1
|
Traband RC, Wang X, Resendiz M, Meng M, Hiraoka Y, Jia Q, Chang R, Eurmsirilerd E, Kahn T, Mauk PA, De Souza A, Bhatia A, Ke H, Merhaut D, Roose ML, Jia Z, Chater JM. A Novel Approach for Comparing Selected Metabolites in Citrus Leaves and Fruits Across Datasets. PLANTS (BASEL, SWITZERLAND) 2025; 14:1406. [PMID: 40430972 DOI: 10.3390/plants14101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025]
Abstract
Citrus fruits are valued not only for their nutritional benefits but also for their rich phytochemical content. Metabolomics has emerged as a comprehensive technique for assessing the chemical composition of fruits. The botanical connection between leaves, flowers, and fruits is reflected in both their structure and chemical composition, particularly in the flow of nutrients between plant organs. We introduced a new logarithm ratio-based approach to compare metabolite profiles between fruits and leaves. We hypothesize that this method allows for the analysis of multiple citrus metabolomic profiles to reveal known and novel correlation patterns, reflecting the dynamic connections between metabolic sources. To test this hypothesis, we leveraged comprehensive leaf metabolomic profiles from over 200 accessions in the Givaudan Citrus Variety Collection and reviewed published metabolomics data for fruits and juices of matching citrus types. By employing logarithm-transformed metabolic ratios within each dataset, we accounted for systematic differences across metabolomic platforms, achieving an unbiased analysis.
Collapse
Affiliation(s)
- Ryan C Traband
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xuesong Wang
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Mariano Resendiz
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Megan Meng
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Yoko Hiraoka
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qiong Jia
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Rendell Chang
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Ethan Eurmsirilerd
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - Tracy Kahn
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Peggy A Mauk
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Amancio De Souza
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - Anil Bhatia
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - Haiyan Ke
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - Donald Merhaut
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - John M Chater
- Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
2
|
Xing J, Ye X, Huo K, Ding Z, Tie W, Xie Z, Li C, Meng F, Hu W. Integrated metabolomic and transcriptomic analyses revealed the overlapping response mechanisms of banana to cold and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109766. [PMID: 40086128 DOI: 10.1016/j.plaphy.2025.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Banana (Musa spp.), a vital tropical fruit and food crop, faces significant challenges from cold and drought stress, which threaten its productivity. Uncovering the overlapping mechanisms of crop responses to abiotic stresses is essential for the development of multi-resistant crop varieties. This study investigates the overlapping response mechanisms of banana to cold and drought stress through integrated metabolomic and transcriptomic analyses. We conducted physiological assessments alongside these analyses to elucidate shared mechanisms. Our results showed that both cold and drought stress disrupted cell membrane stability and reduced relative water content and chlorophyll content in banana leaves. Metabolomic analysis identified 1800 annotated metabolites, with 636 and 405 differentially accumulated metabolites (DAMs) under cold and drought stress, respectively, and flavonoids represented the most abundant metabolite class. Transcriptomic analysis revealed that 5687 differentially expressed genes (DEGs) were induced under both stress conditions, with significant enrichment in pathways related to ascorbic acid, arginine, and proline metabolism. Integrating metabolomic and transcriptomic data highlighted carbohydrate, amino acid, and flavonoid metabolism as the central pathways shared in response to cold and drought stresses. Notably, while these pathways were common, specific structural genes and accumulated metabolites varied between stress types. Additionally, our results suggest that GDP-mannose is the primary ascorbate synthesis route under cold stress, whereas myo-inositol and galacturonic acid pathways dominate under drought stress. These findings enhance our understanding of banana's adaptive responses and provide a foundation for breeding multi-stress-resistant crop varieties in an era of climate change.
Collapse
Affiliation(s)
- Junchao Xing
- College of Life Science, Northeast Forestry University, Harbin, 150040, China; National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Kaisen Huo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zehong Ding
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chaochao Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Li Z, Li C, Han P, Wang Y, Ren Y, Xin Z, Lin T, Lian Y, Wang Z. Propionic Acid Signalling Modulates Stomatal Opening and Drives Energy Metabolism to Enhance Drought Resistance in Wheat (Triticum aestivum L.). PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298187 DOI: 10.1111/pce.15589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
Drought stress caused by global climate change severely imperils crop productivity and increases environmental deterioration. Wheat (Triticum aestivum L.) is an important worldwide food crop. Drought resistance in wheat encompasses functional gene transcription, metabolism, hormone signalling, and protein modifications. However, the underlying mechanisms by which these regulatory responses are coordinated remain unknown. Herein, we report a drought-resistance network in which wheat triggers a dynamic metabolic flux conversion from propionic acid (PA) to the tricarboxylic acid (TCA) cycle through beta-oxidation of fatty acids and stimulates crosstalk of various hormonal signals. It is also possible that P300/CREB regulates histone acetylation to confer drought resistance in wheat. Exogenous PA drives the TCA cycle and glycolysis and promotes stomatal closure through hormones crosstalk. From Aegilops tauschii Cosson (the diploid progenitor of common wheat) to wheat, this novel PA function serves as a survival strategy against environmental changes, and was validated in wheat field experiments. Our results highlight a new survival strategy that triggers the comprehensive and systemic effects of functional genes, metabolomics, hormone signalling, and protein modification on drought resistance to provide novel insights into improving the agroecological environment.
Collapse
Affiliation(s)
- Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Chenxi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Pengbin Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yihan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
4
|
Liu T, Qiao Z, Gong K, Yang Y, Han Y, Tan J, Peng C, Zhang W. Synergistic toxicity of DBDPE and Cd in a microcosm agrosystem: Insights into physiological, biochemical, nutrient elements and amino acid metabolic responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138421. [PMID: 40306244 DOI: 10.1016/j.jhazmat.2025.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Agricultural soil contamination by flame retardants and heavy metals has become an environmental concern, with decabromodiphenyl ethane (DBDPE) and cadmium (Cd) being frequently detected in e-waste dismantling areas. While previous studies mostly focused on single-organism system or individual toxicity, the combined effects of DBDPE and Cd on agricultural ecosystems remain largely unknown. This study aimed to reveal the joint toxicity mechanisms of DBDPE and Cd by examining physiological responses, amino acid metabolism, nutrient element distribution, and DBDPE degradation pathways in this integrated system. Results demonstrated that co-exposure to DBDPE and Cd intensified toxicity compared to single exposure. In lettuce, DBDPE amplified the inhibitory effects of Cd on plant growth (height and fresh weight of the aerial part decreased by 3.8 % and 5.8 %). Co-exposure inhibited chlorophyll synthesis (particularly carotenoid production, decreased by 53.33 %), disrupted amino acid metabolism, and impaired nutrient elements uptake, ultimately leading to reduced plant growth. In earthworms, co-exposure altered amino acid profiles, disrupted nutrient elements absorption and transport, thereby reducing their antioxidant defense capacity. Both organisms showed limited ability to detoxify DBDPE through similar debromination pathways. This study reveals the synergistic toxicological impacts of DBDPE and Cd in agricultural systems, highlighting the elevated ecological risks of their co-occurrence and emphasizing the need for comprehensive pollution control strategies in contaminated agricultural soils.
Collapse
Affiliation(s)
- Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shandong Institute of Sericulture, Jiaodong Innovation Center, Shandong Academy of Agricultural Sciences, Yantai, China.
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Chatterjee Y, Tomar S, Mishra M, Pareek A, Singla-Pareek SL. OsLdh7 Overexpression in Rice Confers Submergence Tolerance by Regulating Key Metabolic Pathways: Anaerobic Glycolysis, Ethanolic Fermentation and Amino Acid Metabolism. PLANT, CELL & ENVIRONMENT 2025; 48:2804-2820. [PMID: 39789693 DOI: 10.1111/pce.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation. The overexpression lines showed enhanced viability, chlorophyll content and photosystem II (PSII) efficiency compared to wild-type (WT) plants under stress and recovery conditions. Additionally, these lines exhibited better starch accumulation and reduced reactive oxygen species (ROS) accumulation. Protein-protein interaction studies revealed that OsLdh7 interacts with OsLos2, OsPdc2, OsAlaAT2 and OsAsp2. Under submergence, enhanced enzyme activities of OsLdh7, OsAsp2 and OsAdh1 led to higher NAD+ levels, sustaining anaerobic glycolytic flux and increasing pyruvate, a critical carbon source for amino acid metabolism as well as anaerobic fermentation pathways. Elevated l-lactate levels resulted in increased activity of OsPdc2, which eventually led to enhanced ethanol production. The overexpression lines also accumulated higher levels of aspartate, glutamate and alanine, crucial for ROS reduction and energy production during recovery. These findings suggest that OsLdh7 overexpression confers tolerance to submergence stress by regulating the important metabolic pathways- anaerobic glycolysis, ethanolic fermentation and amino acid metabolism in rice.
Collapse
Affiliation(s)
- Yajnaseni Chatterjee
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surabhi Tomar
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Yun MKD, Subramanian C, Miller K, Jackson P, Radka CD, Rock CO. Isoleucine binding and regulation of Escherichia coli and Staphylococcus aureus threonine dehydratase (IlvA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641827. [PMID: 40093177 PMCID: PMC11908243 DOI: 10.1101/2025.03.06.641827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In Staphylococcus aureus, the branched-chain amino acid biosynthetic pathway provides essential intermediates for membrane biosynthesis. Threonine deaminase (IlvA) is the first enzyme in the pathway, and isoleucine feedback-regulates the enzyme in Escherichia coli. These studies on E. coli IlvA (EcIlvA) introduced the concept of allosteric regulation. To investigate the regulation of S. aureus IlvA (SaIlvA), we first conducted additional studies on EcIlvA. The previously determined crystal structure of EcIlvA revealed a tetrameric assembly of protomers, each with catalytic and regulatory domains, but the structural basis of isoleucine regulation was not characterized. Here, we present the crystal structure of the EcIlvA regulatory domain bound to isoleucine, which reveals the isoleucine binding site and conformational changes that initiate at Phe352 and propagate 23 Angstrom across the domain. This suggests an allosteric pathway that extends to the active site of the adjacent protomer, mediating regulation across the protomer-protomer interface. The EcIlvA(F352A) mutant binds isoleucine but is feedback-resistant due to the absence of the initiating Phe352. In contrast, SaIlvA is not feedback-regulated by isoleucine and does not bind it. The structure of the SaIlvA regulatory domain reveals a different organization that lacks the isoleucine binding site. Other potential allosteric inhibitors of SaIlvA, including phospholipid intermediates, do not affect enzyme activity. We propose that the absence of feedback inhibition in SaIlvA is due to its role in membrane biosynthesis. These findings enhance our understanding of IlvA's allosteric regulation and offer opportunities for engineering feedback-resistant IlvA variants for biotechnological use.
Collapse
|
7
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. Grain lysine enrichment and improved stress tolerance in rice through protein engineering. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1408-1426. [PMID: 39392917 DOI: 10.1093/jxb/erae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 10/13/2024]
Abstract
Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids including lysine. The activity of the enzyme dihydrodipicolinate synthase (DHDPS) is crucial for lysine production in higher plants, but it is tightly regulated through feedback inhibition by its end product, lysine, leading to limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make DHDPS lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29% higher lysine and 15% higher protein accumulation in rice grains than in the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. The transgenic plants also exhibited enhanced stress tolerance along with higher antioxidant levels, improved photosynthesis, and higher grain yield compared to wild-type plants. We have shown that protein engineering of DHDPS in rice can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
8
|
Posso DA, Shimoia EP, da-Silva CJ, Thuy Phan AN, Reissig GN, da Silva Martins T, Ehrt B, Martins PD, de Oliveira ACB, Blank LM, Borella J, van Dongen JT, Amarante LD. Soybean tolerance to waterlogging is achieved by detoxifying root lactate via lactate dehydrogenase in leaves and metabolizing malate and succinate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109520. [PMID: 39832393 DOI: 10.1016/j.plaphy.2025.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance. After 11 days of waterlogging, roots of the tolerant line (PELBR15-7015C) modulated their fermentative metabolism by exporting key metabolites (lactate, malate, and succinate) to the shoot. These metabolites were metabolized in the leaves, supporting photosynthesis and facilitating sugar export to the roots, sustaining a root-shoot-root cycling process. In contrast, the sensitive line (PELBR15-7060) entered a quiescent state, depleting its carbon stock and accumulating protective metabolites. Our study reveals that long-term waterlogging tolerance is primarily achieved through lactate detoxification in the leaves, along with malate and succinate metabolism, enabling root metabolism to withstand hypoxia. This mechanism offers new insights into crop resilience under waterlogged conditions, with implications for modern agriculture as climate change intensifies the frequency and duration of such stress events.
Collapse
Affiliation(s)
- Douglas Antônio Posso
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Institute of Biology I, RWTH Aachen University, Aachen, NRW, 52074, Germany.
| | | | - Cristiane Jovelina da-Silva
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695-7609, United States
| | - An Nguyen Thuy Phan
- IAMB - Institute of Applied Microbiology, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | | | | | - Brigitta Ehrt
- Institute of Biology I, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | | | | | - Lars Mathias Blank
- IAMB - Institute of Applied Microbiology, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | - Junior Borella
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Institute of Biological Science, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Luciano do Amarante
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil
| |
Collapse
|
9
|
Liao R, Zhang W, Xu R, Li K, Wei W, Sheng R. Endophytic microbial communities and functional shifts in Hemarthria compressa grass in response to Silicon and Selenium amendment. BMC PLANT BIOLOGY 2025; 25:169. [PMID: 39924486 PMCID: PMC11808958 DOI: 10.1186/s12870-025-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Hemarthria compressa, a widely cultivated forage grass, is critical for supporting livestock production and maintaining the ecological balance in grassland ecosystems. Enhancing its stress resistance and productivity is crucial for sustainable grassland utilization and development. Silicon (Si) and Selenium (Se) are recognized as beneficial nutrients that promote plant growth and stress tolerance, and modulate of plant-microorganism interactions. However, the intricate linkages between the endophytes shifts and host grass growth induced by Si/Se amendments are poorly understood. In this study, a pot experiment was conducted to examine the effects of foliar-applied Si/Se on the growth and nutritional quality of H. compressa grass, as well as the composition, diversity and potential functions of endophytic bacteria in leaves. RESULTS Both Si and Se treatments significantly improved grass biomass by approximately 17%. Nutritional quality was also improved, with Si application increased plant Si and neutral detergent fiber contents by 25.6% and 5.8%, while Se significantly enhanced the grass Se content from 0.055 mg kg-1 to 0.636 mg kg-1. Furthermore, Si/Se amendments altered the structure of the leaf endophytic bacterial community, resulting in an increased alpha diversity and a more modularized co-occurrence network. Moreover, both Si and Se treatments enriched plant growth-promoting bacterial genera such as Brevundimonas and Truepera. Metabolic function analysis revealed that Si application promoted chlorophyllide biosynthesis by 152%, several carbon metabolism pathways by 35-152%, and redox-related pathways by 57-93%, while the starch biosynthesis pathway was downregulated by 79% of the endophytic bacterial community. In contrast, Se application mainly enhanced starch degradation, CMP-legionamine biosynthesis by 71% and TCA cycle-related pathways by 23-58%, while reducing L-threonine metabolism by 98%. These specific functional changes in the endophytic bacteria induced by Si/Se amendments were closely linked with the observed growth promotion and stress resistance of the host H. compressa grass. CONCLUSIONS Si and Se amendments not only enhanced the growth and nutritional quality of H. compressa grass, but also altered the community structure and functional traits of endophytic bacteria in grass. The enrichment of beneficial endophytes and the modification of community metabolic functions within the endophytic community may play important synergistic effects on improving grass growth.
Collapse
Affiliation(s)
- Rujia Liao
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Risheng Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ke Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenxue Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Rong Sheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
10
|
Duan S, Meng X, Zhang H, Wang X, Kang X, Liu Z, Ma Z, Li G, Guo X. The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage. Int J Mol Sci 2025; 26:1468. [PMID: 40003947 PMCID: PMC11855456 DOI: 10.3390/ijms26041468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| |
Collapse
|
11
|
Przybyla-Toscano J, Chetouhi C, Pennera L, Boursiac Y, Galeone A, Devime F, Balliau T, Santoni V, Bourguignon J, Alban C, Ravanel S. New insights into uranium stress responses of Arabidopsis roots through membrane- and cell wall-associated proteome analysis. CHEMOSPHERE 2025; 370:143873. [PMID: 39647793 DOI: 10.1016/j.chemosphere.2024.143873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Uranium (U) is a non-essential and toxic metal for plants. In Arabidopsis thaliana plants challenged with uranyl nitrate, we showed that U was mostly (64-71% of the total) associated with the root insoluble fraction containing membrane and cell wall proteins. Therefore, to uncover new molecular mechanisms related to U stress, we used label-free quantitative proteomics to analyze the responses of the root membrane- and cell wall-enriched proteome. Of the 2,802 proteins identified, 458 showed differential accumulation (≥1.5-fold change) in response to U. Biological processes affected by U include response to stress, amino acid metabolism, and previously unexplored functions associated with membranes and the cell wall. Indeed, our analysis supports a dynamic and complex reorganization of the cell wall under U stress, including lignin and suberin synthesis, pectin modification, polysaccharide hydrolysis, and Casparian strips formation. Also, the abundance of proteins involved in vesicular trafficking and water flux was significantly altered by U stress. Measurements of root hydraulic conductivity and leaf transpiration indicated that U significantly decreased the plant's water flux. This disruption in water balance is likely due to a decrease in PIP aquaporin levels, which may serve as a protective mechanism to reduce U toxicity. Finally, the abundance of transporters and metal-binding proteins was altered, suggesting that they may be involved in regulating the fate and toxicity of U in Arabidopsis. Overall, this study highlights how U stress impacts the insoluble root proteome, shedding light on the mechanisms used by plants to mitigate U toxicity.
Collapse
Affiliation(s)
| | - Cherif Chetouhi
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Lorraine Pennera
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Adrien Galeone
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190, Gif-sur-Yvette, France
| | - Véronique Santoni
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France.
| |
Collapse
|
12
|
Abdelsalam A, Gharib FAEL, Boroujerdi A, Abouelhamd N, Ahmed EZ. Selenium nanoparticles enhance metabolic and nutritional profile in Phaseolus vulgaris: comparative metabolomic and pathway analysis with selenium selenate. BMC PLANT BIOLOGY 2025; 25:119. [PMID: 39871137 PMCID: PMC11773980 DOI: 10.1186/s12870-025-06097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Selenium is a beneficial element in agriculture, particularly for its potential to improve plant growth and stress tolerance at suitable concentrations. In this study, Phaseolus vulgaris was foliar-sprayed with selenium selenate (Se) or selenium nanoparticles (SeNP) at different concentrations during the vegetative stage; afterward, the seed yield was analyzed for metabolomics using 1H, J-resolved and HSQC NMR data, and NMR databases. A total of 47 metabolites were identified with sugars being the major chemical class. In the control sample, the most abundant sugar was stachyose (14.6 ± 0.8 mM). Among the identified alkaloids, the concentration of trigonelline was the highest (0.6 ± 0.08 mM). Chemometric and cluster analyses distinctly differentiated the control from the Se and SeNP-treated samples. Treatments with SeNP resulted in elevated concentrations of sugars, carboxylic acids, and sulfur-containing amino acids compared to control and Se treated samples. Conversely, betaine levels were higher in Se samples. The presence of Se and SeNP significantly decreased the levels of several aliphatic amino acids, e.g. alanine. The addition of 50 µM SeNP upregulated the levels of trigonelline and syringate by 2-fold and 1.75-fold, respectively, relative to the control. Pathway analysis indicated the most significantly altered pathways due to SeNP addition were arginine biosynthesis and nitrogen metabolism. The pathways influenced by Se addition were glyoxylate and dicarboxylate metabolism as well as glycine-serine and threonine metabolism. This study proved that SeNP are more efficient than Se in enhancing the metabolic profile of Phaseolus vulgaris which will have implications for agricultural practices, focusing on the sustainability and nutritional enhancement of crops.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| | | | - Arezue Boroujerdi
- Chemistry Department, Claflin University, Orangeburg, SC, 29115, USA
| | - Nada Abouelhamd
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| |
Collapse
|
13
|
Qiang Q, Zhang Z, Li X, Li C, Mao M, Ding X, Zhang J, Li S, Lai Z, Yang J, Cao P, Ye W, Wang S, Yang J. The amino acid permease SlAAP6 contributes to tomato growth and salt tolerance by mediating branched-chain amino acid transport. HORTICULTURE RESEARCH 2025; 12:uhae286. [PMID: 39882176 PMCID: PMC11775608 DOI: 10.1093/hr/uhae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids in tomato (Solanum lycopersicum) required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato amino acid permease 6 (SlAAP6) gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs. Overexpression of SlAAP6 (SlAAP6-OE) in tomato raised the BCAA content and elevated the fresh weight, while SlAAP6 knockouts (slaap6) showed reduced levels of neutral and basic amino acids in seedling tissues and lower total free amino acid distribution to shoots. In comparison to wild type and slaap6 mutants, SlAAP6-OE alleviated root limited growth by elevated BCAA transport and upregulated the expression of root-growth-related genes by increasing BCAAs in vivo. As SlAAP6 serves as a positive regulator for BCAA abundance, SlAAP6-OE lines showed greater salinity tolerance, while slaap6 mutants exhibited increased salt sensitivity. The salt tolerance of SlAAP6-OE plants was further enhanced by the application of exogenous BCAAs. In addition, BCAA supplementation reduced the accumulation of H2O2 in root under salt stress conditions. Based on these findings, SlAAP6-mediated uptake and transport of BCAAs facilitated growth and salt tolerance in tomato. By characterizing this key amino acid transporter, this study provides a novel approach to simultaneously enhance tomato nutritional quality, growth and development, and stress resistance through genetic improvement.
Collapse
Affiliation(s)
- Qi Qiang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Mengdi Mao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Shixuan Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Zesen Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
- Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
| |
Collapse
|
14
|
Zhang X, Gao X, Liu B, Wang J, Shan J, Wang J, Zhang Y, Li G, Jia Y, Wang R. Transcriptome and metabolome reveal the primary and secondary metabolism changes in Larix gmelinii seedlings under abiotic stress. BMC PLANT BIOLOGY 2024; 24:1128. [PMID: 39592952 PMCID: PMC11600854 DOI: 10.1186/s12870-024-05831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Larix gmelinii is an excellent stress resistant coniferous tree species with a wide distribution and important economic and ecological value. However, at seedling stage, L. gmelinii is extremely susceptible to abiotic stresses, and systematic research on the adaptation mechanisms of L. gmelinii seedlings to abiotic stress is still lacking. RESULTS Phenotypic observation and physiological index detection showed that L. gmelinii seedlings wilted with needles withered and yellowish at later stages of drought and salt stress; Under low temperature, the seedlings grew slowly and turned red at later stage. Under all 3 abiotic stresses, the chlorophyll content in seedlings significantly decreased, while the MDA content significantly increased; The activity of SOD and CAT showed a trend of increasing first and then decreasing. Transcriptome analysis revealed that DEGs were mainly involved in carbohydrate and amino acid metabolism, phenylpropanoid biosynthesis, and flavonoid synthesis metabolism. Metabolomic analysis found unique DAMs under 3 stress treatments. The combined analysis of transcriptome and metabolome showed that the changing patterns of DEGs and DAMs in primary and secondary metabolism were consistent: carbohydrate were significantly accumulated under low temperature stress; amino acids showed the most significant changes under salt stress. The variation pattern of secondary metabolism was similar under both drought and salt stress, while anthocyanin accumulation was the most obvious only under low temperature stress. CONCLUSION Our study provides insightful information about the different mechanisms that L. gmelinii seedlings employ in response to drought, low temperature or salt stress.
Collapse
Affiliation(s)
- Xuting Zhang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Xianling Gao
- Hohhot Vocational College, Hohhot, 010051, P. R. China
| | - Bin Liu
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Juan Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Jinyuan Shan
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Jiaxiu Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Yanxia Zhang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Yonghong Jia
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou, 014109, P. R. China.
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| |
Collapse
|
15
|
Zhang W, Qin YW, Ding YF, Xiong JW, Chang XW, Zhao HS, Xia CK, Zhang JB, Li Y, Mao CQ, Lu TL, Wu DL. Metabolomics and proteomics analyses of Chrysanthemi Flos: a mechanism study of changes in proteins and metabolites by processing methods. Chin Med 2024; 19:160. [PMID: 39563383 PMCID: PMC11575428 DOI: 10.1186/s13020-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Chrysanthemi Flos is a traditional Chinese medicine with a long history of medicinal use. Prior research suggests that the intrinsic composition of Chrysanthemi Flos is affected by shade-drying and oven-drying methods. Nevertheless, the effects of these methods on the proteins and metabolites of Chrysanthemi Flos have not been extensively studied. METHODS The TMT (tandem mass tag) quantitative proteomics method and the LC-MS/MS (liquid chromatography-tandem mass spectrometry) non-targeted metabolomics method were used to systematically study the differences in the proteins and metabolites during the process of drying Chrysanthemi Flos in the shade and an oven. RESULTS Differentially accumulated metabolites and abundant proteins were primarily enriched in the purine metabolism, pyrimidine metabolism, cyanogenic amino acid metabolism, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. Primary metabolites, such as guanine, xanthine, cytidine 5'-diphosphate serine, L-isoleucine, stearidonic acid, alginate, and inulin, play a crucial role in providing energy for Chrysanthemi Flos to withstand desiccation stress. The upregulation of ferulate-5- hydroxylase (F5H), shikimate O hydroxycinnamoyltransferase (HCT), caffeoyl-CoA O-methyltransferase (CCoAOMT), and chalcone isomerase (CHI) enzymes promotes the synthesis of flavonoids, including sinapic acid, caffeoyl shikimic acid, and naringenin chalcone, which possess antioxidant properties. Despite the notable improvements in energy metabolism and antioxidant capacity, these enhancements proved insufficient in halting the senescence and ultimate demise of Chrysanthemi Flos. Moreover, the shade-drying method can inhibit protein expression and promote the accumulation of bioactive components, but the drying efficiency is low, while the oven-drying method exhibits rapid drying efficiency, it does not effectively preserve the components. CONCLUSION Our study offers a comprehensive explanation for the changes in protein expression and metabolite conversion observed in shade-dried and oven-dried Chrysanthemi Flos, also providing a foundation for optimizing the drying process of Chrysanthemi Flos.
Collapse
Affiliation(s)
- Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China
| | - Yu-Wen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Yang-Fei Ding
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China
| | - Jun-Wei Xiong
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China
| | - Xiang-Wei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China
| | - Hong-Su Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China
| | - Cheng-Kai Xia
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Jiu-Ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Chun-Qin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Tu-Lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| | - De-Ling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Shaoquan Rd, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| |
Collapse
|
16
|
de Araújo AC, Brasileiro ACM, Martins ADCQ, Grynberg P, Togawa RC, Saraiva MADP, Miller RNG, Guimaraes PM. Ectopic expression of a truncated NLR gene from wild Arachis enhances resistance to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1486820. [PMID: 39606668 PMCID: PMC11598430 DOI: 10.3389/fpls.2024.1486820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Fusarium oxysporum causes devastating vascular wilt diseases in numerous crop species, resulting in substantial yield losses. The Arabidopsis thaliana-F. oxysporum f.sp. conglutinans (FOC) model system enables the identification of meaningful genotype-phenotype correlations and was applied in this study to evaluate the effects of overexpressing an NLR gene (AsTIR19) from Arachis stenosperma against pathogen infection. AsTIR19 overexpression (OE) lines exhibited enhanced resistance to FOC without any discernible phenotype penalties. To elucidate the underlying resistance mechanisms mediated by AsTIR19 overexpression, we conducted whole transcriptome sequencing of an AsTIR19-OE line and non-transgenic wild-type (WT) plants inoculated and non-inoculated with FOC using Illumina HiSeq4000. Comparative analysis revealed 778 differentially expressed genes (DEGs) attributed to transgene overexpression, while fungal inoculation induced 434 DEGs in the OE line, with many falling into defense-related Gene Ontology (GO) categories. GO and KEGG enrichment analysis showed that DEGs were enriched in the phenylpropanoid and flavonoid pathways in the OE plants. This comprehensive transcriptomic analysis underscores how AsTIR19 overexpression reprograms transcriptional networks, modulating the expression of stress-responsive genes across diverse metabolic pathways. These findings provide valuable insights into the molecular mechanisms underlying the role of this NLR gene under stress conditions, highlighting its potential to enhance resistance to Fusarium oxysporum.
Collapse
Affiliation(s)
| | - Ana Cristina Miranda Brasileiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | - Patricia Messenberg Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| |
Collapse
|
17
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
18
|
Li Z, Lian Y, Guo H, Li C, Ren Y, Xin Z, Lin T, Wang Z. Network analysis of metabolomics, transcriptome and hormones reveals propionic acid-mediated novel survival strategy against drought in wheat. PHYSIOLOGIA PLANTARUM 2024; 176:e14551. [PMID: 39344506 DOI: 10.1111/ppl.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Propionic acid (PA), a low-molecular-weight organic acid, is crucial to plant life metabolism. However, the regulatory mechanism of PA-mediated drought resistance in wheat remains largely unknown. Herein, we reported on a regulatory network of PA-mediated drought resistance in wheat using integrated transcriptome and metabolomics analysis and verified genes associated with drought resistance. Compared to the water-treated group, the application of PA alleviated the damage of drought by increasing plant water content, antioxidant enzyme activities and decreasing the malondialdehyde level (MDA). Transcriptome and metabolomics analysis revealed that PA triggered upregulation of key genes and metabolites, including TaBCAT, TaALDH6A1, TaALDH7A1, TaCHI, TaFLS, chrysin, and galangin, which were involved in valine, leucine and isoleucine degradation or flavonoid biosynthesis, respectively. In addition, the expression of genes encoding auxin-related transcription factors (TFs) strikingly increased, such as auxin/indoleacetic acid (AUX/IAA) and auxin response factor (ARF). Moreover, PA activated abscisic acid (ABA) and indole-3-acetic acid (IAA) signalling pathways. Taken together, our findings suggest that PA promotes energy metabolism and antioxidant activities to confer wheat drought resistance by introducing comprehensive and systemic effects of valine, leucine and isoleucine degradation flavonoid biosynthesis. Furthermore, activated AUX/IAA and ARF TFs might serve vital roles in drought resistance via modulating IAA signalling. This study provides novel insights into PA-mediated crop resistance and the improvement of the agroecological environment.
Collapse
Affiliation(s)
- Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Hui Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Álvarez-Rodríguez S, Senizza B, Araniti F, Lucini L, Lucchini G, Sánchez-Moreiras AM. Evaluating the effects of azelaic acid in the metabolism of Arabidopsis thaliana seedlings through untargeted metabolomics and ionomics approaches. PHYSIOLOGIA PLANTARUM 2024; 176:e14550. [PMID: 39327690 DOI: 10.1111/ppl.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
The present study demonstrates that low concentrations of azelaic acid (AZA) significantly impact the metabolism of Arabidopsis thaliana seedlings, leading to imbalances in numerous minerals and metabolites due to AZA-induced stress. Untargeted metabolomic analyses were conducted on untreated and AZA-treated seedlings at two time points: 7 and 14 days after treatment initiation. The results revealed a general accumulation of sugars (e.g., glucose, mannose, xylose), amino acids (e.g., lysine, GABA, threonine, glutamine), and organic acids (e.g., glutaric acid, shikimic acid, succinic acid) in AZA treated-seedlings, suggesting that AZA triggers stress responses in Arabidopsis. Ionomic analysis revealed that AZA induces phosphorus deficiency, which plants compensate by increasing malate content in the roots. Additionally, AZA treatment induced putrescine accumulation within the root, a metabolic biomarker of potassium deficiency and plant stress. The metabolomic profile showed elevated levels of different specialized metabolites, such as nitrogen- and sulphur-containing compounds, and altered levels of various phytohormones, including jasmonates and brassinosteroids, implicated in plant protection under biotic and/or abiotic stresses. These findings support the hypothesis that AZA's mode of action is associated with an auxin imbalance, suggesting its function as an auxinic herbicide. The observed increases in starch and jasmonates, coupled with the disruptions in potassium homeostasis, are linked to the previously reported alterations in the auxin transport, root architecture and gravitropic root response. Statistical analyses were applied, including Kruskal-Wallis tests for ionomic data, as well as multifactor analysis, Principal Component Analysis, Orthogonal Partial Least Squares-Discriminant Analysis, and enrichment pathway analysis for metabolomic data, ensuring the robustness and validity of these findings.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Biancamaria Senizza
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| |
Collapse
|
20
|
Cui YN, Yan SJ, Zhang YN, Wang R, Song LL, Ma Y, Guo H, Yang PZ. Physiological, Metabolome and Gene Expression Analyses Reveal the Accumulation and Biosynthesis Pathways of Soluble Sugars and Amino Acids in Sweet Sorghum under Osmotic Stresses. Int J Mol Sci 2024; 25:8942. [PMID: 39201628 PMCID: PMC11354453 DOI: 10.3390/ijms25168942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Water scarcity is a major environmental constraint on plant growth in arid regions. Soluble sugars and amino acids are essential osmolytes for plants to cope with osmotic stresses. Sweet sorghum is an important bioenergy crop and forage with strong adaptabilities to adverse environments; however, the accumulation pattern and biosynthesis basis of soluble sugars and amino acids in this species under osmotic stresses remain elusive. Here, we investigated the physiological responses of a sweet sorghum cultivar to PEG-induced osmotic stresses, analyzed differentially accumulated soluble sugars and amino acids after 20% PEG treatment using metabolome profiling, and identified key genes involved in the biosynthesis pathways of soluble sugars and amino acids using transcriptome sequencing. The results showed that the growth and photosynthesis of sweet sorghum seedlings were significantly inhibited by more than 20% PEG. After PEG treatments, the leaf osmotic adjustment ability was strengthened, while the contents of major inorganic osmolytes, including K+ and NO3-, remained stable. After 20% PEG treatment, a total of 119 and 188 differentially accumulated metabolites were identified in the stems and leaves, respectively, and the accumulations of soluble sugars such as raffinose, trehalose, glucose, sucrose, and melibiose, as well as amino acids such as proline, leucine, valine, serine, and arginine were significantly increased, suggesting that these metabolites should play key roles in osmotic adjustment of sweet sorghum. The transcriptome sequencing identified 1711 and 4978 DEGs in the stems, as well as 2061 and 6596 DEGs in the leaves after 20% PEG treatment for 6 and 48 h, respectively, among which the expressions of genes involved in biosynthesis pathways of sucrose (such as SUS1, SUS2, etc.), trehalose (including TPS6), raffinose (such as RAFS2 and GOLS2, etc.), proline (such as P5CS2 and P5CR), leucine and valine (including BCAT2), and arginine (such as ASS and ASL) were significantly upregulated. These genes should be responsible for the large accumulation of soluble sugars and amino acids under osmotic stresses. This study deepens our understanding of the important roles of individual soluble sugars and amino acids in the adaptation of sweet sorghum to water scarcity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (Y.-N.C.); (S.-J.Y.); (Y.-N.Z.); (R.W.); (L.-L.S.); (Y.M.)
| | - Pei-Zhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (Y.-N.C.); (S.-J.Y.); (Y.-N.Z.); (R.W.); (L.-L.S.); (Y.M.)
| |
Collapse
|
21
|
Cheraghvareh L, Pourakbar L, Siavash Moghaddam S, Xiao J. The effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) exposed to nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49498-49513. [PMID: 39078554 DOI: 10.1007/s11356-024-34507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
The issue of heavy metal pollution such as nickel poses a significant environmental concern, exerting detrimental effects on the growth and viability of plant life. Plants have various mechanisms to effectively manage heavy metal stress, including the ability to modify their amino acid type and content. This adaptive response allows plants to mitigate the detrimental effects caused by excessive heavy metal accumulation. The aim of this study was to investigate the effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) cv. 'PL438' exposed to Ni stress. After disinfecting and soaking in water for 24 h, corn seeds were primed with bacterial biofertilizers (T2: NPK + FZ), fungal biofertilizers (T3: Arbuscular mycorrhizal fungi (AMF) + Trichoderma (T)), or a combination of them (T4: NPK + FZ + AMF + T) and were cultured by the hydroponic method in completely controlled conditions. Then, they were simultaneously exposed to nickel chloride at various rates (0, 75, or 150 µM) at the three-leaf stage. They were harvested two weeks later and were subjected to the measurement of Ni content, nitrate and nitrite content, nitrate reductase activity, and amino acid profile by high-performance liquid chromatography. The results showed that the application of Ni at higher rates increased Ni, nitrate, and nitrite contents and nitrate reductase activity. The study of Ni accumulation and TF revealed that Ni accumulated in the roots to a greater extent than in the shoots and TF was < 1 in all treatments. The shoot amino acid profile showed that the treatment of Ni+2 increased som amino acids such as aspartic acid, asparagine, serine, histidine, and glycine versus the control, whereas T4 Ni+2 increased aspartic acid, glutamic acid, threonine and arginine. The change in amino acids in Ni-treated plants may play a key role in their adaptation to Ni stress. The findings indicate that biofertilizers played a crucial role in mitigating the negative impacts of Ni on corn plants through alterations in amino acid composition and decreased absorption and translocation of Ni.
Collapse
Affiliation(s)
- Leila Cheraghvareh
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| |
Collapse
|
22
|
Barchanska H, Malejka A, Płonka J. Non-target metabolomics approach for the investigation of the hidden effects induced by atrazine and its degradation products on plant metabolism. CHEMOSPHERE 2024; 359:142298. [PMID: 38729438 DOI: 10.1016/j.chemosphere.2024.142298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Japanese radish (Raphanus sativus var. longipinnatus) plants grown under laboratory conditions were individually exposed to the same doses of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, ATR) or its main degradation products: either 2-amino-4-chloro-6-isopropylamino-1,3,5-triazine (DEA) or 2-amino-4-chloro-6-ethylamino-1,3,5-triazine (DIA) or desethyl-desisopropyl-atrazine (DEDIA) or 4-(ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine (HA), respectively. One week after treatment in plants exposed to ATR, DIA, and DEA, their concentrations were 7.8 μg/g, 9.7 μg/g, and 14.5 μg/g, respectively, while those treated with DEDIA and HA did not contain these compounds. These results were correlated with plant amino acid profile obtained by suspect screening analysis and metabolomic "fingerprint" based on non-target analysis, obtained by liquid chromatography coupled with QTRAP triple quadrupole mass spectrometer. In all cases, both ATR and its by-products were found to interfere with the plant's amino acid profile and modify its metabolic "fingerprint". Therefore, we proved that the non-target metabolomics approach is an effective tool for investigating the hidden effects of pesticides and their transformation products, which is particularly important as these compounds may reduce the quality of edible plants.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland
| | - Anna Malejka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Poland; Biotechnology Centre, Silesian University of Technology, Poland.
| |
Collapse
|
23
|
Li P, Xiang Q, Wang Y, Dong X. UV-B Radiation Enhances Epimedium brevicornu Maxim. Quality by Improving the Leaf Structure and Increasing the Icaritin Content. PLANTS (BASEL, SWITZERLAND) 2024; 13:1720. [PMID: 38999560 PMCID: PMC11244399 DOI: 10.3390/plants13131720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Epimedium brevicornu Maxim. is a herbal plant with various therapeutic effects, and its aboveground tissues contain flavonol compounds such as icaritin that can be used to produce new drugs for the treatment of advanced liver cancer. Previous studies have shown that ultraviolet-B (UV-B, 280-315 nm) stress can increase the levels of flavonoid substances in plants. In the current study, we observed the microstructure of E. brevicornu leaves after 0, 5, 10, 15, and 20 d of UV-B radiation (60 μw·cm-2) and quality formation mechanism of E. brevicornu leaves after 0, 10, and 20 d of UV-B radiation by LC‒ESI‒MS/MS. The contents of flavonols such as icariside I, wushanicaritin, icaritin, and kumatakenin were significantly upregulated after 10 d of radiation. The results indicated that UV-B radiation for 10 d inhibited the morphological development of E. brevicornu but increased the content of active medicinal components, providing a positive strategy for epimedium quality improvement.
Collapse
Affiliation(s)
- Pengshu Li
- College of Agronomy and Biotechnology, Sanya Institute of College of China Agricultural University, Sanya 610101, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qiuyan Xiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Hayashi S, Levine CP, Yu W, Usui M, Yukawa A, Ohmori Y, Kusano M, Kobayashi M, Nishizawa T, Kurimoto I, Kawabata S, Yamori W. Raising root zone temperature improves plant productivity and metabolites in hydroponic lettuce production. FRONTIERS IN PLANT SCIENCE 2024; 15:1352331. [PMID: 38689844 PMCID: PMC11058216 DOI: 10.3389/fpls.2024.1352331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
While it is commonly understood that air temperature can greatly affect the process of photosynthesis and the growth of higher plants, the impact of root zone temperature (RZT) on plant growth, metabolism, essential elements, as well as key metabolites like chlorophyll and carotenoids, remains an area that necessitates extensive research. Therefore, this study aimed to investigate the impact of raising the RZT on the growth, metabolites, elements, and proteins of red leaf lettuce. Lettuce was hydroponically grown in a plant factory with artificial light at four different air temperatures (17, 22, 27, and 30°C) and two treatments with different RZTs. The RZT was raised 3°C above the air temperature in one group, while it was not in the other group. Increasing the RZT 3°C above the air temperature improved plant growth and metabolites, including carotenoids, ascorbic acids, and chlorophyll, in all four air temperature treatments. Moreover, raising the RZT increased Mg, K, Fe, Cu, Se, Rb, amino acids, and total soluble proteins in the leaf tissue at all four air temperatures. These results showed that raising the RZT by 3°C improved plant productivity and the metabolites of the hydroponic lettuce by enhancing nutrient uptake and activating the metabolism in the roots at all four air temperatures. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology.
Collapse
Affiliation(s)
- Sota Hayashi
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Christopher P. Levine
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Wakabayashi Yu
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | | | | | - Yoshihiro Ohmori
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Makoto Kobayashi
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Tomoko Nishizawa
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Ikusaburo Kurimoto
- National Institute of Technology, Kisarazu College, Kisarazu, Chiba, Japan
| | - Saneyuki Kawabata
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Wataru Yamori
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Nishitokyo, Tokyo, Japan
| |
Collapse
|
25
|
Li X, Liu Y, Hu W, Yin B, Liang B, Li Z, Zhang X, Xu J, Zhou S. Integrative physiological, metabolomic, and transcriptomic analysis reveals the drought responses of two apple rootstock cultivars. BMC PLANT BIOLOGY 2024; 24:219. [PMID: 38532379 DOI: 10.1186/s12870-024-04902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Drought is considered the main environmental factor restricting apple production and thus the development of the apple industry. Rootstocks play an important role in enhancing the drought tolerance of apple plants. Studies of the physiology have demonstrated that 'ZC9-3' is a strong drought-resistant rootstock, whereas 'Jizhen-2' is a weak drought-resistant rootstock. However, the metabolites in these two apple rootstock varieties that respond to drought stress have not yet been characterized, and the molecular mechanisms underlying their responses to drought stress remain unclear. RESULTS In this study, the physiological and molecular mechanisms underlying differences in the drought resistance of 'Jizhen-2' (drought-sensitive) and 'ZC9-3' (drought-resistant) apple rootstocks were explored. Under drought stress, the relative water content of the leaves was maintained at higher levels in 'ZC9-3' than in 'Jizhen-2', and the photosynthetic, antioxidant, and osmoregulatory capacities of 'ZC9-3' were stronger than those of 'Jizhen-2'. Metabolome analysis revealed a total of 95 and 156 differentially accumulated metabolites in 'Jizhen-2' and 'ZC9-3' under drought stress, respectively. The up-regulated metabolites in the two cultivars were mainly amino acids and derivatives. Transcriptome analysis revealed that there were more differentially expressed genes and transcription factors in 'ZC9-3' than in 'Jizhen-2' throughout the drought treatment. Metabolomic and transcriptomic analysis revealed that amino acid biosynthesis pathways play key roles in mediating drought resistance in apple rootstocks. A total of 13 metabolites, including L-α-aminoadipate, L-homoserine, L-threonine, L-isoleucine, L-valine, L-leucine, (2S)-2-isopropylmalate, anthranilate, L-tryptophan, L-phenylalanine, L-tyrosine, L-glutamate, and L-proline, play an important role in the difference in drought resistance between 'ZC9-3' and 'Jizhen-2'. In addition, 13 genes encoding O-acetylserine-(thiol)-lyase, S-adenosylmethionine synthetase, ketol-acid isomeroreductase, dihydroxyacid dehydratase, isopropylmalate isomerase, branched-chain aminotransferase, pyruvate kinase, 3-dehydroquinate dehydratase/shikimate 5-dehydrogenase, N-acetylglutamate-5-P-reductase, and pyrroline-5-carboxylate synthetase positively regulate the response of 'ZC9-3' to drought stress. CONCLUSIONS This study enhances our understanding of the response of apple rootstocks to drought stress at the physiological, metabolic, and transcriptional levels and provides key insights that will aid the cultivation of drought-resistant apple rootstock cultivars. Especially, it identifies key metabolites and genes underlying the drought resistance of apple rootstocks.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yitong Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Wei Hu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Baoying Yin
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Shasha Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
26
|
Yoshida T, Fernie AR. Hormonal regulation of plant primary metabolism under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1714-1725. [PMID: 37712613 DOI: 10.1093/jxb/erad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Phytohormones are essential signalling molecules globally regulating many processes of plants, including their growth, development, and stress responses. The promotion of growth and the enhancement of stress resistance have to be balanced, especially under adverse conditions such as drought stress, because of limited resources. Plants cope with drought stress via various strategies, including the transcriptional regulation of stress-responsive genes and the adjustment of metabolism, and phytohormones play roles in these processes. Although abscisic acid (ABA) is an important signal under drought, less attention has been paid to other phytohormones. In this review, we summarize progress in the understanding of phytohormone-regulated primary metabolism under water-limited conditions, especially in Arabidopsis thaliana, and highlight recent findings concerning the amino acids associated with ABA metabolism and signalling. We also discuss how phytohormones function antagonistically and synergistically in order to balance growth and stress responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
27
|
Chekol H, Warkineh B, Shimber T, Mierek-Adamska A, Dąbrowska GB, Degu A. Drought Stress Responses in Arabica Coffee Genotypes: Physiological and Metabolic Insights. PLANTS (BASEL, SWITZERLAND) 2024; 13:828. [PMID: 38592785 PMCID: PMC10975139 DOI: 10.3390/plants13060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Understanding the impact of drought stress on Arabica coffee physiology and metabolism is essential in the pursuit of developing drought-resistant varieties. In this study, we explored the physiological and metabolite changes in coffee genotypes exhibiting varying degrees of tolerance to drought-namely, the relatively tolerant Ca74110 and Ca74112, and the sensitive Ca754 and CaJ-19 genotypes-under well-watered conditions and during terminal drought stress periods at two time points (0 and 60 days following the onset of stress). The metabolite profiling uncovered significant associations between the growth and the physiological characteristics of coffee genotypes with distinct drought tolerance behaviors. Initially, no marked differences were observed among the genotypes or treatments. However, at the 60-day post-drought onset time point, notably higher shoot growth, biomass, CO2 assimilation, pigments, and various physiological parameters were evident, particularly in the relatively tolerant genotypes. The metabolite profiling revealed elevations in glucose, maltose, amino acids, and organic acids, and decreases in other metabolites. These alterations were more pronounced in the drought-tolerant genotypes, indicating a correlation between enhanced compatible solutes and energy-associated metabolites crucial for drought tolerance mechanisms. This research introduces GC-MS-based metabolome profiling to the study of Ethiopian coffee, shedding light on its intricate responses to drought stress and paving the way for the potential development of drought-resistant coffee seedlings in intensified agro-ecological zones.
Collapse
Affiliation(s)
- Habtamu Chekol
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 3434, Ethiopia; (H.C.); (B.W.)
| | - Bikila Warkineh
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 3434, Ethiopia; (H.C.); (B.W.)
| | - Tesfaye Shimber
- Ethiopian Institute of Agricultural Research, Addis Ababa 2003, Ethiopia;
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.M.-A.); (G.B.D.)
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.M.-A.); (G.B.D.)
| | - Asfaw Degu
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 3434, Ethiopia; (H.C.); (B.W.)
| |
Collapse
|
28
|
Sun Y, Zhou Y, Long Q, Xing J, Guo P, Liu Y, Zhang C, Zhang Y, Fernie AR, Shi Y, Luo Y, Luo J, Jin C. OsBCAT2, a gene responsible for the degradation of branched-chain amino acids, positively regulates salt tolerance by promoting the synthesis of vitamin B5. THE NEW PHYTOLOGIST 2024; 241:2558-2574. [PMID: 38258425 DOI: 10.1111/nph.19551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Salt stress negatively affects rice growth, development and yield. Metabolic adjustments contribute to the adaptation of rice under salt stress. Branched-chain amino acids (BCAA) are three essential amino acids that cannot be synthesized by humans or animals. However, little is known about the role of BCAA in response to salt stress in plants. Here, we showed that BCAAs may function as scavengers of reactive oxygen species (ROS) to provide protection against damage caused by salinity. We determined that branched-chain aminotransferase 2 (OsBCAT2), a protein responsible for the degradation of BCAA, positively regulates salt tolerance. Salt significantly induces the expression of OsBCAT2 rather than BCAA synthesis genes, which indicated that salt mainly promotes BCAA degradation and not de novo synthesis. Metabolomics analysis revealed that vitamin B5 (VB5) biosynthesis pathway intermediates were higher in the OsBCAT2-overexpressing plants but lower in osbcat2 mutants under salt stress. The salt stress-sensitive phenotypes of the osbcat2 mutants are rescued by exogenous VB5, indicating that OsBCAT2 affects rice salt tolerance by regulating VB5 synthesis. Our work provides new insights into the enzymes involved in BCAAs degradation and VB5 biosynthesis and sheds light on the molecular mechanism of BCAAs in response to salt stress.
Collapse
Affiliation(s)
- Yangyang Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Junwei Xing
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Peizhen Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Yuheng Shi
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Yuehua Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
29
|
Li W, Zhang Y, Chen M, Guo X, Ding Z. The antioxidant strain Lactiplantibacillus plantarum AS21 and Clostridium butyricum ameliorate DSS-induced colitis in mice by remodeling the assembly of intestinal microbiota and improving gut functions. Food Funct 2024; 15:2022-2037. [PMID: 38289370 DOI: 10.1039/d3fo05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.
Collapse
Affiliation(s)
- Wenyuan Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
30
|
Liu X, Xie Z, Xin J, Yuan S, Liu S, Sun Y, Zhang Y, Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:498. [PMID: 38502046 PMCID: PMC10893026 DOI: 10.3390/plants13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.
Collapse
Affiliation(s)
- Xueqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyang Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiajun Xin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiqing Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
31
|
Tarkowski ŁP, Clochard T, Blein-Nicolas M, Zivy M, Baillau T, Abadie C, Morère-Le Paven MC, Limami AM, Tcherkez G, Montrichard F. The nitrate transporter-sensor MtNPF6.8 regulates the branched chain amino acid/pantothenate metabolic pathway in barrel medic (Medicago truncatula Gaertn.) root tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108213. [PMID: 38043253 DOI: 10.1016/j.plaphy.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Nitrogen is the most limiting nutrient for plants, and it is preferentially absorbed in the form of nitrate by roots, which adapt to nitrate fluctuations by remodelling their architecture. Although core mechanisms of the response to nitrate availability are relatively well-known, signalling events controlling root growth and architecture have not all been identified, in particular in Legumes. However, the developmental effect of nitrate in Legumes is critical since external nitrate not only regulates root architecture but also N2-fixing nodule development. We have previously shown that in barrel medic (Medicago truncatula), the nitrate transporter MtNPF6.8 is required for nitrate sensitivity in root tip. However, uncertainty remains as to whether nitrogen metabolism itself is involved in the MtNPF6.8-mediated response. Here, we examine the metabolic effects of MtNPF6.8-dependent nitrate signalling using metabolomics and proteomics in WT and mtnpf6.8 root tips in presence or absence of nitrate. We found a reorchestration of metabolism due to the mutation, in favour of the branched chain amino acids/pantothenate metabolic pathway, and lipid catabolism via glyoxylate. That is, the mtnpf6.8 mutation was likely associated with a specific rerouting of acetyl-CoA production (glyoxylic cycle) and utilisation (pantothenate and branched chain amino acid synthesis). In agreement with our previous findings, class III peroxidases were confirmed as the main protein class responsive to nitrate, although in an MtNPF6.8-independent fashion. Our data rather suggest the involvement of other pathways within mtnpf6.8 root tips, such as Ca2+ signalling or cell wall methylation.
Collapse
Affiliation(s)
| | | | - Mélisande Blein-Nicolas
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Michel Zivy
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Thierry Baillau
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Cyril Abadie
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Anis M Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France; Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australia
| | | |
Collapse
|
32
|
Barton S, Broad Z, Ortiz-Barrientos D, Donovan D, Lefevre J. Hypergraphs and centrality measures identifying key features in gene expression data. Math Biosci 2023; 366:109089. [PMID: 37914024 DOI: 10.1016/j.mbs.2023.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multidisciplinary approaches can significantly advance our understanding of complex systems. For instance, gene co-expression networks align prior knowledge of biological systems with studies in graph theory, emphasising pairwise gene to gene interactions. In this paper, we extend these ideas, promoting hypergraphs as an investigative tool for studying multi-way interactions in gene expression data. Additional freedoms are achieved by representing individual genes with hyperedges, and simultaneously testing each gene against many features/vertices. Further gene/hyperedge interactions can be captured and explored using the line graph representations, a technique that reduces the complexity of dense hypergraphs. Such an approach provides access to graph centrality measures, which identifies salient features within a data set. For instance dominant or hub-like hyperedges, leading to key knowledge on gene expression. The validity of this approach is established through the study of gene expression data for the plant species Senecio lautus and results will be interpreted within this biological setting.
Collapse
Affiliation(s)
- Samuel Barton
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| | - Zoe Broad
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Diane Donovan
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - James Lefevre
- School of Mathematics and Physics, ARC Centre of Excellence, Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
33
|
Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. PLANTA 2023; 258:111. [PMID: 37919614 DOI: 10.1007/s00425-023-04258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
MAIN CONCLUSION Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.
Collapse
Affiliation(s)
- Nitasana Rajkumari
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Soni Chowrasia
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- Department of Bioscience and Biotechnology, Banastahli Vidyapith, Tonk, Rajasthan, 304022, India
| | - Jyoti Nishad
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
| | - Showkat Ahmad Ganie
- Plant Molecular Sciences and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India.
| |
Collapse
|
34
|
Zhou M, Yuan Y, Lin J, Lin L, Zhou J, Li Z. γ-Aminobutyric Acid Priming Alleviates Acid-Aluminum Toxicity to Creeping Bentgrass by Regulating Metabolic Homeostasis. Int J Mol Sci 2023; 24:14309. [PMID: 37762612 PMCID: PMC10532299 DOI: 10.3390/ijms241814309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aluminum (Al) toxicity is a major limiting factor for plant growth and crop production in acidic soils. This study aims to investigate the effects of γ-aminobutyric acid (GABA) priming on mitigating acid-Al toxicity to creeping bentgrass (Agrostis stolonifera) associated with changes in plant growth, photosynthetic parameters, antioxidant defense, key metabolites, and genes related to organic acids metabolism. Thirty-seven-old plants were primed with or without 0.5 mM GABA for three days and then subjected to acid-Al stress (5 mmol/L AlCl3·6H2O, pH 4.35) for fifteen days. The results showed that acid-Al stress significantly increased the accumulation of Al and also restricted aboveground and underground growths, photosynthesis, photochemical efficiency, and osmotic balance, which could be effectively alleviated by GABA priming. The application of GABA significantly activated antioxidant enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, to reduce oxidative damage to cells under acid-Al stress. Metabolomics analysis demonstrated that the GABA pretreatment significantly induced the accumulation of many metabolites such as quinic acid, pyruvic acid, shikimic acid, glycine, threonine, erythrose, glucose-6-phosphate, galactose, kestose, threitol, ribitol, glycerol, putrescine, galactinol, and myo-inositol associated with osmotic, antioxidant, and metabolic homeostases under acid-Al stress. In addition, the GABA priming significantly up-regulated genes related to the transportation of malic acid and citric acid in leaves in response to acid-Al stress. Current findings indicated GABA-induced tolerance to acid-Al stress in relation to scavenging of reactive oxygen species, osmotic adjustment, and accumulation and transport of organic metabolites in leaves. Exogenous GABA priming could improve the phytoremediation potential of perennial creeping bentgrass for the restoration of Al-contaminated soils.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.); (Y.Y.); (L.L.); (J.Z.)
| |
Collapse
|
35
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
36
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
37
|
Kumar R, Adhikary A, Saini R, Khan SA, Yadav M, Kumar S. Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107840. [PMID: 37379659 DOI: 10.1016/j.plaphy.2023.107840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50-55% field capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 °C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield.
Collapse
Affiliation(s)
- Rashpal Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Arindam Adhikary
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shahied Ahmed Khan
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Manisha Yadav
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
38
|
Scandola S, Mehta D, Castillo B, Boyce N, Uhrig RG. Systems-level proteomics and metabolomics reveals the diel molecular landscape of diverse kale cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1170448. [PMID: 37575922 PMCID: PMC10421703 DOI: 10.3389/fpls.2023.1170448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Kale is a group of diverse Brassicaceae species that are nutritious leafy greens consumed for their abundance of vitamins and micronutrients. Typified by their curly, serrated and/or wavy leaves, kale varieties have been primarily defined based on their leaf morphology and geographic origin, despite having complex genetic backgrounds. Kale is a very promising crop for vertical farming due to its high nutritional content; however, being a non-model organism, foundational, systems-level analyses of kale are lacking. Previous studies in kale have shown that time-of-day harvesting can affect its nutritional composition. Therefore, to gain a systems-level diel understanding of kale across its wide-ranging and diverse genetic landscape, we selected nine publicly available and commercially grown kale cultivars for growth under near-sunlight LED light conditions ideal for vertical farming. We then analyzed changes in morphology, growth and nutrition using a combination of plant phenotyping, proteomics and metabolomics. As the diel molecular activities of plants drive their daily growth and development, ultimately determining their productivity as a crop, we harvested kale leaf tissue at both end-of-day (ED) and end-of-night (EN) time-points for all molecular analyses. Our results reveal that diel proteome and metabolome signatures divide the selected kale cultivars into two groups defined by their amino acid and sugar content, along with significant proteome differences involving carbon and nitrogen metabolism, mRNA splicing, protein translation and light harvesting. Together, our multi-cultivar, multi-omic analysis provides new insights into the molecular underpinnings of the diel growth and development landscape of kale, advancing our fundamental understanding of this nutritious leafy green super-food for horticulture/vertical farming applications.
Collapse
Affiliation(s)
| | | | | | | | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Yan Z, Xu D, Yue X, Yuan S, Shi J, Gao L, Wu C, Zuo J, Wang Q. Whole-transcriptome RNA sequencing reveals changes in amino acid metabolism induced in harvested broccoli by red LED irradiation. Food Res Int 2023; 169:112820. [PMID: 37254395 DOI: 10.1016/j.foodres.2023.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Whole-transcriptomic profiling combined with amino acid analysis were conducted in order to gain a better understanding of global changes in amino acid metabolism induced in broccoli by red LED irradiation. The results showed that the contents of almost all 16 amino acids in postharvest broccoli were maintained under red LED illumination. The red LED irradiation enhanced the anabolism of amino acid, including the biosynthesis of aromatic amino acids by upregulating the genes' expression in the shikimate pathway, as well as by upregulating the genes' expression which encoding biosynthetic enzymes in the branched-chain amino acid biosynthesis pathway. Red LED irradiation induced the expression of genes encoding aspartate aminotransferase, which plays a role in Asp synthesis, aspartate kinase, which functions in aspartate metabolism, and a cytoplasmic aspartate aminotransferase that converts 2-Oxoglutarate into Glu. Genes encoding imidazole glycerol-phosphate synthase and histidinol-phosphatase, which function in the His biosynthesis pathway, were also upregulated. According to our results, red LED irradiation delays broccoli's yellowing and senescence by regulating amino acid metabolism. These results enhance our understanding of the role of amino acid metabolism in the senescence of broccoli and the mechanism of red LED irradiation to alter amino acid metabolism in harvested broccoli.
Collapse
Affiliation(s)
- Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
40
|
Moukarzel R, Parker AK, Schelezki OJ, Gregan SM, Jordan B. Bunch microclimate influence amino acids and phenolic profiles of Pinot noir grape berries. FRONTIERS IN PLANT SCIENCE 2023; 14:1162062. [PMID: 37351210 PMCID: PMC10282841 DOI: 10.3389/fpls.2023.1162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Introduction The increase of temperature due to climate change at different phenological stages of grapevine has already been demonstrated to affect accumulation of primary and secondary metabolites in grape berries. This has a significant implication for Pinot noir especially in New Zealand context as these compounds can have direct and indirect effects on wine quality. Methods This study investigates how varying bunch microclimate through changes in temperature applied at veraison stage can affect: fresh weight, total soluble solids, the accumulation of anthocyanins, total phenolics and amino acids of the grape berries. This was studied over two growing seasons (2018/19 and 2019/20) with Pinot noir vines being grown at two different temperatures in controlled environment (CE) chambers. The vines were exposed to 800 µmol/m2/s irradiance with diurnal changes in day (22°C or 30°C) and night (15°C) temperatures. This experimental set up enabled us to determine the accumulation of these metabolite at harvest (both seasons) and throughout berry development (second season). Results and discussion The results showed that berry weight was not influenced by temperature increase. The total soluble solids (TSS) were significantly increased at 30°C, however, this was not at the expense of berry weight (i.e., water loss). Anthocyanin content was reduced at higher temperature in the first season but there was no change in phenolic content in response to temperature treatments in either season. The concentrations of total amino acids at harvest increased in response to the higher temperature in the second season only. In addition, in the time course analysis of the second season, the accumulation of amino acids was increased at mid-ripening and ripening stage with the increased temperature. Significant qualitative changes in amino acid composition specifically the α-ketoglutarate family (i.e., glutamine, arginine, and proline) were found between the two temperatures. Significance This study is the first to provide detailed analysis and quantification of individual amino acids and phenolics in Pinot noir in response to changes in temperature applied at veraison which could aid to develop adaptation strategies for viticulture in the future.
Collapse
Affiliation(s)
- Romy Moukarzel
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Amber K. Parker
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Olaf J. Schelezki
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | | | - Brian Jordan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
41
|
Hacham Y, Shitrit O, Nisimi O, Friebach M, Amir R. Elucidating the importance of the catabolic enzyme, methionine-gamma-lyase, in stresses during Arabidopsis seed development and germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1143021. [PMID: 37346132 PMCID: PMC10280021 DOI: 10.3389/fpls.2023.1143021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
The sulfur-containing essential amino acid, methionine, is a key metabolite in plant cells since it is used as a precursor for the synthesis of vital metabolites. The transcript level of methionine's catabolic enzyme, methionine γ-lyase (MGL), accumulates in the seeds to a high level compared to other organs. The aim of this study was to reveal the role of MGL during seed development and germination. Using [13C]S-methylmethionine (SMM), the mobile form of methionine that is used to feed flower stalks of wild-type (WT) plants, revealed that the contents of [13C]methionine in seeds were significantly reduced when the plants underwent heat and osmotic stresses. Moreover, the levels of [13C]isoleucine, a product of MGL, significantly increased. Also, using the MGL promoter and gene fused to the GUS reporter gene, it was demonstrated that the heat stress significantly increased the protein level in the seeds. Therefore, we can conclude that MGL became active under stresses apparently to produce isoleucine, which is used as an osmoprotectant and an energy source. Transgenic Arabidopsis thaliana RNAi seeds with targeted repression of AtMGL during the late developmental stages of seeds show that the seeds did not accumulate methionine when they were grown under standard growth conditions, unlike the mgl-2, a knockout mutant, which showed a three-fold higher level of methionine. Also, when the RNAi plants developed under mid-heat stress, the level of methionine significantly increased while the content of isoleucine decreased compared to the control seeds, which strengthened the assumption that MGL is active under stress. The germination efficiency of the RNAi lines and mgl seeds were similar to their controls. However, the seeds that developed during heat or salt stress showed significantly lower germination efficiency compared to the control seeds. This implies that MGL is important to maintain the ability of the seeds to germinate. The RNAi lines and mgl seeds that developed under regular conditions, but germinated during salt or osmotic stress, exhibited a lower germination rate, suggesting an essential role of MGL also during this process. The results of this study show the important role of AtMGL in seeds under stresses.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Odelia Shitrit
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Ortal Nisimi
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Meital Friebach
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Faculty of Sciences and Technology, Upper Galilee, Israel
| |
Collapse
|
42
|
Niu T, Zhang J, Li J, Gao X, Ma H, Gao Y, Chang Y, Xie J. Effects of exogenous glycine betaine and cycloleucine on photosynthetic capacity, amino acid composition, and hormone metabolism in Solanum melongena L. Sci Rep 2023; 13:7626. [PMID: 37165051 PMCID: PMC10172174 DOI: 10.1038/s41598-023-34509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
Although exogenous glycine betaine (GB) and cycloleucine (Cyc) have been reported to affect animal cell metabolism, their effects on plant growth and development have not been studied extensively. Different concentrations of exogenous glycine betaine (20, 40, and 60 mmol L-1) and cycloleucine (10, 20, and 40 mmol L-1), with 0 mmol L-1 as control, were used to investigate the effects of foliar spraying of betaine and cycloleucine on growth, photosynthesis, chlorophyll fluorescence, Calvin cycle pathway, abaxial leaf burr morphology, endogenous hormones, and amino acid content in eggplant. We found that 40 mmol L-1 glycine betaine had the best effect on plant growth and development; it increased the fresh and dry weight of plants, increased the density of abaxial leaf hairs, increased the net photosynthetic rate and Calvin cycle key enzyme activity of leaves, had an elevating effect on chlorophyll fluorescence parameters, increased endogenous indoleacetic acid (IAA) content and decreased abscisic acid (ABA) content, and increased glutamate, serine, aspartate, and phenylalanine contents. However, cycloleucine significantly inhibited plant growth; plant apical dominance disappeared, plant height and dry and fresh weights decreased significantly, the development of abaxial leaf hairs was hindered, the net photosynthetic rate and Calvin cycle key enzyme activities were inhibited, the endogenous hormones IAA and ABA content decreased, and the conversion and utilization of glutamate, arginine, threonine, and glycine were affected. Combined with the experimental results and plant growth phenotypes, 20 mmol L-1 cycloleucine significantly inhibited plant growth. In conclusion, 40 mmol L-1 glycine betaine and 20 mmol L-1 cycloleucine had different regulatory effects on plant growth and development.
Collapse
Affiliation(s)
- Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xiaoping Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Hongyan Ma
- Lanzhou New Area Agricultural Science and Technology Development Co., Ltd., Lanzhou, 730000, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Youlin Chang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
43
|
Jin X, Ackah M, Acheampong A, Zhang Q, Wang L, Lin Q, Qiu C, Zhao W. Genome-Wide Identification of Candidate Genes Associated with Heat Stress in Mulberry ( Morus alba L.). Curr Issues Mol Biol 2023; 45:4151-4167. [PMID: 37232733 DOI: 10.3390/cimb45050264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Mulberry (Morus alba L.) is an economically important plant for the silk industry and has the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits. Domesticated silkworms feed only on mulberry leaves, meaning that the worms' survival depends on the mulberry tree. Mulberry production is threatened by climate change and global warming. However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We performed transcriptome analysis of high-temperature-stressed (42 °C) M. alba seedlings using RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from 18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY, HLH and TCP families were actively involved in response to high temperatures. Moreover, we used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides theoretical bases to researchers for better understanding mulberry heat response mechanisms and breeding heat-tolerant mulberry plants.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Adolf Acheampong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiang Lin
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Changyu Qiu
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
44
|
Yeo IC, de Azevedo Manhaes AME, Liu J, Avila J, He P, Devarenne TP. An unexpected role for tomato threonine deaminase 2 in host defense against bacterial infection. PLANT PHYSIOLOGY 2023; 192:527-545. [PMID: 36530164 PMCID: PMC10152684 DOI: 10.1093/plphys/kiac584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/03/2023]
Abstract
The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA-Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA-Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
45
|
Doddaraju P, Dharmappa PM, Thiagarayaselvam A, Vijayaraghavareddy P, Bheemanahalli R, Basavaraddi PA, Malagondanahalli MKV, Kambalimath S, Thulasiram HV, Sreeman SM. Comprehensive analysis of physiological and metabolomic responses to drought reveals specific modulation of acquired tolerance mechanisms in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13917. [PMID: 37087573 DOI: 10.1111/ppl.13917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Mild stresses induce "acquired tolerance traits" (ATTs) that provide tolerance when stress becomes severe. Here, we identified the genetic variability in ATTs among a panel of rice germplasm accessions and demonstrated their relevance in protecting growth and productivity under water-limited conditions. Diverse approaches, including physiological screens, association mapping and metabolomics, were adopted and revealed 43 significant marker-trait associations. Nontargeted metabolomic profiling of contrasting genotypes revealed 26 "tolerance-related-induced" primary and secondary metabolites in the tolerant genotypes (AC-39000 and AC-39020) compared to the susceptible one (BPT-5204) under water-limited condition. Metabolites that help maintain cellular functions, especially Calvin cycle processes, significantly accumulated more in tolerant genotypes, which resulted in superior photosynthetic capacity and hence water use efficiency. Upregulation of the glutathione cycle intermediates explains the ROS homeostasis among the tolerant genotypes, maintaining spikelet fertility, and grain yield under stress. Bioinformatic dissection of a major effect quantitative trait locus on chromosome 8 revealed genes controlling metabolic pathways leading to the production of osmolites and antioxidants, such as GABA and raffinose. The study also led to the identification of specific trait donor genotypes that can be effectively used in translational crop improvement activities.
Collapse
Affiliation(s)
- Pushpa Doddaraju
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Prathibha M Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- ICAR-Indian Institute of Horticulture Research, Bengaluru, India
| | | | | | - Raju Bheemanahalli
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Priyanka A Basavaraddi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | | | - Sumanth Kambalimath
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
46
|
Álvarez-Rodríguez S, Alvite CM, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of Arabidopsis thaliana (L.) Heynh. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6073-6086. [PMID: 37026701 PMCID: PMC10119982 DOI: 10.1021/acs.jafc.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Finding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Carla M. Alvite
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J. Reigosa
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M. Sánchez-Moreiras
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n° 2, 20133 Milano, Italy
| |
Collapse
|
47
|
Deng P, Yin R, Wang H, Chen L, Cao X, Xu X. Comparative analyses of functional traits based on metabolome and economic traits variation of Bletilla striata: Contribution of intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1147076. [PMID: 37008465 PMCID: PMC10064063 DOI: 10.3389/fpls.2023.1147076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The intercropping practice has been regarded as a practical land-use selection to improve the management benefits of Bletilla striata plantations. The reports about the variety of economic and functional traits of Bletilla pseudobulb under intercropping systems were limited. The present study investigated the variation of economic and functional traits of Bletilla pseudobulb under different intercropping systems (the deep-rooted intercropping system: B. striata - Cyclocarya paliurus, CB; and the shallow-rooted intercropping system: B. striata - Phyllostachys edulis, PB). The functional traits were analyzed through non-targeted metabolomics based on GC-MS. The results indicated that the PB intercropping system significantly decreased the yield of Bletilla pseudobulb while significantly increasing the total phenol and flavonoids compared with the control (CK). However, there were no significant differences in all economic traits between CB and CK. The functional traits among CB, PB, and CK were separated and exhibited significant differences. Under different intercropping systems, B. striata may adopt different functional strategies in response to interspecific competition. The functional node metabolites (D-galactose, cellobiose, raffinose, D-fructose, maltose, and D-ribose) were up-regulated in CB, while the functional node metabolites (L-valine, L-leucine, L-isoleucine, methionine, L-lysine, serine, D-glucose, cellobiose, trehalose, maltose, D-ribose, palatinose, raffinose, xylobiose, L-rhamnose, melezitose, and maltotriose) were up-regulated in PB. The correlation between economic and functional traits depends on the degree of environmental stress. Artificial neural network models (ANNs) accurately predicted the variation in economic traits via the combination of functional node metabolites in PB. The correlation analysis of environmental factors indicated that Ns (including TN, NH4 +-, and NO3 --), SRI (solar radiation intensity), and SOC were the main factors that affected the economic traits (yield, total phenol, and total flavonoids). TN, SRI, and SOC were the main factors affecting the functional traits of the Bletilla pseudobulb. These findings strengthen our understanding of the variation of economic and functional traits of Bletilla pseudobulb under intercropping and clarify the main limiting environmental factors under B. striata intercropping systems.
Collapse
Affiliation(s)
- Pengfei Deng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Ruoyong Yin
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Huiling Wang
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- School of Architecture & Planning, Anhui Jianzhu University, Hefei, Anhui, China
| | - Leiru Chen
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoqing Cao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoniu Xu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
48
|
Berková V, Berka M, Kameniarová M, Kopecká R, Kuzmenko M, Shejbalová Š, Abramov D, Čičmanec P, Frejlichová L, Jan N, Brzobohatý B, Černý M. Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress. Int J Mol Sci 2023; 24:5454. [PMID: 36982529 PMCID: PMC10049190 DOI: 10.3390/ijms24065454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Marharyta Kuzmenko
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Šarlota Shejbalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Dmytro Abramov
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Petr Čičmanec
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Lucie Frejlichová
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice na Moravě, Czech Republic
| | - Novák Jan
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
49
|
Chen J, Mei S, Zheng P, Guo J, Zeng Z, Lu H, Sun B. A multi-omics view of the preservation effect on Camellia sinensis leaves during low temperature postharvest transportation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
50
|
Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, Kim YS, Redillas MCFR, Oh SJ, Seo JS, Kim JK. DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE enhances drought tolerance in rice. PLANT PHYSIOLOGY 2023; 191:1435-1447. [PMID: 36493384 PMCID: PMC9922417 DOI: 10.1093/plphys/kiac560] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress. An in vitro enzyme activity assay indicated that OsDIAT is a branched-chain amino acid aminotransferase, and subcellular localization analysis revealed that OsDIAT localizes to the cytoplasm. The expression of OsDIAT was induced in plants upon exposure to abiotic stress. OsDIAT-overexpressing (OsDIATOX) plants were more tolerant to drought stress, whereas osdiat plants were more susceptible to drought stress compared with nontransgenic (NT) plants. Amino acid analysis revealed that BCAA levels were higher in OsDIATOX but lower in osdiat compared with in NT plants. Finally, the exogenous application of BCAAs improved plant tolerance to osmotic stress compared with that in control plants. Collectively, these findings suggest that OsDIAT mediates drought tolerance by promoting the accumulation of BCAAs.
Collapse
Affiliation(s)
| | | | - Seung Woon Bang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se Eun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Goeun Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Mark Christian Felipe R Redillas
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Biology, De La Salle University, Manila 1004, Philippines
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Jun Sung Seo
- Author for correspondence: (J. S. S.); (J.-K. K.)
| | - Ju-Kon Kim
- Author for correspondence: (J. S. S.); (J.-K. K.)
| |
Collapse
|