1
|
Mohamed RI, Mosad SM, Ali HS, Albalawi WO, Elsamadony HA, Ramzy NM, Saad AS, Fallatah D, Abdel-Hafez LJM, Albrakati A, Elmahallawy EK. A comprehensive pathological and molecular investigation of viral co-infections in ducks in Egypt. Front Microbiol 2025; 16:1522669. [PMID: 40406342 PMCID: PMC12097280 DOI: 10.3389/fmicb.2025.1522669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/31/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Duck production in Egypt plays a significant role in the poultry sector. However, viral infections, such as avian influenza virus (AIV), Newcastle disease virus (NDV), and duck hepatitis A virus (DHAV), pose a significant threat to ducks, leading to substantial economic losses. Despite their impact, data on these duck pathogens in Egypt remain limited. Methods In this study, 200 samples from various organs were collected from 20 commercial duck farms and pooled into 20 working samples. Samples of brain, liver, spleen, trachea, and lung were analyzed to detect DHAV, NDV, and H5 and H9 AIV using reverse transcriptase polymerase chain reaction (RT-PCR); then, positive samples were subjected for sequencing. Samples from the same organs were also subjected for histopathological examination. Results Interestingly, the RT-PCR detected DHAV, NDV, and H9-AIV, and mixed viral infections were confirmed in some farms. The phylogenetic analysis of DHAV 3D gene revealed that both DHAV-1 and DHAV-3 genotypes are circulating in Egyptian duckling with most tested samples containing DHAV-3 genotype, considered the vaccine used in Egypt contains DHAV-1 strain only. All detected NDV strains in this study are clustered in Genotype VII.1.1 with F0 cleavage site (RRQKR ↓ F) of velogenic NDV. On the other hand, our studied H9-AIV strains are aligned in H9.4.1.1 sub-lineage with other Egyptian field and vaccine seed strains. Local Egyptian vaccine seed strains were found closely related to our isolates than imported vaccines. H9.4.1 strains displayed HA0 protein cleavage site motif PARSSR↓GLF of LPAI. All the aligned Egyptian H9-AIV field and local vaccine strains have 168 N, 191H, 197 T, 224 L, and 234 L amino residues, indicating that these viruses had the characteristic of receptor specificity like that of human influenza virus increasing the zoonotic risk of such virus. Histopathologically, animals showed characteristic lesions in various organs coherent to the infection by these mentioned pathogens. Conclusion Collectively, the study provided novel information about viral infections linked to neurological diseases of ducks in Egypt and concluded that local DHAV vaccine needs to be modified to contain both DHAV-1 and DHAV-3 strains.
Collapse
Affiliation(s)
- Rania I. Mohamed
- Department of Pathology, Animal Health Research Institute, Mansoura Branch (AHRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Samah M. Mosad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanaa S. Ali
- Department of Pathology, Animal Health Research Institute, Mansoura Branch (AHRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Wejdan Oudah Albalawi
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Jouf University, Qurayyat, Saudi Arabia
| | - Hanaa A. Elsamadony
- Department of Poultry Diseases, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Neven M. Ramzy
- Department of Virology, Agricultural Research Center (ARC), Animal Health Research Institute, Ismailia Branch (AHRI), Giza, Egypt
| | - Alaa S. Saad
- Department of Biotechnology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Deema Fallatah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
3
|
Chen P, Xie JF, Lin Q, Zhao L, Zhang YH, Chen HB, Weng YW, Huang Z, Zheng KC. A study of the relationship between human infection with avian influenza a (H5N6) and environmental avian influenza viruses in Fujian, China. BMC Infect Dis 2019; 19:762. [PMID: 31477028 PMCID: PMC6719373 DOI: 10.1186/s12879-019-4145-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian influenza A (H5N6) virus poses a great threat to the human health since it is capable to cross the species barrier and infect humans. Although human infections are believed to largely originate from poultry contaminations, the transmissibility is unclear and only limited information was available on poultry environment contaminations, especially in Fujian Province. METHODS A total of 4901 environmental samples were collected and tested for Avian Influenza Virus (AIV) from six cities in Fujian Province through the Fujian Influenza Surveillance System from 2013 to 2017. Two patient-related samples were taken from Fujian's first confirmed H5N6 human case and his backyard chicken feces in 2017. Chi-square test or Fisher's exact probability test was used to compare the AIV and the viral subtype positive rates among samples from different Surveillance cities, surveillance sites, sample types, and seasons. Phylogenetic tree analysis and molecular analysis were conducted to track the viral transmission route of the human infection and to map out the evolutions of H5N6 in Fujian. RESULTS The overall positive rate of the H5 subtype AIVs was 4.24% (208/4903). There were distinctive differences (p < 0.05) in the positive rates in samples from different cities, sample sites, sample types and seasons. The viruses from the patient and his backyard chicken feces shared high homologies (99.9-100%) in all the eight gene segments. Phylogenetic trees also showed that these two H5N6 viruses were closely related to each other, and were classified into the same genetic clade 2.3.4.4 with another six H5N6 isolates from the environmental samples. The patient's H5N6 virus carried genes from H6N6, H5N8 and H5N6 viruses originated from different areas. The R294K or N294S substitution was not detected in the neuraminidase (NA). The S31 N substitution in the matrix2 (M2) gene was detected but only in one strain from the environmental samples. CONCLUSIONS The H5 subtype of AIVs has started circulating in the poultry environments in Fujian Province. The patient's viral strain originated from the chicken feces in his backyard. Genetic reassortment in H5N6 viruses in Fujian Province was indicated. The H5N6 viruses currently circulating in Fujian Province were still commonly sensitive to Oseltamivir and Zanamivir, but the resistance against Amantadine has emerged.
Collapse
Affiliation(s)
- Ping Chen
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China
| | - Jian-Feng Xie
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China.,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Qi Lin
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Lin Zhao
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Yan-Hua Zhang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Hong-Bin Chen
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Yu-Wei Weng
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China.,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Zheng Huang
- Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China
| | - Kui-Cheng Zheng
- College of Public Health, Fujian Medical University, No. 88, Jiaotong Road, Taijiang District, Fuzhou, 350000, China. .,Fujian Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
5
|
Cao X, Yang F, Wu H, Xu L. Genetic characterization of novel reassortant H5N6-subtype influenza viruses isolated from cats in eastern China. Arch Virol 2017; 162:3501-3505. [PMID: 28730524 DOI: 10.1007/s00705-017-3490-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/06/2017] [Indexed: 12/01/2022]
Abstract
Cats are susceptible to influenza A viruses and therefore may act as transmission vectors within households, posing a potential public health concern. Two novel reassortant H5N6 influenza viruses were isolated from cats in Zhejiang Province, Eastern China, in 2016. Both viruses were characterized by whole-genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis showed that these viruses received their genes from H5N6, H9N2, and H7N9 influenza viruses isolated from China. These H5N6 viruses were able to replicate in mice without prior adaptation. Our results show that continued circulation of these viruses could endanger humans.
Collapse
Affiliation(s)
- Xueliang Cao
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, 198 Shiqiao Road, Hangzhou, 310021, Zhejiang, China.,Dezhou College, Dezhou, 253023, Shandong, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Lihua Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, 198 Shiqiao Road, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
6
|
Steensels M, Rauw F, van den Berg T, Marché S, Gardin Y, Palya V, Lambrecht B. Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain. Avian Dis 2017; 60:202-9. [PMID: 27309056 DOI: 10.1637/11126-050615-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction of viral shedding in the vaccinated birds.
Collapse
Affiliation(s)
- M Steensels
- A Avian Virology & Immunology Service, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg, 99 B-1180 Brussels, Belgium
| | - F Rauw
- A Avian Virology & Immunology Service, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg, 99 B-1180 Brussels, Belgium
| | - Th van den Berg
- A Avian Virology & Immunology Service, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg, 99 B-1180 Brussels, Belgium
| | - S Marché
- A Avian Virology & Immunology Service, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg, 99 B-1180 Brussels, Belgium
| | - Y Gardin
- B Ceva Animal Health, Libourne, France
| | - V Palya
- C Ceva Animal Health, Budapest, Hungary
| | - B Lambrecht
- A Avian Virology & Immunology Service, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg, 99 B-1180 Brussels, Belgium
| |
Collapse
|
7
|
Wu H, Lu R, Peng X, Peng X, Cheng L, Liu F, Wu N. Characterization of Novel Reassortant Influenza A (H5N2) Viruses Isolated from Poultry in Eastern China, 2015. Front Microbiol 2017; 8:741. [PMID: 28487690 PMCID: PMC5403823 DOI: 10.3389/fmicb.2017.00741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/10/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, novel variants of H5 highly pathogenic avian influenza viruses (AIVs) have been frequently isolated from poultry and wild birds in Asia, Europe and North America. Live poultry markets (LPMs) play an important role in the dissemination of influenza viruses. Four H5N2 AIVs were isolated from poultry during surveillance of AIVs in LPMs in Eastern China, in 2015. Whole-genome sequencing, combined with phylogenetic and antigenic analyses were performed to characterize these viruses. These H5N2 viruses had undergone extensive reassortment resulting in two genetic groups of viruses in poultry. These viruses exhibited slightly pathogenicity in mice, and replicated without prior adaptation. The continued circulation of these novel H5N2 viruses may represent a threat to human health.
Collapse
Affiliation(s)
- Haibo Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Rufeng Lu
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xiuming Peng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Xiaorong Peng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Linfang Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Fumin Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Nanping Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
8
|
Wu H, Peng X, Peng X, Wu N. Amino acid substitutions involved in the adaptation of a novel highly pathogenic H5N2 avian influenza virus in mice. Virol J 2016; 13:159. [PMID: 27663652 PMCID: PMC5035443 DOI: 10.1186/s12985-016-0612-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 11/23/2022] Open
Abstract
Background H5N2 avian influenza viruses (AIVs) can infect individuals that are in frequent contact with infected birds. In 2013, we isolated a novel reassortant highly pathogenic H5N2 AIV strain [A/duck/Zhejiang/6DK19/2013(H5N2) (6DK19)] from a duck in Eastern China. This study was undertaken to understand the adaptive processes that led enhanced replication and increased virulence of 6DK19 in mammals. 6DK19 was adapted to mice using serial lung-to-lung passages (10 passages total). The virulence of the wild-type virus (WT-6DK19) and mouse-adapted virus (MA-6DK19) was determined in mice. The whole-genome sequences of MA-6DK19 and WT-6DK19 were compared to determine amino acid differences. Findings Amino acid changes were identified in the MA-DK19 PB2 (E627K), PB1 (I181T), HA (A150S), NS1 (seven amino acid extension “WRNKVAD” at the C-terminal), and NS2 (E69G) proteins. Survival and histology analyses demonstrated that MA-6DK19 was more virulent in mice than WT-6DK19. Conclusion Our results suggest that these substitutions are involved in the enhanced replication efficiency and virulence of H5N2 AIVs in mammals. Continuing surveillance for H5N2 viruses in poultry that are carrying these mutations is required. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0612-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Peng X, Wu H, Peng X, Wu X, Cheng L, Liu F, Ji S, Wu N. Amino acid substitutions occurring during adaptation of an emergent H5N6 avian influenza virus to mammals. Arch Virol 2016; 161:1665-1670. [PMID: 26997612 DOI: 10.1007/s00705-016-2826-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/13/2016] [Indexed: 12/15/2022]
Abstract
Avian influenza viruses (AIVs) are known to cross species barriers, and emergent highly pathogenic H5N6 AIVs pose a serious threat to human health and the poultry industry. Here, we serially passaged an H5N6 virus 10 times in BALB/c mice. The pathogenicity of the wild-type 6D2 (WT-6D2) and mammal-adapted 6D2 strain (MA-6D2) were compared. The viral titer in multiple organs and the death rate for MA-6D2 were significantly higher than for WT-6D2. We provide evidence that the mutations HA A150V, NA R143K and G147E, PB2 E627K, and PA A343T may be important for adaptation of H5N6 AIVs to mammals.
Collapse
Affiliation(s)
- Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shujing Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Smith GJD, Donis RO. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respir Viruses 2016; 9:271-6. [PMID: 25966311 PMCID: PMC4548997 DOI: 10.1111/irv.12324] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 01/21/2023] Open
Abstract
Aim The A/goose/Guangdong/1/96-like hemagglutinin (HA) genes of highly pathogenic avian influenza (HPAI) A(H5) viruses have continued to rapidly evolve since the most recent update to the H5 clade nomenclature by the WHO/OIE/FAO H5N1 Evolution Working Group. New clades diverging beyond established boundaries need to be identified and designated accordingly. Method Hemagglutinin sequences deposited in publicly accessible databases up to December 31, 2014, were analyzed by phylogenetic and average pairwise distance methods to identify new clades that merit nomenclature changes. Results Three new clade designations were recommended based on division of clade 2·1·3·2a (Indonesia), 2·2·1 (Egypt), and 2·3·4 (widespread detection in Asia, Europe, and North America) that includes newly emergent HPAI virus subtypes H5N2, H5N3, H5N5, H5N6, and H5N8. Conclusion Continued global surveillance for HPAI A(H5) viruses in all host species and timely reporting of sequence data will be critical to quickly identify new clades and assess their potential impact on human and animal health.
Collapse
Affiliation(s)
- Gavin J D Smith
- Program of Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore city, Singapore
| | - Ruben O Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China. Sci Rep 2015; 5:17508. [PMID: 26627108 PMCID: PMC4667249 DOI: 10.1038/srep17508] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Live poultry markets (LPMs) are a key source of reassorted avian influenza viruses (AIVs) because of the density of terrestrial and aquatic poultry and the frequency of AIV infection. H9N2 viruses are prevalent in terrestrial poultry throughout Asia and have been isolated from poultry outbreaks worldwide. They infect both avian and mammalian species and may be significant donors of genetic material to emerging human pathogens. LPMs in Zhejiang Province were surveyed from 2013-2014 for AIVs. Three hundred seventy-four (374) AIV strains were isolated from 3,328 samples. Whole-genome sequencing and phylogenetic analyses were performed. We identified a novel H9N2 virus genotype that had undergone reassortment with gene segments from Qa/HK/G1/97-like, Ck/BJ/1/94-like, and Dk/HK/Y439/97-like viruses. Phylogenetic analyses suggested the H9N2 viruses had undergone reassortments with other AIV subtypes. The results also suggested that two different clades (2.3.2 and 2.3.4.6) of H5 viruses were co-circulating in Zhejiang Province. Given that reassorted H5 AIVs were detected in geese and ducks, it is possible that apparently healthy birds contribute to emerging H5 AIVs. Continued surveillance is required in poultry in eastern China.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
12
|
Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Genetic characterization of natural reassortant H4 subtype avian influenza viruses isolated from domestic ducks in Zhejiang province in China from 2013 to 2014. Virus Genes 2015; 51:347-355. [PMID: 26350888 DOI: 10.1007/s11262-015-1245-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/01/2015] [Indexed: 11/25/2022]
Abstract
The H4 subtype of the influenza virus was first isolated in 1999 from pigs with pneumonia in Canada. H4 avian influenza viruses (AIVs) are able to cross the species barrier to infect humans. In order to better understand the genetic relationships between H4 AIV strains circulating in Eastern China and other AIV strains from Asia, a survey of domestic ducks in live poultry markets was undertaken in Zhejiang province from 2013 to 2014. In this study, 23 H4N2 (n = 14) and H4N6 (n = 9) strains were isolated from domestic ducks, and all eight gene segments of these strains were sequenced and compared to reference AIV strains available in GenBank. The isolated strains clustered primarily within the Eurasian lineage. No mutations associated with adaption to mammalian hosts or drug resistance was observed. The H4 reassortant strains were found to be of low pathogenicity in mice and able to replicate in the lung of the mice without prior adaptation. Continued surveillance is required, given the important role of domestic ducks in reassortment events leading to new AIVs.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
13
|
Molecular characterization of a reassortant H11N9 subtype avian influenza virus isolated from a domestic duck in Eastern China. Arch Virol 2015. [PMID: 26212362 DOI: 10.1007/s00705-015-2528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During surveillance for avian influenza viruses (AIVs) in live-poultry markets in Eastern China in 2013, an H11N9 AIV was isolated from a domestic duck. Phylogenetic analysis showed that this strain received its genes from H11, H3, H10, and H7 AIVs of poultry in China. This strain was found to be minimally pathogenic in mice and was able to replicate in mice without prior adaptation. Considering that the reassorted H11N9 viruses were isolated from domestic ducks in this study, it is possible that these ducks play an important role in the generation of novel reassorted H11 AIVs.
Collapse
|
14
|
Xu H, Meng F, Huang D, Sheng X, Wang Y, Zhang W, Chang W, Wang L, Qin Z. Genomic and phylogenetic characterization of novel, recombinant H5N2 avian influenza virus strains isolated from vaccinated chickens with clinical symptoms in China. Viruses 2015; 7:887-898. [PMID: 25723387 PMCID: PMC4379553 DOI: 10.3390/v7030887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.
Collapse
Affiliation(s)
- Huaiying Xu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| | - Fang Meng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Dihai Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
- Shandong Jianmu Biological Pharmaceutical Co., Ltd., Jinan, Shandong 250100, China.
| | - Xiaodan Sheng
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
- Shandong Jianmu Biological Pharmaceutical Co., Ltd., Jinan, Shandong 250100, China.
| | - Youling Wang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| | - Wei Zhang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| | - Weishan Chang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Leyi Wang
- Animal Diseases Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, OH 43068, USA.
| | - Zhuoming Qin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
- Shandong Jianmu Biological Pharmaceutical Co., Ltd., Jinan, Shandong 250100, China.
| |
Collapse
|
15
|
Li Q, Wang X, Gu M, Zhu J, Hao X, Gao Z, Sun Z, Hu J, Hu S, Wang X, Liu X, Liu X. Novel H5 clade 2.3.4.6 viruses with both α-2,3 and α-2,6 receptor binding properties may pose a pandemic threat. Vet Res 2014; 45:127. [PMID: 25516306 PMCID: PMC4268885 DOI: 10.1186/s13567-014-0127-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
The emerging H5 clade 2.3.4.6 viruses of different NA subtypes have been detected in different domestic poultry in China. We evaluated the receptor binding property and transmissibility of four novel H5 clade 2.3.4.6 subtype highly pathogenic avian influenza viruses. The results show that these viruses bound to both avian-type (α-2,3) and human-type (α-2,6) receptors. Furthermore, we found that one of these viruses, GS/EC/1112/11, not only replicated but also transmitted efficiently in guinea pigs. Therefore, such novel H5 subtype viruses have the potential of a pandemic threat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|