1
|
Wu H, Cui H, Tian Y, Wu J, Bai Z, Zhang X. Exogenous ethephon treatment on the biosynthesis and accumulation of astragaloside IV in Astragalus membranaceus Bge. Var. Mongholicus (Bge.) Hsiao. BOTANICAL STUDIES 2024; 65:16. [PMID: 38967679 PMCID: PMC11226570 DOI: 10.1186/s40529-024-00426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Astragaloside IV is a main medicinal active ingredient in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao, which is also the key biomarker of A. membranaceus quality. Ethylene has been well-documented to involve in secondary metabolites biosynthesis in plants. Nevertheless, how ethylene regulates astragaloside IV biosynthesis in A. membranaceus is still unclear. Therefore, in the present study different dosages and time-dependent exogenous application of ethephon (Eth) were employed to analyze astragaloside IV accumulation and its biosynthesis genes expression level in hydroponically A. membranaceus. RESULTS Exogenous 200 µmol·L- 1Eth supply is most significantly increased astragaloside IV contents in A. membranaceus when compared with non-Eth supply. After 12 h 200 µmol·L- 1 Eth treatment, the astragaloside IV contents reaching the highest content at 3 d Eth treatment(P ≤ 0.05). Moreover, After Eth treatment, all detected key genes involved in astragaloside IV synthesis were significant decrease at 3rd day(P ≤ 0.05). However, SE displayed a significant increase at the 3rd day under Eth treatment(P ≤ 0.05). Under Eth treatment, the expression level of FPS, HMGR, IDI, SS, and CYP93E3 exhibited significant negative correlations with astragaloside IV content, while expression level of SE displayed a significant positive correlation. CONCLUSIONS These findings suggest that exogenous Eth treatment can influence the synthesis of astragaloside IV by regulating the expression of FPS, HMGR, IDI, SS, CYP93E3 and SE. This study provides a theoretical basis for utilizing molecular strategies to enhance the quality of A. membranaceus.
Collapse
Affiliation(s)
- Haonan Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Hang Cui
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Yu Tian
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| |
Collapse
|
2
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
3
|
Nabaei M, Amooaghaie R, Ghorbanpour M, Ahadi A. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don. PLANT CELL REPORTS 2024; 43:139. [PMID: 38735908 DOI: 10.1007/s00299-024-03229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
KEY MESSAGE Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Gao Q, Zhang J, Cao J, Xiang C, Yuan C, Li X, Wang J, Zhou P, Li L, Liu J, Xie H, Li R, Huang G, Li C, Zhang G, Yang S, Zhao Y. MetaDb: a database for metabolites and their regulation in plants with an emphasis on medicinal plants. MOLECULAR HORTICULTURE 2024; 4:17. [PMID: 38679729 PMCID: PMC11057126 DOI: 10.1186/s43897-024-00095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agricultural, Honghe Vocational and Technical College, Honghe, 661199, China
| | - Jiajin Zhang
- College of Big Data, Yunnan Agricultural University, Kunming, 650201, China
| | - Juntao Cao
- College of Big Data, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jia Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongchun Xie
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruolan Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guilin Huang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chaohui Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation &Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Verma SK, Goyary D, Singh AK, Anandhan S, Raina SN, Pandey S, Kumar S, Khare N. Modulation of terpenoid indole alkaloid pathway via elicitation with phytosynthesized silver nanoparticles for the enhancement of ajmalicine, a pharmaceutically important alkaloid. PLANTA 2023; 259:30. [PMID: 38150044 DOI: 10.1007/s00425-023-04311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
MAIN CONCLUSION The use of silver nanoparticles as elicitors in cell cultures of Rauwolfia serpentina resulted in increased levels of ajmalicine, upregulated structural and regulatory genes, elevated MDA content, and reduced activity of antioxidant enzymes. These findings hold potential for developing a cost-effective method for commercial ajmalicine production. Plants possess an intrinsic ability to detect various stress signals, prompting the activation of defense mechanisms through the reprogramming of metabolites to counter adverse conditions. The current study aims to propose an optimized bioprocess for enhancing the content of ajmalicine in Rauwolfia serpentina callus through elicitation with phytosynthesized silver nanoparticles. Initially, callus lines exhibiting elevated ajmalicine content were established. Following this, a protocol for the phytosynthesis of silver nanoparticles using seed extract from Rauwolfia serpentina was successfully standardized. The physicochemical attributes of the silver nanoparticles were identified, including their spherical shape, size ranging from 6.7 to 28.8 nm in diameter, and the presence of reducing-capping groups such as amino, carbonyl, and amide. Further, the findings indicated that the presence of 2.5 mg L-1 phytosynthesized silver nanoparticles in the culture medium increased the ajmalicine content. Concurrently, structural genes (TDC, SLS, STR, SGD, G10H) and regulatory gene (ORCA3) associated with the ajmalicine biosynthetic pathway were observed to be upregulated. A notable increase in MDA content and a decrease in the activities of antioxidant enzymes were observed. A notable increase in MDA content and a decrease in the activities of antioxidant enzymes were also observed. Our results strongly recommend the augmentation of ajmalicine content in the callus culture of R. serpentina through supplementation with silver nanoparticles, a potential avenue for developing a cost-effective process for the commercial production of ajmalicine.
Collapse
Affiliation(s)
- Sachin Kumar Verma
- Nims Institute of Allied Medical Science and Technology, Nims University Rajasthan, Delhi-Jaipur Highway, NH-11C, Jaipur, 303121, Rajasthan, India
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | - Amit Kumar Singh
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Shailesh Kumar
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Neeraj Khare
- Nims Institute of Allied Medical Science and Technology, Nims University Rajasthan, Delhi-Jaipur Highway, NH-11C, Jaipur, 303121, Rajasthan, India.
| |
Collapse
|
6
|
Rouphael Y, Carillo P, Ciriello M, Formisano L, El-Nakhel C, Ganugi P, Fiorini A, Miras Moreno B, Zhang L, Cardarelli M, Lucini L, Colla G. Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1235686. [PMID: 37692443 PMCID: PMC10484225 DOI: 10.3389/fpls.2023.1235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Luigi Lucini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Yao L, Zhang H, Liu Y, Ji Q, Xie J, Zhang R, Huang L, Mei K, Wang J, Gao W. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg 3 accumulation in ginseng plant chassis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1739-1754. [PMID: 35731022 DOI: 10.1111/jipb.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.
Collapse
Affiliation(s)
- Lu Yao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yirong Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Xie
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ru Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
8
|
Perveen S, Safdar N, Yasmin A, Bibi Y. DAT and PRX1 gene expression modulates vincristine production in Catharanthus roseus L. propagates using Cu, Fe and Zn nano structures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111264. [PMID: 35643614 DOI: 10.1016/j.plantsci.2022.111264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Underlying mechanism of nanostructures upon monoterpene induction in Catharanthus roseus has not been explored yet. In the current study, Copper, Iron and Zinc nanoparticles were biosynthesized by Eriobotrya japonica seed extract and capped with reduced glutathione. Biosynthesized nanoparticles and their capped analogues were characterized by UV-visible spectrophotometer, FTIR, XRD and SEM. Selected concentration of nanostructures were used in plant tissue culture media which instigated the production of alkaloids, tannins and flavonoids without significantly affecting the growth index of propagated calli and shoots cultures of C. roseus. Accelerated vincristine production was noticed in propagated calli and shoots under copper and zinc nanostress (1645-1865 μg/ml respectively) with the least effect by iron nanostructure. Highest concentration of calcium was recorded in in vitro shoots under capped (3.42 mg/ml ± 7.16) and uncapped (4.41 mg/ml ± 20.44) Zn nanoparticles compared to control (2.82 mg/ml ± 13.41). Real time PCR depicts nano-zinc mediated increased expression of DAT and PRX1 genes of TIA pathway. Significant correlation among PRX1/DAT gene expression with vincristine production and calcium accumulation in the presence of nanostress validate by PCA. This study paved way the opportunities of metal biogenic nanomaterials as an ideal drug modulator in plant tissue culture studies.
Collapse
Affiliation(s)
- Shaghufta Perveen
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Naila Safdar
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
9
|
Li X, Wang XH, Qiang W, Zheng HJ, ShangGuan LY, Zhang MS. Transcriptome revealing the dual regulatory mechanism of ethylene on the rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. JOURNAL OF PLANT RESEARCH 2022; 135:485-500. [PMID: 35380307 DOI: 10.1007/s10265-022-01387-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Rhynchophylline (RIN) and isorhynchophylline (IRN) are extracted from Uncaria rhynchophylla, which are used to treat Alzheimer's disease. However, the massive accumulation of RIN and IRN in U. rhynchophylla requires exogenous stimulation. Ethylene is a potential stimulant for RIN and IRN biosynthesis, but there is no study on the role of ethylene in RIN or IRN synthesis. This study investigated the regulation of ethylene in RIN and IRN biosynthesis in U. rhynchophylla. An increase in the content of RIN and IRN was observed that could be attributed to the release of ethylene from 18 mM ethephon, while ethylene released from 36 mM ethephon reduced the content of RIN and IRN. The transcriptome and weighted gene co-expression network analysis indicated the up-regulation of seven key enzyme genes related to the RIN/IRN biosynthesis pathway and starch/sucrose metabolism pathway favored RIN/IRN synthesis. In comparison, the down-regulation of these seven key enzyme genes contributed to the reduction of RIN/IRN. Moreover, the inhibition of photosynthesis is associated with a reduction in RIN/IRN. Photosynthesis was restrained owing to the down-regulation of Lhcb1 and Lhcb6 after 36 mM ethephon treatment and further prevented supply of primary metabolites (such as α-D-glucose) for RIN/IRN synthesis. However, uninterrupted photosynthesis ensured a normal supply of primary metabolites at 18 mM ethephon treatment. AP2/ERF1, bHLH1, and bHLH2 may positively regulate the RIN/IRN accumulation, while NAC1 may play a negative regulatory role. Our results construct the potential bidirectional model for ethylene regulation on RIN/IRN synthesis and provide novel insight into the ethylene-mediated regulation of the metabolism of terpenoid indole alkaloids.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao-Hong Wang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Qiang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hao-Jie Zheng
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Yang ShangGuan
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Tang W, Liu X, He Y, Yang F. Enhancement of Vindoline and Catharanthine Accumulation, Antioxidant Enzymes Activities, and Gene Expression Levels in Catharanthus roseus Leaves by Chitooligosaccharides Elicitation. Mar Drugs 2022; 20:md20030188. [PMID: 35323487 PMCID: PMC8950274 DOI: 10.3390/md20030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/17/2023] Open
Abstract
Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 μg/mL, 0.1 μg/mL, 1 μg/mL and 10 μg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 μg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 μg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 μg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.
Collapse
Affiliation(s)
| | | | | | - Fan Yang
- Correspondence: ; Tel./Fax: +86-411-86323646
| |
Collapse
|
11
|
Liu Y, Patra B, Singh SK, Paul P, Zhou Y, Li Y, Wang Y, Pattanaik S, Yuan L. Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnol Lett 2021; 43:2085-2103. [PMID: 34564757 PMCID: PMC8510960 DOI: 10.1007/s10529-021-03179-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
Plants synthesize a vast array of specialized metabolites that primarily contribute to their defense and survival under adverse conditions. Many of the specialized metabolites have therapeutic values as drugs. Biosynthesis of specialized metabolites is affected by environmental factors including light, temperature, drought, salinity, and nutrients, as well as pathogens and insects. These environmental factors trigger a myriad of changes in gene expression at the transcriptional and posttranscriptional levels. The dynamic changes in gene expression are mediated by several regulatory proteins that perceive and transduce the signals, leading to up- or down-regulation of the metabolic pathways. Exploring the environmental effects and related signal cascades is a strategy in metabolic engineering to produce valuable specialized metabolites. However, mechanistic studies on environmental factors affecting specialized metabolism are limited. The medicinal plant Catharanthus roseus (Madagascar periwinkle) is an important source of bioactive terpenoid indole alkaloids (TIAs), including the anticancer therapeutics vinblastine and vincristine. The emerging picture shows that various environmental factors significantly alter TIA accumulation by affecting the expression of regulatory and enzyme-encoding genes in the pathway. Compared to our understanding of the TIA pathway in response to the phytohormone jasmonate, the impacts of environmental factors on TIA biosynthesis are insufficiently studied and discussed. This review thus focuses on these aspects and discusses possible strategies for metabolic engineering of TIA biosynthesis. PURPOSE OF WORK: Catharanthus roseus is a rich source of bioactive terpenoid indole alkaloids (TIAs). The objective of this work is to present a comprehensive account of the influence of various biotic and abiotic factors on TIA biosynthesis and to discuss possible strategies to enhance TIA production through metabolic engineering.
Collapse
Affiliation(s)
- Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Yan Zhou
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| |
Collapse
|
12
|
Fouad A, Hegazy AE, Azab E, Khojah E, Kapiel T. Boosting of Antioxidants and Alkaloids in Catharanthus roseus Suspension Cultures Using Silver Nanoparticles with Expression of CrMPK3 and STR Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2202. [PMID: 34686014 PMCID: PMC8538313 DOI: 10.3390/plants10102202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L-1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.
Collapse
Affiliation(s)
- Ahmed Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Adel E. Hegazy
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Tarek Kapiel
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| |
Collapse
|
13
|
Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and β-carboline alkaloids. Chin J Nat Med 2021; 19:591-607. [PMID: 34419259 DOI: 10.1016/s1875-5364(21)60059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/21/2022]
Abstract
Terpenoid indole (TIAs) and β-carboline alkaloids (BCAs), such as suppressant reserpine, vasodilatory yohimbine, and antimalarial quinine, are natural compounds derived from strictosidine. These compounds can exert powerful pharmacological effects but be obtained from limited source in nature. the whole biosynthetic pathway of TIAs and BCAs, The Pictet-Spengler reaction catalyzed by strictosidine synthase (STR; EC: 4.3.3.2) is the rate-limiting step. Therefore, it is necessary to investigate their biosynthesis pathways, especially the role of STR, and related findings will support the biosynthetic generation of natural and unnatural compounds. This review summarizes the latest studies concerning the function of STR in TIA and BCA biosynthesis, and illustrates the compounds derived from strictosidine. The substrate specificity of STR based on its structure is also summarized. Proteins that contain six-bladed four-stranded β-propeller folds in many organisms, other than plants, are listed. The presence of these folds may lead to similar functions among organisms. The expression of STR gene can greatly influence the production of many compounds. STR is mainly applied to product various valuable drugs in plant cell suspension culture and biosynthesis in other carriers.
Collapse
|
14
|
Xu M, Wang Y, Wang Q, Guo S, Liu Y, Liu J, Tang Z, Wang Z. Targeted Development-Dependent Metabolomics Profiling of Bioactive Compounds in Acanthopanax senticosus by UPLC-ESI-MS. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20910553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An ultra-performance liquid chromatography-electrospray ionization-mass spectrometry targeted metabolomics strategy was applied to analyze protocatechuate, syringin, eleutheroside E, isofraxidin, hyperoside, kaempferol, and oleanolic acid, the active compounds in 3-year-old, 5-year-old, and 9-year-old Acanthopanax senticosus. Then, targeted metabolomics was conducted with 3 growth year plants to identify 19 phenolic metabolites related to the above-mentioned active compounds, including 9 C6C3C6-type, 6 C6C3-type, and 4 C6C1-type. Multivariate statistical analysis was applied to the bioactive metabolite data, and targeted metabolic profiling was used for marker compound classification and characterization. The results showed that 7 active compounds in the roots and stems in the 3 growth year plants differed. The principal component “Q” values showed that the total contents of 7 active compounds in 5-year-old roots and stems were higher than in other growth years. Results of targeted metabolomics profiling of 19 phenolic metabolites showed that the C6C1-type compounds accumulated in 9-year-old plants, the C6C3-type in 3-year-old plants, and the C6C3C6-type in 5-year-old plants. The stems had the greatest accumulations of the phenolic metabolites. C6C1 and C6C3-type metabolites are the most abundant in both roots and stems. In conclusion, the active compounds and pharmacological effects of A. senticosus in different growth years are different. The best harvest age for A. senticosus roots and stems was 5 years. The accumulation of 19 phenolic metabolites in different growth years also showed significant differences.
Collapse
Affiliation(s)
- Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yingwei Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianbo Wang
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Gangzhou, China
| | - Shenglei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Zhenyue Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Screening and evaluation of adventitious root lines of Panax notoginseng by morphology, gene expression, and metabolite profiles. Appl Microbiol Biotechnol 2019; 103:4405-4415. [DOI: 10.1007/s00253-019-09778-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
|
16
|
Pan Q, Wang C, Xiong Z, Wang H, Fu X, Shen Q, Peng B, Ma Y, Sun X, Tang K. CrERF5, an AP2/ERF Transcription Factor, Positively Regulates the Biosynthesis of Bisindole Alkaloids and Their Precursors in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2019; 10:931. [PMID: 31379908 PMCID: PMC6657538 DOI: 10.3389/fpls.2019.00931] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/03/2019] [Indexed: 05/07/2023]
Abstract
Catharanthus roseus contains a variety of monoterpenoid indole alkaloids (MIAs), among which bisindole alkaloids vinblastine and vincristine are well-known to have antitumor effects and widely used in clinical treatment. However, their contents in C. roseus is extremely low and difficult to meet market demands. Therefore, it is of great significance to study the transcriptional regulation mechanism of MIAs biosynthesis for high yielding of bisindole alkaloids in C. roseus. Studies have shown that MIAs biosynthesis in C. roseus has complex temporal and spacial specificity and is under tight transcriptional regulation, especially bisindole alkaloids. In this study, an AP2/ERF transcription factor CrERF5 was selected by RNA-seq of C. roseus organs, and its full-length sequence was cloned and characterized. CrERF5 responds to both ethylene and JA signals and is localized in the nucleus. CrERF5 could activate the transcriptional activity of the TDC promoter. Transient overexpressing CrERF5 in C. roseus petals caused a significant increase of the expression levels of key genes in both the upstream and downstream pathways of MIAs biosynthesis while silencing CrERF5 resulted in a decrease of them. Accordingly, the contents of bisindole alkaloids anhydrovinblastine and vinblastine, monoindole alkaloids ajmalicine, vindoline, and catharanthine were strongly enhanced in CrERF5-overexpressing petals while their contents decreased in CrERF5-silenced plants. These results suggested that CrERF5 is a novel positive ethylene-JA-inducible AP2/ERF transcription factor upregulating the MIAs biosynthetic pathway leading to the bisindole alkaloids accumulation.
Collapse
Affiliation(s)
- Qifang Pan
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qifang Pan,
| | - Chenyi Wang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xiong
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Ma
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofen Sun
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Shi T, Sun J, Wu X, Weng J, Wang P, Qie H, Huang Y, Wang H, Gao Z. Transcriptome analysis of Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit treated with heat and 1-MCP. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:40-49. [PMID: 30390430 DOI: 10.1016/j.plaphy.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Chinese bayberry (Myrica rubra Sieb. et Zucc.) is a typical fruit tree grown in the hilly region of Southern China. The fruit is sensitive to storage and transportation conditions and presents a major problem in its commercialization. The present study was conducted to investigate the regulation of gene expression involved in plant hormone signaling pathway in the Chinese bayberry with different treatments of heat and 1-methylcyclopene (1-MCP) during postharvest storage. In one treatment group (HM group), we exposed Chinese bayberry fruit to 48 °C for 10 min and then sealed them in a desiccator with 5 μl·L-1 of 1-MCP for 24 h at 20 °C, followed by storage at 10 °C. Another group (CK group) was directly stored at 10 °C without any prior treatment. Samples of fruit were collected every three days, at 3, 6, 9, 12 and 15 d (CK3, CK6, CK9, CK12 and CK15; and HM3, HM6, HM9, HM12, and HM15, respectively). The decay index of fruits in the CK group increased after six days of storage but did not increase until nine days of storage in the HM group. Superoxide dismutase (SOD) activity in the CK group was shown a downtrend during storage, and almost no fluctuation from six days. In the HM group, SOD activity increased after three days, but decreased sharply after six days storage. Besides, peroxidase (POD) and catalase (CAT) activities were shown the similar trend during the storage, both of them first increased and then decreased form the six days of storage. These physiological data indicated that the sixth day is a crucial time during the storage of Chinese bayberry treated with heat and 1-MCP. Therefore, the transcriptome libraries were constructed from CK0, CK6, HM6 group, respectively. The analysis of top 20 KEGG pathways showed that most differentially expressed genes were involved in the biosynthesis of secondary metabolites, particularly flavonoids and flavanols biosynthesis, in CK0 vs. CK6 and CK0 vs. HM6. However, the top three KEGG pathways in CK6 vs. HM6 were the ribosome, RNA transport and endocytosis during the storage. Expression of six ethylene receptor (ETR) genes and four ethylene-responsive transcription factor (ERF) genes were activated at transcriptional level during the postharvest stage and were decreased by heat and 1-MCP treatment, and serine/threonine-protein kinase 1 (CTR1) was also repressed by treatment. Abscisic acid (ABA) -responsive element binding factor (ABF) gene, auxin-responsive GH3 gene and transcription factor MYC2 gene also showed similar expression pattern with ethylene pathway genes. These results might improve our understanding of the mechanisms of heat and 1-MCP inhibition of fruit postharvest physiology and prolongation of fruit shelf life.
Collapse
Affiliation(s)
- Ting Shi
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Jie Sun
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China; Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Xinxin Wu
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Jinyang Weng
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China
| | - Pengkai Wang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Hongli Qie
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Yinghong Huang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Huakun Wang
- Taihu Extension Center for Evergreen Fruit of Jiangsu Province, Eastern Mountain Town, Suzhou, 215107, PR China
| | - Zhihong Gao
- Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
18
|
Paeizi M, Karimi F, Razavi K. Changes in medicinal alkaloids production and expression of related regulatory and biosynthetic genes in response to silver nitrate combined with methyl jasmonate in Catharanthus roseus in vitro propagated shoots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:623-632. [PMID: 30340174 DOI: 10.1016/j.plaphy.2018.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Antihypertensive compound ajmalicine and antileukemic vincristine and vinblastine are three important terpenoid indole alkaloids produced by Catharanthus roseus (Apocynaceae). This study has been done to investigate the effects of methyl jasmonate (100 μM) and silver nitrate (50 and 100 μM) individually and simultaneously on the production of mentioned important medicinal alkaloids (vincristine, vinblastine, ajmalicine, vindoline and catharanthine) and the expression profile of related regulatory and biosynthetic genes in micropropagated shoots of C. roseus. The effects of these treatments are also investigated on non-enzymatic defensive metabolites (total phenolics, flavonoids and carotenoids) and antioxidant enzymes activities (peroxidase, EC 1.11.1.7, catalase, EC 1.11.1.6 and superoxide dismutase, EC 1.15.1.1). Changes of dry weight, quantity of lipid peroxidation, and photosynthetic pigments contents have been measured as well. The results showed increased contents of alkaloids and expression levels of investigated regulatory (Mitogen-activated protein kinase3 and Octadecanoid-responsive Catharanthus AP2-domain3) and biosynthetic (strictosidine synthase, geissoschizine synthase, deacetylvindoline acetyltransferase and peroxidase1) genes under the employed treatments. The maximum yields of these alkaloids and the highest levels of the mentioned genes expression were observed under 100 μM methyl jasmonate in combination with 100 μM of AgNO3 after seven days. The employed treatments induced increased lipid peroxidation, higher levels of enzymatic antioxidants activities and more production of non-enzymatic defensive metabolites which shows activity of plant defensive system. The results suggest that silver nitrate and methyl jasmonate signalling pathways may have cross talks and their simultaneous application make an effective combination for elicitation of medicinal alkaloids biosynthesis in C. roseus micropropagated shoots.
Collapse
Affiliation(s)
- Marzieh Paeizi
- Dep. of Biology, Faculty of Basic Sciences, Shahed University, 3319118651, Tehran, Iran
| | - Farah Karimi
- Medicinal Plant Research Center, Shahed University, 3319118651, Tehran, Iran.
| | - Khadijeh Razavi
- National Research Center on Genetic Engineering and Biotechnology, 1497716316, Tehran, Iran
| |
Collapse
|
19
|
Lu J, Yao L, Li JX, Liu SJ, Hu YY, Wang SH, Liang WX, Huang LQ, Dai YJ, Wang J, Gao WY. Characterization of UDP-Glycosyltransferase Involved in Biosynthesis of Ginsenosides Rg 1 and Rb 1 and Identification of Critical Conserved Amino Acid Residues for Its Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9446-9455. [PMID: 30095259 DOI: 10.1021/acs.jafc.8b02544] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ginsenosides attract great attention for their bioactivities. However, their contents are low, and many UDP-glycosyltransferases (UGTs) that play crucial roles in the ginsenoside biosynthesis pathways have not been identified, which hinders the biosynthesis of ginsenosides. In this study, we reported that one UDP-glycosyltransferase, UGTPg71A29, from Panax ginseng could glycosylate C20-OH of Rh1 and transfer a glucose moiety to Rd, producing ginsenosides Rg1 and Rb1, respectively. Ectopic expression of UGTPg71A29 in Saccharomyces cerevisiae stably generated Rg1 and Rb1 under its corresponding substrate. Overexpression of UGTPg71A29 in transgenic cells of P. ginseng could significantly enhance the accumulation of Rg1 and Rb1, with their contents of 3.2- and 3.5-fold higher than those in the control, respectively. Homology modeling, molecular dynamics, and mutational analysis revealed the key catalytic site, Gln283, which provided insights into the catalytic mechanism of UGTPg71A29. These results not only provide an efficient enzymatic tool for the synthesis of glycosides but also help achieve large-scale industrial production of glycosides.
Collapse
Affiliation(s)
| | | | | | - Shu-Jie Liu
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Yan-Ying Hu
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Shi-Hui Wang
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Wen-Xia Liang
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Lu-Qi Huang
- National Resource Center for Chinese Meteria Medica , China Academy of Chinese Medical Sciences , Beijing 100700 , People's Republic of China
| | - Yu-Jie Dai
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | | | | |
Collapse
|
20
|
A Comparative Metabolomics Analysis Reveals the Tissue-Specific Phenolic Profiling in Two Acanthopanax Species. Molecules 2018; 23:molecules23082078. [PMID: 30127238 PMCID: PMC6222473 DOI: 10.3390/molecules23082078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/25/2023] Open
Abstract
Acanthopanax senticosus (Rupr. Maxim.) Harms (ASH) and Acanthopanax sessiliflorus (Rupr. Maxim.) Seem (ASS), are members of the Araliaceae family, and both are used in Asian countries. These herbals have drawn much attention in recent years due to their strong biological activity, with innocuity and little side effects. However, the common and distinct mode of compound profiles between ASH and ASS is still unclear. In this study, a high performance liquid chromatograph-mass spectrometry (HPLC-MS) method was developed to simultaneously quantify the seven major active compounds, including protocatechuate, eleutheroside B, eleutheroside E, isofraxidin, hyperoside, kaempferol and oleanolic acid. Then the targeted metabolomics were conducted to identify 19 phenolic compounds, with tight relation to the above mentioned active compounds, including nine C6C3C6-type, six C6C3-type and four C6C1-type in the two Acanthopanax species studied here. The results showed that the seven active compounds presented a similar trend of changes in different tissues, with more abundant accumulation in roots and stems for both plants. From the view of plant species, the ASH plants possess higher abundance of compounds, especially in the tissues of roots and stems. For phenolics, the 19 phenols detected here could be clearly grouped into five main clusters based on their tissue-specific accumulation patterns. Roots are the tissue for the most abundance of their accumulations. C6C3C6-type compounds are the most widely existing type in both plants. In conclusion, the tissue- and species-specificity in accumulation of seven active compounds and phenolics were revealed in two Acanthopanax species.
Collapse
|
21
|
Chen Q, Lu X, Guo X, Pan Y, Yu B, Tang Z, Guo Q. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:266-275. [PMID: 29626640 DOI: 10.1016/j.ecoenv.2018.03.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 03/23/2018] [Indexed: 05/08/2023]
Abstract
Cd(II) is one of the most widespread and toxic heavy metals and seriously threatens plant growth, furthermore negatively affecting human health. For survival from this metal stress, plants always fight with Cd(II) toxicity by themselves or using other external factors. The effects of second metals copper (Cu(II)), zinc (Zn(II)) and calcium (Ca(II)) on the Cd(II)-affected root morphology, Cd(II) translocation and metabolic responses in Catharanthus roseus were investigated under hydroponic conditions. We found that the Cd-stressed plants displayed the browning and rot root symptom, excess H2O2 content, lipid peroxidation and Cd(II) accumulation in plants. However, the supplement with second metals largely alleviated Cd-induced toxicity, including browning and rot roots, oxidative stress and internal Cd(II) accumulation. The amended effects at metabolic and transcriptional levels involved in different second metals share either common or divergent strategies. They commonly repressed Cd uptake and promoted Cd(II) translocation from roots to shoots with divergent mechanisms. High Zn(II) could activate MTs expression in roots, while Cu(II) or Ca(II) did not under Cd(II) stress condition. The presence of Ca(II) under Cd stress condition largely initiated occurrence of lateral roots. We then grouped a metabolic diagram integrating terpenoid indole alkaloid (TIA) accumulation and TIA pathway gene expression to elucidate the metabolic response of C. roseus to Cd(II) alone or combined with second metals. The treatment with 100 Cd(II) alone largely promoted accumulation of vinblastine, vindoline, catharanthine and loganin, whereas depressed or little changed the expression levels of genes detected here, compared to 0 Cd(II) control. In the presence of Cd(II), the supplement with second metals displayed specific effect on different alkaloid. Among them, the metal Ca(II) is especially beneficial for serpentine accumulation, Zn(II) mainly promoted tabersonine production. However, the addition of Cu(II) commonly depressed accumulation of most alkaloids detected here. Generally, we presented different mechanisms by which the second metals used to alleviate Cd (II) toxicity. This plant has potential application in phytoremediation of Cd(II), due to relatively substantial accumulation of biomass, as well as secondary metabolites TIAs used as pharmaceutical materials when facing Cd stress.
Collapse
Affiliation(s)
- Qi Chen
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, PR China
| | - Xueyan Lu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaorui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, PR China
| | - Yajie Pan
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, PR China
| | - Bofan Yu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, PR China
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, PR China.
| | - Qingxi Guo
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
22
|
Pan YJ, Lin YC, Yu BF, Zu YG, Yu F, Tang ZH. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus. BMC Genomics 2018; 19:508. [PMID: 29966514 PMCID: PMC6029152 DOI: 10.1186/s12864-018-4879-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 06/18/2018] [Indexed: 11/16/2022] Open
Abstract
Background The medicinal plant, Catharanthus roseus (C. roseus), accumulates a wide range of terpenoid indole alkaloids (TIAs). Ethylene (ET) and methyl-jasmonate (MeJA) were previously reported as effective elicitors for the production of various valuable secondary metabolites of C. roseus, while a few ET or MeJA induced transcriptomic research is yet reported on this species. In this study, the de-novo transcriptome assembly of C. roseus is performed by using the next-generation sequencing technology. Results The result shows that phenolic biosynthesis genes respond specifically to ET in leaves, monoterpenoid biosynthesis genes respond specifically to MeJA in roots. By screening the database, 23 ATP-binding cassette (ABC) transporter partial sequences are identified in C. roseus. On this basis, more than 80 key genes that encode key enzymes (namely TIA pathway, transcriptional factor (TF) and candidate ABC transporter) of alkaloid synthesis in TIA biosynthetic pathways are chosen to explore the integrative responses to ET and MeJA at the transcriptional level. Our data indicated that TIA accumulation is strictly regulated by the TF ethylene responsive factor (ERF) and bHLH iridoid synthesis 1 (BIS1). The heatmap, combined with principal component analysis (PCA) of C. roseus, shows that ERF co-expression with ABC2 and ABC8 specific expression in roots affect the root-specific accumulation of vinblastine in C. roseus. On the contrast, BIS1 activities follow a similar pattern of ABC3 and CrTPT2 specific expression in leaves, which affects the leaf-specific accumulation of vindoline in C. roseus. Conclusions Results presented above illustrate that ethylene has a stronger effect than MeJA on TIA induction at both transcriptional and metabolite level. Furthermore, meta-analysis reveals that ERF and BIS1 form a positive feedback loop connecting two ABC transporters respectively and are actively involved in TIAs responding to ET and MeJA in C. roseus. Electronic supplementary material The online version of this article (10.1186/s12864-018-4879-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Jie Pan
- The Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Ying-Chao Lin
- Guizhou Academy of Tobacco Research, Guiyang, 550081, China
| | - Bo-Fan Yu
- The Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Yuan-Gang Zu
- The Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Zhong-Hua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
23
|
Zhang XN, Liu J, Liu Y, Wang Y, Abozeid A, Yu ZG, Tang ZH. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus. JOURNAL OF NATURAL PRODUCTS 2018; 81:335-342. [PMID: 29406718 DOI: 10.1021/acs.jnatprod.7b00782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The medicinal plant Catharanthus roseus accumulates large numbers of terpenoid indole alkaloids (TIAs), including the pharmaceutically important vinblastine, vincristine, ajmalicine, and serpentine. The phytohormone ethylene or methyl jasmonate (MeJA) can markedly enhance alkaloid accumulation. The interaction between ethylene or MeJA in the regulation of TIA biosynthesis in C. roseus is unknown. Here, a metabolomics platform is reported that is based on liquid chromatography (LC) coupled with time-of-flight mass spectrometry to study candidate components for TIA biosynthesis, which is controlled by ethylene or MeJA in C. roseus. Multivariate analysis identified 16 potential metabolites mostly associated with TIA metabolic pathways and seven targeted metabolites, outlining the TIA biosynthesis metabolic networks controlled by ethylene or MeJA. Interestingly, ethylene and MeJA regulate the 2-C-methyl-d-erythritol 4-phosphate (MEP) and acetate-mevalonate (MVA) pathways through AACT and HMGS and through DXS, respectively, to induce TIA biosynthesis in C. roseus. Overall, both nontargeted and targeted metabolomics, as well as transcript analysis, were used to reveal that MeJA and ethylene control different metabolic networks to induce TIA biosynthesis.
Collapse
Affiliation(s)
- Xiao-Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
- Department of Antibiotics, Heilongjiang Institute for Food and Drug Control , Harbin 150080, People's Republic of China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yu Wang
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
- Botany Department, Faculty of Science, Menoufia University , Shebin El-koom 32511, Egypt
| | - Zhi-Guo Yu
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
24
|
Liu Y, Liu J, Wang Y, Abozeid A, Tian DM, Zhang XN, Tang ZH. The Different Resistance of Two Astragalus Plants to UV-B Stress is Tightly Associated with the Organ-specific Isoflavone Metabolism. Photochem Photobiol 2017; 94:115-125. [PMID: 28881500 DOI: 10.1111/php.12841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/27/2017] [Indexed: 12/24/2022]
Abstract
In this work, the changes in isoflavone levels and the expression of genes involved in their biosynthesis were studied in two Astragalus by UPLC-MS and real-time PCR after 10 days of UV-B treatment (λmax = 313 nm, 804 J m-2 ). Isoflavones were significantly induced by UV-B irradiation. The influence might be activated by the regulation of these target genes. Our results indicate that (1) the resistance of Astragalus membranaceus might not be as good as Astragalus mongholicus in the enhanced UV-B radiation environment; (2) the enhanced accumulation of calycosin and calycosin-7-glucoside with UV-B treatment in roots of A. mongholicus might be derived from formononetin which is synthesized in the leaves; (3) the glycosylation process could be stimulated and activated by the enhanced UV-B radiation in both A. mongholicus and A. membranaceus. In other words, glycosylation of isoflavones might play a crucial role for two Astragalus plants in response to UV-B stress. Overall, this study offered a feasible elicitation strategy to understand the accumulation pattern of isoflavone in A. mongholicus and A. membranaceus, and also provided a reference for the changes in isoflavone levels of Astragalus in UV-B enhanced environment in the future.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China.,Botany Department, Faculty of Science, Menoufia University, Shebin El-koom, Egypt
| | - Dong-Mei Tian
- Heilongjiang Province Institute for Food and Drug Control, Harbin, China
| | - Xiao-Ning Zhang
- Heilongjiang Province Institute for Food and Drug Control, Harbin, China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Shen C, Guo H, Chen H, Shi Y, Meng Y, Lu J, Feng S, Wang H. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 2017. [PMID: 28298629 DOI: 10.1038/s41598-017-00292-8/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Dendrobium officinale L. is an important traditional herb with high commercial value in China. Several bioactive constituents, including polysaccharides and alkaloids, reportedly make major contributions toward the excellent medicinal effect of D. officinale. In this study, the contents of polysaccharides and alkaloids in various organs of D. officinale were measured and compared. We took advantage of transcriptomes from four organs to explore biological mechanisms in the organ-specific distribution of active ingredients in D. officinale. Based on Kyoto Encyclopedia of Genes and Genomes pathways, unigenes related to the enzymes involved in fructose and mannose metabolism and unigenes associated with putative upstream elements of the alkaloid biosynthetic pathway were identified. A large number of candidates, including 35 full-length glycosyltransferase genes and 49 full-length P450 genes, were also identified based on the transcriptome data, and the organ-specific expression pattern of these genes was determined. Furthermore, differential expression of all candidate genes was analyzed in two Dendrobium species, D. nobile L. and D. officinale. The data will supply important clues to exploit useful genes involved in polysaccharide and alkaloid synthesis.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Hailing Chen
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Yujun Shi
- School of Foreign Languages, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijun Meng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jiangjie Lu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shangguo Feng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Huizhong Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
26
|
Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 2017; 7:187. [PMID: 28298629 PMCID: PMC5412657 DOI: 10.1038/s41598-017-00292-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
Dendrobium officinale L. is an important traditional herb with high commercial value in China. Several bioactive constituents, including polysaccharides and alkaloids, reportedly make major contributions toward the excellent medicinal effect of D. officinale. In this study, the contents of polysaccharides and alkaloids in various organs of D. officinale were measured and compared. We took advantage of transcriptomes from four organs to explore biological mechanisms in the organ-specific distribution of active ingredients in D. officinale. Based on Kyoto Encyclopedia of Genes and Genomes pathways, unigenes related to the enzymes involved in fructose and mannose metabolism and unigenes associated with putative upstream elements of the alkaloid biosynthetic pathway were identified. A large number of candidates, including 35 full-length glycosyltransferase genes and 49 full-length P450 genes, were also identified based on the transcriptome data, and the organ-specific expression pattern of these genes was determined. Furthermore, differential expression of all candidate genes was analyzed in two Dendrobium species, D. nobile L. and D. officinale. The data will supply important clues to exploit useful genes involved in polysaccharide and alkaloid synthesis.
Collapse
|
27
|
Zhang Z, Wang Q, Wang H, Nie S, Liang Z. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:657-665. [PMID: 28062103 DOI: 10.1016/j.scitotenv.2016.12.176] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Soil aggregation, an ecosystem function correlated with the concentration of glomalin-related soil protein (GRSP), is highly disturbed in saline soil. However, few studies have focused on differences in amount, composition, and ion binding capacity of GRSP in typical sodic-saline soils. In this study, a field study was performed in Songnen Plain. Combined indicators of soil salinity (Q value) were significant negatively correlated with GRSP concentration by Principal Component Analysis. Multiple linear regression models showed that soil salinity might account for 46%, 25% and 44% variation in total GRSP (T-GRSP), easily-extractable GRSP (EE-GRSP) and difficultly-extractable GRSP (DE-GRSP), respectively. Soil bulk density had most important impact on GRSP concentration, followed by the pH, soil EC had the weak influence. Comparative analysis was carried out between low-salinity and high-salinity soil. Purified T-GRSP of high-saline soil contained higher N content (13.13%), lower C content (43.41%) and lower functional groups relative content (e.g. CO and SiOSi). Purified T-GRSP of high-salinity soil had a greater binding capacity with calcium and phosphorus, the binding capacity could compensate the GRSP loss about 29.8% and 14.1%, respectively. Our findings suggested that sodic salinization of the soil led to a decrease in GRSP concentration and a change in the component percentages. This change in composition might be related to adaptation of fungi-plant systems to varied environments. The calcium and phosphorus binding capacity had a positive dependent of soil salinization, which was possible to develop ecological management or recovery technology in the future.
Collapse
Affiliation(s)
- Zhonghua Zhang
- The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Qiong Wang
- The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Hua Wang
- Institute of Natural Resources, Heilongjiang Academy of Sciences, Harbin, China
| | - Siming Nie
- The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China
| | - Zhengwei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
28
|
Liu J, Liu Y, Wang Y, Zhang ZH, Zu YG, Efferth T, Tang ZH. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis. Front Physiol 2016; 7:217. [PMID: 27375495 PMCID: PMC4895121 DOI: 10.3389/fphys.2016.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves.
Collapse
Affiliation(s)
- Jia Liu
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| | - Yang Liu
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| | - Yu Wang
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| | - Zhong-Hua Zhang
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| | - Yuan-Gang Zu
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Zhong-Hua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry University Harbin, China
| |
Collapse
|
29
|
Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3708187. [PMID: 27314017 PMCID: PMC4903123 DOI: 10.1155/2016/3708187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon.
Collapse
|
30
|
Pan YJ, Liu L, Lin YC, Zu YG, Li LP, Tang ZH. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:696. [PMID: 27242886 PMCID: PMC4872043 DOI: 10.3389/fpls.2016.00696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/06/2016] [Indexed: 05/26/2023]
Abstract
The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM) assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG) family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death.
Collapse
Affiliation(s)
- Ya-Jie Pan
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Ling Liu
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Ying-Chao Lin
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
- Guizhou Academy of Tobacco ResearchGuiyang, China
| | - Yuan-Gang Zu
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Lei-Peng Li
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
31
|
Sun J, Manmathan H, Sun C, Peebles CAM. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC PLANT BIOLOGY 2016; 16:108. [PMID: 27154243 PMCID: PMC4859987 DOI: 10.1186/s12870-016-0794-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Clinically important anti-cancer drugs vinblastine and vincristine are solely synthesized by the terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus. Anthranilate synthase (AS) is a rate-limiting enzyme in the TIA pathway. The transgenic C. roseus hairy root line overexpressing a feedback insensitive ASα subunit under the control of an inducible promoter and the ASβ subunit constitutively was previously created for the overproduction of TIAs. However, both increases and decreases in TIAs were detected after overexpressing ASα. Although genetic modification is targeted to one gene in the TIA pathway, it could trigger global transcriptional changes that can directly or indirectly affect TIA biosynthesis. In this study, Illumina sequencing and RT-qPCR were used to detect the transcriptional responses to overexpressing AS, which can increase understanding of the complex regulation of the TIA pathway and further inspire rational metabolic engineering for enhanced TIA production in C. roseus hairy roots. RESULTS Overexpressing AS in C. roseus hairy roots altered the transcription of most known TIA pathway genes and regulators after 12, 24, and 48 h induction detected by RT-qPCR. Changes in the transcriptome of C. roseus hairy roots was further investigated 18 hours after ASα induction and compared to the control hairy roots using RNA-seq. A unigene set of 30,281 was obtained by de novo assembly of the sequencing reads. Comparison of the differentially expressed transcriptional profiles resulted in 2853 differentially expressed transcripts. Functional annotation of these transcripts revealed a complex and systematically transcriptome change in ASαβ hairy roots. Pathway analysis shows alterations in many pathways such as aromatic amino acid biosynthesis, jasmonic acid (JA) biosynthesis and other secondary metabolic pathways after perturbing AS. Moreover, many genes in overall stress response were differentially expressed after overexpressing ASα. CONCLUSION The transcriptomic analysis illustrates overexpressing AS stimulates the overall stress response and affects the metabolic networks in C. roseus hairy roots. The up-regulation of endogenous JA biosynthesis pathway indicates the involvement of JA signal transduction to regulate TIA biosynthesis in ASαβ engineered roots and explained why many of the transcripts for TIA genes and regulators are seen to increase with AS overexpression.
Collapse
Affiliation(s)
- Jiayi Sun
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1370, Fort Collins, 80523, USA
| | - Harish Manmathan
- Soil and Crop Sciences Department, Colorado State University, Campus deliver 1170, Fort Collins, Colorado, 80523, USA
| | - Cheng Sun
- Department of biology, Colorado State University, 1878 Campus Delivery, Fort Collins, Colorado, 80521, USA
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agriculture Science, Beijing, 10093, China
| | - Christie A M Peebles
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1370, Fort Collins, 80523, USA.
| |
Collapse
|
32
|
He Y, Yan H, Hua W, Huang Y, Wang Z. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla. FRONTIERS IN PLANT SCIENCE 2016; 7:945. [PMID: 27446172 PMCID: PMC4925707 DOI: 10.3389/fpls.2016.00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/03/2023]
Abstract
Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates - five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) - using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔC t, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions.
Collapse
Affiliation(s)
- Yihan He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- School of Geography and Life Science, Qinghai Normal UniversityXining, China
| | - Hailing Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Wenping Hua
- Department of Life Sciences, Shaanxi XueQian Normal UniversityXi’an, China
| | - Yaya Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- *Correspondence: Zhezhi Wang,
| |
Collapse
|
33
|
Liu J, Liu Y, Pan YJ, Zu YG, Tang ZH. Determination of Alkaloids inCatharanthus roseusandVinca minorby High-Performance Liquid Chromatography–Tandem Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1094664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|