1
|
Wang T, Kusumi K, Zhu L, Mei L, Manabe A, Asghari M, Samani BH, Yamamoto T, Kanda H. Removal of acetyl-rich impurities from chitosan using liquefied dimethyl ether. Int J Biol Macromol 2024; 280:136381. [PMID: 39378927 DOI: 10.1016/j.ijbiomac.2024.136381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Chitosan, recognized for its excellent biodegradability, biocompatibility, and antibacterial properties, has several potential applications, particularly in the biomedical field. However, its widespread use is hindered by inherent limitations such as low mechanical strength and safety concerns arising from a low degree of deacetylation and the presence of impurities. This study aimed to introduce an innovative purification method for chitosan via liquefied dimethyl ether (DME) extraction. The proposed technique effectively addresses the challenges associated with chitosan by facilitating deacetylation and impurity removal. Liquefied DME is emerging as the extraction solvent of choice owing to its advantages, such as low boiling point, safety, and environmental sustainability. The degree of deacetylation of chitosan was extensively evaluated using thermogravimetric-differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, intrinsic viscosity measurements, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy, and elemental analysis. The solubility of chitosan in liquefied DME was investigated using Hansen solubility parameters. This study contributes to the improvement of the safety profile of chitosan, thereby expanding its potential applications in various fields. The use of liquefied DME as an extraction solvent proved to be efficient in addressing the existing challenges and is consistent with the principles of safety and environmental sustainability.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kaito Kusumi
- Department of Materials Process Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Li Zhu
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Li Mei
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Aiya Manabe
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Mohammadreza Asghari
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan; Department of Mechanical Engineering of Biosystem, Shahrekord University, Iran
| | | | - Tetsuya Yamamoto
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
2
|
Lerdsri J, Jakmunee J, Reanpang P. Development of a sensitive electrochemical method to determine amitraz based on perylene tetracarboxylic acid/mesoporous carbon/Nafion@SPCEs. Mikrochim Acta 2024; 191:228. [PMID: 38558104 DOI: 10.1007/s00604-024-06308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 μg mL-1, boasting an exceptionally low limit of detection of 0.002 μg mL-1 and a limit of quantification of 0.10 μg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.
Collapse
Affiliation(s)
- Jamras Lerdsri
- Department of Livestock Development, Veterinary Research and Development Center (Upper Northern Region), Lampang, 52190, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, and Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand.
| |
Collapse
|
3
|
Zhao X, Li WP, Cao Y, Portniagin A, Tang B, Wang S, Liu Q, Yu DYW, Zhong X, Zheng X, Rogach AL. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti 3C 2T x MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS NANO 2024; 18:4256-4268. [PMID: 38265044 DOI: 10.1021/acsnano.3c09639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Wan-Peng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Yanhui Cao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Arsenii Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Bing Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Denis Y W Yu
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Xuerong Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
4
|
Agha HM, Abdulhameed AS, Jawad AH, Aazmi S, Sidik NJ, De Luna Y, Wilson LD, ALOthman ZA, Algburi S. Enhancing cationic dye removal via biocomposite formation between chitosan and food grade algae: Optimization of algae loading and adsorption parameters. Int J Biol Macromol 2024; 258:128792. [PMID: 38110162 DOI: 10.1016/j.ijbiomac.2023.128792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Herein, a natural material including chitosan (CTS) and algae (food-grade algae, FGA) was exploited to attain a bio-adsorbent (CTS/FGA) for enhanced methyl violet 2B dye removal. A study of the FGA loading into CTS matrix showed that the best mixing ratio between CTS and FGA to be used for the MV 2B removal was 50 %:50 % (CTS/FGA; 50:50 w/w). The present study employed the Box-Behnken design (RSM-BBD) to investigate the impact of three processing factors, namely CTS/FGA-(50:50) dose (0.02-0.1 g/100 mL), pH of solution (4-10), and contact time (5-15 min) on the decolorization rate of MV 2B dye. The results obtained from the equilibrium and kinetic experiments indicate that the adsorption of MV 2B dye on CTS/FGA-(50:50) follows the Langmuir and pseudo-second-order models, respectively. The CTS/FGA exhibits an adsorption capacity of 179.8 mg/g. The characterization of CTS/FGA-(50:50) involves the proposed mechanism of MV 2B adsorption, which primarily encompasses various interactions such as electrostatic forces, n-π stacking, and H-bonding. The present study demonstrates that CTS/FGA-(50:50) synthesized material exhibits a distinctive structure and excellent adsorption properties, thereby providing a viable option for the elimination of toxic cationic dyes from polluted water.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Norrizah Jaafar Sidik
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yannis De Luna
- Program of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon SK S7N 5C9, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
5
|
Kashi E, Surip SN, Khadiran T, Nawawi WI, De Luna Y, Yaseen ZM, Jawad AH. High adsorptive performance of chitosan-microalgae-carbon-doped TiO 2 (kronos)/ salicylaldehyde for brilliant green dye adsorption: Optimization and mechanistic approach. Int J Biol Macromol 2024; 259:129147. [PMID: 38181921 DOI: 10.1016/j.ijbiomac.2023.129147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
A composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO2 kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.e., adsorbent dose, pH of the media and contact time. The optimum conditions appointed by the optimisation process were further affirmed by the desirability test and employed in the equilibrium studies in batch mode and the results exhibited a better fit towards the pseudo-second-order kinetic model as well as Freundlich and Langmuir isotherm models, with a maximum adsorption capacity of 957.0 mg/g. Furthermore, the reusability study displayed the adsorptive performance of CsMaTk/S remains effective throughout five adsorption cycles. The possible interactions between the dye molecules and the surface of the adsorbent were derived based on the analyses performed and the electrostatic attractions, H-bonding, Yoshida-H bonding, π-π and n-π interactions are concluded to be the responsible forces in this adsorption process.
Collapse
Affiliation(s)
- Elmira Kashi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Wan Izhan Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau, Perlis, Malaysia
| | - Yannis De Luna
- Program of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
6
|
Gadore V, Singh AK, Mishra SR, Ahmaruzzaman M. RSM approach for process optimization of the photodegradation of congo red by a novel NiCo 2S 4/chitosan photocatalyst. Sci Rep 2024; 14:1118. [PMID: 38212420 PMCID: PMC10784554 DOI: 10.1038/s41598-024-51618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The current study reported a facile co-precipitation technique for synthesizing novel NiCo2S4/chitosan nanocomposite. The photocatalytic activity of the prepared nanocomposite was evaluated using congo red (CR) dye as a target pollutant. The central composite design was employed to examine the impact of different reaction conditions on CR dye degradation. This study selected the pH, photocatalyst loading, initial CR concentration and reaction time as reaction parameters, while the degradation efficiency (%) was selected as the response. A desirability factor of 1 suggested the adequacy of the model. Maximum degradation of 93.46% of 35 ppm dye solution was observed after 60 min of visible light irradiation. The response to surface methodology (RSM) is a helpful technique to predict the optimum reaction conditions of the photodegradation of CR dye. Moreover, NiCo2S4/Ch displayed high recyclability and reusability up to four consecutive cycles. The present study suggests that the prepared NiCo2S4/chitosan nanocomposite could prove to be a viable photocatalyst for the treatment of dye-contaminated wastewater.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
7
|
Patra S, Sahu KM, Mahanty J, Swain SK. Ex Vivo Glucose Detection in Human Blood Serums with Carbon Quantum Dot-Doped Oleic Acid-Treated Chitosan Nanocomposites. ACS APPLIED BIO MATERIALS 2023; 6:5730-5745. [PMID: 37972392 DOI: 10.1021/acsabm.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, carbon quantum dot (CQD)-doped oleic acid (OL)-treated chitosan (Ch) nanocomposites (Ch-OL/CQD) are prepared by a simple solution technique for nonenzymatic ex vivo detection of glucose in human blood samples. From the architecture of the structure, it is observed that the agglomeration of CQD is restricted by OL-treated Ch polymeric chain, and simultaneously the inhibition in the entanglement of Ch-OL polymeric chains in the matrix is attained by the incorporation of CQD, thereby proving the high stability of the nanocomposite. In vitro detection of glucose is studied by the "Turn ON-OFF" fluorescence technique which is again evidenced by the shining core image of nanocomposites in HRTEM. A highly selective glucose sensing against interfering sugars due to the specific spatial arrangement of the hydroxyl groups of glucose, leading to prominent hydrogen-bonding interaction is established, with a very low limit of detection (LOD) of 1.51 μM, covering a wide linear domain from 0 to 104 μM, R2 = 0.98. Moreover, the calculated glucose levels in real human blood serums by Ch-OL/CQD nanocomposites are compared with a commercial glucometer, with recovery percentages from 95.8 to 107.3%. The clinical potential is supported by studying the stimuli responsiveness of the nanocomposites as a function of pH and ionic strength, encouraging the operation of the sensor in a complex biological scenario. The present work may offer an opportunity for the monitoring of glucose in the blood for successful diabetes management.
Collapse
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Jharana Mahanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| |
Collapse
|
8
|
Liang J, Song Y, Zhao Y, Gao Y, Hou J, Yang G. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Mikrochim Acta 2023; 190:433. [PMID: 37814099 DOI: 10.1007/s00604-023-06011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
A chiral sensor for the electrochemical identification of tryptophan (Trp) isomers is described. The electrochemical sensor was prepared based on the combination of (a) carbon black (CB-COOH) as conductive material, (b) Cu2+-modified β-cyclodextrin (Cu-β-CD), and (c) β-CD-based metal-organic frameworks (β-CD-MOF) as chiral selectors. The Cu-β-CD can be self-assembled into the CB-COOH and β-CD-MOF through electrostatic interactions, which was characterized by zeta potential analysis. UV-vis spectroscopy proved that Cu-β-CD displays a higher combination for D-Trp than L-Trp, and the β-CD-MOF at the surface of the GCE has a higher affinity for L-Trp than D-Trp, which endow an easier permeation of L-Trp to the surface of the electrode, thus leading to a larger electrochemical signal of differential pulse voltammetry (DPV). The enantioselectivity for L-Trp over D-Trp (IL/ID) is 2.13, with a low detection limit for D-Trp (11.18 μM) and L-Trp (5.48 μM). In addition, the proposed chiral sensor can be chosen to determine the percentage of D-Trp in enantiomer mixture solutions and real sample detection with a recovery from 98.2 to 102.8% for L-Trp and 97.9 to 101.1% for D-Trp.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yuxin Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yanan Zhao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yue Gao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Juan Hou
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China.
| |
Collapse
|
9
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
10
|
Gou H, He J, Nie R, Xu D, Rao H, Zhao G. A Stable Electrochemical Chiral Interface based on Graphene-chitosan Composites for Tyrosine Enantiomers Recognition. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Khan A, Ezati P, Rhim JW. Chitosan/Starch-Based Active Packaging Film with N, P-Doped Carbon Dots for Meat Packaging. ACS APPLIED BIO MATERIALS 2023; 6:1294-1305. [PMID: 36877603 DOI: 10.1021/acsabm.3c00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nitrogen, phosphorus-doped green-tea-derived carbon dots (NP-CDs) incorporated chitosan/starch (Chi/St) based multifunctional nanocomposite films were prepared. FE-SEM images verified a homogeneous distribution of CDs with minimum aggregation in the fabricated films. Incorporating NP-CDs led to enhanced UV-light blocking (93.1% of UV-A and ∼99.7% of UV-B) without significantly affecting the films' water transparency and water vapor permeability. Besides, incorporating NP-CDs into the Chi/St films enhanced antioxidant activity (98.0% for ABTS and 71.4% for DPPH) and displayed strong antibacterial activity against L. monocytogenes, E. coli, and S. aureus. Wrapping the meat in the prepared film and storing it at 20 °C has been shown to reduce bacterial growth (less than 2.5 Log CFU/g after 48 h) without significantly altering the actual color of the wrapped meat. The Chi/St film loaded with NP-CD has high potential as an active packaging material to ensure safety and extend the shelf life of meat products.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Gadore V, Mishra SR, Ahmaruzzaman M. Green and environmentally sustainable fabrication of SnS 2 quantum dots/chitosan nanocomposite for enhanced photocatalytic performance: Effect of process variables, and water matrices. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130301. [PMID: 36403450 DOI: 10.1016/j.jhazmat.2022.130301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 05/27/2023]
Abstract
Concerns over the availability of clean water and the quality of treated wastewater are significant problems that call for an appropriate solution to improve the water quality. The present work emphasized the synthesis of novel SnS2 quantum dots (QDs) deposited on chitosan via a facile green precipitation method involving neem (Azadirachta indica) leaf extract and investigating its photocatalytic performance for the degradation of Crystal violet (CV) dye under varying reaction parameters, other organic and inorganic salts and water matrices. The crystal structure, surface morphology, and elemental composition of the prepared SnS2 (QDs)/Ch composite were evaluated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and energy dispersive X-ray analysis (EDAX) techniques. The average size of SnS2/Chitosan nanoparticles was calculated to be 8.8 nm using XRD, with the average diameter of SnS2 QDs to be 3.3 nm from TEM. UV-visible spectroscopy was used to investigate its optical properties. The direct band gap of SnS2/Chitosan estimated from Tauc's plot came to be 2.5 eV. The prepared novel SnS2/Ch composite showed outstanding photocatalytic activity for the degradation of CV through the Advanced Oxidation Process (AOP). The fabricated photocatalyst caused 98.60 ± 1.34 % degradation of CV within a short period of 70 min under optimum conditions. The photodegradation reaction followed pseudo-first-order rate kinetics with a rate constant of 0.0815 min-1. Furthermore, the photocatalyst showed high stability and was reusable for up to four cycles. The present work fulfils the aim of designing a novel, green, and efficient visible light-active nano-photocatalyst.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, 788010 Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010 Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010 Assam, India.
| |
Collapse
|
13
|
Huang B, Chen L, Chiou Y, Whang G, Luo Y, Yan Y, Wei K, He X, Dunn B, Wu P. Bubble-Channeling Electrophoresis of Honeycomb-Like Chitosan Composites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203948. [PMID: 36180403 PMCID: PMC9661845 DOI: 10.1002/advs.202203948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
A chitosan composite with a vertical array of pore channels is fabricated via an electrophoretic deposition (EPD) technique. The composite consists of chitosan and polyethylene glycol, as well as nanoparticles of silver oxide and silver. The formation of hydrogen bubbles during EPD renders a localized increase of hydroxyl ions that engenders the precipitation of chitosan. In addition, chemical interactions among the constituents facilitate the establishment of vertical channels occupied by hydrogen bubbles that leads to the unique honeycomb-like microstructure; a composite with a porosity of 84%, channel diameter of 488 µm, and channel length of 2 mm. The chitosan composite demonstrates an impressive water uptake of 2100% and a two-stage slow release of silver. In mass transport analysis, both Disperse Red 13 and ZnO powders show a much enhanced transport rate over that of commercial gauze. Due to its excellent structural integrity and channel independence, the chitosan composite is evaluated in a passive suction mode for an adhesive force of 9.8 N (0.56 N cm-2 ). The chitosan composite is flexible and is able to maintain sufficient adhesive force toward objects with different surface curvatures.
Collapse
Affiliation(s)
- Bo‐Han Huang
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| | - Li‐Jie Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| | - Yu‐Jie Chiou
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| | - Grace Whang
- Department of Materials Science and EngineeringUCLALos AngelesCA90095USA
| | - Yunkai Luo
- Department of Materials Science and EngineeringUCLALos AngelesCA90095USA
| | - Yichen Yan
- Department of Materials Science and EngineeringUCLALos AngelesCA90095USA
| | - Kung‐Hwa Wei
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| | - Ximin He
- Department of Materials Science and EngineeringUCLALos AngelesCA90095USA
| | - Bruce Dunn
- Department of Materials Science and EngineeringUCLALos AngelesCA90095USA
| | - Pu‐Wei Wu
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| |
Collapse
|
14
|
Valadi FM, Shahsavari S, Akbarzadeh E, Gholami MR. Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr Polym 2022; 288:119383. [PMID: 35450645 DOI: 10.1016/j.carbpol.2022.119383] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, a series of Zirconium-based MOF and chitosan composites (MOF-808/chitosan) were synthesized as efficient adsorbent for Cr(VI) ions elimination from aqueous solution. MOF-808/chitosan structure and morphology was characterized by FE-SEM, EDX, XRD, BET, zeta potential analysis, FT-IR, XPS techniques. The kinetic studies ascertained that Cr(VI) adsorption over MOF-808/chitosan followed pseudo-second-order kinetic model. The adsorption isotherms fitted the Langmuir isotherm model, implying on homogeneously adsorption of Cr(VI) on the surface of MOF-808/chitosan. According to the Langmuir model, the maximum capacity was obtained to be 320.0 mg/g at pH 5. Thermodynamic investigation proposed spontaneous (ΔG° < 0), disordered (ΔS° > 0) and endothermic (ΔH° > 0) for adsorption process. Besides, MOF-808/chitosan displayed an appropriate reusability for the elimination of Cr(VI) ions from their aqueous solutions for six successive cycles. DFT study of the adsorption process displayed and confirmed the role of hydrogen bonding and electrostatic attraction simultaneously.
Collapse
Affiliation(s)
| | - Shayan Shahsavari
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran; Nanoclub Elites Association, Tehran, Iran
| | - Elham Akbarzadeh
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Mohammad Reza Gholami
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| |
Collapse
|
15
|
Pei H, Wang J, Jin X, Zhang X, Liu W, Guo R, Liu N, Mo Z. An electrochemical chiral sensor based on glutamic acid functionalized graphene-gold nanocomposites for chiral recognition of tryptophan enantiomers. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Ji J, Qu L, Wang Z, Li G, Feng W, Yang G. A facile electrochemical chiral sensor for tryptophan enantiomers based on multiwalled carbon nanotube/hydroxypropyl-β-cyclodextrin functionalized carboxymethyl cellulose. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Balram D, Lian KY, Sebastian N, Al-Mubaddel FS, Noman MT. Bi-functional renewable biopolymer wrapped CNFs/Ag doped spinel cobalt oxide as a sensitive platform for highly toxic nitroaromatic compound detection and degradation. CHEMOSPHERE 2022; 291:132998. [PMID: 34813850 DOI: 10.1016/j.chemosphere.2021.132998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Nanomolar-level detection of priority toxic pollutant 4-nitrophenol (4-NP) in environment using a novel ternary nanocomposite based electrochemical sensor and its photocatalytic degradation is reported in this paper. A non-toxic and renewable natural biopolymer, chitosan wrapped carbon nanofibers was embedded with Ag doped spinel Co3O4 to prepare the bi-functional ternary nanocomposite. Economical and ecofriendly sonochemical method was employed in preparation of this porous nanocomposite. We used one-pot aqueous solution approach to synthesize Ag-Co3O4 nanoflowers and ultrasound-assisted method was utilized to prepare CS-CNFs. Morphological and structural properties of synthesized materials were analyzed using different characterization techniques. Electrochemical investigations using cyclic voltammetry and differential pulse voltammetry carried out with prepared ternary nanocomposite modified carbon electrode revealed its outstanding electrocatalytic activity in 4-NP quantification. The developed 4-NP sensor showcased excellent sensitivity of 55.98 μAμM-1cm-2 and nanomolar detection limit of 0.4 nM. Moreover, reproducibility, repeatability, stability, and selectivity were evaluated to confirm reliability of developed sensor. Further, real sample analyses were conducted using domestic sewage, underground water, and tomato to affirm the practical feasibility of 4-NP detection using the proposed sensor.
Collapse
Affiliation(s)
- Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC.
| | - Neethu Sebastian
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia; Fellow: King Abdullah City for Atomic and Renewable Energy: Energy Research and Innovation Center (ERIC), Riyadh, 11451, Saudi Arabia
| | - Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| |
Collapse
|
18
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
19
|
Gao C, Wang S, Liu B, Yao S, Dai Y, Zhou L, Qin C, Fatehi P. Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5851. [PMID: 34640253 PMCID: PMC8510260 DOI: 10.3390/ma14195851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m-2·atm-1·day-1 to 27.97 g·mm·m-2·atm-1·day-1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m-2·day-1·atm-1 to 0.026 cm3·mm·m-2·day-1·atm-1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.
Collapse
Affiliation(s)
- Cong Gao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Shuo Wang
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Baojie Liu
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Shuangquan Yao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Yi Dai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Long Zhou
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Chengrong Qin
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
20
|
Bui CV, Rosenau T, Hettegger H. Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules 2021; 26:molecules26144322. [PMID: 34299597 PMCID: PMC8307936 DOI: 10.3390/molecules26144322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019-2020 of this rapidly developing field.
Collapse
Affiliation(s)
- Cuong Viet Bui
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology—The University of Danang, Danang City 550000, Vietnam
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo, Finland
| | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Correspondence:
| |
Collapse
|
21
|
Niu X, Yang X, Li H, Shi Q, Wang K. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Chirality 2021; 33:248-260. [PMID: 33675271 DOI: 10.1002/chir.23305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
Due to the crucial role of amino acids in life sciences and pharmaceutics, identification of optical amino acid molecules is of great significance. In this study, the two materials (CNT and PANI) were combined together to obtain the magnification of electrochemical signal by substrate material (CNT/PANI). Then a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate (CNT/PANI/SA) nanocomposite with chiral sites and conductive material was synthesized as the electrochemical sensing interface. Next, a novel electrochemical sensing interface was fabricated via modifying the as-prepared chiral material on a polished glassy carbon electrode (CNT/PANI/SA/GCE) for precisely, efficiently, and rapidly differentiation of tryptophan (Trp) enantiomers. It was observed that CNT/PANI/SA/GCE showed desirable stereoselective recognition effect in the variety of signal strength to peak current (Ip) to the different optical activity of Trp enantiomers. In the case of optimal conditions, the peak current ratio in the solution of l-Trp and d-Trp (ID /IL ) was observed to be 2.1 at CNT/PANI/SA/GCE by differential pulse voltammogram (DPV). UV-visible spectroscopy further showed that CNT/PANI/SA had a greater binding energy to l-Trp. Also different factors affecting the enantioselectivity of CNT/PANI/SA/GCE, such as the incubation time, pH, and dropcoating volume of CNT/PANI/SA were optimized. Moreover, the proposed CNT/PANI/SA/GCE showed excellent specific stereoselectivity and anti-interference ability. Besides, the proposed chiral sensing platform can be effectively applied in real samples to detect Trp enantiomers sensitively. This work inspires us a new path for the preparation of substrate material with excellent electrical conductivity, as well as extend its application potential in chiral recognition.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Xing Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Qiuyun Shi
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
22
|
An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Mikrochim Acta 2021; 188:163. [PMID: 33839948 DOI: 10.1007/s00604-021-04818-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/27/2021] [Indexed: 02/03/2023]
Abstract
A facile chiral composite (3D-NGMWCNT@(S,S)-CIL) was prepared by integrating three-dimensional N-doped graphene oxide multi-walled carbon nanotubes (3D-NGMWCNT) and chiral ionic liquid ((S,S)-CIL) via electrodeposition. SEM, XRD, XPS, and electrochemical methods were used to characterize this composite and it revealed that the integrated 3D-NGMWCNT@(S,S)-CIL composite showed excellent electrochemical performance. Therefore, a 3D-NGMWCNT@(S,S)-CIL/GCE electrochemical sensor was constructed for enantioselective recognition of Trp enantiomers. The coefficient (IL/ID) of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor was 2.26 by differential pulse voltammograms (DPV), revealing that the synthesized 3D-NGMWCNT@(S,S)-CIL had a higher affinity for L-Trp than D-Trp. Moreover, UV-V is spectroscopy and a water contact angle test also proved this result. The 3D-NGMWCNT@(S,S)-CIL/GCE sensor had a detection limit of 0.024 μM and 0.055 μM, and sensitivity of 62.35 μA·mM-1·cm-2 and 30.40 μA·mM-1·cm-2 for L-Trp and D-Trp, respectively, with a linear response range of 0.01 to 5 mM. In addition, the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor showed excellent stability, and good reproducibility and was applied to detect L-Trp or D-Trp in real samples. The novel 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor provides an efficient and convenient strategy for chiral enantioselective recognition. Schematic construction of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral electrochemical sensors.
Collapse
|
23
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
24
|
Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN, Kornilov VM. A Voltammetric Sensor Based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ma S, Li F, Liu L, Liao L, Chang L, Tan Z. Deep-eutectic solvents simultaneously used as the phase-forming components and chiral selectors for enantioselective liquid-liquid extraction of tryptophan enantiomers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Enhanced electrochemical enantiorecognition of tryptophan enantiomers based on synergistic effect of porous β-CD-containing polymers and multiwalled carbon nanotubes. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Niu X, Yang X, Mo Z, Wang J, Pan Z, Liu Z, Shuai C, Liu G, Liu N, Guo R. Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Bioelectrochemistry 2020; 131:107396. [DOI: 10.1016/j.bioelechem.2019.107396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023]
|