1
|
Carver JJ, Amato CM, Hung-Chang Yao H, Zhu Y. Adamts9 is required for the development of primary ovarian follicles and maintenance of female sex in zebrafish†. Biol Reprod 2024; 111:1107-1128. [PMID: 39180722 PMCID: PMC11565245 DOI: 10.1093/biolre/ioae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Previous studies have suggested that adamts9 (a disintegrin and metalloprotease with thrombospondin type-1 motifs, member 9), an extracellular matrix (ECM) metalloprotease, participates in primordial germ cell (PGC) migration and is necessary for female fertility. In this study, we found that adamts9 knockout (KO) led to reduced body size, and female-to-male sex conversion in late juvenile or adult zebrafish; however, primary sex determination was not affected in early juveniles of adamts9 KO. Overfeeding and lowering the rearing density rescued growth defects in female adamts9 KO fish but did not rescue defects in ovarian development in adamts9 KO. Delayed PGC proliferation, significantly reduced number and size of Stage IB follicles (equivalent to primary follicles) in early juveniles of adamts9 KO, and arrested development at Stage IB follicles in mid- or late-juveniles of adamts9 KO are likely causes of female infertility and sex conversion. Via RNAseq, we found significant enrichment of differentially expressed genes involved in ECM organization during sexual maturation in ovaries of wildtype fish; and significant dysregulation of these genes in adamts9 KO ovaries. RNAseq analysis also showed enrichment of inflammatory transcriptomic signatures in adult ovaries of these adamts9 KO. Taken together, our results indicate that adamts9 is critical for development of primary ovarian follicles and maintenance of female sex, and loss of adamts9 leads to defects in ovarian follicle development, female infertility, and sex conversion in late juveniles and mature adults. These results show that the ECM and extracellular metalloproteases play major roles in maintaining ovarian follicle development in zebrafish.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ciro M Amato
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
2
|
Becerir C, Tayman C, Kurt A, Çakır U, Koyuncu İ, Ceran B, Toprak K, Kızılgün M. Serum ADAMTS-9 Level in Newborn Babies with Congenital Heart Disease. Am J Perinatol 2024; 41:e2555-e2561. [PMID: 37419139 DOI: 10.1055/a-2125-1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
OBJECTIVE A Disintegrin and Metalloproteinase with Thrombospondin-9 (ADAMTS-9), one of the ADAMTS enzymes, is expressed in all fetal tissues, unlike other ADAMTS enzymes, and is thus thought to play a role in fetal development. In this context, the objective of this study is to investigate the relationship between ADAMTS-9 activity and the development of congenital heart diseases (CHD) with a view to using ADAMTS-9 level as a biomarker for CHDs. STUDY DESIGN Newborns diagnosed with CHD and healthy newborns were included in the study as the CHD and control groups, respectively. Gestational age, maternal age, and mode of delivery information pertaining to the mothers and Apgar score and birthweight information pertaining to the newborns were recorded. Blood samples were taken from all newborns to determine their ADAMTS-9 levels in the first 24 hours of life. RESULTS Fifty-eight newborns with CHD and 46 healthy newborns were included in the study. Median ADAMTS-9 levels were 46.57 (interquartile range [IQR]: 33.31 [min: 26.92, max: 124.25]) and 23.36 (IQR: 5.48 [min: 11.7, max: 37.71]) ng/mL in the CHD and control groups, respectively. ADAMTS-9 levels in the CHD group were statistically significantly higher than in the control group (p = 0.000). ADAMTS-9 levels of the CHD and control groups were analyzed by the receiver operating characteristics curve. The area under the curve value for ADAMTS-9 levels of >27.86 ng/mL as the cut-off value for predicting the development of CHD in newborns was 0.836 (95% confidence interval [CI]: 0.753-0.900, p = 0.0001). ADAMTS-9 levels of >27.86 ng/mL were determined to predict the development of CHD in newborns with a sensitivity of 77.78% (95% CI: 65.5-87.38) and a specificity of 84.78% (95% CI: 71.1-93.60). CONCLUSION In conclusion, it was found that the serum ADAMTS-9 levels were significantly higher in newborns with CHD than in healthy newborns. In parallel, ADAMTS-9 levels above a certain cut-off value were associated with CHD. KEY POINTS · ADAMTS-9 is expressed in fetal tissues.. · Its level increases in congenital heart diseases.. · It can be used as a biochemical marker in diagnosis..
Collapse
Affiliation(s)
- Cem Becerir
- Department of Neonatology, Ankara City Hospital, Neonatal Intensive Care Unit, University of Health Sciences, Ankara, Turkey
| | - Cüneyt Tayman
- Department of Neonatology, Ankara City Hospital, Neonatal Intensive Care Unit, University of Health Sciences, Ankara, Turkey
| | - Abdullah Kurt
- Department of Neonatology, Yildirim Beyazit University Faculty of Medicine, Ankara Turkey
| | - Ufuk Çakır
- Department of Neonatology, Ankara City Hospital, Neonatal Intensive Care Unit, University of Health Sciences, Ankara, Turkey
| | - İsmail Koyuncu
- Department of Medical Biochemistry, Harran University, Urfa, Turkey
| | - Burak Ceran
- Department of Neonatology, Ankara City Hospital, Neonatal Intensive Care Unit, University of Health Sciences, Ankara, Turkey
| | - Kenan Toprak
- Cardiology Department, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Murat Kızılgün
- Department of Medical Biochemistry, Sağlık Bilimleri Üniversitesi Gülhane Tıp Fakültesi, Health Science University Ankara, Turkey
| |
Collapse
|
3
|
BORA J, MALIK S, KISHORE S, RUSTAGI S, AHMAD F, FAGOONEE S, PELLICANO R, HAQUE S. Therapeutic applications of CRISPR-Cas9 in diabetes mellitus: a perspective review. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 35. [DOI: 10.23736/s2724-542x.23.02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
4
|
Bora J, Dey A, Lyngdoh AR, Dhasmana A, Ranjan A, Kishore S, Rustagi S, Tuli HS, Chauhan A, Rath P, Malik S. A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3459-3481. [PMID: 37522916 DOI: 10.1007/s00210-023-02631-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Diabetes mellitus (D.M.) is a common metabolic disorder caused mainly by combining two primary factors, which are (1) defects in insulin production by the pancreatic β-cells and (2) responsiveness of insulin-sensitive tissues towards insulin. Despite the rapid advancement in medicine to suppress elevated blood glucose levels (hyperglycemia) and insulin resistance associated with this hazard, a demand has undoubtedly emerged to find more effective and curative dimensions in therapeutic approaches against D.M. The administration of diabetes treatment that emphasizes insulin production and sensitivity may result in unfavorable side effects, reduced adherence, and potential treatment ineffectiveness. Recent progressions in genome editing technologies, for instance, in zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR-Cas)-associated nucleases, have greatly influenced the gene editing technology from concepts to clinical practices. Improvements in genome editing technologies have also opened up the possibility to target and modify specific genome sequences in a cell directly. CRISPR/Cas9 has proven effective in utilizing ex vivo gene editing in embryonic stem cells and stem cells derived from patients. This application has facilitated the exploration of pancreatic beta-cell development and function. Furthermore, CRISPR/Cas9 enables the creation of innovative animal models for diabetes and assesses the effectiveness of different therapeutic strategies in treating the condition. We, therefore, present a critical review of the therapeutic approaches of the genome editing tool CRISPR-Cas9 in treating D.M., discussing the challenges and limitations of implementing this technology.
Collapse
Affiliation(s)
- Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India
| | - Ankita Dey
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Antonia R Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, 344090, Russia
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834001, India.
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India.
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India.
| |
Collapse
|
5
|
Chen F, Fei X, Li M, Zhang Z, Zhu W, Zhang M, Chen X, Xu J, Zhang M, Shen Y, Du J. Associations of the MTNR1B rs10830963 and PPARG rs1801282 variants with gestational diabetes mellitus: A meta-analysis. Int J Diabetes Dev Ctries 2023. [DOI: 10.1007/s13410-023-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
6
|
Association of the Pro12Ala gene polymorphism with treatment response to thiazolidinediones in patients with type 2 diabetes: a meta-analysis. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Zusi C, Rinaldi E, Bonetti S, Boselli ML, Trabetti E, Malerba G, Bonora E, Bonadonna RC, Trombetta M. Haplotypes of the genes (GCK and G6PC2) underlying the glucose/glucose-6-phosphate cycle are associated with pancreatic beta cell glucose sensitivity in patients with newly diagnosed type 2 diabetes from the VNDS study (VNDS 11). J Endocrinol Invest 2021; 44:2567-2574. [PMID: 34128214 DOI: 10.1007/s40618-020-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. AIM In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. METHODS In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. RESULTS Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). CONCLUSION Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.
Collapse
Affiliation(s)
- C Zusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Rinaldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - S Bonetti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - M L Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Trabetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - G Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - E Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - M Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| |
Collapse
|
8
|
Arikoglu H, Erkoc-Kaya D, Ipekci SH, Gokturk F, Iscioglu F, Korez MK, Baldane S, Gonen MS. Type 2 diabetes is associated with the MTNR1B gene, a genetic bridge between circadian rhythm and glucose metabolism, in a Turkish population. Mol Biol Rep 2021; 48:4181-4189. [PMID: 34117605 DOI: 10.1007/s11033-021-06431-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes (T2D) is a complicated public health problem in Turkey as well as worldwide. Genome-wide approaches have been guiding in very challenging situations, such as the elucidation of genetic variations underlying complex diseases such as T2D. Despite intensive studies worldwide, few studies have determined the genetic susceptibility to T2D in Turkish populations. In this study, we investigated the effect of genes that are strongly associated with T2D in genome-wide association (GWA) studies, including MTNR1B, CDKAL1, THADA, ADAMTS9 and ENPP1, on T2D and its characteristic traits in a Turkish population. In 824 nonobese individuals (454 T2D patients and 370 healthy individuals), prominent variants of these GWA genes were genotyped by real-time PCR using the LightSNiP Genotyping Assay System. The SNP rs1387153 C/T, which is located 28 kb upstream of the MTNR1B gene, was significantly associated with T2D and fasting blood glucose levels (P < 0.05). The intronic SNP rs10830963 C/G in the MTNR1B gene was not associated with T2D, but it was associated with fasting blood glucose, HbA1C and LDL levels (P < 0.05). The other important GWA loci investigated in our study were not found to be associated with T2D or its traits. Only the SNP rs1044498 (A/C variation) in the ENPP1 gene was determined to be related to fasting blood glucose (P < 0.05). Our study suggests, consistent with the literature, that the MTNR1B locus, which has a prominent role in glucose regulation, is associated with T2D development by affecting blood glucose levels in our population.
Collapse
Affiliation(s)
- Hilal Arikoglu
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey.
| | - Dudu Erkoc-Kaya
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Suleyman Hilmi Ipekci
- Department of Endocrinology and Metabolic Diseases, Hisar Hospital Intercontinental, Istanbul, Turkey
| | - Fatma Gokturk
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Funda Iscioglu
- Department of Statistics, Faculty of Science, Ege University, Izmir, Turkey
| | - Muslu Kazim Korez
- Department of Biostatistics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Suleyman Baldane
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Mustafa Sait Gonen
- Department of Endocrinology and Metabolic Diseases, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Wei M, Pan H, Guo K. Association Between Plasma ADAMTS-9 Levels and Severity of Coronary Artery Disease. Angiology 2020; 72:371-380. [PMID: 33307720 DOI: 10.1177/0003319720979238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genome-wide association studies have shown that a disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS-9) is associated with the development of atherosclerosis. We assessed the level of ADAMTS-9 in patients with coronary artery disease (CAD) and its severity and prognosis. We selected 666 participants who underwent coronary angiography in our hospital and met the inclusion and exclusion criteria; participants included non-CAD patients, patients with stable angina pectoris (SAP), unstable angina, non-ST-segment elevation myocardial infarction, or ST-segment elevation myocardial infarction. The serum level of ADAMTS-9 was higher in patients with CAD than in non-CAD patients (37.53 ± 8.55 ng/mL vs 12.04 ± 7.02 ng/mL, P < .001) and was an independent predictor for CAD (odds ratio = 1.871, 95% CI: 1.533-2.283, P < .001). Subgroup analysis showed that compared with the SAP group, the acute coronary syndrome groups had higher serum levels of ADAMTS-9. In addition, the level of ADAMTS-9 was related to the SYNTAX score (r = 0.523, P < .001). Patients with acute myocardial infarction (AMI) with elevated levels of ADAMTS-9 had a higher risk of major adverse cardiovascular events (MACE) within 12 months than those with lower levels (log-rank = 4.490, P = .034). Plasma ADAMTS-9 levels may be useful for the diagnosis of CAD and as predictors of MACE in AMI patients.
Collapse
Affiliation(s)
- Mengqiu Wei
- Intensive Care Unit, Zhongshan People's Hospital, Zhongshan City, Guangdong, China
| | - Hailin Pan
- Department of Cardiology, Huizhou Municipal Central People's Hospital, Huizhou City, Guangdong, China
| | - Kai Guo
- Cardiovascular Medicine Department, 485285Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong, China.,Department of Cardiology, Zhongshan People's Hospital, Zhongshan City, Guangdong, China
| |
Collapse
|
10
|
Bonora E, Trombetta M, Dauriz M, Travia D, Cacciatori V, Brangani C, Negri C, Perrone F, Pichiri I, Stoico V, Zoppini G, Rinaldi E, Da Prato G, Boselli ML, Santi L, Moschetta F, Zardini M, Bonadonna RC. Chronic complications in patients with newly diagnosed type 2 diabetes: prevalence and related metabolic and clinical features: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 9. BMJ Open Diabetes Res Care 2020; 8:8/1/e001549. [PMID: 32819978 PMCID: PMC7443259 DOI: 10.1136/bmjdrc-2020-001549] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION We explored the presence of chronic complications in subjects with newly diagnosed type 2 diabetes referred to the Verona Diabetes Clinic. Metabolic (insulin secretion and sensitivity) and clinical features associated with complications were also investigated. RESEARCH DESIGN AND METHODS The comprehensive assessment of microvascular and macrovascular complications included detailed medical history, resting ECG, ultrasonography of carotid and lower limb arteries, quantitative neurological evaluation, cardiovascular autonomic tests, ophthalmoscopy, kidney function tests. Insulin sensitivity and beta-cell function were assessed by state-of-the-art techniques (insulin clamp and mathematical modeling of glucose/C-peptide curves during oral glucose tolerance test). RESULTS We examined 806 patients (median age years, two-thirds males), of whom prior clinical cardiovascular disease (CVD) was revealed in 11.2% and preclinical CVD in 7.7%. Somatic neuropathy was found in 21.2% and cardiovascular autonomic neuropathy in 18.6%. Retinopathy was observed in 4.9% (background 4.2%, proliferative 0.7%). Chronic kidney disease (estimated glomerular filtration rate <60 mL/min/1.73 m2) was found in 8.8% and excessive albuminuria in 13.2% (microalbuminuria 11.9%, macroalbuminuria 1.3%).Isolated microvascular disease occurred in 30.8%, isolated macrovascular disease in 9.3%, a combination of both in 9.1%, any complication in 49.2% and no complications in 50.8%.Gender, age, body mass index, smoking, hemoglobin A1c and/or hypertension were independently associated with one or more complications. Insulin resistance and beta-cell dysfunction were associated with macrovascular but not microvascular disease. CONCLUSIONS Despite a generally earlier diagnosis for an increased awareness of the disease, as many as ~50% of patients with newly diagnosed type 2 diabetes had clinical or preclinical manifestations of microvascular and/or macrovascular disease. Insulin resistance might play an independent role in macrovascular disease. TRIAL REGISTRATION NUMBER NCT01526720.
Collapse
Affiliation(s)
- Enzo Bonora
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Maddalena Trombetta
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Marco Dauriz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Daniela Travia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Vittorio Cacciatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Corinna Brangani
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Carlo Negri
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabrizia Perrone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Isabella Pichiri
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Vincenzo Stoico
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giacomo Zoppini
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Elisabetta Rinaldi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Giuliana Da Prato
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Maria Linda Boselli
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Lorenza Santi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Federica Moschetta
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Monica Zardini
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | | |
Collapse
|
11
|
Song J, Jiang X, Juan J, Cao Y, Chibnik LB, Hofman A, Wu T, Hu Y. Role of metabolic syndrome and its components as mediators of the genetic effect on type 2 diabetes: A family-based study in China. J Diabetes 2019; 11:552-562. [PMID: 30520249 DOI: 10.1111/1753-0407.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) share a genetic basis with type 2 diabetes (T2D). However, whether MetS and its components mediate genetic susceptibility to T2D is not completely understood. METHODS We assessed the effects of MetS and its components on associations T2D and 18 genome-wide association studies-identified variants using a two-stage strategy based on parametric models involving 7110 Chinese participants (2436 were T2D patients) across 2885 families. Multilevel logistic regression was used to account for the intrafamilial correlation. RESULTS Metabolic syndrome significantly mediated the effect of a melatonin receptor 1B (MTNR1B) polymorphism on T2D risk (OR of average causal mediation effect [ORACME ] 1.004; 95% confidence interval [CI] 1.001-1.008; P = 0.018). In addition, low high-density lipoprotein cholesterol (HDL-C) levels mediated the genetic effects of MTNR1B (ORACME 1.012; 95% CI 1.007-1.015; P < 0.001), solute carrier family 30 member 8 (SLC30A8; ORACME 1.001; 95% CI 1.000-1.007; P < 0.040), B-cell lymphoma/leukemia 11A (BCL11A; ORACME 1.009; 95% CI 1.007-1.016; P < 0.001), prospero homeobox 1 (PROX1; ORACME 1.005; 95% CI 1.003-1.011; P < 0.001) and a disintegrin and metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9; ORACME 1.006; 95% CI 1.001-1.009; P = 0.022), whereas increased fasting blood glucose (FBG) significantly mediated the genetic effect of BCL11A (ORACME 1.017; 95% CI 1.003-1.021; P = 0.012). CONCLUSIONS This study provides evidence that MetS and two of its components (HDL-C, FBG) may be involved in mediating the genetic predisposition to T2D, which emphasize the importance of maintaining normal HDL-C and FBG levels.
Collapse
Affiliation(s)
- Jing Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Juan Juan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
12
|
Du F, Yang KJ, Piao LS. Correlation Between PPARGC1A Gene Rs8192678 G>A Polymorphism and Susceptibility To Type-2 Diabetes. Open Life Sci 2019; 14:43-52. [PMID: 33817136 PMCID: PMC7874819 DOI: 10.1515/biol-2019-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/13/2019] [Indexed: 11/23/2022] Open
Abstract
Objective To systematically investigate the correlation between the G>A polymorphism of the peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A or PGC-1alpha) gene rs8192678 locus and the susceptibility to type-2 diabetes mellitus (T2DM). Methods The inclusion and exclusion criteria and retrieval strategies of original literatures were formulated. Then, subjects and free words “PPARGC1A”,”gene polymorphism”, and “T2DM” were retrieved from the PubMed, EMBASE, and Cochrane Library databases. Case-control studies on the G>A polymorphism of the PPARGC1A gene rs8192678 locus and susceptibility to T2DM were included for the meta-analysis. Results The number of cases in the T2DM group and control group was 5,607 and 7,596, respectively. The meta-analysis revealed that the PPARGC1A gene rs8192678 locus G>A polymorphism is associated with susceptibility to T2DM. There are differences in each group of genetic models, of which three groups of genetic models are highly significant. In the allele model, OR=1.249, 95% CI: 1.099-1.419, and P=0.001. In the dominant inheritance model, OR=1.364, 95% CI: 1.152-1.614, and P=0.000. In the additive inheritance model, OR=0.828, 95% CI: 0.726-0.945, and P=0.005. And one group is significant, in the recessive inheritance model, OR=1.187, 95% CI: 1.021-1.381, and P=0.026. Conclusion In Western Asian, South Asian, European and African populations, the A allele of the PPARGC1A gene rs8192678 locus may be one of the risk factors for T2DM.
Collapse
Affiliation(s)
- Fei Du
- Department of Cell Biology and Medical Genetics, Yanbian University Medical College, Yanji, Jilin,133000, China
| | - Kang-Juan Yang
- Department of Cell Biology and Medical Genetics, Yanbian University Medical College, Yanji, Jilin,133000, China
- E-mail:
| | - Lian-Shan Piao
- Department of Endocrinology, Affiliated Hospital of Yanbian University, Yanji, Jilin,133000, China
| |
Collapse
|
13
|
Shalimova A, Fadieienko G, Kolesnikova O, Isayeva A, Zlatkina V, Nemtsova V, Prosolenko K, Psarova V, Kyrychenko N, Kochuieva M. The Role of Genetic Polymorphism in the Formation of Arterial Hypertension, Type 2 Diabetes and their Comorbidity. Curr Pharm Des 2019; 25:218-227. [PMID: 30868946 DOI: 10.2174/1381612825666190314124049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hereditary component plays a significant role in the formation of insulin resistance (IR) - one of the pathogenetic links of arterial hypertension (AH) and type 2 diabetes mellitus (DM2). However, the genetic predisposition to IR can not be realized and does not manifest itself clinically in the absence of appropriate factors of the environment (excessive nutrition, low physical activity, etc.). OBJECTIVE The review summarizes the results of studies which describe the contribution of genetic polymorphism to the formation and progression of AH, DM2 and their comorbidity in various populations. RESULTS In many studies, it has been established that genetic polymorphism of candidate genes is influenced by the formation, course and complication of AH and DM2. According to research data, the modulating effect of polymorphism of some genetic markers of AH and DM2 on metabolism and hemodynamics has been established. The results of numerous studies have shown a higher frequency of occurrence of AH and DM2, as well as their more severe course with adverse genetic polymorphisms. At the same time, the role of genetic polymorphism in the formation of AH and DM2 differs in different populations. CONCLUSION Contradictory data on the influence of gene polymorphisms on the formation of AH and DM2 in different populations, as well as a small number of studies on the combined effects of several polymorphisms on the formation of comorbidity, determine the continuation of research in this direction.
Collapse
Affiliation(s)
- Anna Shalimova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine.,Kharkiv National Medical University, Kharkiv, Ukraine
| | - Galyna Fadieienko
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Olena Kolesnikova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Anna Isayeva
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Vira Zlatkina
- Kharkiv National Medical University, Kharkiv, Ukraine
| | | | | | | | | | - Maryna Kochuieva
- Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| |
Collapse
|
14
|
Graae AS, Grarup N, Ribel-Madsen R, Lystbæk SH, Boesgaard T, Staiger H, Fritsche A, Wellner N, Sulek K, Kjolby M, Backe MB, Chubanava S, Prats C, Serup AK, Birk JB, Dubail J, Gillberg L, Vienberg SG, Nykjær A, Kiens B, Wojtaszewski JFP, Larsen S, Apte SS, Häring HU, Vaag A, Zethelius B, Pedersen O, Treebak JT, Hansen T, Holst B. ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes 2019; 68:502-514. [PMID: 30626608 PMCID: PMC6385758 DOI: 10.2337/db18-0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Collapse
Affiliation(s)
- Anne-Sofie Graae
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Sara H Lystbæk
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Boesgaard
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Niels Wellner
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kjolby
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Balslev Backe
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Sara G Vienberg
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Allan Vaag
- Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Zethelius
- Geriatrics, Department of Public Health and Caring Services, Uppsala University, Uppsala, Sweden
| | - Oluf Pedersen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol 2018; 71-72:225-239. [PMID: 29885460 DOI: 10.1016/j.matbio.2018.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States.
| |
Collapse
|
16
|
Franzago M, Fraticelli F, Marchetti D, Celentano C, Liberati M, Stuppia L, Vitacolonna E. Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Res Clin Pract 2018; 137:64-71. [PMID: 29325775 DOI: 10.1016/j.diabres.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/15/2023]
Abstract
AIM Gestational diabetes mellitus (GDM) is the most frequent metabolic disorder in pregnancy and it can be considered a silent risk associated to T2DM and CVD later in life. The aim of this study was to investigate the association of clinical parameters with nine single nucleotide polymorphisms (SNPs) involved with nutrients and metabolism in women with or without GDM in order to identify potential routine clinical markers for early prevention. METHODS Nine gene variants associated with nutrients and metabolism, namely PPARG2 rs1801282 (C > G); PPARGC1A rs8192678 (C > T); TCF7L2 rs7903146 (C > T); LDLR rs2228671 (C > T); MTHFR rs1801133 (C > T); APOA5 rs662799 (T > C); GCKR rs1260326 (C > T); FTO rs9939609 (T > A); MC4R rs17782313 (T > C) were genotyped in 104 GDM cases and 124 controls using High Resolution Melting (HRM) analysis. RESULTS The genetic variant rs7903146 (C > T) in TCF7L2 gene showed a strong association with GDM risk (OR: 2.56; 95% CI: [1.24-5.29]). Moreover, a significant correlation was observed between lipid parameters and polymorphisms in other genes, namely PPARG2 [p = 0,03], APOA5 [p = 0,02], MC4R [p = 0,03], LDLR [p = 0,04] and FTO [p = 0,03]. In addition, rs17782313 variant, mapped close to MC4R gene, was associated to BMI in pre-pregnancy [p = 0,02] and at the end of pregnancy [p = 0,03] in GDM group. CONCLUSION In our study, we found significant associations between routine clinical parameters and some gene variants connected with nutrients and metabolism in women with GDM. These results can provide useful information to develop effective tools and possible personalized intervention strategies in a timely manner.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Daniela Marchetti
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
17
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|
18
|
Lin CH, Lin E, Lane HY. Genetic Biomarkers on Age-Related Cognitive Decline. Front Psychiatry 2017; 8:247. [PMID: 29209239 PMCID: PMC5702307 DOI: 10.3389/fpsyt.2017.00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022] Open
Abstract
With ever-increasing elder populations, age-related cognitive decline, which is characterized as a gradual decline in cognitive capacity in the aging process, has turned out to be a mammoth public health concern. Since genetic information has become increasingly important to explore the biological mechanisms of cognitive decline, the search for genetic biomarkers of cognitive aging has received much attention. There is growing evidence that single-nucleotide polymorphisms (SNPs) within the ADAMTS9, BDNF, CASS4, COMT, CR1, DNMT3A, DTNBP1, REST, SRR, TOMM40, circadian clock, and Alzheimer's diseases-associated genes may contribute to susceptibility to cognitive aging. In this review, we first illustrated evidence of the genetic contribution to disease susceptibility to age-related cognitive decline in recent studies ranging from approaches of candidate genes to genome-wide association studies. We then surveyed a variety of association studies regarding age-related cognitive decline with consideration of gene-gene and gene-environment interactions. Finally, we highlighted their limitations and future directions. In light of advances in precision medicine and multi-omics technologies, future research in genomic medicine promises to lead to innovative ideas that are relevant to disease prevention and novel drugs for cognitive aging.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| | - Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Electrical Engineering, University of Washington, Seattle, WA, United States
- TickleFish Systems Corporation, Seattle, WA, United States
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
19
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, Yang CH. The ADAMTS9 gene is associated with cognitive aging in the elderly in a Taiwanese population. PLoS One 2017; 12:e0172440. [PMID: 28225792 PMCID: PMC5321460 DOI: 10.1371/journal.pone.0172440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
Evidence indicates that the pathophysiologic mechanisms associated with insulin resistance may contribute to cognitive aging and Alzheimer’s diseases. In this study, we hypothesize that single nucleotide polymorphisms (SNPs) within insulin resistance-associated genes, such as the ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9), glucokinase regulator (GCKR), and peroxisome proliferator activated receptor gamma (PPARG) genes, may be linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. A total of 547 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to measure cognitive functions. Our data showed that four SNPs (rs73832338, rs9985304, rs4317088, and rs9831846) in the ADAMTS9 gene were significantly associated with cognitive aging among the subjects (P = 1.5 x 10−6 ~ 0.0002). This association remained significant after performing Bonferroni correction. Additionally, we found that interactions between the ADAMTS9 rs9985304 and ADAMTS9 rs76346246 SNPs influenced cognitive aging (P < 0.001). However, variants in the GCKR and PPARG genes had no association with cognitive aging in our study. Our study indicates that the ADAMTS9 gene may contribute to susceptibility to cognitive aging independently as well as through SNP-SNP interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., Taipei, Taiwan
- TickleFish Systems Corporation, Seattle, WA, United States of America
- * E-mail: (EL); (CHY)
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hung Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (EL); (CHY)
| |
Collapse
|
20
|
Franzago M, Fraticelli F, Nicolucci A, Celentano C, Liberati M, Stuppia L, Vitacolonna E. Molecular Analysis of a Genetic Variants Panel Related to Nutrients and Metabolism: Association with Susceptibility to Gestational Diabetes and Cardiometabolic Risk in Affected Women. J Diabetes Res 2017; 2017:4612623. [PMID: 28133617 PMCID: PMC5241477 DOI: 10.1155/2017/4612623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent metabolic disorder in pregnancy. Women with a GDM history are at increased risk of developing diabetes and cardiovascular diseases. Studies have demonstrated a significant correlation between several genes involved in the metabolic pathway of insulin and environmental factors. The aim of this study was to investigate the relationship between clinical parameters in GDM and variants in genes involved with nutrients and metabolism. Several variants PPARG2 rs1801282 (C>G); PPARGC1A rs8192678 (C>T); TCF7L2 rs7903146 (C>T); LDLR rs2228671 (C>T); MTHFR rs1801133 (C>T); APOA5 rs662799 (T>C); GCKR rs1260326 (C>T); FTO rs9939609 (T>A); MC4R rs17782313 (T>C) were genotyped in 168 pregnant Caucasian women with or without GDM by High Resolution Melting (HRM) analysis. A significant correlation was observed between TT genotype of TCF7L2 gene and increased risk of GDM (OR 5.4 [95% CI 1.5-19.3]). Moreover, a significant correlation was observed between lipid parameters and genetic variations in additional genes, namely, PPARG2 [p = 0,02], APOA5 [p = 0,02], MC4R [p = 0,03], LDLR [p = 0,01], and FTO [p = 0,02]. Our findings support the association between TCF7L2 rs7903146 variant and an increased GDM risk. Results about the investigated genetic variants provide important information about cardiometabolic risk in GDM and help to plan future prevention studies.
Collapse
Affiliation(s)
- Marica Franzago
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
| | - Federica Fraticelli
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology (CORE), Pescara, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
- *Ester Vitacolonna:
| |
Collapse
|
21
|
Abbasi A, Sahlqvist AS, Lotta L, Brosnan JM, Vollenweider P, Giabbanelli P, Nunez DJ, Waterworth D, Scott RA, Langenberg C, Wareham NJ. A Systematic Review of Biomarkers and Risk of Incident Type 2 Diabetes: An Overview of Epidemiological, Prediction and Aetiological Research Literature. PLoS One 2016; 11:e0163721. [PMID: 27788146 PMCID: PMC5082867 DOI: 10.1371/journal.pone.0163721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Background Blood-based or urinary biomarkers may play a role in quantifying the future risk of type 2 diabetes (T2D) and in understanding possible aetiological pathways to disease. However, no systematic review has been conducted that has identified and provided an overview of available biomarkers for incident T2D. We aimed to systematically review the associations of biomarkers with risk of developing T2D and to highlight evidence gaps in the existing literature regarding the predictive and aetiological value of these biomarkers and to direct future research in this field. Methods and Findings We systematically searched PubMed MEDLINE (January 2000 until March 2015) and Embase (until January 2016) databases for observational studies of biomarkers and incident T2D according to the 2009 PRISMA guidelines. We also searched availability of meta-analyses, Mendelian randomisation and prediction research for the identified biomarkers. We reviewed 3910 titles (705 abstracts) and 164 full papers and included 139 papers from 69 cohort studies that described the prospective relationships between 167 blood-based or urinary biomarkers and incident T2D. Only 35 biomarkers were reported in large scale studies with more than 1000 T2D cases, and thus the evidence for association was inconclusive for the majority of biomarkers. Fourteen biomarkers have been investigated using Mendelian randomisation approaches. Only for one biomarker was there strong observational evidence of association and evidence from genetic association studies that was compatible with an underlying causal association. In additional search for T2D prediction, we found only half of biomarkers were examined with formal evidence of predictive value for a minority of these biomarkers. Most biomarkers did not enhance the strength of prediction, but the strongest evidence for prediction was for biomarkers that quantify measures of glycaemia. Conclusions This study presents an extensive review of the current state of the literature to inform the strategy for future interrogation of existing and newly described biomarkers for T2D. Many biomarkers have been reported to be associated with the risk of developing T2D. The evidence of their value in adding to understanding of causal pathways to disease is very limited so far. The utility of most biomarkers remains largely unknown in clinical prediction. Future research should focus on providing good genetic instruments across consortia for possible biomarkers in Mendelian randomisation, prioritising biomarkers for measurement in large-scale cohort studies and examining predictive utility of biomarkers for a given context.
Collapse
Affiliation(s)
- Ali Abbasi
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
- * E-mail: ,
| | - Anna-Stina Sahlqvist
- GlaxoSmithKline, R&D, Stevenage, United Kingdom, RTP NC, King of Prussia, PA, United States of America
| | - Luca Lotta
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
| | | | | | - Philippe Giabbanelli
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
| | - Derek J. Nunez
- GlaxoSmithKline, R&D, Stevenage, United Kingdom, RTP NC, King of Prussia, PA, United States of America
| | - Dawn Waterworth
- GlaxoSmithKline, R&D, Stevenage, United Kingdom, RTP NC, King of Prussia, PA, United States of America
| | - Robert A. Scott
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
| | - Claudia Langenberg
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
| | - Nicholas J. Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical, Cambridge, United Kingdom
| |
Collapse
|
22
|
Scazzina F, Dei Cas A, Del Rio D, Brighenti F, Bonadonna RC. The β-cell burden index of food: A proposal. Nutr Metab Cardiovasc Dis 2016; 26:872-878. [PMID: 27381989 DOI: 10.1016/j.numecd.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/09/2023]
Abstract
The quantity and quality of dietary fat and/or carbohydrate may alter one or more of the basic components of the insulin-glucose system, which in turn affect the pathways leading to alterations in glucose homeostasis and, possibly, to cardiovascular disease. This viewpoint article, reviewing some of the currently available tools aiming at quantifying the impact of dietary carbohydrates on the glucose-insulin homeostatic loop, highlights the unmet need of a more thorough assessment of the complex interaction between dietary factors and the glucose-insulin system. A novel index, the "β-cell burden index", may turn out to be a valuable tool to quantify the role played by the diet in shaping the risk of type 2 diabetes, cardiovascular disease and other metabolic and degenerative disorders, ideally orienting their prevention with strategies based on dietary modifications.
Collapse
Affiliation(s)
- F Scazzina
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - A Dei Cas
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| | - D Del Rio
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - F Brighenti
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - R C Bonadonna
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| |
Collapse
|
23
|
Abbasi A. Mendelian randomization studies of biomarkers and type 2 diabetes. Endocr Connect 2015; 4:249-60. [PMID: 26446360 PMCID: PMC4654400 DOI: 10.1530/ec-15-0087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
Many biomarkers are associated with type 2 diabetes (T2D) risk in epidemiological observations. The aim of this study was to identify and summarize current evidence for causal effects of biomarkers on T2D. A systematic literature search in PubMed and EMBASE (until April 2015) was done to identify Mendelian randomization studies that examined potential causal effects of biomarkers on T2D. To replicate the findings of identified studies, data from two large-scale, genome-wide association studies (GWAS) were used: DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3) for T2D and the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycaemic traits. GWAS summary statistics were extracted for the same genetic variants (or proxy variants), which were used in the original Mendelian randomization studies. Of the 21 biomarkers (from 28 studies), ten have been reported to be causally associated with T2D in Mendelian randomization. Most biomarkers were investigated in a single cohort study or population. Of the ten biomarkers that were identified, nominally significant associations with T2D or glycaemic traits were reached for those genetic variants related to bilirubin, pro-B-type natriuretic peptide, delta-6 desaturase and dimethylglycine based on the summary data from DIAGRAMv3 or MAGIC. Several Mendelian randomization studies investigated the nature of associations of biomarkers with T2D. However, there were only a few biomarkers that may have causal effects on T2D. Further research is needed to broadly evaluate the causal effects of multiple biomarkers on T2D and glycaemic traits using data from large-scale cohorts or GWAS including many different genetic variants.
Collapse
Affiliation(s)
- Ali Abbasi
- MRC Epidemiology UnitUniversity of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Addenbrooke's Hospital, Post Box 285, Cambridge CB2 0QQ, UKDepartment of Epidemiology and Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands MRC Epidemiology UnitUniversity of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Addenbrooke's Hospital, Post Box 285, Cambridge CB2 0QQ, UKDepartment of Epidemiology and Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Karaderi T, Drong AW, Lindgren CM. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Curr Diab Rep 2015; 15:83. [PMID: 26363598 PMCID: PMC4568008 DOI: 10.1007/s11892-015-0648-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity and type 2 diabetes (T2D) are common and complex metabolic diseases, which are caused by an interchange between environmental and genetic factors. Recently, a number of large-scale genome-wide association studies (GWAS) have improved our knowledge of the genetic architecture and biological mechanisms of these diseases. Currently, more than ~250 genetic loci have been found for monogenic, syndromic, or common forms of T2D and/or obesity-related traits. In this review, we discuss the implications of these GWAS for obesity and T2D, and investigate the overlap of loci for obesity-related traits and T2D, highlighting potential mechanisms that affect T2D susceptibility.
Collapse
Affiliation(s)
- Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
| | - Alexander W Drong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, Oxford, UK.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Maternal PPARG Pro12Ala polymorphism is associated with infant's neurodevelopmental outcomes at 18 months of age. Early Hum Dev 2015; 91:457-62. [PMID: 26025336 DOI: 10.1016/j.earlhumdev.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are ligand activated transcription factors with crucial functions in lipid homeostasis, glucose metabolism, anti-inflammatory processes, placental development, and are involved in cognitive functions and neurodegenerative diseases. Polymorphisms in PPAR genes are shown to influence the activity of these receptors. AIMS 1) To examine the association of PPARG Pro12Ala polymorphism in pregnant women and their offspring on infant's neurodevelopmental outcomes during the first 18 months of life; 2) to determine the influence of Pro12Ala polymorphism on fatty acid concentrations in plasma phospholipids and placental tissue. STUDY DESIGN 138 mother-infant pairs from the PREOBE observational study were genotyped for PPARG Pro12Ala. Plasma phospholipids and placental fatty acid concentrations were measured at delivery. Infants' neuropsychological assessment at 6 and 18 months of age was performed using Bayley III. RESULTS The effect of Pro12Ala on infant's neurodevelopmental outcomes was detected at 18 months, but not at 6 months of age. 18 months old infants born to mothers with wild-type Pro12 genotype had better cognitive (OR=5.11, 95% CI: 1.379-18.96, p=0.015), language (OR=3.41, 95% CI: 1.35-11.24, p=0.044), and motor development scores (OR=4.77, 95% CI: 1.243-18.33, p=0.023) than the Ala allele carriers. Pro12Ala variants did not seem to affect fatty acids concentrations in blood nor in placenta at delivery. CONCLUSIONS Infants born to mothers with Pro12 genotype have better neurodevelopmental outcomes at 18 months of age than Ala allele carriers, indicating a long-term transplacental action of PPARγ variants on foetal brain development.
Collapse
|
26
|
Yoshina S, Mitani S. Loss of C. elegans GON-1, an ADAMTS9 Homolog, Decreases Secretion Resulting in Altered Lifespan and Dauer Formation. PLoS One 2015. [PMID: 26218657 PMCID: PMC4517882 DOI: 10.1371/journal.pone.0133966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ADAMTS9 is a metalloprotease that cleaves components of the extracellular matrix and is also implicated in transport from the endoplasmic reticulum (ER) to the Golgi. It has been reported that an ADAMTS9 gene variant is associated with type 2 diabetes. The underlying pathology of type 2 diabetes is insulin resistance and beta-cell dysfunction. However, the molecular mechanisms underlying ADAMTS9 function in beta cells and peripheral tissues are unknown. We show that loss of C. elegans GON-1, an ADAMTS9 homolog, alters lifespan and dauer formation. GON-1 loss impairs secretion of proteins such as insulin orthologs and TGF-beta, and additionally impacts insulin/IGF-1 signaling in peripheral tissues. The function of the GON domain, but not the protease domain, is essential for normal lifespan and dauer formation in these scenarios. We conclude that the GON domain is critical for ADAMTS9/GON-1 function across species, which should help the understanding of type 2 diabetes in humans.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, 162–8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, 162–8666, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo Women’s Medical University, Tokyo, 162–8666, Japan
- * E-mail:
| |
Collapse
|
27
|
Boef AGC, Dekkers OM, le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol 2015; 44:496-511. [PMID: 25953784 DOI: 10.1093/ije/dyv071] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mendelian randomization (MR) studies investigate the effect of genetic variation in levels of an exposure on an outcome, thereby using genetic variation as an instrumental variable (IV). We provide a meta-epidemiological overview of the methodological approaches used in MR studies, and evaluate the discussion of MR assumptions and reporting of statistical methods. METHODS We searched PubMed, Medline, Embase and Web of Science for MR studies up to December 2013. We assessed (i) the MR approach used; (ii) whether the plausibility of MR assumptions was discussed; and (iii) whether the statistical methods used were reported adequately. RESULTS Of 99 studies using data from one study population, 32 used genetic information as a proxy for the exposure without further estimation, 44 performed a formal IV analysis, 7 compared the observed with the expected genotype-outcome association, and 1 used both the latter two approaches. The 80 studies using data from multiple study populations used many different approaches to combine the data; 52 of these studies used some form of IV analysis; 44% of studies discussed the plausibility of all three MR assumptions in their study. Statistical methods used for IV analysis were insufficiently described in 14% of studies. CONCLUSIONS Most MR studies either use the genotype as a proxy for exposure without further estimation or perform an IV analysis. The discussion of underlying assumptions and reporting of statistical methods for IV analysis are frequently insufficient. Studies using data from multiple study populations are further complicated by the combination of data or estimates. We provide a checklist for the reporting of MR studies.
Collapse
Affiliation(s)
- Anna G C Boef
- Department of Clinical Epidemiology, Department of Endocrinology and Metabolic Diseases, and Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Department of Endocrinology and Metabolic Diseases, and Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands. Department of Clinical Epidemiology, Department of Endocrinology and Metabolic Diseases, and Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Department of Endocrinology and Metabolic Diseases, and Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands. Department of Clinical Epidemiology, Department of Endocrinology and Metabolic Diseases, and Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
28
|
Gjesing AP, Ribel-Madsen R, Harder MN, Eiberg H, Grarup N, Jørgensen T, Ekstrøm CT, Pedersen O, Hansen T. Genetic and phenotypic correlations between surrogate measures of insulin release obtained from OGTT data. Diabetologia 2015; 58:1006-12. [PMID: 25660259 DOI: 10.1007/s00125-015-3516-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS We examined the extent to which surrogate measures of insulin release have shared genetic causes. METHODS Genetic and phenotypic correlations were calculated in a family cohort (n = 315) in which beta cell indices were estimated based on fasting and oral glucose-stimulated plasma glucose, serum C-peptide and serum insulin levels. Furthermore, we genotyped a large population-based cohort (n = 6,269) for common genetic variants known to associate with type 2 diabetes, fasting plasma glucose levels or fasting serum insulin levels to examine their association with various indices. RESULTS We found a notable difference between the phenotypic and genetic correlations for the traits, emphasising that the phenotypic correlation is an insufficient measure of the magnitude of shared genetic impact. In addition, we found that corrected insulin response, insulinogenic index and incAUC for insulin after an oral glucose challenge shared the majority of their genetic backgrounds, with genetic correlations of 0.80-0.99. The BIGTT index for acute insulin response differed slightly more from the latter with genetic correlations of 0.78-0.87. The HOMA for beta cell function was genetically closely related to fasting insulin with a genetic correlation of 0.85. The effects of 82 selected susceptibility single nucleotide polymorphisms on these insulin secretion indices supported our interpretation of the data and added insight into the biological differences between the examined traits. CONCLUSIONS/INTERPRETATION The level of shared genetic background varies between surrogate measures of insulin release, and this should be considered when designing a genetic association study to best obtain information on various mechanisms of insulin release.
Collapse
Affiliation(s)
- Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1-3, DK-2100, Copenhagen, Denmark,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vergotine Z, Yako YY, Kengne AP, Erasmus RT, Matsha TE. Proliferator-activated receptor gamma Pro12Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa. BMC Genet 2014; 15:10. [PMID: 24447396 PMCID: PMC3900266 DOI: 10.1186/1471-2156-15-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The peroxisome proliferator-activated receptor gamma (PPARG), Pro12Ala and the insulin receptor substrate (IRS1), Gly972Arg confer opposite effects on insulin resistance and type 2 diabetes mellitus (T2DM). We investigated the independent and joint effects of PPARG Pro12Ala and IRS1 Gly972Arg on markers of insulin resistance and T2DM in an African population with elevated risk of T2DM. In all 787 (176 men) mixed-ancestry adults from the Bellville-South community in Cape Town were genotyped for PPARG Pro12Ala and IRS1 Gly972Arg by two independent laboratories. Glucose tolerance status and insulin resistance/sensitivity were assessed. RESULTS Genotype frequencies were 10.4% (PPARG Pro12Ala) and 7.7% (IRS1 Gly972Arg). Alone, none of the polymorphisms predicted prevalent T2DM, but in regression models containing both alleles and their interaction term, PPARG Pro12 conferred a 64% higher risk of T2DM. Furthermore PPARG Pro12 was positively associated in adjusted linear regressions with increased 2-hour post-load insulin in non-diabetic but not in diabetic participants. CONCLUSION The PPARG Pro12 is associated with insulin resistance and this polymorphism interacts with IRS1 Gly972Arg, to increase the risk of T2DM in the mixed-ancestry population of South Africa. Our findings require replication in a larger study before any generalisation and possible application for risk stratification.
Collapse
Affiliation(s)
| | | | | | | | - Tandi E Matsha
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville 7530, Cape Town, South Africa.
| |
Collapse
|
30
|
Dauriz M, Meigs JB. Current Insights into the Joint Genetic Basis of Type 2 Diabetes and Coronary Heart Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2014; 8:368. [PMID: 24729826 PMCID: PMC3981553 DOI: 10.1007/s12170-013-0368-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The large-scale genome-wide association studies conducted so far identified numerous allelic variants associated with type 2 diabetes (T2D), coronary heart disease (CHD) and related cardiometabolic traits. Many T2D- and some CHD-risk loci are also linked with metabolic traits that are hallmarks of insulin resistance (lipid profile, abdominal adiposity). Chromosome 9p21.3 and 2q36.3 are the most consistently replicated loci appearing to share genetic risk for both T2D and CHD. Although many glucose- or insulin-related trait variants are also linked with T2D risk, none of them is associated with CHD. Hence, while T2D and CHD are strongly clinically linked together, further ongoing analyses are needed to clarify the existence of a shared underlying genetic signature of these complex traits. The present review summarizes an updated picture of T2D-CHD genetics as of 2013, aiming to provide a platform for targeted studies dissecting the contribution of genetics to the phenotypic heterogeneity of T2D and CHD.
Collapse
Affiliation(s)
- Marco Dauriz
- Massachusetts General Hospital, General Medicine Division, 50 Staniford St. 9th Floor, Boston, MA 02114-2698, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Metabolic Diseases, Department of Medicine, University of Verona Medical School and Hospital Trust of Verona, Verona, Italy
| | - James B. Meigs
- Massachusetts General Hospital, General Medicine Division, 50 Staniford St. 9th Floor, Boston, MA 02114-2698, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Park TJ, Hwang JY, Go MJ, Lee HJ, Jang HB, Choi Y, Kang JH, Park KH, Choi MG, Song J, Kim BJ, Lee JY. Genome-wide association study of liver enzymes in korean children. Genomics Inform 2013; 11:149-54. [PMID: 24124411 PMCID: PMC3794088 DOI: 10.5808/gi.2013.11.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Liver enzyme elevations, as an indicator of liver function, are widely associated with metabolic diseases. Genome-wide population-based association studies have identified a genetic susceptibility to liver enzyme elevations and their related traits; however, the genetic architecture in childhood remains largely unknown. We performed a genome-wide association study to identify new genetic loci for liver enzyme levels in a Korean childhood cohort (n = 484). We observed three novel loci (rs4949718, rs80311637, and rs596406) that were multiply associated with elevated levels of alanine transaminase and aspartate transaminase. Although there are some limitations, including genetic power, additional replication and functional characterization will support the clarity on the genetic contribution that the ST6GALNAC3, ADAMTS9, and CELF2 genes have in childhood liver function.
Collapse
Affiliation(s)
- Tae-Joon Park
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon 363-951, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|