1
|
Xu Q, Zhang X, Zhao R, Li S, Liesche J. UBIQUITIN-CONJUGATING ENZYME34 mediates pyrophosphatase AVP1 turnover and regulates abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiaf015. [PMID: 39797907 PMCID: PMC11809586 DOI: 10.1093/plphys/kiaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton-pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana). Through in vitro and in vivo assays, we established that UBC34 interacts with and ubiquitylates AVP1. Mutant lines in which UBC34 was downregulated showed higher tolerance to salt and low inorganic phosphate (Pi) stresses, while we observed the opposite for plants overexpressing UBC34. Our results showed that UBC34 co-localizes with AVP1, and AVP1 activity is enhanced in the plasma membrane fractions of ubc34 mutants, indicating that UBC34 mediates the turnover of plasma membrane-localized AVP1. We also observed that UBC34 affects the apoplastic pH but not the vacuolar pH of root cells. Based on our results, we propose a mechanistic model in which UBC34 mediates AVP1 turnover at the plasma membrane of root epidermal cells. Downregulation of UBC34 under salt and phosphate starvation conditions enhances AVP1 activity, leading to a higher proton gradient available for sodium sequestration and phosphate uptake.
Collapse
Affiliation(s)
- Qiyu Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Xingjian Zhang
- Institute of Biology, University of Graz, 8020 Graz, Austria
| | - Ruifeng Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | | |
Collapse
|
2
|
Zhao G, Liu Y, Li L, Che R, Douglass M, Benza K, Angove M, Luo K, Hu Q, Chen X, Henry C, Li Z, Ning G, Luo H. Gene pyramiding for boosted plant growth and broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:678-697. [PMID: 37902192 PMCID: PMC10893947 DOI: 10.1111/pbi.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.
Collapse
Affiliation(s)
- Guiqin Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Grassland ScienceGansu Agricultural UniversityLanzhouGansuChina
| | - Yu Liu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Landscape ArchitectureNortheast Forestry UniversityHarbinHeilongjiangChina
| | - Lei Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Rui Che
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Megan Douglass
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Katherine Benza
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Mitchell Angove
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Kristopher Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Xiaotong Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Charles Henry
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
3
|
Wang M, Zhang R, Shu JP, Zheng XL, Wu XY, Chen JB, Wang MN, Shen H, Yan YH. Whole Genome Duplication Events Likely Contributed to the Aquatic Adaptive Evolution of Parkerioideae. PLANTS (BASEL, SWITZERLAND) 2024; 13:521. [PMID: 38498522 PMCID: PMC10893450 DOI: 10.3390/plants13040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.
Collapse
Affiliation(s)
- Meng Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jiang-Ping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xi-Long Zheng
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527322, China;
| | - Xin-Yi Wu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Jian-Bing Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Mei-Na Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yue-Hong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| |
Collapse
|
4
|
Lian B, Wu A, Wu H, Lv X, Sun M, Li Y, Lu Z, Li S, An L, Guo X, Wei F, Fu X, Lu J, Wang H, Ma L, Wei H, Yu S. GhVOZ1-AVP1 module positively regulates salt tolerance in upland cotton (Gossypium hirsutum L.). Int J Biol Macromol 2024; 258:129116. [PMID: 38171192 DOI: 10.1016/j.ijbiomac.2023.129116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Vascular Plant One‑zinc Finger (VOZ) transcription factor can respond to a variety of abiotic stresses, however its function in cotton and the molecular mechanisms of response to salt tolerance remained unclear. In this study, we found that GhVOZ1 is highly expressed in stamen and stem of cotton under normal conditions. The expression of GhVOZ1 increased significantly after 3 h of salt treatment in three-leaf staged upland cotton. Overexpressed transgenic lines of GhVOZ1 in Arabidopsis and upland cotton were treated with salt stress and we found that GhVOZ1 could respond positively to salt stress. GhVOZ1 can regulate Arabidopsis Vacuolar Proton Pump Pyrophosphatase (H+-PPase) gene (AVP1) expression through specific binding to GCGTCTAAAGTACGC site on GhAVP1 promoter, which was examined through Dual-luciferase assay and Electrophoretic mobility shift assay (EMSA). AVP1 expression was significantly increased in Arabidopsis with GhVOZ1 overexpression, while GhAVP1 expression was decreased in virus induced gene silenced (VIGS) cotton plants of GhVOZ1. Knockdown of GhAVP1 expression in cotton plants by VIGS showed decreased superoxide dismutase (SOD) and peroxidase (POD) activities, whereas an increased malondialdehyde (MDA) content and ultimately decreased salt tolerance. The GhVOZ1-AVP1 module could maintain sodium ion homeostasis through cell ion transport and positively regulate the salt tolerance in cotton, providing new ideas and insights for the study of salt tolerance.
Collapse
Affiliation(s)
- Boying Lian
- College of Agronomy, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Aimin Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hongmei Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaoyan Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Mengxi Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yiran Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhengying Lu
- Handan Academy of Agricultural Sciences, Handan 056000, Hebei, China
| | - Shiyun Li
- Handan Academy of Agricultural Sciences, Handan 056000, Hebei, China
| | - Li An
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaohao Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Fei Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shannxi, China.
| |
Collapse
|
5
|
Ma X, Vanneste S, Chang J, Ambrosino L, Barry K, Bayer T, Bobrov AA, Boston L, Campbell JE, Chen H, Chiusano ML, Dattolo E, Grimwood J, He G, Jenkins J, Khachaturyan M, Marín-Guirao L, Mesterházy A, Muhd DD, Pazzaglia J, Plott C, Rajasekar S, Rombauts S, Ruocco M, Scott A, Tan MP, Van de Velde J, Vanholme B, Webber J, Wong LL, Yan M, Sung YY, Novikova P, Schmutz J, Reusch TBH, Procaccini G, Olsen JL, Van de Peer Y. Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. NATURE PLANTS 2024; 10:240-255. [PMID: 38278954 PMCID: PMC7615686 DOI: 10.1038/s41477-023-01608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Luca Ambrosino
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Till Bayer
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | | | - LoriBeth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Justin E Campbell
- Coastlines and Oceans Division, Institute of Environment, Florida International University-Biscayne Bay Campus, Miami, FL, USA
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria Luisa Chiusano
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Agricultural Sciences, University Federico II of Naples, Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Guifen He
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Attila Mesterházy
- Centre for Ecological Research, Wetland Ecology Research Group, Debrecen, Hungary
| | - Danish-Daniel Muhd
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, Fano, Italy
| | - Alison Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jozefien Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mi Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Polina Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
- National Biodiversity Future Centre, Palermo, Italy.
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Das KK, Mohapatra A, George AP, Chavali S, Witzel K, Ramireddy E. The proteome landscape of the root cap reveals a role for the jacalin-associated lectin JAL10 in the salt-induced endoplasmic reticulum stress pathway. PLANT COMMUNICATIONS 2023; 4:100726. [PMID: 37789617 PMCID: PMC10721516 DOI: 10.1016/j.xplc.2023.100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Rapid climate change has led to enhanced soil salinity, one of the major determinants of land degradation, resulting in low agricultural productivity. This has a strong negative impact on food security and environmental sustainability. Plants display various physiological, developmental, and cellular responses to deal with salt stress. Recent studies have highlighted the root cap as the primary stress sensor and revealed its crucial role in halotropism. The root cap covers the primary root meristem and is the first cell type to sense and respond to soil salinity, relaying the signal to neighboring cell types. However, it remains unclear how root-cap cells perceive salt stress and contribute to the salt-stress response. Here, we performed a root-cap cell-specific proteomics study to identify changes in the proteome caused by salt stress. The study revealed a very specific salt-stress response pattern in root-cap cells compared with non-root-cap cells and identified several novel proteins unique to the root cap. Root-cap-specific protein-protein interaction (PPI) networks derived by superimposing proteomics data onto known global PPI networks revealed that the endoplasmic reticulum (ER) stress pathway is specifically activated in root-cap cells upon salt stress. Importantly, we identified root-cap-specific jacalin-associated lectins (JALs) expressed in response to salt stress. A JAL10-GFP fusion protein was shown to be localized to the ER. Analysis of jal10 mutants indicated a role for JAL10 in regulating the ER stress pathway in response to salt. Taken together, our findings highlight the participation of specific root-cap proteins in salt-stress response pathways. Furthermore, root-cap-specific JAL proteins and their role in the salt-mediated ER stress pathway open a new avenue for exploring tolerance mechanisms and devising better strategies to increase plant salinity tolerance and enhance agricultural productivity.
Collapse
Affiliation(s)
- Krishna Kodappully Das
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ankita Mohapatra
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Abin Panackal George
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
7
|
Drincovich MF, Maurino VG. Adjustments of carbon allocation and stomatal dynamics by target localized strategies to increase crop productivity under changing climates. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153685. [PMID: 35364488 DOI: 10.1016/j.jplph.2022.153685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing crop productivity to ensure food security for future generations is one of the greatest challenges in current plant research. This challenge is even greater due to global climate changes, as enhancing crop yields must occur against the backdrop of increasingly changing environments, particularly rising temperatures and water constraints. Global crop yield growth depends on an improved dynamic balance between carbon and water usage. Here we discuss different approaches that highlight the role of vascular tissue and guard cells in attempting to mitigate the carbon-water trade-off. We argue that crop engineering in the future will require the incorporation of a combination of improved traits. Since targeted gene modifications generally produce fewer undesirable pleiotropic effects than constitutive modifications, we envision that modifications of specific cell types, such as phloem companion cells and guard cells, represent an effective approach for adding beneficial gene modifications in the same plant. This approach will enable trait stacking to design future crops with both high yield and resilience to various climate change stresses.
Collapse
Affiliation(s)
- Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina.
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Nepal N, Yactayo-Chang JP, Gable R, Wilkie A, Martin J, Aniemena CL, Gaxiola R, Lorence A. Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11384. [PMID: 32995104 PMCID: PMC7507355 DOI: 10.1002/aps3.11384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
PREMISE AVP1 (H+-pyrophosphatase) and MIOX4 (myo-inositol oxygenase) are genes that, when overexpressed individually, enhance the growth and abiotic stress tolerance of Arabidopsis thaliana plants. We propose that pyramiding AVP1 and MIOX4 genes will further improve stress tolerance under water-limited and salt-stress conditions. METHODS MIOX4 and AVP1 reciprocal crosses were developed and phenomic approaches used to investigate the possible synergy between these genes. RESULTS Under normal and stress conditions, the crosses had higher foliar ascorbate content than the wild-type and parental lines. Under water-limited conditions, the crosses also displayed an enhanced growth rate and biomass compared with the control. The observed increases in photosystem II efficiency, linear electron flow, and relative chlorophyll content may have contributed to this observed phenotype. Additionally, the crosses retained more water than the controls when subjected to salt stress. Higher seed yields were also observed in the crosses compared with the controls when grown under salt and water-limitation stresses. DISCUSSION Overall, these results suggest the combinatorial effect of overexpressing MIOX4 and AVP1 may be more advantageous than the individual traits for enhancing stress tolerance and seed yields during crop improvement.
Collapse
Affiliation(s)
- Nirman Nepal
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Jessica P Yactayo-Chang
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Ricky Gable
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Austin Wilkie
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Jazmin Martin
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Chineche L Aniemena
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Roberto Gaxiola
- School of Life Sciences Arizona State University-Tempe P.O. Box 4501 Tempe Arizona 85821 USA
| | - Argelia Lorence
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
- Department of Chemistry and Physics Arkansas State University P.O. Box 419, State University Arkansas 72467 USA
| |
Collapse
|
9
|
Wijewardene I, Mishra N, Sun L, Smith J, Zhu X, Payton P, Shen G, Zhang H. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110499. [PMID: 32540017 DOI: 10.1016/j.plantsci.2020.110499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
The severity and frequency of many abiotic stresses such as drought, salinity and heat, cause substantial crop losses worldwide, which poses a serious challenge in food security. To increase crop production, new approaches are needed. Previous research has shown that overexpression of the tonoplast H+ pyrophosphatase gene AVP1 leads to improved drought and salt tolerance in transgenic plants. Other research showed that overexpression of thermotolerant ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase gene could maintain photosynthesis at higher temperatures, which contributes to higher heat tolerance in transgenic plants. In nature, abiotic stresses rarely come alone, instead these stresses often occur in various combinations. Therefore, it is desirable to make crops more tolerant to multiple stresses, which will likely lead to higher crop yield under various stress conditions. It is shown here that co-overexpression of the Arabidopsis gene AVP1 and the Larrea Rubisco activase gene RCA significantly increases drought, salinity and heat tolerance, resulting in higher biomass and seed yield than wild-type plants. AVP1/RCA co-overexpressing plants are as more drought- and salt-tolerant as AVP1-overexpressing plants, and as more heat-tolerant as RCA-overexpressing plants. More importantly, they produce higher seed yields than AVP1-overexpressing, RCA-overexpressing, and wild-type plants under combined drought and heat conditions.
Collapse
Affiliation(s)
- Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neelam Mishra
- St. Joseph's College Autonomous, Bengaluru, Karnataka, 560027, India
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jennifer Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xunlu Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Paxton Payton
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
10
|
Graus D, Konrad KR, Bemm F, Patir Nebioglu MG, Lorey C, Duscha K, Güthoff T, Herrmann J, Ferjani A, Cuin TA, Roelfsema MRG, Schumacher K, Neuhaus HE, Marten I, Hedrich R. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. THE NEW PHYTOLOGIST 2018; 219:1421-1432. [PMID: 29938800 PMCID: PMC6099232 DOI: 10.1111/nph.15280] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 05/03/2023]
Abstract
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Felix Bemm
- Institute of BioinformaticsCenter for Computational and Theoretical, BiologyUniversity of WürzburgAm HublandWürzburgD‐97218Germany
| | - Meliha Görkem Patir Nebioglu
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - Christian Lorey
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Kerstin Duscha
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Tilman Güthoff
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Ali Ferjani
- Department of BiologyTokyo Gakugei UniversityNukui Kitamachi 4‐1‐1Koganei‐shiTokyo184‐8501Japan
| | - Tracey Ann Cuin
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7001Australia
| | - M. Rob G. Roelfsema
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Karin Schumacher
- Centre for Organismal StudiesDevelopmental Biology of PlantsRuprecht‐Karls‐University of HeidelbergIm Neuenheimer Feld 230Heidelberg69120Germany
| | - H. Ekkehard Neuhaus
- Plant PhysiologyUniversity KaiserslauternPostfach 3049KaiserslauternD‐67653Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius von‐Sachs Platz 2WürzburgD‐97082Germany
| |
Collapse
|
11
|
Wang CS, Jiang QT, Ma J, Wang XY, Wang JR, Chen GY, Qi PF, Peng YY, Lan XJ, Zheng YL, Wei YM. Characterization and expression analyses of the H⁺-pyrophosphatase gene in rye. J Genet 2017; 95:565-72. [PMID: 27659326 DOI: 10.1007/s12041-016-0664-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.
Collapse
Affiliation(s)
- Chang-Shui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schilling RK, Tester M, Marschner P, Plett DC, Roy SJ. AVP1: One Protein, Many Roles. TRENDS IN PLANT SCIENCE 2017; 22:154-162. [PMID: 27989652 DOI: 10.1016/j.tplants.2016.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 05/23/2023]
Abstract
Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H+-PPase) gene (AVP1) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1. It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles.
Collapse
Affiliation(s)
- Rhiannon K Schilling
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mark Tester
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Petra Marschner
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Darren C Plett
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Plant Functional Genomics, Adelaide, SA 5005, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Plant Functional Genomics, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Tripathy MK, Tiwari BS, Reddy MK, Deswal R, Sopory SK. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. PROTOPLASMA 2017; 254:109-124. [PMID: 26666551 DOI: 10.1007/s00709-015-0914-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 05/23/2023]
Abstract
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89-96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33-53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.
Collapse
Affiliation(s)
- Manas Kumar Tripathy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Budhi Sagar Tiwari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malireddy K Reddy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Deswal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sudhir K Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Yang Y, Tang RJ, Li B, Wang HH, Jin YL, Jiang CM, Bao Y, Su HY, Zhao N, Ma XJ, Yang L, Chen SL, Cheng XH, Zhang HX. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar. TREE PHYSIOLOGY 2015; 35:663-77. [PMID: 25877769 DOI: 10.1093/treephys/tpv027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
The Arabidopsis vacuolar H(+)-pyrophosphatase (AVP1) has been well studied and subsequently employed to improve salt and/or drought resistance in herbaceous plants. However, the exact function of H(+)-pyrophosphatase in woody plants still remains unknown. In this work, we cloned a homolog of type I H(+)-pyrophosphatase gene, designated as PtVP1.1, from Populus trichocarpa, and investigated its function in both Arabidopsis and poplar. The deduced translation product PtVP1.1 shares 89.74% identity with AVP1. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR analyses revealed a ubiquitous expression pattern of PtVP1.1 in various tissues, including roots, stems, leaves and shoot tips. Heterologous expression of PtVP1.1 rescued the retarded-root-growth phenotype of avp1, an Arabidopsis knock out mutant of AVP1, on low carbohydrate medium. Overexpression of PtVP1.1 in poplar (P. davidiana × P. bolleana) led to more vigorous growth of transgenic plants in the presence of 150 mM NaCl. Microsomal membrane vesicles derived from PtVP1.1 transgenic plants exhibited higher H(+)-pyrophosphatase hydrolytic activity than those from wild type (WT). Further studies indicated that the improved salt tolerance was associated with a decreased Na(+) and increased K(+) accumulation in the leaves of transgenic plants. Na(+) efflux and H(+) influx in the roots of transgenic plants were also significantly higher than those in the WT plants. All these results suggest that PtVP1.1 is a functional counterpart of AVP1 and can be genetically engineered for salt tolerance improvement in trees.
Collapse
Affiliation(s)
- Y Yang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China 264025 National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - R J Tang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032 Present address: Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - B Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - H H Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - Y L Jin
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - C M Jiang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - Y Bao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| | - H Y Su
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China 264025
| | - N Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua-East Road, Beijing, China 100083
| | - X J Ma
- College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua-East Road, Beijing, China 100083
| | - L Yang
- College of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, China 210093
| | - S L Chen
- College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua-East Road, Beijing, China 100083
| | - X H Cheng
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China 264025
| | - H X Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China 264025 National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China 200032
| |
Collapse
|
15
|
Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC. Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:378-86. [PMID: 24261956 DOI: 10.1111/pbi.12145] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/20/2013] [Accepted: 10/14/2013] [Indexed: 05/20/2023]
Abstract
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.
Collapse
Affiliation(s)
- Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, Adelaide, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. PHOTOSYNTHESIS RESEARCH 2013; 115:1-22. [PMID: 23539361 DOI: 10.1007/s11120-013-9813-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na(+) transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.
Collapse
Affiliation(s)
- Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
17
|
Lampl N, Alkan N, Davydov O, Fluhr R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:498-510. [PMID: 23398119 DOI: 10.1111/tpj.12141] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 05/23/2023]
Abstract
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro-survival function by inhibiting its target pro-death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1-RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over-expression exhibited significantly less elicitor-stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro-death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro-death function of compartmentalized protease RD21 by determining a set-point for its activity and limiting the damage induced during cell death.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
18
|
|
19
|
Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K. Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. PLANT MOLECULAR BIOLOGY 2012; 79:137-55. [PMID: 22415161 DOI: 10.1007/s11103-012-9901-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 02/20/2012] [Indexed: 05/23/2023]
Abstract
Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance.
Collapse
Affiliation(s)
- Sandra Gouiaa
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
20
|
Li Z, Zhou M, Hu Q, Reighard S, Yuan S, Yuan N, San B, Li D, Jia H, Luo H. Manipulating expression of tonoplast transporters. Methods Mol Biol 2012; 913:359-369. [PMID: 22895772 DOI: 10.1007/978-1-61779-986-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant vacuoles have multifaceted roles including turgor maintenance, cytosolic pH and ionic homeostasis, plant protection against environmental stress, detoxification, pigmentation, and cellular signaling. These roles are achieved through the coordinated activities of many proteins in the tonoplast (vacuolar membrane), of which the proton pumps and ion transporters have been modified for improved abiotic stress tolerance in transgenic plants. Here we describe a method to manipulate vacuolar H(+)-pyrophosphatase in turfgrass and evaluate the impact of the modified tonoplast on the phenotype, biochemistry, and physiology of the transgenics. Creeping bentgrass (Agrostis stolonifera L.) plants overexpressing an Arabidopsis vacuolar H(+)-pyrophosphatase AVP1 exhibited improved growth and enhanced salt tolerance, likely associated with increased photosynthesis, relative water content, proline production, and Na(+) uptake. These transgenic plants also had decreased solute leakage in the leaf tissues and increased concentrations of Na(+), K(+), Cl(-), and total phosphorus in the root tissues. Similar strategies can be employed to manipulate other tonoplast transporters and in other plant species to produce transgenic plants with improved performance under various abiotic stresses.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khoudi H, Maatar Y, Gouiaa S, Masmoudi K. Transgenic tobacco plants expressing ectopically wheat H⁺-pyrophosphatase (H⁺-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:98-103. [PMID: 22056071 DOI: 10.1016/j.jplph.2011.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/29/2011] [Accepted: 07/24/2011] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) is considered an extremely significant pollutant due to its high toxicity to many organisms. Plants have evolved several mechanisms to cope with Cd, the most important of which is vacuolar sequestration. Cadmium can be directly transported into vacuoles by cations/H(+) exchangers, such as CAXs, which are energized by the pH gradient established by proton pumps. A cDNA (TaVP1) encoding wheat vacuolar H(+)-pyrophosphatase (V-H-PPase) was ectopically expressed in transgenic tobacco to evaluate whether this proton pump expression would enhance Cd tolerance and accumulation in planta. When TaVP1-expressing plants were exposed to various concentrations of Cd, they were found to be more tolerant to Cd compared to wild type plants. Cadmium accumulation in the plant biomass in transgenic plants was higher than that in wild type plants. To the best of our knowledge, this is the first report on the potential for enhancing proton pump expression as a strategy to improve Cd tolerance and accumulation in plants.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Protection and Improvement, University of Sfax, Center of Biotechnology of Sfax, B.P1117, 3038 Sfax, Tunisia.
| | | | | | | |
Collapse
|
22
|
Vercruyssen L, Gonzalez N, Werner T, Schmülling T, Inzé D. Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1339-52. [PMID: 21205622 PMCID: PMC3046590 DOI: 10.1104/pp.110.167049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/31/2010] [Indexed: 05/19/2023]
Abstract
Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level.
Collapse
|
23
|
Li Q, Li BH, Kronzucker HJ, Shi WM. Root growth inhibition by NH(4)(+) in Arabidopsis is mediated by the root tip and is linked to NH(4)(+) efflux and GMPase activity. PLANT, CELL & ENVIRONMENT 2010; 33:272-89. [PMID: 20444215 DOI: 10.1111/j.1365-3040.2009.02080.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Root growth in higher plants is sensitive to excess ammonium (NH(4)(+)). Our study shows that contact of NH(4)(+) with the primary root tip is both necessary and sufficient to the development of arrested root growth under NH(4)(+) nutrition in Arabidopsis. We show that cell elongation and not cell division is the principal target in the NH(4)(+) inhibition of primary root growth. Mutant and expression analyses using DR5:GUS revealed that the growth inhibition is furthermore independent of auxin and ethylene signalling. NH(4)(+) fluxes along the primary root, measured using the Scanning Ion-selective Electrode Technique, revealed a significant stimulation of NH(4)(+) efflux at the elongation zone following treatment with elevated NH(4)(+), coincident with the inhibition of root elongation. Stimulation of NH(4)(+) efflux and inhibition of cell expansion were significantly more pronounced in the NH(4)(+)-hypersensitive mutant vtc1-1, deficient in the enzyme GDP-mannose pyrophosphorylase (GMPase). We conclude that both restricted transmembrane NH(4)(+) fluxes and proper functioning of GMPase in roots are critical to minimizing the severity of the NH(4)(+) toxicity response in Arabidopsis.
Collapse
Affiliation(s)
- Qing Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | |
Collapse
|
24
|
Braun NA, Morgan B, Dick TP, Schwappach B. The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 2010; 123:2342-50. [PMID: 20530571 DOI: 10.1242/jcs.068403] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion gradients across intracellular membranes contribute to the physicochemical environment inside compartments. CLC anion transport proteins that localise to intracellular organelles are anion-proton exchangers involved in anion sequestration or vesicular acidification. By homology, the only CLC protein of Saccharomyces cerevisiae, Gef1, belongs to this family of intracellular exchangers. Gef1 localises to the late Golgi and prevacuole and is essential in conditions of iron limitation. In the absence of Gef1, a multicopper oxidase involved in iron uptake, Fet3, fails to acquire copper ion cofactors. The precise role of the exchanger in this physiological context is unknown. Here, we show that the Gef1-containing compartment is adjusted to a more alkaline pH under iron limitation. This depends on the antiport function of Gef1, because an uncoupled mutant of Gef1 (E230A) results in the acidification of the lumen and fails to support Fet3 maturation. Furthermore, we found that Gef1 antiport activity correlates with marked effects on cellular glutathione homeostasis, raising the possibility that the effect of Gef1 on Fet3 copper loading is related to the control of compartmental glutathione concentration or redox status. Mutational inactivation of a conserved ATP-binding site in the cytosolic cystathione beta-synthetase domain of Gef1 (D732A) suggests that Gef1 activity is regulated by energy metabolism.
Collapse
Affiliation(s)
- Nikolai A Braun
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
25
|
Jha D, Shirley N, Tester M, Roy SJ. Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. PLANT, CELL & ENVIRONMENT 2010; 33:793-804. [PMID: 20040066 DOI: 10.1111/j.1365-3040.2009.02105.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.
Collapse
Affiliation(s)
- D Jha
- The Australian Centre for Plant Functional Genomics and the University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
26
|
Wang W, Wu Y, Li Y, Xie J, Zhang Z, Deng Z, Zhang Y, Yang C, Lai J, Zhang H, Bao H, Tang S, Yang C, Gao P, Xia G, Guo H, Xie Q. A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. PLANT MOLECULAR BIOLOGY 2010; 72:91-9. [PMID: 19787433 DOI: 10.1007/s11103-009-9553-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/21/2009] [Indexed: 05/13/2023]
Abstract
Salt cress (Thellungiella halophila), a salt-tolerant relative of Arabidopsis, has turned to be an important model plant for studying abiotic stress tolerance. One binary bacterial artificial chromosome (BIBAC) library was constructed which represents the first plant-transformation-competent large-insert DNA library generated for Thellungiella halophila. The BIBAC library was constructed in BamHI site of binary vector pBIBAC2 by ligation of partial digested nuclear DNA of Thellungiella halophila. This library consists of 23,040 clones with an average insert size of 75 kb, and covers 4x Thellungiella halophila haploid genomes. BIBAC clones which contain inserts over 50 kb were selected and transformed into Arabidopsis for salt tolerant plant screening. One transgenic line was found to be more salt tolerant than wild type plants from the screen of 200 lines. It was demonstrated that the library contains candidates of stress tolerance genes and the approach is suitable for the transformation of stress susceptible plants for genetic improvement.
Collapse
Affiliation(s)
- Weiquan Wang
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 510275, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Duan X, Song Y, Yang A, Zhang J. The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. PHYSIOLOGIA PLANTARUM 2009; 135:281-95. [PMID: 19236662 DOI: 10.1111/j.1399-3054.2008.01194.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous studies have shown that the overexpression of betA (encoding choline dehydrogenase from Escherichia coli) or AtNHX1 (a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana) gene can improve the salt tolerance of transgenic plants. However, little is known about the effects of the transgene pyramiding of betA and AtNHX1. Here, betA + AtNHX1 transgene pyramiding tobacco was produced by sexual crossing, and the salt tolerance was evaluated at the cellular and plant levels. In NaCl stress, the Na(+) concentration in vacuoles and vacuolar membrane potential of transgene pyramiding cells were similar to those of AtNHX1-transgenics, and much higher than those of betA-transgenics when detected using fluorescent dye staining; transgene pyramiding cells showed a higher protoplast viability and comparable mitochondrial activity as compared with single transgenics; and transgene pyramiding plants showed comparable Na(+) content in leaves as compared with AtNHX1-transgenics and remarkably higher than betA-transgenics; and transgene pyramiding lines exhibited higher percentage of seed germination, better seedling growth and higher fresh weight than lines that had betA or AtNHX1 alone. Based on the integrative analysis of salt tolerance, the consistency between the cellular level and the whole plant level was confirmed and the transgene pyramiding plants exhibited improved salt tolerance, but compared with the plants with betA or AtNHX1 alone, the differences were relatively small. Other mechanisms involved in salt tolerance should be considered to further enhance transgene pyramiding plants salt tolerance.
Collapse
|
28
|
Amtmann A. Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. MOLECULAR PLANT 2009; 2:3-12. [PMID: 19529830 PMCID: PMC2639741 DOI: 10.1093/mp/ssn094] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/19/2008] [Indexed: 05/18/2023]
Abstract
Thellungiella salsuginea (halophila) is a close relative of Arabidopsis thaliana but, unlike A. thaliana, it grows well in extreme conditions of cold, salt, and drought as well as nitrogen limitation. Over the last decade, many laboratories have started to use Thellungiella to investigate the physiological, metabolic, and molecular mechanisms of abiotic stress tolerance in plants, and new knowledge has been gained in particular with respect to ion transport and gene expression. The advantage of Thellungiella over other extremophile model plants is that it can be directly compared with Arabidopsis, and therefore generate information on both essential and critical components of stress tolerance. Thellungiella research is supported by a growing body of technical resources comprising physiological and molecular protocols, ecotype collections, expressed sequence tags, cDNA-libraries, microarrays, and a pending genome sequence. This review summarizes the current state of knowledge on Thellungiella and re-evaluates its usefulness as a model for research into plant stress tolerance.
Collapse
Affiliation(s)
- Anna Amtmann
- Plant Science Group, FBLS, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
29
|
Li B, Wei A, Song C, Li N, Zhang J. Heterologous expression of the TsVP gene improves the drought resistance of maize. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:146-59. [PMID: 17999658 DOI: 10.1111/j.1467-7652.2007.00301.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, it was shown that the TsVP gene [vacuolar H+-pyrophosphatase (V-H+-PPase) gene from a dicotyledonous halophyte Thellungiella halophila] could be transferred into the monocotyledonous crop maize (Zea mays L.), and that the heterologous expression of the transgene improved the drought resistance of transgenic plants. Polymerase chain reaction amplification and Southern blotting confirmed the existence of the foreign gene in transformed plants and their progeny. Expression differences of the TsVP gene in different transgenic lines were monitored by reverse transcriptase-polymerase chain reaction. The measurement of isolated vacuolar membrane vesicles from the TsVP transgenic and wild-type (WT) plants demonstrated that the transgenic plants had higher V-H+-PPase activity, and the performance of maize-expressed TsVP in response to osmotic/drought stress was better in lines with higher V-H+-PPase activity. Transgenic plants showed a higher percentage of seed germination, better developed root systems and greater biomass, greater solute accumulation and less cell membrane damage relative to WT plants under osmotic stress. After drought stress treatment, transgenic plants showed less growth retardation and shorter anthesis-silking interval, and produced much larger grain yields, than WT plants. It was concluded that the high V-H+-PPase activity of transgenic maize improved the drought resistance of plants. This report provides a feasible approach to increase monocotyledonous crop yields under conditions of soil water deficit by the heterologous expression of TsVP.
Collapse
Affiliation(s)
- Bei Li
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, China
| | | | | | | | | |
Collapse
|