City, Gangwon Province, South Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Cardiovascular Center, Gwangju, Republic of Korea
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Jin Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghwan Kim
- Division of Cardiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Chul-Min Ahn
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Sun Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Guk Ko
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Donghoon Choi
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeong-Ki Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yangsoo Jang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Kim YH, Her AY, Jeong MH, Kim BK, Hong SJ, Kim S, Ahn CM, Kim JS, Ko YG, Choi D, Hong MK, Jang Y. Effect of statin treatment in patients with acute myocardial infarction with prediabetes and type 2 diabetes mellitus: A retrospective observational registry study. Medicine (Baltimore) 2021; 100:e24733. [PMID: 33578620 PMCID: PMC10545251 DOI: 10.1097/md.0000000000024733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT Studies comparing long-term clinical outcomes of statin treatment between acute myocardial infarction (AMI) patients with prediabetes and those with type 2 diabetes mellitus (T2DM) after successful percutaneous coronary intervention (PCI) with the newer-generation drug-eluting stents (DESs) are limited. We compared 2-year clinical outcomes between these patients.A total of 11,962 AMI patients were classified as statin users (n = 10,243) and statin nonusers (n = 1719). Thereafter, statin users and nonusers were further divided into the normoglycemia, prediabetes, and T2DM groups. The major outcome was the occurrence of major adverse cardiac event (MACE) defined as all-cause death, recurrent myocardial infarction (Re-MI), or any repeat coronary revascularization.After statin treatment, the cumulative incidences of MACE (P = .314), all-cause death, cardiac death (CD), Re-MI, and any repeat revascularization were similar between the prediabetes and T2DM groups. However, the cumulative incidences of MACE (P = .025) and all-cause death (P = .038) in the prediabetes group and those of MACE (P = .001), all-cause death (P = .009), and CD (P = .048) in the T2DM group were significantly higher than those in the normoglycemia group. Moreover, in all the 3 glycemic groups, the cumulative incidences of MACE, all-cause death, and CD were significantly higher among statin nonusers than among statin users.This study revealed that AMI patients with prediabetes had worse clinical outcomes than those with normoglycemia and comparable to those with T2DM after 2-year statin treatment. However, further studies are warranted to confirm the current findings.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon
| | - Ae-Young Her
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon
| | - Myung Ho Jeong
- Cardiovascular Center, Department of Cardiology, Chonnam National University Hospital, Gwangju
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Sung-Jin Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Seunghwan Kim
- Division of Cardiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Chul-Min Ahn
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Jung-Sun Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Young-Guk Ko
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Donghoon Choi
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Myeong-Ki Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| | - Yangsoo Jang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine
| |
Collapse
|
15
|
Song Y, Dang Y, Li H, Feng J, Ruan L. Relationship between carotid intraplaque neovascularization and haemoglobin A1c in diabetic patients. Clin Neurol Neurosurg 2021; 203:106515. [PMID: 33601236 DOI: 10.1016/j.clineuro.2021.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION We aimed to evaluate the characteristics of carotid artery plaques and the relationship between intraplaque neovascularization (IPN) and hemoglobin A1c (HbA1c) in patients of <60 years old with diabetes mellitus (DM) by comparison with diabetes ≥60 years of age. METHODS One-hundred-and-one patients with DM were studied into two groups: those <60 and those ≥60 years of age. All the patients underwent standard carotid ultrasonography and contrast-enhanced ultrasonography, which we used to evaluate IPN. RESULTS Diabetic complications were present in 41 of 50 patients (82 %) in the <60-year-old group, of whom 17 (34 %) had diabetes-related vascular complications. Of the 47 plaques in the <60-year-old group, six (13 %) had IPN Grade 0, 16 (34 %) had IPN Grade 1, and 25 (53 %) had IPN Grade 2. The AUC and RAUC of the plaque in the <60-year-old group were significantly higher than those of the ≥60-year-old group (P = 0.012 and 0.031, respectively). There were also differences in the AUC, RAUC and semi-quantitative grades between patients with and without diabetic macrovasculopathy and diabetic peripheral artery disease (all P < 0.05). The AUC, RAUC and semi-quantitative grading of IPN positively correlated with blood glucose and HbA1c (P < 0.05). CONCLUSION IPN is more common in DM patients who are younger, and have higher blood glucose and HbA1c concentrations, and these plaques are more vulnerable.
Collapse
Affiliation(s)
- Yan Song
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Dang
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Li
- Department of Critical Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Litao Ruan
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Rossi I, Omotosho P, Poirier J, Spagnoli A, Torquati A. Roux-en-Y gastric bypass decreases serum inflammatory markers and cardiovascular risk factors in obese diabetics. Surgery 2020; 169:539-542. [PMID: 33168209 DOI: 10.1016/j.surg.2020.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus are associated with elevated levels of inflammatory markers. This chronic inflammation is known to contribute to increased risk of cardiovascular disease in these populations. Laparoscopic Roux-en-Y gastric bypass is associated with a high rate of diabetes remission. We hypothesize that laparoscopic Roux-en-Y gastric bypass decreases systemic inflammatory markers and cardiovascular disease risk factors in obese diabetics. METHODS This was a single-institution prospective cohort study of 61 obese patients with type 2 diabetes mellitus. A total of 30 patients underwent laparoscopic Roux-en-Y gastric bypass surgery, and 31 patients underwent standard medical therapy with diabetes support and education. Collected data included preoperative and postoperative inflammatory biomarkers and clinical parameters. RESULTS Twelve months after undergoing laparoscopic Roux-en-Y gastric bypass, controlling for sex and age, there was a significant correlation between a change in interleukin-6 and a change in systolic blood pressure (Spearman r = 0.41, P = .03). Similarly, when sex and age were controlled for in the laparoscopic Roux-en-Y gastric bypass group, a statistically significant relationship remained between percent excess weight loss and change in interleukin-6 (P = .001). CONCLUSION A significant relationship exists between decreased systemic interleukin-6 levels and both excess weight loss and lowered systolic blood pressure after laparoscopic Roux-en-Y gastric bypass in obese patients with diabetes mellitus. These correlations may explain the decreased risk of cardiovascular disease after surgical weight reduction in this patient population.
Collapse
Affiliation(s)
- Isolina Rossi
- Department of Surgery, Carolinas Medical Center, Charlotte, NC
| | - Philip Omotosho
- Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Jennifer Poirier
- Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Anna Spagnoli
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Alfonso Torquati
- Department of Surgery, Rush University Medical Center, Chicago, IL.
| |
Collapse
|
17
|
Abdel-Razik A, Mousa N, Zakaria S, Abdelsalam M, Eissa M, Abd El-Ghany MI, Hasan AS, Elhelaly R, Elzehery R, El-Wakeel N, Eldars W. Advanced Glycation End Products as a Predictor of Diabetes Mellitus in Chronic Hepatitis C-Related Cirrhosis. Front Med (Lausanne) 2020; 7:588519. [PMID: 33195350 PMCID: PMC7649387 DOI: 10.3389/fmed.2020.588519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Advanced glycation end products (AGEs) were found to be involved in the pathogenesis of various disorders. Chronic hepatitis C virus infection is the major cause of liver cirrhosis development and glucose metabolism alteration. We aimed to explore the association of AGEs with the development of diabetes mellitus (DM) in patients with cirrhosis in this study. Methods: Only 144 of the 165 non-diabetic patients with cirrhosis were consecutively included in this prospective cohort pilot study, in addition to 72 healthy control subjects. Clinical data and biochemical parameters including basal insulin secretion and insulin sensitivity indices together with AGEs were evaluated in all participants at baseline and every 1 year thereafter for 2 years. Multivariable Cox regression analysis was used to determine the parameters that could predict the development of DM within this period. Results: DM developed in 14 (10%) patients only. Univariate Cox regression analysis showed that AGEs (P = 0.004), Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) (P = 0.018), HOMA-β (P = 0.015), and age (P = 0.012) were associated with DM. After adjusting multiple confounders, the multivariable Cox regression model showed that AGEs, HOMA-IR, and age were the strongest variables associated with DM (all P < 0.05). Using the receiver operating characteristic curve, AGEs at a cutoff value of more than 82.4 ng/ml had 99.23% specificity, 100% sensitivity, and 0.992 area under the curve (AUC) (all P < 0.001) for DM prediction. Conclusion: Our study suggests that AGEs are related to increased incidence of DM, especially in patients with cirrhosis, which is very promising in lowering the risk of DM in these patients.
Collapse
Affiliation(s)
- Ahmed Abdel-Razik
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nasser Mousa
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sahar Zakaria
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Eissa
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed I. Abd El-Ghany
- Endocrinology and Diabetes Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad S. Hasan
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rania Elhelaly
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elzehery
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Niveen El-Wakeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Waleed Eldars
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Sartore G, Ragazzi E, Faccin L, Lapolla A. A role of glycation and methylation for SARS-CoV-2 infection in diabetes? Med Hypotheses 2020; 144:110247. [PMID: 33254553 PMCID: PMC7470689 DOI: 10.1016/j.mehy.2020.110247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Type-2 diabetes (T2D) is a major comorbidity of COVID-19, and poorly controlled diabetes is associated with high mortality rate, emphasizing the necessity to improve glycemic control. Angiotensin-converting enzyme 2 (ACE2) is the receptor responsible for SARS-CoV-2 access to human cells, and ACE2 expression is increased in patients with diabetes and hypertension treated with ACE-inhibitors or angiotensin II receptor blockers. We hypothesize that an upregulation of ACE2 due to its non-enzymatic glycation could be considered, as well as a change of the protein tertiary structure in terms of amino acid (mostly lysine) available to be glycated. In fact, in a single ACE2 molecule, 34 lysine residues are present in the extracellular portion, and at least one of these is co-involved in a fundamental hydrogen-bond interaction with the SARS-CoV-2 receptor binding domain (RBD). The worse outcome of COVID-19 in people with diabetes could be related to the non-enzymatic glycation that triggers the activity of ACE2. Moreover, DNA methylation of genes regulating islet beta-cell function, as well as in insulin resistance of peripheral tissues such as liver, muscle, and adipose tissue may be involved, as already demonstrated for cancer conditions. DNA methylation, besides being considered as a biomarker to predict the risk of obesity and T2D, has been suggested also as a target for dietary and pharmacological treatments. The present observations may suggest further interventions in order to improve the outcome of COVID-19 in people affected by diabetes.
Collapse
Affiliation(s)
- Giovanni Sartore
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova School of Medicine and Surgery, Padova, Italy.
| | - Luca Faccin
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padova, Italy
| | - Annunziata Lapolla
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padova, Italy
| |
Collapse
|
19
|
Rice Bran Derived Bioactive Compounds Modulate Risk Factors of Cardiovascular Disease and Type 2 Diabetes Mellitus: An Updated Review. Nutrients 2019; 11:nu11112736. [PMID: 31718066 PMCID: PMC6893409 DOI: 10.3390/nu11112736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress. This review aims to describe the mechanistic pathways behind CVD and T2DM development and the therapeutic potential of polyphenols derived from RB against these chronic diseases.
Collapse
|
20
|
D'Aronco S, Crotti S, Agostini M, Traldi P, Chilelli NC, Lapolla A. The role of mass spectrometry in studies of glycation processes and diabetes management. MASS SPECTROMETRY REVIEWS 2019; 38:112-146. [PMID: 30423209 DOI: 10.1002/mas.21576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.
Collapse
Affiliation(s)
- Sara D'Aronco
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | | |
Collapse
|
21
|
Safwat NA, Kenny MA. Soluble receptor for advanced glycation end products as a vasculopathy biomarker in sickle cell disease. Pediatr Res 2018; 84:869-874. [PMID: 30367158 DOI: 10.1038/s41390-018-0221-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Soluble forms of RAGE (sRAGE) have been found circulating in plasma and tissues. Evidence is accruing in human subjects linking levels of sRAGE to oxidative stress in many disorders. Because sickle cell disease (SCD) is a state of oxidative stress, we tested the hypothesis that circulating sRAGE levels may be involved in the vascular pathology of SCD. OBJECTIVES To determine the sRAGE levels in children and adolescents with SCD and investigate their association with markers of hemolysis, iron overload, and SCD-related organ complications. SUBJECTS AND METHODS The level of sRAGE was measured in 40 children and adolescent with SCD compared with 40 healthy controls using enzyme-linked immunosorbent assay (ELISA). RESULTS sRAGE was significantly higher in patients compared with controls (p < 0.001) and was elevated in patients with history of stroke, acute lung syndrome, and frequency of sickling crisis or serum ferritin > 2500 (p < 0.05). Patients with high sRAGE levels are candidates for chelation. sRAGE was positively correlated with HbS% (r = 0.422, p = 0.007), LDH (r = 0.329, p = 0.038), and serum ferritin levels (r = 0.516, p = 0.001). Multivariable regression analysis proved that both HbS% and serum ferritin were significant independent factors affecting sRAGE level (p < 0.05). CONCLUSION Our findings suggest that sRAGE may be considered as a marker for vascular dysfunction in SCD patients.
Collapse
Affiliation(s)
- Nesma Ahmed Safwat
- Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
22
|
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24:59. [PMID: 30470170 PMCID: PMC6251169 DOI: 10.1186/s10020-018-0060-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Traditional risk factors are insufficient to explain all cases of coronary artery disease (CAD) in patients with diabetes mellitus (DM). Advanced glycation end-products (AGEs) and their receptors may play important roles in the development and progression of CAD. Body Hyperglycemia is the hallmark feature of DM. An increase in the incidence of both micro-and macrovascular complications of diabetes has been observed with increased duration of hyperglycemia. This association persists even after glycemic control has been achieved, suggesting an innate mechanism of “metabolic memory.” AGEs are glycated proteins that may serve as mediators of metabolic memory due to their increased production in the setting of hyperglycemia and generally slow turnover. Elevated AGE levels can lead to abnormal cross linking of extracellular and intracellular proteins disrupting their normal structure and function. Furthermore, activation of AGE receptors can induce complex signaling pathways leading to increased inflammation, oxidative stress, enhanced calcium deposition, and increased vascular smooth muscle apoptosis, contributing to the development of atherosclerosis. Through these mechanisms, AGEs may be important mediators of the development of CAD. However, clinical studies regarding the role of AGEs and their receptors in advancing CAD are limited, with contradictory results. Conclusion AGEs and their receptors may be useful biomarkers for the presence and severity of CAD. Further studies are needed to evaluate the utility of circulating and tissue AGE levels in identifying asymptomatic patients at risk for CAD or to identify patients who may benefit from invasive intervention.
Collapse
Affiliation(s)
- Sarah Louise Fishman
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA
| | - Halis Sonmez
- Center for Diabetes and Endocrinology, 111 Salem Tpke, Norwich, CT, 06360, USA
| | - Craig Basman
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Varinder Singh
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, 100 East 77th St, New York, NY, 10065, USA
| | - Leonid Poretsky
- Division of Endocrinology, Department of Medicine, Lenox Hill Hospital, Northwell Health, 110 East 59th St #8B, New York, NY, 10022, USA.
| |
Collapse
|
23
|
Hodish I. Insulin therapy, weight gain and prognosis. Diabetes Obes Metab 2018; 20:2085-2092. [PMID: 29785843 DOI: 10.1111/dom.13367] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Insulin therapy is mainly used by people with type 2 diabetes who have failed other therapies and have become insulin-deficient. This group represents about a quarter of all people with type 2 diabetes. Almost all those with type 2 diabetes who start insulin therapy or intensify it gain weight, which may potentially diminish the prognostic advantage of improved glycaemia. To date, all available guidelines emphasize both the attainment of glycated haemoglobin (HbA1c) goals and weight control, without directing the clinician as to which element is of a higher priority. The following review attempts to clarify the issue using the available literature. The body of evidence presented in this review indicates that glycaemic management with exogenous insulin replacement is of a much higher priority than weight gain. Lower weight or weight loss do not show prognostic benefit in advanced stages of diabetes; therefore, weight gain should not discourage providers from achieving and maintaining HbA1c goals with insulin therapy, regardless of insulin dosage or other medications.
Collapse
Affiliation(s)
- Israel Hodish
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
24
|
Kelesidis T, Kendall MA, Danoff A, Aberg JA, Currier JS, Schmidt AM. Soluble levels of receptor for advanced glycation endproducts and dysfunctional high-density lipoprotein in persons infected with human immunodeficiency virus: ACTG NWCS332. Medicine (Baltimore) 2018; 97:e10955. [PMID: 29851842 PMCID: PMC6392937 DOI: 10.1097/md.0000000000010955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The role of high-density lipoprotein (HDL) function and advanced glycation end products (AGEs) in HIV-related atherosclerotic cardiovascular disease (CVD) is unclear. Both glycation and oxidation (HDLox) are major modifications of HDL that can alter its composition and function. Therefore, we explored the longitudinal association of HDLox with progression of glycation, as evaluated by measurement of circulating forms of receptor for AGE that predict morbidity (soluble Receptors for Advanced Glycation Endproducts [sRAGE], endogenous secretory Receptors for Advanced Glycation Endproducts [esRAGE]), in people with HIV-1 (PWH; HIV-1) and uninfected (HIV-1) individuals.We retrospectively assessed if levels of plasma sRAGE and esRAGE and HDL function (reduced antioxidant function is associated with increased HDL lipid hydroperoxide content; HDLox) in a subset of participants (n = 80) from a prospective 3-year study (AIDS Clinical Trials Group A5078). Primary outcomes were baseline and yearly rates of change over 96 of 144 weeks (Δ) in HDLox in HIV-1 versus uninfected HIV-1 controls (noted as HIV-1).Higher baseline levels of sRAGE in PWH on effective anti-retroviral therapy and with low CVD risk, but not in HIV-1 persons, were independently associated with higher HDLox. EsRAGE, but not sRAGE, had consistent inverse relationships with ΔHDLox in both HIV-1 and HIV-1 persons at baseline. In HIV-1 but not in HIV-1 persons, ΔHDLox had positive and inverse relationships with ΔRAGE and ΔesRAGE, respectively.Glycation and oxidation of HDL may contribute to impaired HDL function present in PWH.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Michelle A. Kendall
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA
| | - Ann Danoff
- Department of Medicine, CPL Michael J Crescenz VA Medical Center
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Judith A. Aberg
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai
| | - Judith S. Currier
- Department of Medicine, Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ann Marie Schmidt
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY
| |
Collapse
|
25
|
Hodish I. Insulin therapy for type 2 diabetes - are we there yet? The d-Nav® story. Clin Diabetes Endocrinol 2018; 4:8. [PMID: 29682315 PMCID: PMC5894229 DOI: 10.1186/s40842-018-0056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
Insulin replacement therapy is mostly used by patients with type 2 diabetes who become insulin deficient and have failed other therapeutic options. They comprise about a quarter of those with diabetes, endures the majority of the complications and consumes the majority of the resources. Adequate insulin replacement therapy can prevent complications and reduce expenses, as long as therapy goals are achieved and maintained. Sadly, these therapy goals are seldom achieved and outcomes have not improved for decades despite advances in pharmacotherapy and technology. There is a growing recognition that the low success rate of insulin therapy results from intra-individual and inter-individual variations in insulin requirements. Total insulin requirements per day vary considerably between patients and constantly change without achieving a steady state. Thus, the key element in effective insulin therapy is unremitting and frequent dosage adjustments that can overcome those dynamics. In practice, insulin adjustments are done sporadically during outpatient clinic. Due to time constraints, providers are not able to deliver appropriate insulin dosage optimization. The d-Nav® Insulin Guidance Service has been developed to provide appropriate insulinization in insulin users without increasing the burden on healthcare systems. It relies on dedicated clinicians and a spectrum of technological solutions. Patients are provided with a handheld device called d-Nav® which advises them what dose of insulin to administer during each injection and automatically adjust insulin dosage when needed. The d-Nav care specialists periodically follow-up with users through telephone calls and in-person consultations to bestow user confidence, correct usage errors, triage, and identify uncharacteristic clinical courses. The following review provide details about the service and its clinical outcomes.
Collapse
Affiliation(s)
- I Hodish
- 1Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, 1000 Wall St, Ann Arbor, MI 48105 USA.,Hygieia, Inc, Livonia, MI USA
| |
Collapse
|
26
|
Scicali R, Di Pino A, Ferrara V, Urbano F, Piro S, Rabuazzo AM, Purrello F. New treatment options for lipid-lowering therapy in subjects with type 2 diabetes. Acta Diabetol 2018; 55:209-218. [PMID: 29260404 DOI: 10.1007/s00592-017-1089-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Dyslipidemias represent a variety of quantitative and/or qualitative lipoprotein abnormalities. According to etiology, we distinguish primary dyslipidemias with strictly genetic background and secondary ones with their origin in other disease or pathological states. Diabetic dyslipidemia is a type of secondary dyslipidemia and plays an important role in determining the cardiovascular risk of subjects with type 2 diabetes. In these patients, insulin resistance is responsible for overproduction and secretion of atherogenic very low density lipoprotein. In addition, insulin resistance promotes the production of small dense low-density lipoprotein (LDL) and reduces high-density lipoprotein (HDL) production. Cardiovascular disease remains a leading cause of morbidity and mortality in diabetic patients. Previous results support the role for small, dense LDL particles in the etiology of atherosclerosis and their association with coronary artery disease. Moreover, lowering LDL cholesterol reduces the risk of cardiovascular death. Therefore, the European guidelines for the management of dyslipidemias recommend an LDL cholesterol goal < 100 mg/dL in diabetic subjects without cardiovascular events. Moreover, if triglycerides (TG) are elevated (> 400 mg/dL), they recommend a non-HDL cholesterol goal < 130 mg/dL in diabetic individuals without cardiovascular events. Statins are the first line of LDL-lowering therapy in diabetic patients and combined therapy with ezetimibe and statins could be useful in very high cardiovascular risk diabetic subjects. Furthermore, the effect of a fibrate as an add-on treatment to a statin could improve the lipid profile in diabetic individuals with high TG and low HDL cholesterol. Regarding new therapies, recent data from phase III trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors considerably decrease LDL cholesterol. Thus, they may be useful in diabetic patients with concomitant diseases such as familial dyslipidemia, recurrent cardiovascular events, and elevated LDL cholesterol after second drug administration in addition to maximal statin dose or statin intolerance.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo, 636, 95122, Catania, Italy.
| |
Collapse
|
27
|
Papagrigoraki A, Maurelli M, Del Giglio M, Gisondi P, Girolomoni G. Advanced Glycation End Products in the Pathogenesis of Psoriasis. Int J Mol Sci 2017; 18:ijms18112471. [PMID: 29156622 PMCID: PMC5713437 DOI: 10.3390/ijms18112471] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
Advanced glycation end products (AGEs) are extremely oxidant and biologically reactive compounds, which form through oxidation of sugars, lipids and amino acids to create aldehydes that bind covalently to proteins. AGEs formation and accumulation in human tissues is a physiological process during ageing but it is enhanced in case of persistent hyperglycemia, hyperlipidemia and oxidative or carbonyl stress, which are common in patients with moderate to severe psoriasis. Exogenous AGEs may derive from foods, UV irradiation and cigarette smoking. AGEs elicit biological functions by activating membrane receptors expressed on epithelial and inflammatory cell surface. AGEs amplify inflammatory response by favoring the release of cytokines and chemokines, the production of reactive oxygen species and the activation of metalloproteases. AGEs levels are increased in the skin and blood of patients with severe psoriasis independently of associated metabolic disorders. Intensified glycation of proteins in psoriasis skin might have a role in fueling cutaneous inflammation. In addition, AGEs released from psoriatic skin may increase metabolic and cardiovascular risk in patients with severe disease.
Collapse
Affiliation(s)
| | - Martina Maurelli
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy.
| | - Micol Del Giglio
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy.
| | - Paolo Gisondi
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy.
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy.
| |
Collapse
|
28
|
Szwergold B. A Hypothesis: Moderate Consumption of Alcohol Contributes to Lower Prevalence of Type 2 Diabetes Due to the Scavenging of Alpha-Dicarbonyls by Dietary Polyphenols. Rejuvenation Res 2017; 21:389-404. [PMID: 28891383 DOI: 10.1089/rej.2017.1974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The world is experiencing an epidemic of type-2-diabetes mellitus (T2DM). This has led to increased morbidity and mortality, explosive growth in health care budgets, and an even greater adverse, if indirect, impact on societies and economies of affected countries. While genetic susceptibility to T2DM is a major determinant of its prevalence, changes in lifestyles also play a role. One such change has been a transition from traditional diets characterized by low caloric and high nutrient density to calorie-rich but nutrient-poor Western diets. Given this, one solution to the epidemic of T2DM would be to abandon Western diets and revert to traditional eating patterns. However, traditional diets cannot provide enough calories for the increasing global population, so transition from traditional to Western foodstuffs appears to be irreversible. Consequently, the only practical solution to problems caused by these changes is to modify Western diets, possibly by supplementing them with functional foods containing nutrients that would compensate for these dietary deficits. I present in this study a hypothesis to explain why shifts from traditional to Western diets have been so problematic and to suggest nutrients that may counteract these adverse effects. I postulate that the components of traditional diets that may compensate for deficiencies of Westerns diets are scavengers of reactive α-dicarbonyls produced as unavoidable by-products of glucose and lipid metabolism. Most important among these scavengers are some plant secondary metabolites: polyphenols, phlorotannins, and carotenoids. They are found in alcoholic beverages and are abundant in seasonings, cocoa, coffee, tea, whole grains, pigmented vegetables, fruits, and berries.
Collapse
|
29
|
Low Glucose Concentrations Induce a Similar Inflammatory Response in Monocytes from Type 2 Diabetic Patients and Healthy Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9185272. [PMID: 29225725 PMCID: PMC5684594 DOI: 10.1155/2017/9185272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/02/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
This study aims to assess the proinflammatory interleukin 1β (IL-1β) and anti-inflammatory IL-10 production by monocytes from 38 patients with type 2 diabetes and 31 controls in different glucose concentrations. Monocytes were incubated in low (2.5 mmol/L)-, normal (5.0 mmol/L)-, and high (20 mmol/L)-glucose conditions in the presence and absence of lipopolysaccharide (LPS). Monocytes from both patients and controls only produced a significant increase in IL-1β in low-glucose conditions (p < 0.01), and this phenomenon was amplified in the presence of LPS, while it was not seen in normal- or high-glucose conditions, not even in the presence of LPS stimulation. There was no increase in IL-10 production by monocytes from either diabetic patients or controls using whatever glucose concentrations, except when treated with LPS in normal-glucose conditions. These findings seem to suggest that low-glucose conditions induce an inflammatory response in monocytes in all individuals, as an intrinsic capacity of this cell line. On the other hand, monocytes only retain their anti-inflammatory ability in response to known inflammatory stimuli such as LPS, under normal-glucose concentrations. In conclusion, human monocytes express an inflammatory pattern in low-glucose conditions in vitro. This response could contribute to explaining the higher cardiovascular risk induced by hypoglycemia in diabetic patients.
Collapse
|
30
|
Sun WW, Zhu P, Shi YC, Zhang CL, Huang XF, Liang SY, Song ZY, Lin S. Current views on neuropeptide Y and diabetes-related atherosclerosis. Diab Vasc Dis Res 2017; 14:277-284. [PMID: 28423914 DOI: 10.1177/1479164117704380] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diabetes-induced atherosclerotic cardiovascular disease is the leading cause of death of diabetic patients. Neuronal regulation plays a critical role in glucose metabolism and cardiovascular function under physiological and pathological conditions, among which, neurotransmitter neuropeptide Y has been shown to be closely involved in these two processes. Elevated central neuropeptide Y level promotes food intake and reduces energy expenditure, thereby increasing adiposity. Neuropeptide Y is co-localized with noradrenaline in central and sympathetic nervous systems. As a major peripheral vascular contractive neurotransmitter, through interactions with its receptors, neuropeptide Y has been implicated in the pathology and progression of diabetes, by promoting the proliferation of endothelial cells and vascular fibrosis, which may contribute to diabetes-induced cardiovascular disease. Neuropeptide Y also participates in the pathogenesis of atherosclerosis, the major form of cardiovascular disease, via aggravating endothelial dysfunction, growth of vascular smooth muscle cells, formation of foam cells and platelets aggregation. This review highlights the causal role of neuropeptide Y and its receptor system in the development of diabetes mellitus and one of its complications: atherosclerotic cardiovascular disease. The information from this review provides both critical insights onto the mechanisms underlying the pathogenesis of atherosclerosis and evidence for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wei-Wei Sun
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Zhu
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Chuan Shi
- 2 Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chen-Liang Zhang
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Feng Huang
- 3 School of Health Sciences and Illawarra Health and Medical Research Institute, University of Wollongong Australia, Wollongong, NSW, Australia
| | - Shi-Yu Liang
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Yuan Song
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shu Lin
- 1 Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- 3 School of Health Sciences and Illawarra Health and Medical Research Institute, University of Wollongong Australia, Wollongong, NSW, Australia
| |
Collapse
|
31
|
Danoff A, Kendall MA, Currier JS, Kelesidis T, Schmidt AM, Aberg JA. Soluble Levels of Receptor for Advanced Glycation Endproducts (RAGE) and Progression of Atherosclerosis in Individuals Infected with Human Immunodeficiency Virus: ACTG NWCS 332. Inflammation 2017; 39:1354-62. [PMID: 27216802 DOI: 10.1007/s10753-016-0367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Identification of biomarkers and/or mediators of cardiovascular disease (CVD) associated with HIV infection would be of diagnostic and therapeutic value. As soluble receptor for advanced glycation endproducts (sRAGE) and endogenous secretory (esRAGE) have been implicated in vascular complications in other settings, we investigated whether either soluble form of RAGE was associated with changes in carotid intima-media thickness (CIMT) in HIV-infected patients and HIV-uninfected controls. We found no differences in sRAGE, esRAGE, or CIMT among groups at study entry, or in yearly rates of change in sRAGE, esRAGE, or CIMT by HIV-serostatus (all p > 0.10). However, yearly rates of change in sRAGE (p = 0.07) and esRAGE (p < 0.001) were higher in those taking protease inhibitors, and lower baseline esRAGE levels (p = 0.06) were associated with increased odds of CIMT progression in HIV-infected individuals. Although esRAGE was not altered by HIV-serostatus (p = 0.17), its inverse relationship with CIMT progression in HIV-infected patients suggests a possible role as a mediator of CVD in HIV-infected persons.
Collapse
Affiliation(s)
- Ann Danoff
- Department of Medicine, VA Corporal Michael J Crecenz VA Medical Center, and Department of Medicine, Division of Endocrinology, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, 19104, PA, USA.
| | - Michelle A Kendall
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ann Marie Schmidt
- Department of Medicine, Division of Endocrinology, New York University School of Medicine, New York, NY, USA
| | - Judith A Aberg
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol 2017; 90:1-7. [PMID: 28137665 DOI: 10.1016/j.vph.2017.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
Diabetic microangiopathy, including retinopathy, is characterized by abnormal growth and leakage of small blood vessels, resulting in local edema and functional impairment of the depending tissues. Mechanisms leading to the impairment of microcirculation in diabetes are multiple and still largely unclear. However, a dysregulated vascular regeneration appears to play a key role. In addition, oxidative and hyperosmolar stress, as well as the activation of inflammatory pathways triggered by advanced glycation end-products and toll-like receptors, have been recognized as key underlying events. Here, we review recent knowledge on cellular and molecular pathways of microvascular disease in diabetes. We also highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Yong-Jian Geng
- The Texas Heart Institute, Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Raffaele De Caterina
- Center of Excellence on Aging (CesiMet), Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
33
|
Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression. Biomed Pharmacother 2016; 86:694-704. [PMID: 28039849 DOI: 10.1016/j.biopha.2016.12.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/10/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetes combined with cardiomyopathy is considered as an essential complication, showing diastolic persistently and causing cardiac injury, which is linked to fibrosis progression and inflammation response. Fibrosis and inflammation response are two markers for cardiomyopathy. Liquiritigenin is a flavanone, isolated from Radix glycyrrhiza, which exhibits various biological properties, including anti-cancer and anti-inflammatory activities. Here, in our study, the protective effects and anti-inflammatory activity of liquiritigenin were explored in mice and cardiac muscle cells treated by fructose to reveal the possible mechanism by which liquiritigenin attenuates cardiac injury. The mice were separated into five groups. The diabetic model of mouse was established with 30% high fructose feeding. Liquiritigenin dramatically reduced the lipid accumulation induced by high fructose diet. Compared to mice only treated with high fructose, mice in the presence of liquiritigenin after fructose feeding developed less cardiac fibrosis with lower levels of alpha smooth muscle-actin (α-SMA), Collagen type I, Collagen type II, TGF-β1 and Procol1a1. Additionally, liquiritigenin markedly down-regulated inflammatory cytokines secretion and phosphorylated NF-κB via inhibiting IKKα/IκBα signaling pathway. Our results indicate that liquiritigenin has a protective role in high fructose feeding-triggered cardiac injury through fibrosis and inflammation response suppression by inactivating NF-κB signaling pathway. Thus, liquiritigenin may be a potential candidate for diabetes-associated cardiac injury.
Collapse
|
34
|
Chilelli NC, Ragazzi E, Valentini R, Cosma C, Ferraresso S, Lapolla A, Sartore G. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients 2016; 8:nu8110745. [PMID: 27879642 PMCID: PMC5133128 DOI: 10.3390/nu8110745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/11/2023] Open
Abstract
Background: Chronic intensive exercise is associated with a greater induction of oxidative stress and with an excess of endogenous advanced glycation end-products (AGEs). Curcumin can reduce the accumulation of AGEs in vitro and in animal models. We examined whether supplementation with curcumin and Boswellia serrata (BSE) gum resin for 3 months could affect plasma levels of markers of oxidative stress, inflammation, and glycation in healthy master cyclists. Methods. Forty-seven healthy male athletes were randomly assigned to Group 1, consisting of 22 subjects given a Mediterranean diet (MD) alone (MD group), and Group 2 consisted of 25 subjects given a MD plus curcumin and BSE (curcumin/BSE group). Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), high-sensitivity c-reactive protein (hs-CRP), total AGE, soluble receptor for AGE (sRAGE), malondialdehyde (MDA), plasma phospholipid fatty acid (PPFA) composition, and non-esterified fatty acids (NEFA) were tested at baseline and after 12 weeks. Results: sRAGE, NEFA, and MDA decreased significantly in both groups, while only the curcumin/BSE group showed a significant decline in total AGE. Only the changes in total AGE and MDA differed significantly between the curcumin/BSE and MD groups. Conclusions. Our data suggest a positive effect of supplementation with curcumin and BSE on glycoxidation and lipid peroxidation in chronically exercising master athletes.
Collapse
Affiliation(s)
- Nino Cristiano Chilelli
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy.
| | - Romina Valentini
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Chiara Cosma
- Department of Laboratory Medicine, University of Padova, 35100 Padova, Italy.
| | - Stefania Ferraresso
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Annunziata Lapolla
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Giovanni Sartore
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| |
Collapse
|
35
|
El-Sharkawy HM, Anees MM, Van Dyke TE. Propolis Improves Periodontal Status and Glycemic Control in Patients With Type 2 Diabetes Mellitus and Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol 2016; 87:1418-1426. [PMID: 27468795 DOI: 10.1902/jop.2016.150694] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Propolis is a natural resin made by bees from various plant sources and exerts antimicrobial, anti-inflammatory, immunomodulatory, antioxidant, and antidiabetic properties. The purpose of this study is to assess adjunctive benefit of propolis supplementation in individuals with chronic periodontitis (CP) and type 2 diabetes mellitus (DMt2) receiving scaling and root planing (SRP). METHODS A 6-month masked, randomized clinical trial comparing SRP with placebo (placebo + SRP group, n = 26) or SRP combined with a 6-month regimen of 400 mg oral propolis once daily (propolis + SRP group, n = 24) was performed in patients with long-standing DMt2 and CP. Treatment outcomes included changes in hemoglobin (Hb) A1c (primary outcome), fasting plasma glucose (FPG), serum N€-(carboxymethyl) lysine (CML), and periodontal parameters (secondary outcomes). RESULTS After 3 and 6 months, average HbA1c levels in the propolis group decreased significantly by 0.82% and 0.96% units, respectively (P <0.01); however, there were no significant differences in the placebo group. Likewise, FPG and CML levels were significantly reduced in the propolis group, but not in the placebo group. After therapy, periodontal parameters of CP were significantly improved in both groups. The propolis group showed significantly greater probing depth reduction and clinical attachment level gain than the control group after 3 and 6 months. CONCLUSION A 6-month regimen of 400 mg propolis once daily is a potentially viable adjunct to SRP that significantly reduces levels of HbA1c, FPG, and CML, and improves periodontal therapy outcome in people with DMt2 and CP.
Collapse
Affiliation(s)
- Hesham M El-Sharkawy
- Department of Periodontology and Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohamed M Anees
- Department of Periodontology and Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA
| |
Collapse
|
36
|
Adams JN, Martelle SE, Raffield LM, Freedman BI, Langefeld CD, Hsu FC, Maldjian JA, Williamson JD, Hugenschmidt CE, Carr JJ, Cox AJ, Bowden DW. Analysis of advanced glycation end products in the DHS Mind Study. J Diabetes Complications 2016; 30:262-8. [PMID: 26739237 PMCID: PMC4761276 DOI: 10.1016/j.jdiacomp.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
AIMS Human studies of links between advanced glycation end-products (AGEs) and disease phenotypes are less common than studies of animal and cell models. Here, we examined the association of total AGEs with diabetes risk factors in a predominately type 2 diabetes (T2D) affected cohort. METHODS AGEs were measured using an enzyme linked immunosorbant assay in 816 individuals from the DHS Mind Study (n=709 T2D affected), and association analyses were completed. RESULTS Total AGEs were associated with estimated glomerular filtration rate (p=0.0054; β=-0.1291) and coronary artery calcification (p=0.0352; β=1.1489) in the entire cohort. No significant associations were observed when individuals with T2D were analyzed separately. In individuals without T2D, increased circulating AGEs were associated with increased BMI (p=0.02, β=0.138), low density lipoproteins (p=0.046, β=17.07) and triglycerides (p=0.0004, β=0.125), and decreased carotid artery calcification (p=0.0004, β=-1.2632) and estimated glomerular filtration rate (p=0.0018, β=-0.1405). Strong trends were also observed for an association between AGEs and poorer cognitive performance on the digit symbol substitution test (p=0.046, β=-6.64) and decreased grey matter volume (p=0.037, β=-14.87). CONCLUSIONS AGEs may play an important role in a number of phenotypes and diseases, although not necessarily in interindividual variation in people with T2D. Further evaluation of specific AGE molecules may shed more light on these relationships.
Collapse
Affiliation(s)
- Jeremy N Adams
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Susan E Martelle
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Joseph A Maldjian
- Radiologic Sciences and Advanced NeuroScience Imaging (ANSIR) Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - J Jeffery Carr
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Amanda J Cox
- Molecular Basis of Disease, Griffith University, Southport, QLD, Australia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA.
| |
Collapse
|
37
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Choi EM, Suh KS, Kim YJ, Hong SM, Park SY, Chon S. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:226-235. [PMID: 26670935 DOI: 10.1021/acs.jafc.5b05157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - Yu Jin Kim
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Soo Min Hong
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University , Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - So Yong Park
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| |
Collapse
|
39
|
Skin Autofluorescence in Systemic Sclerosis Is Related to the Disease and Vascular Damage: A Cross-Sectional Analytic Study of Comparative Groups. DISEASE MARKERS 2015; 2015:837470. [PMID: 26880854 PMCID: PMC4736188 DOI: 10.1155/2015/837470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022]
Abstract
Skin autofluorescence (AF), a relatively simple and time saving procedure, measures the accumulation of advanced glycation end (AGE) products. The importance in autoimmune rheumatic diseases, particularly, systemic sclerosis (SSc), has not been evaluated yet. The aim of our study was to examine the skin AF in the context of SSc patients and to analyse the relations between skin AF and other surrogate measures of atherosclerosis. Forty-seven patients with SSc and 47 healthy volunteers were included in this study as controls. Patients and controls underwent common carotid artery wall assessment, arterial stiffness and wave reflection measurements, laser Doppler measurements of capillary flow, assessment of endothelial function by brachial ultrasound, peripheral arterial tonometry, and AGE measurement by skin AF. Wall properties of the common carotid arteries and wave reflection measurements were not affected in these study patients compared to controls while measures reflecting small capillary flow were altered. The accumulation of AGE products measured by skin AF was more prominent in SSc patients than in healthy controls. AGE products' score was significantly associated with carotid radial pulse wave velocity, intima media/carotid artery diameter ratio, capillary flow percentage change during occlusion, and the disease itself in a multivariate linear analysis model.
Collapse
|
40
|
Pomero F, Di Minno MND, Fenoglio L, Gianni M, Ageno W, Dentali F. Is diabetes a hypercoagulable state? A critical appraisal. Acta Diabetol 2015; 52:1007-16. [PMID: 25850539 DOI: 10.1007/s00592-015-0746-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus (DM), a chronic disease with an increasing incidence and prevalence worldwide, is an established risk factor for arterial cardiovascular, cerebrovascular and peripheral vascular diseases including acute myocardial infarction, stroke and peripheral artery disease. On the other hand, its role as independent risk factor for venous thromboembolism (VTE) and for cardioembolic stroke or systemic embolism (SE) in patients with atrial fibrillation (AF) is more conflicting. Venous and arterial thromboses have traditionally been regarded as separate diseases, but recent studies have documented an association between these vascular complications. Cardiovascular risk factors may contribute to unprovoked VTE, and VTE may be an early symptomatic event in patients at high cardiovascular risk, including diabetic patients. Compelling evidences suggest that DM is associated with a higher risk of development and progression of AF. Furthermore, in AF patients with a coexisting DM the risk of cardioembolic stroke/SE appeared increased. Thus, DM has been included as one of the items of the CHADS2 score and of the subsequent CHA2DS2-VASc score that have been developed to assess the arterial tromboembolic risk of AF patients. Such a high incidence of thromboembolic events observed in these clinical subsets may be attributable to the DM-related prothrombotic state due to a number of changes in primary and secondary hemostasis. Although of potential clinical interest, unfortunately, to date, no study has properly evaluated the effects of drugs used to control blood glucose levels on the risk of venous thromboembolism and arterial cardioembolic events in patients with DM.
Collapse
Affiliation(s)
- Fulvio Pomero
- Department of Internal Medicine, 'S. Croce e Carle' Hospital, Via Coppino 26, 12100, Cuneo, Italy.
| | - Matteo Nicola Dario Di Minno
- Department of Clinical Medicine and Surgery, Regional Reference Centre for Coagulation Disorders, "Federico II" University, Naples, Italy
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Luigi Fenoglio
- Department of Internal Medicine, 'S. Croce e Carle' Hospital, Via Coppino 26, 12100, Cuneo, Italy
| | - Monica Gianni
- Department of Cardiology, Hospital of Tradate, Varese, Italy
| | - Walter Ageno
- Department of Clinical Medicine, Insubria University, Varese, Italy
| | | |
Collapse
|
41
|
Terasaki M, Hiromura M, Mori Y, Kohashi K, Nagashima M, Kushima H, Watanabe T, Hirano T. Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS One 2015; 10:e0143396. [PMID: 26606676 PMCID: PMC4659635 DOI: 10.1371/journal.pone.0143396] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe-/-) mice, streptozotocin-induced diabetic Apoe-/- mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe-/- mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe-/- mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe-/- mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Benzhydryl Compounds/administration & dosage
- Benzhydryl Compounds/pharmacology
- Blood Glucose
- Diabetes Mellitus, Experimental
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Foam Cells/metabolism
- Gene Expression
- Glucose Tolerance Test
- Glucosides/administration & dosage
- Glucosides/pharmacology
- Hyperglycemia/drug therapy
- Hyperglycemia/etiology
- Hyperglycemia/metabolism
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/pharmacology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Knockout
- Sodium-Glucose Transporter 2 Inhibitors
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Kyoko Kohashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Masaharu Nagashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji-City, Tokyo, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
42
|
He Y, Zhu J, Huang Y, Gao H, Zhao Y. Advanced glycation end product (AGE)-induced hepatic stellate cell activation via autophagy contributes to hepatitis C-related fibrosis. Acta Diabetol 2015; 52:959-69. [PMID: 26002589 DOI: 10.1007/s00592-015-0763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
AIMS Advanced glycation end products (AGEs) have been implicated in pulmonary and renal fibrosis. Herein, we investigated whether AGEs are associated with liver fibrosis and examined the underlying mechanism by focusing on hepatic stellate cell (HSC) activation and autophagy induction. METHODS Liver fibrosis was assessed by transient elastography (FibroScan). Serum AGE levels were determined by ELISA. Rat primary HSCs and HSC-T6 were treated with BSA-AGEs, cell proliferation was examined by WST-1 assay, and cell activation was evaluated by qPCR for transcripts of α-SMA and collagen type Iα1 and by Western blotting. Autophagy was measured by detection of LC3-II lipidation, p62 degradation, and puncta GFP-LC3 formation. Receptor of AGE (RAGE)-blocking antibodies and soluble RAGE were employed to inhibit AGE-RAGE signaling. RESULTS First, elevated AGE levels were observed in CHC patients than patients with chronic hepatitis B, especially in those with insulin resistance. Second, compared to controls, AGE-treated rat primary HSCs displayed an enhanced cell proliferation (1.39-fold), increased transcripts of α-SMA (2.40-fold) and proCOL1A1 (1.76-fold), and a higher level of α-SMA protein (1.85-fold). Moreover, AGE-induced HSC activation improved autophagy flux, as evidenced by significantly more LC3-II lipidation, p62 degradation, as well as GFP-LC3 puncta formations. In addition, our results showed that AGE-induced HSC autophagy and HSC activation could be reduced by RAGEs. CONCLUSION AGEs were found to induce autophagy and activation of HSCs, which subsequently contributes to the fibrosis in CHC patients. Blocking AGE-RAGE signaling may be a promising way to alleviate fibrosis.
Collapse
Affiliation(s)
- YingLi He
- Department of Infectious Diseases, the First Affiliated Teaching Hospital, School of Medicine, Xi'an JiaoTong University, Xi'an, Shaanxi Province, China
- Institution of Hepatology, the First Affiliated Hospital of Xi'an JiaoTong University, School of Medicine, Xi'an, Shaanxi Province, China
| | - JinQiu Zhu
- The School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, Guizhou, China.
| | - YaQi Huang
- The School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, Guizhou, China
| | - Heng Gao
- Xi'an Health School, Xi'an, Shaanxi Province, China
| | - YingRen Zhao
- Department of Infectious Diseases, the First Affiliated Teaching Hospital, School of Medicine, Xi'an JiaoTong University, Xi'an, Shaanxi Province, China.
- Institution of Hepatology, the First Affiliated Hospital of Xi'an JiaoTong University, School of Medicine, Xi'an, Shaanxi Province, China.
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
43
|
Raciti GA, Longo M, Parrillo L, Ciccarelli M, Mirra P, Ungaro P, Formisano P, Miele C, Béguinot F. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol 2015; 52:821-7. [PMID: 25841587 DOI: 10.1007/s00592-015-0741-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022]
Abstract
The known genetic variability (common DNA polymorphisms) does not account either for the current epidemics of type 2 diabetes or for the family transmission of this disorder. However, clinical, epidemiological and, more recently, experimental evidence indicates that environmental factors have an extraordinary impact on the natural history of type 2 diabetes. Some of these environmental hits are often shared in family groups and proved to be capable to induce epigenetic changes which alter the function of genes affecting major diabetes traits. Thus, epigenetic mechanisms may explain the environmental origin as well as the familial aggregation of type 2 diabetes much easier than common polymorphisms. In the murine model, exposure of parents to environmental hits known to cause epigenetic changes reprograms insulin sensitivity as well as beta-cell function in the progeny, indicating that certain epigenetic changes can be transgenerationally transmitted. Studies from different laboratories revealed that, in humans, lifestyle intervention modulates the epigenome and reverts environmentally induced epigenetic modifications at specific target genes. Finally, specific human epigenotypes have been identified which predict adiposity and type 2 diabetes with much greater power than any polymorphism so far identified. These epigenotypes can be recognized in easily accessible white cells from peripheral blood, indicating that, in the future, epigenetic profiling may enable effective type 2 diabetes prediction. This review discusses recent evidence from the literature supporting the immediate need for further investigation to uncover the power of epigenetics in the prediction, prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Gregory Alexander Raciti
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Michele Longo
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Luca Parrillo
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Marco Ciccarelli
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Paola Ungaro
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Claudia Miele
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Francesco Béguinot
- Dipartimento di Scienze Mediche Traslazionali, "Federico II" University of Naples Medical School, Naples, Italy.
- Istituto per l' Endocrinologia e l' Oncologia Sperimentale del C.N.R, URT "Genomica Funzionale", Via Sergio Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
44
|
Ben Nasr M, Vergani A, Avruch J, Liu L, Kefaloyianni E, D'Addio F, Tezza S, Corradi D, Bassi R, Valderrama-Vasquez A, Usuelli V, Kim J, Azzi J, El Essawy B, Markmann J, Abdi R, Fiorina P. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 2015; 52:917-27. [PMID: 25808641 PMCID: PMC4968999 DOI: 10.1007/s00592-015-0735-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
AIMS Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory properties. We tested the ability of MSCs to delay islet allograft rejection. METHODS Mesenchymal stem cells were generated in vitro from C57BL/6 and BALB/c mice bone marrow, and their immunomodulatory properties were tested in vitro. We then tested the effect of a local or systemic administration of heterologous and autologous MSCs on graft survival in a fully allogeneic model of islet transplantation (BALB/c islets into C57BL/6 mice). RESULTS In vitro, autologous, but not heterologous, MSCs abrogated immune cell proliferation in response to alloantigens and skewed the immune response toward a Th2 profile. A single dose of autologous MSCs co-transplanted under the kidney capsule with allogeneic islets delayed islet rejection, reduced graft infiltration, and induced long-term graft function in 30 % of recipients. Based on ex vivo analysis of recipient splenocytes, the use of autologous MSCs did not appear to have any systemic effect on the immune response toward graft alloantigens. The systemic injection of autologous MSCs or the local injection of heterologous MSCs failed to delay islet graft rejection. CONCLUSION Autologous, but not heterologous, MSCs showed multiple immunoregulatory properties in vitro and delayed allograft rejection in vivo when co-transplanted with islets; however, they failed to prevent rejection when injected systemically. Autologous MSCs thus appear to produce a local immunoprivileged site, which promotes graft survival.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - James Avruch
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Liye Liu
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Eirini Kefaloyianni
- Renal Division, Brigham and Women's Hospital, Harvard Institute of Medicine, HIM510, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Domenico Corradi
- Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | | | - Vera Usuelli
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - James Kim
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jamil Azzi
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James Markmann
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Abdi
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA.
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
45
|
Lodovici M, Bigagli E, Luceri C, Mannucci E, Rotella CM, Raimondi L. Gender-related drug effect on several markers of oxidation stress in diabetes patients with and without complications. Eur J Pharmacol 2015; 766:86-90. [PMID: 26424110 DOI: 10.1016/j.ejphar.2015.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/10/2023]
Abstract
We previously reported that circulating lipid (malondialdehyde, MDA) and protein oxidation (carbonyl residues, CO) products can be used as markers of risk for complications in poorly controlled type 2 diabetics. Now, we aimed to evaluate the existence of a gender effect on classical disease markers and oxidative stress parameters and on the effectiveness of metformin and/or statins in reducing CV risk in poorly controlled type 2 diabetics with and without complications. Our results show that diabetics with complications had higher plasma levels of FRAP, SOD and hs-CRP than those without complications, with FRAP and SOD found increased in both genders. Interestingly, male and female patients with complications had higher plasma levels of hs-CRP and MDA respectively, over patients without complications. Multivariate analysis indicated metformin and statin treatments effective in reducing plasma hs-CRP only in female and not in male diabetics with complications. In these latter females, a positive correlation between hs-CRP and triglycerides (TG) levels was found suggesting a causal relationship between them. Statin treatment was effective in reducing MDA in diabetics with complications irrespective of the gender. These data support the addition of statins to diabetic standard therapy to control oxidation injury and inflammation and, for the first time, indicate female patients with complications more responsive than males to the CV protection offered by metformin.
Collapse
Affiliation(s)
- Maura Lodovici
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisabetta Bigagli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | | | - Carlo Maria Rotella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Raimondi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Saleh J. Glycated hemoglobin and its spinoffs: Cardiovascular disease markers or risk factors? World J Cardiol 2015; 7:449-453. [PMID: 26322184 PMCID: PMC4549778 DOI: 10.4330/wjc.v7.i8.449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a major complication of diabetes, increasing the risk of cardiovascular related morbidities and mortalities. The hallmark of diabetes is hyperglycemia which duration is best predicted by elevated glycated haemoglobin A1C (HbA1C) levels. Diabetic complications are usually attributed to oxidative stress associated with glycation of major structural and functional proteins. This non-enzymatic glycation of long lived proteins such as collagen, albumin, fibrinogen, liver enzymes and globulins result in the formation of early and advanced glycation end products (AGEs) associated with the production of myriads of free radicles and oxidants that have detrimental effects leading to diabetic complications. AGEs have been extensively discussed in the literature as etiological factors in the advancement of atherogenic events. Mechanisms described include the effects of glycation on protein structure and function that lead to defective receptor binding, impairment of immune system and enzyme function and alteration of basement membrane structural integrity. Hemoglobin (Hb) is a major circulating protein susceptible to glycation. Glycated Hb, namely HbA1C is used as a useful tool in the diagnosis of diabetes progression. Many studies have shown strong positive associations between elevated HbA1C levels and existing cardiovascular disease and major risk factors. Also, several studies presented HbA1C as an independent predictor of cardiovascular risk. In spite of extensive reports on positive associations, limited evidence is available considering the role of glycated Hb in the etiology of atherosclerosis. This editorial highlights potential mechanisms by which glycated hemoglobin may contribute, as a causative factor, to the progression of atherosclerosis in diabetics.
Collapse
|
47
|
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015; 6:461-473. [PMID: 26178030 PMCID: PMC4496742 DOI: 10.3945/an.115.008433] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs) to the body pool of AGEs and therefore increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases. A 3-d symposium (1st Latin American Symposium of AGEs) to discuss this subject took place in Guanajuato, Mexico, on 1-3 October 2014 with the participation of researchers from several countries. This review is a summary of the different presentations and subjects discussed, and it is divided into 4 sections. The first section deals with current general knowledge about AGEs. The second section dwells on mechanisms of action of AGEs, with special emphasis on the receptor for advanced glycation end products and the potential role of AGEs in neurodegenerative diseases. The third section discusses different approaches to decrease the AGE burden. The last section discusses current methodologic problems with measurement of AGEs in different samples. The subject under discussion is complex and extensive and cannot be completely covered in a short review. Therefore, some areas of interest have been left out because of space. However, we hope this review illustrates currently known facts about dietary AGEs as well as pointing out areas that require further research.
Collapse
Affiliation(s)
- Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Food Analysis and Bioactivity, Institute of Food Science Research, Spanish National Research Council, Madrid, Spain
| | - María Pía de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - Rosana Filip
- Department of Pharmacognosy, Institute of Drug Chemistry and Metabolism, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | - Alejandra Medrano
- Food Science and Technology Department, School of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Teresita Menini
- College of Osteopathic Medicine, Touro University California, Vallejo, CA
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Department, School of Medicine, Biomedical Research Institute of Lleida, University of Lleida, Lleida, Spain
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile; and
| | | | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
48
|
Schmidt AM. Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 2015; 72:1-8. [PMID: 26130225 DOI: 10.1016/j.vph.2015.06.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Emerging evidence links the receptor for advanced glycation endproducts (RAGE) to the pathogenesis of tissue damage in chronic metabolic and inflammatory diseases. In human subjects, multiple reports suggest that in the plasma/serum, circulating levels of distinct forms of soluble RAGEs may be biomarkers of the presence or absence, and the extent of chronic disease. These considerations prompt us to consider in this review, what are soluble RAGEs; how are they formed; what might be their natural functions; and may they serve as biomarkers of inflammatory and metabolic disease activity? In this brief review, we seek to address what is known and suggest new areas for scientific investigation to uncover the biology of soluble RAGEs.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
49
|
Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clin Pharmacol Ther 2015; 98:135-44. [PMID: 25974754 DOI: 10.1002/cpt.148] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Types 1 and 2 diabetes are on the rise worldwide. Although the treatment of hyperglycemia has benefited from recent advances, aggressive efforts to maintain euglycemia may be fraught with risk, especially in older subjects or in subjects vulnerable to hypoglycemic unawareness. Hence, strategies to prevent and treat the complications of hyperglycemia are essential. In this review we summarize recent updates on the biology of the receptor for advanced glycation endproducts (RAGE) in the pathogenesis of both micro- and macrovascular complications of diabetes, insights from the study of mouse models of obesity and diabetic complications, and from associative studies in human subjects. The study of the mechanisms and consequences of the interaction of the RAGE cytoplasmic domain with the formin, mDia1, in RAGE signal transduction, will be discussed. Lastly, we review the "state-of-the-art" on RAGE-directed therapeutics. Tackling RAGE/mDia1 may identify a novel class of therapeutics preventing diabetes and its complications.
Collapse
Affiliation(s)
- Ems Litwinoff
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - C Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - R Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - A M Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol 2015; 69:70-8. [PMID: 26026597 DOI: 10.1016/j.exger.2015.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 12/16/2022]
Abstract
Recent evidence has shown that 346million people in the world have diabetes mellitus (DM); this number will increase to 439million by 2030. In addition, current data indicate an increase in DM cases in the population between 40 and 59years of age. Diabetes is associated with the development of micro- and macro-vascular complications, derived from chronic hyperglycemia on the endothelium. Some reports demonstrate that people in a prediabetic state have a major risk of developing early endothelial dysfunction (ED). Today, it is accepted that individuals considered as prediabetic patients are in a pro-inflammatory state associated with endothelial and mitochondrial dysfunction. It is important to mention that impaired mitochondrial functionality has been linked to endothelial apoptosis and release of mitochondrial DNA (mtDNA) in patients with sepsis, cardiac disease, or atherosclerosis. This free mtDNA could promote ED, as well as other side effects on the vascular system through the activation of the toll-like receptor 9 (TLR9). TLR9 is expressed in different cell types (e.g., T or B lymphocytes, mastocytes, and epithelial and endothelial cells). It is localized intracellularly and recognizes non-methylated dinucleotides of viral, bacterial, and mitochondrial DNA. Recently, it has been reported that TLR9 is associated with the pathogenesis of lupus erythematosus, rheumatoid arthritis, and autoimmune diabetes. In this work, it is hypothesized that the increase in the levels of circulating mtDNA is the trigger of early ED in the prediabetic patient, and later on in the older patient with diabetes, through activation of the TLR9 present in the endothelium.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Department of Biochemistry, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calz. de Tlalpan 4502, Col. Sección XVI, 14080 Mexico, D.F., Mexico, Mexico.
| |
Collapse
|