1
|
Dai W, Xu Q, Li Q, Wang X, Zhang W, Zhou G, Chen X, Liu W, Wang W. Piezoelectric nanofilms fabricated by coaxial electrospun polycaprolactone/Barium titanate promote Achilles tendon regeneration by reducing IL-17A/NF-κB-mediated inflammation. Bioact Mater 2025; 49:1-22. [PMID: 40110584 PMCID: PMC11914770 DOI: 10.1016/j.bioactmat.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Tendon injuries are often exacerbated by persistent inflammation, which hampers tissue regeneration. In this study, we developed a noninvasive, wirelessly controlled, and self-powered piezoelectric nanofilm fabricated by coaxial electrospinning of polycaprolactone (PCL) and tetragonal barium titanate nanoparticles (BTO), and investigated its roles in modulating inflammation and repairing Achilles tendon defects as well as the mechanism in a rat model. In vitro study and in vivo study upon subcutaneous implantation showed that the piezoelectric PCL/BTO nanofilms could inhibit M1 macrophage polarization and reduce the secretion of inflammatory factors. Moreover, when bridging an Achilles tendon defect, the nanofilms could promote tenogenic gene expression including collagen deposition, and collagen remodeling, facilitate functional tendon recovery and significantly reduce tissue inflammation by suppressing M1 macrophage polarization and promoting M2 polarization. Moreover, the piezoelectric stimulation could also enhance tendon regeneration by inhibiting angiogenesis, reducing lipid deposition, and decreasing ectopic ossification. Mechanistically, the piezoelectric nanofilms reduced tissue inflammation mainly via inhibiting the nuclear factor (NF)-κB signaling pathway that is mediated by interleukin (IL)-17A secreted from CD3+ T cells, and thus to reduce proinflammatory factors, such as IL-1β and IL-6, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and tumor necrosis factor-α. These findings indicate the potential of piezoelectric stimulation in immunomodulation, and in promoting tendon regeneration via IL-17A/NF-κB-mediated pathway.
Collapse
Affiliation(s)
- Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Qi Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Surgery, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Qinglin Li
- Department of Aesthetic Surgery, Zhumadian Central Hospital, Zhumadian, 463000, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Niu J, Ran Y, Hu Q, Yang N, Yang L, Zhao H, Yang B, Tang D, Tian M. Phytochemical analysis and anti-lung cancer effects in vitro and in vivo of Eomecon chionantha root. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119847. [PMID: 40274030 DOI: 10.1016/j.jep.2025.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eomeconchionantha, a traditional Chinese medicine, is a perennial herb widely cultivated for its medical properties and has been used to treat cancer. However, there are few studies on its anticancer properties. AIM OF THE STUDY This work aimed to identify the chemical composition of E. chionantha root and firstly assess its anti-lung cancer effects in vitro and in vivo. MATERIALS AND METHODS E. chionantha root was extracted by reflux using different solvents in sequence to prepare petroleum ether extract (PEE), ethyl acetate extract (EAE), n-butanol extract (NBE), and water extract (WE). Phytoconstituent analysis of E. chionantha root WE was performed by UHPLC-Q-Orbitrap-MS. In in vitro assays, cytotoxicity of four samples from E. chionantha root on non-cancerous MRC-5 cell line and A549 lung cancer cell line was done by MTT. The impact of E. chionantha root WE on A549 cell proliferation was tested by colony formation assay, and flow cytometry with PI staining was utilized for evaluating its influence on the cell cycle. We performed morphological observations, AO/EB staining, Hoechst 33258 staining, and Annexin V-FITC/PI staining assays to investigate the capacity of E. chionantha root WE to induce A549 cell apoptosis. Wound healing and transwell invasion tests assessed its potential to inhibit A549 cell migratory and invasive abilities. Western blot was used to determine its effect on protein levels associated with proliferation, apoptosis, and metastasis in A549 cells. To further validate its in vivo anticancer efficiency, we established an A549 cell xenograft tumor nude mouse model, recorded tumor volume and weight, and conducted histopathological changes using H&E staining and TUNEL assay. RESULTS Sixty-one constituents were identified from E. chionantha root WE. For in vitro anticancer properties, E. chionantha root WE displayed selective cytotoxicity against A549 cells (IC50 = 5.39 ± 0.18 μg/mL) and lower toxicity to MRC-5 cells (IC50 = 11.75 ± 1.10 μg/mL). E. chionantha root WE triggered G1 phase arrest via up-regulating p21 levels and down-regulating CDK4, CDK6, and cyclin D3 levels, which markedly suppressed A549 cell proliferation. It induced A549 cell apoptosis via a mitochondria-mediated pathway, leading to Bax up-regulation, ΔΨm down-regulation, Cyt C release, activation of caspase 9 and caspase 3, and PARP cleavage. In addition, it repressed the migratory and invasive abilities of A549 cells through lowering MMP-2 and N-cadherin levels. Regarding in vivo antitumor activity, E. chionantha root WE effectively inhibited A549 xenograft tumor growth and induced cell apoptosis in nude mice. Hence, E. chionantha root WE repressed A549 cell proliferation, induced apoptosis, and inhibited the migratory and invasive abilities in vitro and suppressed tumor growth by inducing apoptosis in vivo. CONCLUSIONS E. chionantha root WE exhibited pronounced anti-lung cancer efficiency in vivo and in vitro and can be considered a novel source of anticancer agents with great value for development in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jingming Niu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; School of Health Care and Nursing, Fuyang Vocational and Technical College, Fuyang, 236031, China
| | - Yuanquan Ran
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qiong Hu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Nian Yang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Lanlan Yang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Huan Zhao
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Bing Yang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| | - Minyi Tian
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Rajalekshmi R, Agrawal DK. Transcriptional and post-translational mechanisms of ECM remodeling in rotator cuff tendons under hyperlipidemic conditions. Life Sci 2025; 372:123647. [PMID: 40246193 DOI: 10.1016/j.lfs.2025.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Rotator cuff injuries present significant clinical challenges, often resulting in chronic pain and functional impairment. In this study, we examined the effects of hyperlipidemia (HYP), a systemic metabolic condition, on tendon health. Histological analysis of infraspinatus tendons from hyperlipidemic swine revealed well-organized extracellular matrix (ECM) structures, comparable to those in non-hyperlipidemic (NONHYP) animals, suggesting ECM reorganization. Upstream SIGNOR3.0 analysis demonstrated that tumor necrosis factor receptor-associated factor 6 (TRAF6) activates transcription factor Yin Yang 1 (YY1) via kinase signaling, underscoring its role in tendon ECM remodeling. Hence, we futher examined the role of YY1, which is a critical regulator of collagen synthesis identified through network analysis. Although TRAF6 levels remained unchanged in HYP conditions, increased YY1 expression correlated with elevated COL1 gene expression. Additionally, twist-related protein 1 (TWIST1) emerged as another key molecule, existing in both homo- and heterodimer forms in NON-HYP conditions, but only as a heterodimer in HYP. YY1 enhanced COL1 transcription in the hyperlipidemic environment, while TWIST1 heterodimer formation facilitated collagen crosslinking. Notably, increased YY1 expression inhibited MMP3, resulting in the inactivity of MMP1, MMP8, and MMP9, thereby preserving collagen levels. These findings highlight the complex molecular interactions involving transcriptional regulation by YY1 and post-translational regulation by the TWIST1 heterodimer, essential for the deposition of mature collagen fibrils and driving tendon remodeling in hyperlipidemic conditions. This study offers valuable insights for the change of tendon health condition in hyperlipidemia disease or tendon pathology.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
4
|
Fu X, Li J, Yang S, Jing J, Zheng Q, Zhang T, Xu Z. Blood-brain barrier repair: potential and challenges of stem cells and exosomes in stroke treatment. Front Cell Neurosci 2025; 19:1536028. [PMID: 40260076 PMCID: PMC12009835 DOI: 10.3389/fncel.2025.1536028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke. Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.
Collapse
Affiliation(s)
- Xiaochen Fu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jia Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Jing
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Veilleux C, Khalifa J, Zgheib A, Konan AS, Gaudreault R, Annabi B. Probing into the chemopreventive properties of synthetic 1,3,6-tri-O-galloyl-α-D-glucose (α-TGG) against glioblastoma and triple-negative breast cancer-derived cell models. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2025; 8:100219. [PMID: 40248812 PMCID: PMC12004382 DOI: 10.1016/j.crphar.2025.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Inflammation plays a significant role in cancer progression. Chemopreventive strategies against cellular response to pro-inflammatory cues may therefore contribute to inhibit the acquisition of an invasive phenotype. 1,3,6-Tri-O-Galloyl-β-D-Glucose (β-TGG) is a type of gallotannin naturally found in plants like Paeonia lactiflora and Terminalia chebula. Unfortunately, the overall yields of β-TGG extraction require complex purification protocols from plant sources and are relatively low. Here, a new synthetic α-anomer of TGG (α-TGG) was characterized for anti-inflammatory and anticancer biological properties. In vitro pro-inflammatory and epithelial-to-mesenchymal transition (EMT) cues, triggered by phorbol 12-myristate 13-acetate (PMA), concanavalin A (ConA), tumor necrosis factor (TNF) α, and transforming growth factor (TGF) β, were used to screen α-TGG in two highly aggressive human cancer cell models, namely the U87 glioblastoma and the MDA-MB-231 triple-negative breast cancer (TNBC)-derived cells. α-TGG dose-dependently inhibited ConA-mediated activation of the latent matrix metalloproteinase pro-MMP-2 into its active MMP-2 form as well as the ConA- and PMA-mediated cyclooxygenase (COX)-2 expression, two biomarkers of inflammation, in U87 cells. In MDA-MB-231, α-TGG inhibited PMA- and TNFα-mediated induction of pro-MMP-9, a marker of inflammation and invasive phenotype. Finally, in both cell lines, α-TGG further inhibited TGFβ-induced chemotaxis, as well as TGFβ-induced Smad2 phosphorylation and Snail expression, crucial upstream signaling pathway and downstream biomarkers associated with EMT. Collectively, we confirm that α-TGG retained potent anti-inflammatory and anti-invasive pharmacological properties which support its chemopreventive potential.
Collapse
Affiliation(s)
- Carolane Veilleux
- Laboratoire D’Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Jihane Khalifa
- Département de Chimie, Université Du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Alain Zgheib
- Laboratoire D’Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Angélique Sabaoth Konan
- Laboratoire D’Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Roger Gaudreault
- Département de Chimie, Université Du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Borhane Annabi
- Laboratoire D’Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
6
|
Zhang E, Yan X, Shen H, Zhao M, Gao X, Huang Y. Intracranial Aneurysm Biomarkers: A Convergence of Genetics, Inflammation, Oxidative Stress, and the Extracellular Matrix. Int J Mol Sci 2025; 26:3316. [PMID: 40244203 PMCID: PMC11989888 DOI: 10.3390/ijms26073316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease in which sacral aneurysms occurring in the Wills ring region can lead to devastating subarachnoid hemorrhage. Despite advances in research, the underlying mechanisms of IA formation and rupture remain incompletely understood, hindering early diagnosis and effective treatment. This review comprehensively summarizes the current landscape of IA biomarkers, encompassing genetic markers, DNA, RNA, inflammatory molecules, oxidative stress proteins, and extracellular matrix (ECM) components. Accumulating evidence suggests that various biomarkers are associated with different stages of IA pathogenesis, including initiation, progression, and rupture. Aberrant ECM composition and remodeling have been observed in IA patients, and extracellular matrix-degrading enzymes are implicated in IA growth and rupture. Biomarker research in IA holds great potential for improving clinical outcomes. Future studies should focus on validating the existing biomarkers, identifying novel ones, and investigating their underlying mechanisms to facilitate the development of personalized preventive and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Enhao Zhang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xu Yan
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Hangyu Shen
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Mingyue Zhao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xiang Gao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Yi Huang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
7
|
Jin Y, Xie X, Li H, Zhang M. The role of homeobox gene Six1 in cancer progression and its potential as a therapeutic target: A review. Int J Biol Macromol 2025; 308:142666. [PMID: 40164243 DOI: 10.1016/j.ijbiomac.2025.142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The sine oculis homeobox gene 1 (Six1), a member of the Six transcription factor family, specifically binds to defined DNA regions, regulates target gene expression, and plays a crucial role in various tissue and organ development processes. Moreover, Six1 is a critical factor in cancer progression and prognosis making it a central focus in cancer research. Consequently, a comprehensive review of involvement of the Six1 gene in cancer research has a high relevance. This review synthesizes findings from other researches, examines the gene structure and protein functionality of Six1, summarizes its relationship with various cancers, elucidates its mechanisms in promoting tumor progression and development, explores potential possibilities for targeting Six1 as a therapeutic approach for cancer treatment. Six1 is correlated with tumor malignancy and poor prognosis, plays a critical role in promoting tumor cell proliferation, invasion, metastasis, and energy metabolism. Targeting Six1 degradation or expression can potentially suppress tumor progression. This review aims to enhance our understanding of the function and significance of Six1 in cancers while providing a valuable reference for Six1-based cancer diagnosis, prognosis, and therapeutic interventions. This knowledge will facilitate more in-depth oncology research related to Six1, particularly in identifying drug resistance mechanisms and developing precision-targeted therapies.
Collapse
Affiliation(s)
- Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xinran Xie
- School of Basic Medicine sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Manling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
8
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Beneat A, Rueda V, Patel H, Brune Z, Sherry B, Shih A, Kaplan S, Rao A, Lee A, Varghese A, Oropallo A, Barnes BJ. Elevation of Plasma IL-15 and RANTES as Potential Biomarkers of Healing in Chronic Venous Ulcerations: A Pilot Study. Biomolecules 2025; 15:395. [PMID: 40149931 PMCID: PMC11940644 DOI: 10.3390/biom15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic wounds present a large burden to our healthcare system and are typically marked by a failure to transition out of the inflammatory phase of wound healing. Venous leg ulcers (VLUs) represent the largest portion of chronic wounds. A pilot study of eleven (11) patients with VLUs seen over a 12-week period was undertaken utilizing RNA sequencing of wound biopsies and plasma cytokine levels to determine if biomarkers could be identified that would distinguish between wounds which heal versus those that do not. Chronic wounds were found to have increased expression of genes relating to epithelial-to-mesenchymal transition (EMT), cartilage and bone formation, and regulation of apical junction. Plasma cytokine levels showed predictive potential for IL-15 and RANTES, which were found to increase over time in patients with healed wounds. Further research is needed to validate these biomarkers as well as additional study of other chronic wound models, such as diabetic foot ulcers (DFUs).
Collapse
Affiliation(s)
- Amanda Beneat
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Vikki Rueda
- Drexel University College of Medicine, Philadelphia, PA 19104, USA;
| | - Hardik Patel
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Zarina Brune
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Andrew Shih
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Sally Kaplan
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Amit Rao
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Annette Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Asha Varghese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alisha Oropallo
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Betsy J. Barnes
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
10
|
Pulito-Cueto V, Atienza-Mateo B, Batista-Liz JC, Sebastián Mora-Gil M, Mora-Cuesta VM, Iturbe-Fernández D, Izquierdo Cuervo S, Aguirre Portilla C, Blanco R, López-Mejías R. Matrix metalloproteinases and their tissue inhibitors as upcoming biomarker signatures of connective tissue diseases-related interstitial lung disease: towards an earlier and accurate diagnosis. Mol Med 2025; 31:70. [PMID: 39979794 PMCID: PMC11844142 DOI: 10.1186/s10020-025-01128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Lack of understanding of interstitial lung disease (ILD) associated with systemic sclerosis (SSc) and rheumatoid arthritis (RA) hinders the early and accurate identification of these devastating diseases. Current clinical tools limitations highlight the need to complement them with accessible and non-invasive methods. Accordingly, we focused on identifying useful matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) as new biomarkers with clinical value in the diagnosis and prognosis of RA-ILD+ and SSc-ILD+. METHODS Peripheral blood was collected from patients with RA-ILD+ (n = 49) and SSc-ILD+ (n = 38); as well as with RA-ILD- (n = 25), SSc-ILD- (n = 20) and idiopathic pulmonary fibrosis (IPF) (n = 39). MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, TIMP-1, and TIMP-2 serum levels were measured using xMAP Technology. RESULTS Concerning early connective tissue disease (CTD)-ILD+ diagnosis, increased MMP-7, MMP-9, MMP-10, and MMP-12 levels were found in RA-ILD+ and SSc-ILD+ patients in relation to RA-ILD- and SSc-ILD- patients, respectively. RA-ILD+ patients showed higher MMP-2 levels and lower TIMP-1 levels than RA-ILD- patients. Interestingly, a reliable utility for identifying ILD in CTD was confirmed for the MMP-2, MMP-7, MMP-9, MMP-10, MMP-12, and TIMP-1 combination in RA and MMP-7, MMP-9, MMP-10, and MMP-12 combinatorial signature in SSc. Regarding accurate CTD-ILD+ diagnosis, RA-ILD+ and SSc-ILD+ patients showed lower MMP-7 and MMP-10 levels than IPF patients. Lower MMP-9 and TIMP-1 levels and higher MMP-3 levels were found in RA-ILD+ compared to IPF. Remarkably, effectively better differentiation between CTD-ILD+ and IPF was confirmed for a 5-biomarker signature consisting of MMP-3, MMP-7, MMP-9, MMP-10, and TIMP-1 in RA as well as for the MMP-7 and MMP-10 combination in SSc. Finally, in RA-ILD+ patients, higher MMP-10 levels were associated with worse pulmonary function, increased MMP-2 levels were related to the treatment with conventional synthetic disease-modifying anti-rheumatic drugs, and decreased TIMP-1 levels were linked with positivity rheumatoid factor status. CONCLUSIONS MMPs and TIMPs form combinatorial biomarker signatures with clinical value for non-invasive, early, and accurate diagnosis of RA-ILD+ and SSc-ILD+, constituting promising screening tools in clinical practice.
Collapse
Affiliation(s)
- Verónica Pulito-Cueto
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain.
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Belén Atienza-Mateo
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Joao C Batista-Liz
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - María Sebastián Mora-Gil
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Víctor M Mora-Cuesta
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - David Iturbe-Fernández
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Sheila Izquierdo Cuervo
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carolina Aguirre Portilla
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ricardo Blanco
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Raquel López-Mejías
- Immunopathology Group, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
11
|
Oselusi SO, Sibuyi NR, Martin DR, Meyer M, Madiehe AM. Potential matrix metalloproteinase 2 and 9 inhibitors identified from Ehretia species for the treatment of chronic wounds - Computational drug discovery approaches. Comput Biol Med 2025; 185:109487. [PMID: 39637455 DOI: 10.1016/j.compbiomed.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Matrix metalloproteinases (MMPs) serve as prognostic factors in several pathophysiological conditions, including chronic wounds. Therefore, they are considered important therapeutic targets in the intervention and treatment of these conditions. In this study, computational tools such as molecular docking and molecular dynamics simulations were used to gain insight into protein‒ligand interactions and determine the free binding energy between Ehretia species phytoconstituents and gelatinases (MMP2 and MMP9). A total of 74 phytoconstituents from Ehretia species were compiled from the literature, and 46 of these compounds were identified as potential inhibitors of at least one type of MMP. Molecular docking revealed that lithospermic acid B, rosmarinic acid, and danshensu had stronger binding affinities against the two enzymes than the reference ligands. Furthermore, (9S, 10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic (∗-octadecatrienoic) had a higher binding energy for MMP2, whereas caffeic anhydride and caffeic acid established stronger binding energy with MMP9 than the reference ligand. These complexes also demonstrated relatively stable, favourable, and comparable conformational changes with those of unbound proteins at 500 ns. The free energy decomposition results further provide detailed insights into the contributions of active site residues and different types of interactions to the overall binding free energy. Finally, most of the hit phytoconstituents (rosmarinic acid, caffeic anhydride, caffeic acid, and danshensu) had good physicochemical, drug-likeness, and pharmacokinetic properties. Collectively, our findings showed that phytoconstituents from Ehretia species could be beneficial in the search for novel MMP inhibitors as therapeutic agents for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Samson O Oselusi
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Health Platform, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa
| | - Darius R Martin
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
12
|
Soko GF, Kosgei BK, Meena SS, Ng YJ, Liang H, Zhang B, Liu Q, Xu T, Hou X, Han RPS. Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses. Front Immunol 2025; 15:1535647. [PMID: 39845957 PMCID: PMC11751056 DOI: 10.3389/fimmu.2024.1535647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response. Despite the potential of OVs for handling cold tumors, clinical outcomes have fallen short of expectations. To better understand the obstacles faced by oncolytic virus immunotherapy (OVI), we would like to revisit the OV issue. Growing evidence indicates that limited intratumoral penetration and inadequate intratumoral distribution of OVs are critical factors contributing to the suboptimal response to OVI. Aberrant expressions of matrix proteins by cancer-associated fibroblasts (CAFs) alter the mechanical properties of the tumor extracellular matrix (ECM). This results in increased ECM desmoplasia and elevated intratumoral interstitial fluid pressure (IFP), creating physical barriers that impede the penetration and dissemination of OVs within tumors. This review explores the latest advancements in strategies designed to improve the intratumoral penetration of OVs to facilitate the penetration of tumor-infiltrating lymphocytes (TILs) into cold tumors. Additionally, we investigated current clinical trials and challenges associated with translating these strategies into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Geofrey F. Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Benson K. Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Ying Jing Ng
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huihui Liang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bing Zhang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tielong Xu
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Dept. of Rehabilitation, Nanchang Hongdu Hospital of Chinese Medicine, Nanchang, China
| | - Ray P. S. Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
13
|
George J. Zymography: A Simple and Powerful Tool for the Assessment of MMP-2 and MMP-9 in Pathological Conditions. Methods Mol Biol 2025; 2918:187-199. [PMID: 40261623 DOI: 10.1007/978-1-0716-4482-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Zymography is an electrophoretic technique to measure the proteolytic activity of native enzymes on a nonreducing sodium dodecyl sulfate polyacrylamide gel. It is a simple and powerful tool to assess the amount of various proteases present in both physiological and pathological conditions. The concerned protease degrades the protein substrate that is incorporated with the gel and resolves during the incubation period. Staining with Coomassie brilliant blue (CBB) reveals the sites of proteolysis as clear white bands. The intensity and area of the bands are linearly related to the amount of protease present in the loaded sample. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), also known as gelatinases, have the indigenous property to digest gelatin and several other protein molecules present in the extracellular matrix. Here, we describe the detailed protocols and methods of zymography, with a special emphasis on the determination of gelatinases present in conditioned culture media and tissue extracts.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| |
Collapse
|
14
|
Reddy RA, Varshini MS, Kumar RS. Matrix Metalloproteinase-2 (MMP-2): As an Essential Factor in Cancer Progression. Recent Pat Anticancer Drug Discov 2025; 20:26-44. [PMID: 37861020 PMCID: PMC11826896 DOI: 10.2174/0115748928251754230922095544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The development of cancer has been a multistep process involving mutation, proliferation, survival, invasion, and metastasis. Of all the characteristics of cancer, metastasis is believed to be the hallmark as it is responsible for the highest number of cancer-related deaths. In connection with this, Matrix metalloproteinases (MMPs), that has a role in metastasis, are one of the novel therapeutic targets. MMPs belong to the family of zinc-dependent endopeptidases and are capable of degrading the components of the extracellular matrix (ECM). The role of MMPs in ECM remodeling includes tissue morphogenesis, uterine cycling, growth, tissue repair, and angiogenesis. During pathological conditions, MMPs play a critical role in the excessive degradation of ECM which includes arthritis, tumour invasion, tumour metastasis, and several other autoimmune disorders. Moreover, they are believed to be involved in many physiological aspects of the cell, such as proliferation, migration, differentiation, angiogenesis, and apoptosis. It is reported that dysregulation of MMP in a variety of cancer subtypes have a dual role in tumour growth and metastasis processes. Further, multiple studies suggest the therapeutic potential of targeting MMP in invading cancer. The expression of MMP-2 correlates with the clinical characteristics of cancer patients, and its expression profile is a new diagnostic and prognostic biomarker for a variety of human diseases. Hence, manipulating the expression or function of MMP-2 may be a potential treatment strategy for different diseases, including cancers. Hence, the present review discusses the therapeutic potential of targeting MMP in various types of cancers and their recent patents.
Collapse
|
15
|
Veilleux C, Roy ME, Annabi B. Assessing MMP-2/9 Proteolytic Activity and Activation Status by Zymography in Preclinical and Clinical Tissue Samples. Methods Mol Biol 2025; 2918:165-176. [PMID: 40261621 DOI: 10.1007/978-1-0716-4482-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Zymography is a powerful technique that can be exploited to specifically assess the relative expression levels of a group of proteolytic enzymes termed matrix metalloproteinases (MMPs) through their catalytic activity. It is further used to monitor the ratios status of activated over latent MMP forms that provide more accurate insights in their physiological roles in regulating the degradation of the extracellular matrix. Clinical tissue biopsies, in vitro primary cell culture lysates, or media conditioned by tumor-derived preclinical in vitro cell cultures can be used by researchers to assess by zymography clinical treatment efficacy or pharmacological impact of drugs in development on MMPs level. As increases in MMPs protein levels do not necessarily correlate with increased enzymatic activity, assessing MMPs in clinical tissue samples or from preclinical cell models using zymography is the best indicator of the impact of a given therapy on the activation status of these enzymes, or the impact on an invasive molecular phenotype in the case of tumor biopsies. In this chapter, the proteolytic activity of MMP-2 and MMP-9, two gelatinases, is detected as unstained clear digested bands against a stained gelatin background in polyacrylamide gels. Zymography's strengths are its cost-effectiveness, rapidity, and adaptability since it can be used with a relatively small amount of starting material to assess the activation status and proteolytic activity of other MMPs types when used in gel with their specific substrates.
Collapse
Affiliation(s)
- Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marie-Eve Roy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
17
|
Bâldea I, Soran ML, Stegarescu A, Opriș O, Kacso I, Tripon S, Adascalitei A, Fericel IG, Decea R, Lung I. Lilium candidum Extract Loaded in Alginate Hydrogel Beads for Chronic Wound Healing. Gels 2025; 11:22. [PMID: 39851993 PMCID: PMC11765094 DOI: 10.3390/gels11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process. In this paper, alginate beads with white lily leaf extract were prepared and tested for chronic wound healing. The obtained beads were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Also, the efficiency of extract encapsulation in alginate was determined as being of. The obtained hydrogel was tested on two normal human cell lines, respectively, dermal fibroblasts (BJ-CRL-2522-ATCC) and endothelial cells (human umbilical vein endothelial cells-HUVEC 2). The longer release of bioactive compounds from plant extract loaded in the alginate hydrogel resulted in more effective wound closure, compared to the extract alone, and scar formation, compared to the alginate hydrogel. Therefore, the effect of the white lily extract in combination with that of sodium alginate hydrogel improves the biological activity of the alginate hydrogel and increases the wound healing properties of the alginate.
Collapse
Affiliation(s)
- Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Alexandra Adascalitei
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Iulian George Fericel
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Roxana Decea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| |
Collapse
|
18
|
Li R, Xu S, Guo Y, Cao C, Xu J, Hao L, Luo S, Chen X, Du Y, Li Y, Xie Y, Gao W, Li J, Xu B. Application of collagen in bone regeneration. J Orthop Translat 2025; 50:129-143. [PMID: 40171103 PMCID: PMC11960539 DOI: 10.1016/j.jot.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 04/03/2025] Open
Abstract
At present, there is a significant population of individuals experiencing bone deficiencies caused by injuries, ailments affecting the bones, congenital abnormalities, and cancer. The management of substantial bone defects a significant global orthopedic challenge due to the intricacies involved in promoting and restoring the growth of fresh osseous tissue. Autografts are widely regarded as the "gold standard" for repairing bone defects because of their superior tissue acceptance and ability to control osteogenesis. However, patients undergoing autografts may encounter various challenges, including but not limited to hernia, bleeding, nerve impairment, tissue death. Therefore, researchers in regenerative medicine are striving to find alternatives. Collagen is the most abundant protein in the human body, and its triple helix structure gives it unique characteristics that contribute to its strength and functionality in various tissues. Collagen is commonly processed into various forms such as scaffolds, sponges, membranes, hydrogels, and composite materials, due to its unique compatibility with the human body, affinity for water, minimal potential for immune reactions, adaptability, and ability to transport nutrients or drugs. As an alternative material in the field of bone regeneration, collagen is becoming increasingly important. The objective of this review is to provide a comprehensive analysis of the primary types and sources of collagen, their processes of synthesis and degradation, as well as the advancements made in bone regeneration research and its potential applications. A comprehensive investigation into the role of collagen in bone regeneration is undertaken, providing valuable points of reference for a more profound comprehension of collagen applications in this field. The concluding section provides a comprehensive overview of the prospective avenues for collagen research, underscoring their promising future and highlighting their significant potential in the field of bone regeneration. The Translational Potential of this Article. The comprehensive exploration into the diverse functions and translational potential of collagen in bone regeneration, as demonstrated in this review, these findings underscore their promising potential as a treatment option with significant clinical implications, thus paving the way for innovative and efficacious therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Rou Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Yanning Guo
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Cong Cao
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Jingchen Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Lijun Hao
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou 510515, PR China
| | - Yong Xie
- Department of Cardiac Surgery, The First Affiliated Hospital of Tsinghua University, Beijing 100036, PR China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Jing Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Baohua Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
19
|
Wang S, Wang F, Wang L, Bao Z, Cai J, Zhao B, Wu X, Chen Y. Analysis of apoptosis levels and MMP7 gene expression in ovaries of postpartum female rabbits after long-term use of LHRH-A3. Genome 2025; 68:1-10. [PMID: 40203456 DOI: 10.1139/gen-2024-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Luteinizing hormone-releasing hormone A3 (LHRH-A3), a reproductive hormone analog, is widely used to stimulate ovulation in female rabbits. However, the long-term impact of sustained LHRH-A3 administration on the reproductive system, particularly ovarian health, remains unclear. In this study, we compared apoptosis levels in ovaries and molecular regulation between LHRH-A3-treated (A3 group) and untreated female rabbits (N group) after their 5th litter. Western blotting showed a significantly lower Bcl-2/Bax ratio in the A3 group compared with the N group (P < 0.01), indicating higher ovarian apoptosis. Ovarian tissues from four rabbits per group were divided into the A3 group and the N group, and RNA-seq technology was then utilized to conduct transcriptome analysis on these two groups. This analysis revealed 220 differentially expressed genes (DEGs), including BMP6, BMP15, CYP1A1, and other reproductive-related genes. KEGG analysis of these DEGs showed their involvement in processes such as the cell cycle, PI3K-Akt signaling pathway, and ovarian steroidogenesis. Subsequently, we selected the key gene Matrix metallopeptidase 7 (MMP7) for functional analysis using CCK8 and Annexin V-FITC/PI techniques. MMP7 was found to promote the proliferation of granulosa cells (GCs) and inhibit apoptosis (P < 0.01). In conclusion, LHRH-A3 treatment can modulate ovarian molecular regulation, with the key gene MMP7 involved in the proliferation and apoptosis of GCs.
Collapse
Affiliation(s)
- Sen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
20
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
21
|
Redoute-Timonnier C, Auguste P. Implication of the Extracellular Matrix in Metastatic Tumor Cell Dormancy. Cancers (Basel) 2024; 16:4076. [PMID: 39682261 DOI: 10.3390/cancers16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metastasis is the main cause of cancer-related deaths. The formation and growth of metastasis is a multistep process. Tumor cells extravasating in the secondary organ are in contact with a new microenvironment and a new extracellular matrix (ECM), called the metastatic niche. Some components of the ECM, such as periostin, can induce tumor cell growth in macrometastasis. In contrast, other components, such as Thrombospondin 1 (TSP-1), can maintain isolated cells in a dormant state. During dormancy, intracellular signaling activation, such as p38, maintains tumor cells arrested in the cell-cycle G0 phase for years. At any moment, stress can induce ECM modifications and binding to their specific receptors (mainly integrins) and reactivate dormant tumor cell growth in macrometastasis. In this review, we describe the tumor microenvironment of the different niches implicated in tumor cell dormancy. The role of ECM components and their associated receptors and intracellular signaling in the reactivation of dormant tumor cells in macrometastasis will be emphasized. We also present the different methodologies and experimental approaches used to study tumor cell dormancy. Finally, we discuss the current and future treatment strategies to avoid late metastasis relapse in patients.
Collapse
Affiliation(s)
| | - Patrick Auguste
- University of Bordeaux, INSERM, BRIC, U1312, MIRCADE Team, F-33000 Bordeaux, France
| |
Collapse
|
22
|
Do PT, Chuang DM, Wu CC, Huang CZ, Chen YH, Kang SJ, Chiang YH, Hu CJ, Chen KY. Mesenchymal Stem Cells Overexpressing FGF21 Preserve Blood-Brain Barrier Integrity in Experimental Ischemic Stroke. Transl Stroke Res 2024; 15:1165-1175. [PMID: 37783839 DOI: 10.1007/s12975-023-01196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pediatrics, Hanoi Medical University, Hanoi, 100000, Vietnam
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Chung-Che Wu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Chi-Zong Huang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- The PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Hua Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Shuo-Jhen Kang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yung-Hsiao Chiang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Chaur-Jong Hu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan.
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan.
- The PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
23
|
Hamali MA, Roney M, Dubey A, Uddin MN, Zulkifli NA, Fasihi Mohd Aluwi MF, Musa M, Tajuddin AM, Kassim K. Cu(II) complexes based on benzimidazole ligands: synthesis, characterization, DFT, molecular docking & bioactivity study. Future Med Chem 2024; 16:2535-2546. [PMID: 39530504 PMCID: PMC11622761 DOI: 10.1080/17568919.2024.2419353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The biggest cause of cancer deaths globally was lung cancer. New cancer fighting drugs are needed due to the rising number of cancer patients and cancer cells' treatment resistance.Results: Two Cu(II) complexes, synthesized from ligands based on 2-aminomethyl benzimidazole and salicylaldehyde derivatives, were designed and evaluated for their effectiveness against A549 lung cancer. The compounds were subjected to computational calculation using Density Functional Theory (DFT) to gather information on their reactivity. Furthermore, molecular docking are utilized to simulate the interaction between the compound and the MPP-9 protein. The synthesis of the ligands and their Cu(II) metal complexes are efficient and straightforward. The complexation between copper atom and the ligand are in 1:1 ratio. The MTT assay of the compounds against A549 lung carcinoma reveals that the both Cu(II) complexes good cytotoxicity activity, in comparison to their respective ligands. The low HOMO-LUMO band gap based on the DFT calculation predicts the high reactivity of the compounds. Furthermore, the low binding energy and the numbers of interactions of the Cu(II) complexes with MMP-9 protein binding site coincide with the antiproliferative activity tested in vitro.Conclusion: The cytotoxicity studies performed for Cu(L1Br) are promising, indicating a good candidate for a future drug.
Collapse
Affiliation(s)
- Muhamad Azwan Hamali
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang Darul Makmur, 26300, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang Darul Makmur, 26300, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Md Nazim Uddin
- Institute of Food Science & Technology, Bangladesh Council of Scientific & Industrial Research, Dhaka1205, Bangladesh
| | - Nur Amira Zulkifli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang Darul Makmur, 26300, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang Darul Makmur, 26300, Malaysia
| | - Maslinda Musa
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Amalina Mohd Tajuddin
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), UiTM Kampus Puncak Alam, Bandar, Puncak Alam, Selangor, 42300, Malaysia
| | - Karimah Kassim
- Institute of Science, Universiti Teknologi MARA, Shah Alam, 40450, Malaysia
| |
Collapse
|
24
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Liang J, Hu J, Hong X, Zhou M, Xia G, Hu L, Luo S, Quan K, Yan J, Wang S, Fan S. Amentoflavone maintaining extracellular matrix homeostasis and inhibiting subchondral bone loss in osteoarthritis by inhibiting ERK, JNK and NF-κB signaling pathways. J Orthop Surg Res 2024; 19:662. [PMID: 39407273 PMCID: PMC11481797 DOI: 10.1186/s13018-024-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have not been elucidated.To investigate the inhibitory effects and its molecular mechanism of AF on extracellular matrix (ECM) degradation stimulated by IL-1β as well as subchondral bone loss induced by RANKL in mice chondrocytes. Quantitative PCR was used to detect the mRNA expression of genes related to inflammation, ECM, and osteoclast differentiation. Protein expression level of iNOS, COX-2, MMP13, ADAMTS5, COL2A1, SOX9, NFATc1, c-fos, JNK, ERK, P65, IκBα was measured by western blotting. The levels of TNF-α and IL-6 in the supernatants were measured by ELISA. The amount of ECM in chondrocytes was measured using toluidine blue staining. The levels of Aggrecan and Col2a1 in chondrocytes were measured using immunofluorescence. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and immunofluorescence were used to detect the effect of AF on osteoclast differentiation and bone resorption. The effect of AF on destabilization of the medial meniscus (DMM)-induced OA mice can be detected in hematoxylin-eosin (H&E) staining, Safranin O green staining and immunohistochemistry.AF might drastically attenuated IL-1β-stimulated inflammation and reduction of ECM formation by blocking ERK and NF-κB signaling pathways in chondrocytes. Meanwhile, AF suppressed the formation of osteoclasts and the resorption of bone function induced by RANKL. In vivo, AF played a protective role by stabilizing cartilage ECM and inhibiting subchondral bone loss in destabilization of the medial meniscus (DMM)-induced OA mice, further proving its protective effect in the development of OA. Our study show that AF alleviated OA by suppressing ERK, JNK and NF-κB signaling pathways in OA models in vitro and DMM-induced OA mice, suggesting that AF might be a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Ming Zhou
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Guoming Xia
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Liangshen Hu
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Luo
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jianbin Yan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Shaoyong Fan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China.
| |
Collapse
|
26
|
Mahanta PJ, Lhouvum K. Expression and biochemical characterization of the putative insulinase enzyme PF11_0189 found in the Plasmodium falciparum genome. Protein Expr Purif 2024; 222:106539. [PMID: 38960013 DOI: 10.1016/j.pep.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
PF11_0189 is a putative insulin degrading enzyme present in Plasmodium falciparum genome. The catalytic domain of PF11_0189 is about 27 kDa. Substrate specificity study shows PF11_0189 acts upon different types of proteins. The substrate specificity is found to be highest when insulin is used as a substrate. Metal dependency study shows highest dependency of PF11_0189 towards zinc metal for its proteolytic activity. Chelation of zinc metal with EDTA shows complete absence of PF11_0189 activity. Peptide inhibitors, P-70 and P-121 from combinatorial peptide library prepared against PF11_0189 show inhibition with an IC50 value of 4.8 μM and 7.5 μM respectively. A proven natural anti-malarial peptide cyclosporin A shows complete inhibition against PF11_0189 with an IC50 value of 0.75 μM suggesting PF11_0189 as a potential target for peptide inhibitors. The study implicates that PF11_0189 is a zinc metalloprotease involved in catalysis of insulin. The study gives a preliminary insight into the mechanism of complications arising from glucose abnormalities during severe malaria.
Collapse
Affiliation(s)
- Prabhash Jyoti Mahanta
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India
| |
Collapse
|
27
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Yang H, Zhou Y, Ying B, Dong X, Qian Q, Gao S. Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models. Stem Cells Transl Med 2024; 13:803-811. [PMID: 38913985 PMCID: PMC11328936 DOI: 10.1093/stcltm/szae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/16/2024] [Indexed: 06/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) offer great potential for treatment of osteoarthritis (OA) by promoting articular cartilage regeneration via paracrine secretion of exosomes; however, the underlying mechanisms are not fully understood. This study aimed to explore the therapeutic effects of exosomes secreted by human umbilical cord-derived MSCs (hUC-MSCs) in rat models of OA and reveal the underlying mechanisms. UC-MSCs and UC-MSC-exosomes were prepared and identified by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and the operation and collagenase-induced OA rat models were established. The results of micro-computed tomography, histology, and immunohistochemistry showed that UC-MSC-exosomes promoted cartilage regeneration in OA rats. ELISA results showed that the levels of synovial fluid cytokines, TNF-α, IL-1β, and IL-6, were lower in exosome therapy group than control group in both OA rat models. Exosome treatment significantly downregulated the expression of MMP-13 and ADAMTS-5 in chondrocytes stimulated by IL-1β, and upregulated collagen II expression. These findings suggest that hUC-MSC-exosomes offer a promising option for the therapy for OA.
Collapse
Affiliation(s)
- Huanfeng Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, People's Republic of China
- Department of R&D, Oricell Therapeutics, Shanghai, 201203, People's Republic of China
| | - Yiqin Zhou
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Bi Ying
- Department of R&D, Oricell Therapeutics, Shanghai, 201203, People's Republic of China
| | - Xuhui Dong
- Department of R&D, Oricell Therapeutics, Shanghai, 201203, People's Republic of China
| | - Qirong Qian
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, People's Republic of China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, Shanghai, 201204, People's Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
29
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
30
|
Gorantla K, Krishnan A, Waheed SO, Varghese A, DiCastri I, LaRouche C, Paik M, Fields GB, Karabencheva-Christova TG. Novel Insights into the Catalytic Mechanism of Collagenolysis by Zn(II)-Dependent Matrix Metalloproteinase-1. Biochemistry 2024; 63:1925-1940. [PMID: 38963231 PMCID: PMC11309001 DOI: 10.1021/acs.biochem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1. Specifically, we compared the full enzyme-substrate complex in solution, clusters in solution, and gas-phase to elucidate insights into MMP-1-catalyzed collagenolysis. Our findings reveal significant differences in the catalytic mechanism when considering thermal effects and the dynamic evolution of the system, contrasting with conventional static potential energy surface QM/MM reaction path studies. Notably, we observed a significant stabilization of the critical tetrahedral intermediate, attributed to contributions from conformational flexibility and entropy. Moreover, we found that protonation of the scissile bond nitrogen occurs via proton transfer from a Zn(II)-coordinated hydroxide rather than from a solvent water molecule. Following C-N bond cleavage, the C-terminus remains coordinated to the catalytic Zn(II), while the N-terminus forms a hydrogen bond with a solvent water molecule. Subsequently, the release of the C-terminus is facilitated by the coordination of a water molecule. Our study underscores the pivotal role of protein conformational dynamics at physiological temperature in stabilizing the transition state of the rate-limiting step and key intermediates, compared to the corresponding reaction in solution. These fundamental insights into the mechanism of collagen degradation provide valuable guidance for the development of MMP-1-specific inhibitors.
Collapse
Affiliation(s)
- Koteswara
Rao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Anandhu Krishnan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Meredith Paik
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
31
|
Sinha K, Parwez S, Mv S, Yadav A, Siddiqi MI, Banerjee D. Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3. J Biomol Struct Dyn 2024; 42:6823-6841. [PMID: 37504963 DOI: 10.1080/07391102.2023.2240416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
MMP-9, also known as gelatinase B, is a zinc-metalloproteinase family protein that plays a key role in the degradation of the extracellular matrix (ECM). The normal function of MMP-9 includes the breakdown of ECM, a process that aids in normal physiological processes such as embryonic development, angiogenesis, etc. Interruptions in these processes due to the over-expression or downregulation of MMP-9 are reported to cause some pathological conditions like neurodegenerative diseases and cancer. In the present study, an integrated approach for ML-based virtual screening of the Maybridge library was carried out and their biological activity was tested in an attempt to identify novel small molecule scaffolds that can inhibit the activity of MMP-9. The top hits were identified and selected for target-based activity against MMP-9 protein using the kit (Biovision K844). Further, MTT assay was performed in various cancer cell lines such as breast (MCF-7, MDA-MB-231), colorectal (HCT119, DL-D-1), cervical (HeLa), lung (A549) and ovarian cancer (SKOV3). Interestingly, one compound viz., RJF02215 exhibited anti-cancer activity selectively in SKOV3. Wound healing assay and colony formation assay performed on SKOV3 cell line in the presence of RJF02215 confirmed that the compound had a significant inhibitory effect on this cell line. Thus, we have identified a novel molecule that can inhibit MMP-9 activity in vitro and inhibits the proliferation of SKOV3 cells. Novel molecules based on the structure of RJF02215 may become a good value addition for the treatment of ovarian cancer by exhibiting selective MMP-9 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khushboo Sinha
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahana Mv
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ananya Yadav
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Floryanzia S, Lee S, Nance E. Isolation methods and characterization of primary rat neurovascular cells. J Biol Eng 2024; 18:39. [PMID: 38992711 PMCID: PMC11241874 DOI: 10.1186/s13036-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources. Here, we present simplified, robust, and reproducible methodology for isolating astrocytes, pericytes, and endothelial cells, and demonstrate several morphological benchmarks for each cell type throughout the process and culture timeframe. We also analyze common considerations for developing neurovascular cell isolation procedures and recommend solutions for troubleshooting. RESULTS The presented methodology isolated astrocytes, pericytes, and endothelial cells and enabled cell attachment, maturation, and cell viability. We characterized milestones in cell maturation over 12 days in culture, a common timeline for applications of these cell types in BBB models. Phase contrast microscopy was used to show initial cell plating, attachment, and daily growth of isolated cells. Confocal microscopy images were analyzed to determine the identity of cell types and changes to cell morphology. Nuclear staining was also used to show the viability and proliferation of glial cells at four time points. Astrocyte branches became numerous and complex with increased culture time. Microglia, oligodendrocytes, and neurons were present in mixed glial cultures for 12 days, though the percentage of microglia and neurons expectedly decreased after passaging, with microglia demonstrating a less branched morphology. CONCLUSIONS Neurovascular cells can be isolated through our optimized protocols that minimize cell loss and encourage the adhesion and proliferation of isolated cells. By identifying timepoints of viable glia and neurons within an astrocyte-dominant mixed culture, these cells can be used to evaluate drug targeting, uptake studies, and response to pathological stimulus in the neurovascular unit.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Seoyoung Lee
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
33
|
Hamblin MH, Boese AC, Murad R, Lee JP. MMP-3 Knockout Induces Global Transcriptional Changes and Reduces Cerebral Infarction in Both Male and Female Models of Ischemic Stroke. Int J Mol Sci 2024; 25:7383. [PMID: 39000490 PMCID: PMC11242542 DOI: 10.3390/ijms25137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3 (MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We employed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO. MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains. Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males, as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a promising therapeutic strategy, impacting multiple cellular pathways following stroke.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Austin C. Boese
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Jean-Pyo Lee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
35
|
Park GC, Lee I, Yun J, Hwang JS, Kim DO. Upcycled canola meal extract mitigates UVB-induced skin wrinkling by regulating photoaging-related biomarkers in hairless mice. Nutr Res 2024; 127:108-122. [PMID: 38943729 DOI: 10.1016/j.nutres.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
Canola meal, a by-product of processing canola into oil, reportedly contains high amounts of phenolic compounds and proteins. However, as canola meal is primarily used as feed for livestock, advances in multiple research fields are required to broaden its potential applications. Photoaging is caused by continuous exposure to ultraviolet (UV) radiation from sunlight. UV radiation generates reactive oxygen species and destroys collagen in the skin, thickening the epidermis, reducing elasticity, and causing wrinkles. We hypothesized that canola meal extract (CME) can mitigate the damage to skin associated with wrinkles induced by exposure to UVB radiation. To evaluate the anti-wrinkle effect, we administered CME orally to 40 female Hos:HR-1 hairless mice divided into 5 groups: (1) control mice, (2) a UVB group, and (3-5) CME-treated groups (CME-250, 500, and 1000 mg/kg body weight/day, respectively). All groups except the controls were irradiated with UVB 3 times a week to create wrinkles due to photoaging. CME administration inhibited the increase of the number, mean length, and mean depth of wrinkles induced by UVB radiation as assessed using a skin replica. Histopathological image analysis revealed that CME administration resulted in a decrease in epidermal thickness and an increase in collagen content, while increasing catalase activity and hydroxyproline content in skin tissues. CME administration inhibited the phosphorylation of mitogen-activated protein kinase and decreased the production of collagenase and gelatinase. These results suggest that CME, an upcycled material, has the potential to develop into a healthful and functional food ingredient with anti-wrinkling effects.
Collapse
Affiliation(s)
- Gi-Cheol Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Inil Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea; Re&C Bio, Cheongju, Republic of Korea
| | - Jisuk Yun
- Re&C Bio, Cheongju, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
36
|
Soliman SA. Immunohistochemical-properties of the dermal embryonic telocytes. Sci Rep 2024; 14:13899. [PMID: 38886354 PMCID: PMC11183069 DOI: 10.1038/s41598-024-63802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
37
|
Tsuji S, Kudo U, Hatakeyama R, Shoda K, Nakamura S, Shimazawa M. Linagliptin decreased the tumor progression on glioblastoma model. Biochem Biophys Res Commun 2024; 711:149897. [PMID: 38608433 DOI: 10.1016/j.bbrc.2024.149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral hypoglycemic drugs and are used for type II diabetes. Previous studies showed that DPP-4 expression is observed in several tumor types and DPP-4 inhibitors suppress the tumor progression on murine tumor models. In this study, we evaluated the role of DPP-4 and the antitumor effect of a DPP-4 inhibitor, linagliptin, on glioblastoma (GBM). METHODS We analyzed DPP-4 expression in glioma patients by the public database. We also analyzed DPP-4 expression in GBM cells and the murine GBM model. Then, we evaluated the cell viability, cell proliferation, cell migration, and expression of some proteins on GBM cells with linagliptin. Furthermore, we evaluated the antitumor effect of linagliptin in the murine GBM model. RESULTS The upregulation of DPP-4 expression were observed in human GBM tissue and murine GBM model. In addition, DPP-4 expression levels were found to positively correlate with the grade of glioma patients. Linagliptin suppressed cell viability, cell proliferation, and cell migration in GBM cells. Linagliptin changed the expression of phosphorylated NF-kB, cell cycle, and cell adhesion-related proteins. Furthermore, oral administration of linagliptin decreases the tumor progression in the murine GBM model. CONCLUSION Inhibition of DPP-4 by linagliptin showed the antitumor effect on GBM cells and the murine GBM model. The antitumor effects of linagliptin is suggested to be based on the changes in the expression of several proteins related to cell cycle and cell adhesion via the regulation of phosphorylated NF-kB. This study suggested that DPP-4 inhibitors could be a new therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Urara Kudo
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryo Hatakeyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kenji Shoda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
38
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
39
|
Soliman SA. Immunohistochemical properties of embryonic telocytes in a myogenic microenvironment. Sci Rep 2024; 14:12034. [PMID: 38802438 PMCID: PMC11130138 DOI: 10.1038/s41598-024-62103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Telocytes are a unique interstitial cell type that functions in adulthood and embryogenesis. They have characteristic immunohistochemical phenotypes while acquiring different immunohistochemical properties related to the organ microenvironment. The present study aims to investigate the immunohistochemical features of embryonic telocytes during myogenesis and describe their morphology using light microscopy and TEM. Telocytes represent a major cellular constituent in the interstitial elements. They had distinguished telopodes and podoms and formed a 3D interstitial network in the developing muscles. They formed heterocellular contact with myoblasts and nascent myotubes. Telocytes also had distinctive secretory activity. Telocytes identified by CD34. They also express CD68 and MMP-9 to facilitate the development of new tissues. Expression of CD21 by telocytes may reveal their function in immune defense. They also express VEGF, which regulates angiogenesis. In conclusion, the distribution and immunological properties of telocytes in the myogenic tissue indicate that telocytes provide biological and structural support in the development of the myogenic tissue architecture and organization.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
40
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
41
|
Park DR, Choi BR, Yeo C, Yoon JE, Hong EY, Baek SH, Lee YJ, Ha IH. Mume Fructus reduces interleukin-1 beta-induced cartilage degradation via MAPK downregulation in rat articular chondrocytes. PLoS One 2024; 19:e0302906. [PMID: 38718039 PMCID: PMC11078424 DOI: 10.1371/journal.pone.0302906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1β-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.
Collapse
Affiliation(s)
- Doo Ri Park
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Bo Ram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Jee Eun Yoon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Eun Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi Province, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
42
|
Song QW, Yuan YP, Sun QS, Zhan XD, Jiang YX, Tang XN. Effects of Bulleyaconitine A on Extracellular Matrix Secretion and Expression of Related Proteins in Acetaldehyde-Activated Hepatic Stellate Cells. Bull Exp Biol Med 2024; 177:74-78. [PMID: 38955854 DOI: 10.1007/s10517-024-06134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 07/04/2024]
Abstract
Activated hepatic stellate cells differentiate into myofibroblasts, which synthesize and secrete extracellular matrix (ECM) leading to liver fibrosis. It was previously demonstrated that bulleyaconitine A (BLA), an alkaloid from Aconitum bulleyanum, inhibits proliferation and promotes apoptosis of human hepatic Lieming Xu-2 (LX-2) cells. In this study, we analyzed the effect of BLA on the production of ECM and related proteins by LX-2 cells activated with acetaldehyde (AA). The cells were randomized into the control group, AA group (cells activated with 400 μM AA), and BLA+AA group (cells cultured in the presence of 400 μM AA and 18.75 μg/ml BLA). In the BLA+AA group, the contents of collagens I and III and the expression of α-smooth muscle actin and transforming growth factor-β1 (TGF-β1) were statistically significantly higher than in the control, but lower than in the AA group. Expression of MMP-1 in the BLA+AA group was also significantly higher than in the AA group, but lower than in the control. Expression of TIMP-1 in the BLA+AA group was significantly higher than in the control, but lower than in the AA group. Thus, BLA suppressed activation and proliferation of LX-2 cells by inhibiting TGF-β1 signaling pathway and decreasing the content of collagens I and III by reducing the MMP-1/TIMP-1 ratio.
Collapse
Affiliation(s)
- Q W Song
- Department of Medical Parasitology, Wannan Medical College, Anhui, China
| | - Y P Yuan
- Department of Medical Parasitology, Wannan Medical College, Anhui, China
| | - Q S Sun
- Department of Medical Parasitology, Wannan Medical College, Anhui, China
| | - X D Zhan
- Department of Medical Parasitology, Wannan Medical College, Anhui, China
| | - Y X Jiang
- Department of Pathogenic Biology and Immunology, Jiaxing University College of Medicine, Zhejiang, China
| | - X N Tang
- Department of Medical Parasitology, Wannan Medical College, Anhui, China.
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Anhui, China.
| |
Collapse
|
43
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
44
|
Chniguir A, Saguem MH, Dang PMC, El-Benna J, Bachoual R. Eugenol Inhibits Neutrophils Myeloperoxidase In Vitro and Attenuates LPS-Induced Lung Inflammation in Mice. Pharmaceuticals (Basel) 2024; 17:504. [PMID: 38675465 PMCID: PMC11054673 DOI: 10.3390/ph17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Amina Chniguir
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | | | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Rafik Bachoual
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| |
Collapse
|
45
|
Hosseinpour-Soleimani F, Salmasi Z, Ghasemi Y, Tajbakhsh A, Savardashtaki A. MicroRNAs and proteolytic cleavage of receptors in cancers: A comprehensive review of regulatory interactions and therapeutic implications. Heliyon 2024; 10:e28167. [PMID: 38560206 PMCID: PMC10979173 DOI: 10.1016/j.heliyon.2024.e28167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
- Infertility Research Center, Shiraz University Med Ical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Malik S, Chakraborty D, Agnihotri P, Kumar V, Biswas S. Unveiling the Nexus: Cellular Metabolomics Unravels the Impact of Estrogen on Nicotinamide Metabolism in Mitigating Rheumatoid Arthritis Pathogenesis. Metabolites 2024; 14:214. [PMID: 38668342 PMCID: PMC11052502 DOI: 10.3390/metabo14040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a metabolic joint disorder influenced by hormonal regulation, notably estrogen, which plays a cytoprotective role against inflammation. While estrogen's impact on RA pathogenesis has been studied, the altered metabolite expression under estrogen's influence remains unexplored. This study investigated the changes in the metabolome of synovial fibroblasts isolated from RA patients under 17β-estradiol (E2) using the liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach followed by multivariate and biological pathway analysis along with in vitro validation. Results identified 3624 m/z, among which eight metabolites were significant (p < 0.05). Nicotinate and nicotinamide metabolism was found to be highly correlated with the treatment of E2, with metabolites NAD+ and 1-methynicotinamide (1-MNA) upregulated by E2 induction in RA-FLS. PharmMapper analysis identified potential gene targets of 1-MNA, which were further matched with RA gene targets, and thus, STAT1, MAPK14, MMP3, and MMP9 were concluded to be the common targets. E2 treatment affected the expression of these gene targets and ameliorated the development of oxidative stress associated with RA inflammation, which can be attributed to increased concentration of 1-MNA. Thus, an LC-MS/MS-based metabolomics study revealed the prominent role of estrogen in preventing inflammatory progression in RA by altering metabolite concentration, which can support its therapeutic capacity in remitting RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vijay Kumar
- Department of Orthopaedics, AIIMS—All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR—Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (S.M.); (D.C.); (P.A.)
- AcSIR—Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
47
|
Chatterjee S, Rajasekar A. Association Analysis of MMP-13 (rs2252070) Gene Polymorphism and the Susceptibility to Chronic Periodontitis. Cureus 2024; 16:e57426. [PMID: 38699090 PMCID: PMC11063972 DOI: 10.7759/cureus.57426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Chronic periodontitis is a multifactorial inflammatory condition influenced by genetic factors. Matrix metalloproteinase (MMP)-13, serving as a crucial enzyme involved in extracellular matrix remodeling, is associated with the degradation of periodontal tissues. Therefore, this study assesses the genetic link between the MMP-13 (rs2252070) genetic variation and chronic periodontitis in a Southern Indian demographic. METHODOLOGY The study was conducted at Saveetha Dental College in Chennai, India. It involved a total of 100 subjects, 50 individuals affected with periodontitis (classified as stage II and above, American Association of Periodontology 2018 criteria) and 50 individuals who were periodontally healthy or were diagnosed as having mild gingivitis. We isolated DNA from the blood samples obtained from the participants. Specific primers that flank the BsrI region of the MMP-13 receptor gene were used in the process of DNA amplification. Subsequently, a restriction fragment length analysis using the BsrI enzyme was carried out for genotyping of the amplicon. Based on the restriction fragment length polymorphism pattern, we obtained certain genotypes. These were further recorded and followed by statistical analysis. We conducted a chi-square test to draw a comparison in terms of their genotype and allele frequencies. We calculated the odds ratio, along with 95% confidence intervals. RESULTS The frequency of genotypes and distribution of MMP-13 polymorphism did not exhibit a statistically significant difference at χ2 degrees of freedom (P = 0.913). We inferred from our study that there was no significant difference between the groups concerning homozygous and heterozygous mutant genotypes (AA vs. AG + GG), with a P-value of 0.6871. The observed frequencies of GG (47% vs. 43%) and AG+AA (41% vs. 42%) genotypes did not indicate a significant difference between the groups. Similarly, there was no noteworthy distinction between the A allele (62% vs. 65%) and G allele (38% vs. 35%) in the case and control groups. CONCLUSION The findings of the study reveal that there is no correlation between MMP-13 (rs2252070) gene polymorphism and periodontitis.
Collapse
Affiliation(s)
- Shubhangini Chatterjee
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
48
|
Gatti JL, Lemauf S, Belghazi M, Arthaud L, Poirié M. In Drosophila Hemolymph, Serine Proteases Are the Major Gelatinases and Caseinases. INSECTS 2024; 15:234. [PMID: 38667364 PMCID: PMC11050137 DOI: 10.3390/insects15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
After separation on gel zymography, Drosophila melanogaster hemolymph displays gelatinase and caseinase bands of varying sizes, ranging from over 140 to 25 kDa. Qualitative and quantitative variations in these bands were observed during larval development and between different D. melanogaster strains and Drosophila species. The activities of these Drosophila hemolymph gelatinase and caseinase were strongly inhibited by serine protease inhibitors, but not by EDTA. Mass spectrometry identified over 60 serine proteases (SPs) in gel bands corresponding to the major D. melanogaster gelatinases and caseinases, but no matrix metalloproteinases (MMPs) were found. The most abundant proteases were tequila and members of the Jonah and trypsin families. However, the gelatinase bands did not show any change in the tequila null mutant. Additionally, no clear changes could be observed in D. melanogaster gel bands 24 h after injection of bacterial lipopolysaccharides (LPS) or after oviposition by Leptopilina boulardi endoparasitoid wasps. It can be concluded that the primary gelatinases and caseinases in Drosophila larval hemolymph are serine proteases (SPs) rather than matrix metalloproteinases (MMPs). Furthermore, the gelatinase pattern remains relatively stable even after short-term exposure to pathogenic challenges.
Collapse
Affiliation(s)
- Jean-Luc Gatti
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Séverine Lemauf
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Maya Belghazi
- Marseille-Protéomique (MaP), Plateforme Protéomique, Institut de Microbiologie de la Méditerranée UMR 3479 CNRS, Aix-Marseille Université, 13402 Marseille, France;
| | - Laury Arthaud
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| | - Marylène Poirié
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France; (S.L.); (L.A.); (M.P.)
| |
Collapse
|
49
|
Allam AA, Khedr MA, Elkholy SS, Yassin TAER, Fouad OA. Bile duct matrix metalloproteinase-7 expression: a new modality for diagnosis of biliary atresia. EGYPTIAN LIVER JOURNAL 2024; 14:17. [DOI: 10.1186/s43066-024-00320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Biliary atresia (BA) is an obliterative cholangiopathy of infancy that results in cholestasis and liver fibrosis. This fibrosis is due to an imbalance in extracellular matrix (ECM) breakdown and deposition. The mechanism by which the progressive injury occurs is not fully elucidated. Matrix metalloproteinases (MMPs) are involved in ECM turnover but also have non-ECM-related functions. Matrix metalloproteinase 7 (MMP7) has been suggested as a promising biomarker in diagnosing BA.
Objective
The aim of this study was to assess the hepatic expression of MMP-7 in infants with BA.
Patients and methods
The study was a retrospective-prospective case–control study that included 50 patients who were categorized into two groups, BA group (25 patients) and non-BA cholestatic patients as a control group (25 patients). Liver biochemistry, liver biopsy, histopathology, and immunohistochemical staining for primary antibody MMP-7 were performed for all studied patients.
Results
Bile duct MMP7 expression was significantly higher in infants with BA than in non-BA cholestasis (P = 0.003), While the hepatic MMP-7 intensity did not differ significantly between both groups (P > 0.05). Bile duct expression of MMP-7 had a significant positive correlation with the BA Score (P = 0.017), while hepatic MMP-7 intensity had a significant positive correlation with alanine transaminase levels (P = 0.007) and a significant negative correlation with γ glutamyl transferase in the BA group (P = 0. 038). There was no statistically significant difference among different stages of fibrosis as regards the median of the hepatic MMP-7 intensity score and MMP-7 bile duct expression in infants with BA. There was no statistically significant difference between infants with successful and failed Kasai as regard the hepatic MMP-7 intensity and its bile duct expression.
Conclusion
Bile duct expression of MMP-7 measured by immunohistochemistry is useful for the diagnosis of BA, but it is limited in predicting the stage of liver fibrosis and the outcome of Kasai portoenterostomy (KPE).
Collapse
|
50
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|