1
|
Jahani M, Yarani R, Rezazadeh D, Tahmasebi H, Hoseinkhani Z, Kiani S, Mansouri K. L-lysine Increases the Anticancer Effect of Doxorubicin in Breast Cancer by Inducing ROS-dependent Autophagy. Curr Cancer Drug Targets 2025; 25:257-269. [PMID: 38584530 DOI: 10.2174/0115680096288665240315072646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a chemotherapy drug that is widely used in cancer therapy, especially in Triple-Negative Breast Cancer (TNBC) patients. Nevertheless, cytoprotective autophagy induction by DOX limits its cytotoxic effect and drug resistance induction in patients. Therefore, finding a new way is essential for increasing the effectiveness of this drug for cancer treatment. OBJECTIVE This study aimed to investigate the effect of L-lysine on DOX cytotoxicity, probably through autophagy modulation in TNBC cell lines. METHODS We used two TNBC cell lines, MDA-MB-231 and MDA-MB-468, with various levels of autophagy activity. Cell viability after treatment with L-lysine alone and in combination therapy was evaluated by MTT assay. Reactive Oxygen Species (ROS), nitric oxide (NO) concentration, and arginase activity were assessed using flow cytometric analysis, Griess reaction, and arginase activity assay kit, respectively. Real-time PCR and western blot analysis were used to evaluate the L-lysine effect on the autophagy-related genes and protein expression. Cell cycle profile and apoptotic assay were performed using flow cytometric analysis. RESULTS The obtained data indicated that L-lysine in both concentrations of 24 and 32 mM increased the autophagy flux and enhanced the DOX cytotoxicity, especially in MDA-MB-231, which demonstrated higher autophagy activity than MDA-MB-468, by inducing ROS and NO production. Furthermore, L-lysine induced G2/M arrest autophagy cell death, while significant apoptotic changes were not observed. CONCLUSION These findings suggest that L-lysine can increase DOX cytotoxicity through autophagy modulation. Thus, L-lysine, in combination with DOX, may facilitate the development of novel adjunct therapy for cancer.
Collapse
Affiliation(s)
- Mozhgan Jahani
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Yarani
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark Pediatrics, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Davood Rezazadeh
- Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Tahmasebi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Meerod T, Sangsuwan R, Klumthong K, Chantrathonkul B, Phutubtim N, Govitrapong P, Ruchirawat S, Ploypradith P, Sopha P. Cytotoxic stress caused by azalamellarin D (AzaD) interferes with cellular protein translation by targeting the nutrient-sensing kinase mTOR. J Biochem 2024; 176:139-153. [PMID: 38669682 DOI: 10.1093/jb/mvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Analogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation. Intriguingly, acute AzaD treatment promoted the phosphorylation of GCN2, a kinase that transduces the integrated stress response (ISR), and prolonged exposure to AzaD could increase the levels of the phosphorylated forms of eIF2α and the other ISR kinase protein kinase R (PKR). However, the effects of AzaD on ISR signalling were marginally abrogated in cells with genetic deletion of GCN2 and PKR, and evaluation of protein target engagement by cellular thermal shift assay (CETSA) revealed no significant interaction between AzaD and ISR kinases. Further investigation revealed that acute AzaD treatment negatively affected mechanistic target of rapamycin (mTOR) phosphorylation and signalling. The analyses by CETSA and computational modelling indicated that mTOR may be a possible protein target for AzaD. These findings indicate the potential for developing lamellarins as novel agents for cancer treatment.
Collapse
Affiliation(s)
- Tirawit Meerod
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Kanawut Klumthong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Bunkuea Chantrathonkul
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Nadgrita Phutubtim
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Piyarat Govitrapong
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| | - Pattarawut Sopha
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
4
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Violi JP, Pu L, Pravadali-Cekic S, Bishop DP, Phillips CR, Rodgers KJ. Effects of the Toxic Non-Protein Amino Acid β-Methylamino-L-Alanine (BMAA) on Intracellular Amino Acid Levels in Neuroblastoma Cells. Toxins (Basel) 2023; 15:647. [PMID: 37999510 PMCID: PMC10674354 DOI: 10.3390/toxins15110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The cyanobacterial non-protein amino acid (AA) β-Methylamino-L-alanine (BMAA) is considered to be a neurotoxin. BMAA caused histopathological changes in brains and spinal cords of primates consistent with some of those seen in early motor neuron disease; however, supplementation with L-serine protected against some of those changes. We examined the impact of BMAA on AA concentrations in human neuroblastoma cells in vitro. Cells were treated with 1000 µM BMAA and intracellular free AA concentrations in treated and control cells were compared at six time-points over a 48 h culture period. BMAA had a profound effect on intracellular AA levels at specific time points but in most cases, AA homeostasis was re-established in the cell. The most heavily impacted amino acid was serine which was depleted in BMAA-treated cells from 9 h onwards. Correction of serine depletion could be a factor in the observation that supplementation with L-serine protects against BMAA toxicity in vitro and in vivo. AAs that could potentially be involved in protection against BMAA-induced oxidation such as histidine, tyrosine, and phenylalanine were depleted in cells at later time points.
Collapse
Affiliation(s)
- Jake P. Violi
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Lisa Pu
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Sercan Pravadali-Cekic
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - David P. Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia (D.P.B.)
| | - Connor R. Phillips
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| | - Kenneth J. Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia; (J.P.V.); (L.P.); (C.R.P.)
| |
Collapse
|
6
|
Ni J, Dai W, Liu C, Ling Y, Mou H. A pan-cancer analysis of SLC1A5 in human cancers. Heliyon 2023; 9:e17598. [PMID: 37408893 PMCID: PMC10319225 DOI: 10.1016/j.heliyon.2023.e17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Background The alanine-serine-cysteine transporter 2, ASCT2 (solute carrier family 1 member 5, SLC1A5), is a major transporter of the amino acid, glutamine. Although SLC1A5 has been reported to be associated with some types of cancer, less pan-cancer analysis, which would give a comprehensive understanding of SLC1A5 across human cancers, has been carried out. Methods We used the TCGA and GEO databases to investigate the oncogenic role of SLC1A5. We examined gene and protein expression, survival, genetic mutations, protein phosphorylation, immunocyte infiltration and the related genes correlated pathways. In HCT116 cells, SLC1A5 was silenced by siRNAs and the mRNA and protein was checked by Q-PCR and WB, respectively and the cellular function was assessed by CCK8, cell cycle and apoptosis. Results We found that SLC1A5 was over-expressed in multiple types of cancer and that elevated expression of SLC1A5 was associated with poor survival in many cancers. The missense mutation of R330 H/C was associated with poor survival, especially in uterine carcinosarcoma. Furthermore, we found enhanced phosphorylation of S503 in uterine corpus endometrial carcinoma and lung adenocarcinoma. In addition, elevated SLC1A5 expression was associated with immune cell infiltration in many cancers. KEGG and GO analysis showed that SLC1A5 and its related genes were involved in central carbon metabolism in cancer, due to their amino acid transport activity. The cellular function indicated that SLC1A5 may influence the cell proliferation by affecting DNA synthesis. Conclusions Our findings highlighted the important role of SLC1A5 in tumorigenesis and provided insights into potential cancer treatment strategies.
Collapse
Affiliation(s)
- Juan Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Wumin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Chun Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yutian Ling
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Hanzhou Mou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
7
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
The Rheb GTPase promotes pheromone blindness via a TORC1-independent pathway in the phytopathogenic fungus Ustilago maydis. PLoS Genet 2022; 18:e1010483. [DOI: 10.1371/journal.pgen.1010483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/28/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.
Collapse
|
9
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
10
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
11
|
Zhang W, Yang Y, Xiang Z, Cheng J, Yu Z, Wang W, Hu L, Ma F, Deng Y, Jin Z, Hu X. MRTF-A-mediated protection against amyloid-β-induced neuronal injury correlates with restoring autophagy via miR-1273g-3p/mTOR axis in Alzheimer models. Aging (Albany NY) 2022; 14:4305-4325. [PMID: 35604830 PMCID: PMC9186769 DOI: 10.18632/aging.203883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Myocardia-Related Transcription Factors-A (MRTF-A), which is enriched in the hippocampus and cerebral cortex, has been shown to have a protective function against ischemia hypoxia-induced neuronal apoptosis. However, the function of MRTF-A on β-amyloid peptide (Aβ)-induced neurotoxicity and autophagy dysfunction in Alzheimer's disease is still unclear. This study shows that the expression of MRTF-A in the hippocampus of Tg2576 transgenic mice is reduced, and the overexpression of MRTF-A mediated by lentiviral vectors carrying MRTF-A significantly reduces the accumulation of hippocampal β-amyloid peptide and reduces cognition defect. Overexpression of MRTF-A inhibits neuronal apoptosis, increases the protein levels of microtubule-associated protein 1 light chain 3-II (MAP1LC3/LC3-II) and Beclin1, reduces the accumulation of SQSTM1/p62 protein, and promotes autophagosomes-Lysosomal fusion in vivo and in vitro. Microarray analysis and bioinformatics analysis show that MRTF-A reverses Aβ-induced autophagy impairment by up-regulating miR-1273g-3p level leading to negative regulation of the mammalian target of rapamycin (mTOR), which is confirmed in Aβ1-42-treated SH-SY5Y cells. Further, overexpression of MRTF-A reduces Aβ1-42-induced neuronal apoptosis. And the effect was abolished by miR-1273g-3p inhibitor or MHY1485 (mTOR agonist), indicating that the protection of MRTF-A on neuronal damage is through targeting miR-1273g-3p/mTOR axis. Targeting this signaling may be a promising approach to protect against Aβ-induced neuronal injury.
Collapse
Affiliation(s)
- Wei Zhang
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Yuewang Yang
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zifei Xiang
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinping Cheng
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wen Wang
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Ling Hu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Fuyun Ma
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Youping Deng
- Bioinformatics Core Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Zhigang Jin
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Tang L, Chu T, Shang J, Yang R, Song C, Bao D, Tan Q, Jian H. Oxidative Stress and Autophagy Are Important Processes in Post Ripeness and Brown Film Formation in Mycelium of Lentinula edodes. Front Microbiol 2022; 13:811673. [PMID: 35283832 PMCID: PMC8908433 DOI: 10.3389/fmicb.2022.811673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, the shiitake mushroom, is one of the most important mushrooms in the global mushroom industry. Although mycelium post ripeness and brown film (BF) formation are crucial for fruiting body initiation, the underlying molecular mechanisms of BF formation are largely unknown. In this study, proteomic quantification (relative and absolute) and metabolomic profiling of L. edodes were performed using isobaric tags and gas chromatography-mass spectroscopy, respectively. A total of 2,474 proteins were identified, which included 239 differentially expressed proteins. Notably, several proteins associated with autophagy were upregulated, including RPD3, TOR1, VAC8, VPS1, and VPS27. Transmission electron microscopy also indicated that autophagy occurred in post ripeness and BF formation. In time-dependent analysis of the metabolome, metabolites associated with oxidative stress and autophagy changed significantly, including mannitol, trehalose, myo-inositol, glucose, leucine, valine, glutamine, and 4-aminobutyric acid. Thus, oxidative stress and autophagy were important processes in post ripeness and BF formation in L. edodes, and new insights were gained into molecular mechanisms at proteome and metabolome levels.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ting Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China.,School of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Junjun Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, Milosevic M, Bohuslavova R, Prochazka J, Khan S, Novotna E, Sindelka R, Machan R, Dewerchin M, Vlcak E, Kalucka J, Stemberkova Hubackova S, Benda A, Goveia J, Mracek T, Barinka C, Carmeliet P, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 2022; 18:2409-2426. [PMID: 35258392 PMCID: PMC9542673 DOI: 10.1080/15548627.2022.2038898] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
Collapse
Affiliation(s)
- Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Blecha
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavel Abaffy
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alena Pecinova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Shawez Khan
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eliska Novotna
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Radek Sindelka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radek Machan
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mieke Dewerchin
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Erik Vlcak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Sona Stemberkova Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ales Benda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jermaine Goveia
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Peter Carmeliet
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
14
|
Fernandez MR, Schaub FX, Yang C, Li W, Yun S, Schaub SK, Dorsey FC, Liu M, Steeves MA, Ballabio A, Tzankov A, Chen Z, Koomen JM, Berglund AE, Cleveland JL. Disrupting the MYC-TFEB Circuit Impairs Amino Acid Homeostasis and Provokes Metabolic Anergy. Cancer Res 2022; 82:1234-1250. [PMID: 35149590 DOI: 10.1158/0008-5472.can-21-1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/07/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
MYC family oncoproteins are regulators of metabolic reprogramming that sustains cancer cell anabolism. Normal cells adapt to nutrient-limiting conditions by activating autophagy, which is required for amino acid (AA) homeostasis. Here we report that the autophagy pathway is suppressed by Myc in normal B cells, in premalignant and neoplastic B cells of Eμ-Myc transgenic mice, and in human MYC-driven Burkitt lymphoma. Myc suppresses autophagy by antagonizing the expression and function of transcription factor EB (TFEB), a master regulator of autophagy. Mechanisms that sustained AA pools in MYC-expressing B cells include coordinated induction of the proteasome and increases in AA transport. Reactivation of the autophagy-lysosomal pathway by TFEB disabled the malignant state by disrupting mitochondrial functions, proteasome activity, amino acid transport, and amino acid and nucleotide metabolism, leading to metabolic anergy, growth arrest and apoptosis. This phenotype provides therapeutic opportunities to disable MYC-driven malignancies, including AA restriction and treatment with proteasome inhibitors.
Collapse
Affiliation(s)
- Mario R Fernandez
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | - Franz X Schaub
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | - Chunying Yang
- Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute
| | - Weimin Li
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | | | | | | | - Min Liu
- Proteomics Core, Moffitt Cancer Center
| | | | | | | | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| |
Collapse
|
15
|
Chen Y, Wu X, Zhang J, Pan G, Wang X, Guo X, Wang J, Cui X, Gao H, Cheng M, Yang J, Zhang C, Jiang F. Amino acid starvation-induced LDLR trafficking accelerates lipoprotein endocytosis and LDL clearance. EMBO Rep 2022; 23:e53373. [PMID: 34994492 PMCID: PMC8892268 DOI: 10.15252/embr.202153373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.
Collapse
Affiliation(s)
- Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models. Crit Care 2022; 26:7. [PMID: 35012618 PMCID: PMC8751086 DOI: 10.1186/s13054-021-03870-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Proteins are an essential part of medical nutrition therapy in critically ill patients. Guidelines almost universally recommend a high protein intake without robust evidence supporting its use. Methods Using a large international database, we modelled associations between the hazard rate of in-hospital death and live hospital discharge (competing risks) and three categories of protein intake (low: < 0.8 g/kg per day, standard: 0.8–1.2 g/kg per day, high: > 1.2 g/kg per day) during the first 11 days after ICU admission (acute phase). Time-varying cause-specific hazard ratios (HR) were calculated from piece-wise exponential additive mixed models. We used the estimated model to compare five different hypothetical protein diets (an exclusively low protein diet, a standard protein diet administered early (day 1 to 4) or late (day 5 to 11) after ICU admission, and an early or late high protein diet). Results Of 21,100 critically ill patients in the database, 16,489 fulfilled inclusion criteria for the analysis. By day 60, 11,360 (68.9%) patients had been discharged from hospital, 4,192 patients (25.4%) had died in hospital, and 937 patients (5.7%) were still hospitalized. Median daily low protein intake was 0.49 g/kg [IQR 0.27–0.66], standard intake 0.99 g/kg [IQR 0.89– 1.09], and high intake 1.41 g/kg [IQR 1.29–1.60]. In comparison with an exclusively low protein diet, a late standard protein diet was associated with a lower hazard of in-hospital death: minimum 0.75 (95% CI 0.64, 0.87), and a higher hazard of live hospital discharge: maximum HR 1.98 (95% CI 1.72, 2.28). Results on hospital discharge, however, were qualitatively changed by a sensitivity analysis. There was no evidence that an early standard or a high protein intake during the acute phase was associated with a further improvement of outcome.
Conclusions Provision of a standard protein intake during the late acute phase may improve outcome compared to an exclusively low protein diet. In unselected critically ill patients, clinical outcome may not be improved by a high protein intake during the acute phase.
Study registration ID number ISRCTN17829198 Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03870-5.
Collapse
|
17
|
Yang Y, Qian J, Li B, Lu M, Le G, Xie Y. Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods 2021; 10:foods10102439. [PMID: 34681487 PMCID: PMC8535630 DOI: 10.3390/foods10102439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Methionine restriction (MR) has been reported to have many beneficial health effects, including stress resistance enhancement and lifespan extension. However, the effects of MR on the splenic metabolic dysfunction induced by obesity in mice remain unknown. This study aimed to investigate the scientific problem and clarify its possible mechanisms. C57BL/6J mice in the control group were fed a control diet (0.86% methionine, 4.2% fat) for 34 weeks, and others were fed a high-fat diet (0.86% methionine, 24% fat) for 10 weeks to establish diet-induced obese (DIO) mouse models. Then, the obtained DIO mice were randomly divided into two groups: the DIO group (DIO diet), the DIO + MR group (0.17% methionine, 24% fat) for 24 weeks. Our results indicated that MR decreased spleen weight, and spleen and plasma lipid profiles, promoted lipid catabolism and fatty acid oxidation, glycolysis and tricarboxylic acid cycle metabolism, and improved mitochondrial function and ATP generation in the spleen. Moreover, MR normalized the splenic redox state and inflammation-related metabolite levels, and increased plasma levels of immunoglobulins. Furthermore, MR increased percent lean mass and splenic crude protein levels, activated the autophagy pathway and elevated nucleotide synthesis to maintain protein synthesis in the spleen. These findings indicate that MR can ameliorate metabolic dysfunction by reducing lipid accumulation, oxidative stress, and inflammation in the spleen, and the mechanism may be the activation of autophagy pathway.
Collapse
Affiliation(s)
- Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Jing Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Manman Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
- Correspondence: ; Tel.: +86-371-6775-8022
| |
Collapse
|
18
|
Shiozaki Y, Miyazaki-Anzai S, Keenan AL, Miyazaki M. MEF2D-NR4A1-FAM134B2-mediated reticulophagy contributes to amino acid homeostasis. Autophagy 2021; 18:1049-1061. [PMID: 34517786 DOI: 10.1080/15548627.2021.1968228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We recently identified FAM134B2, which is an N-terminal truncated reticulophagy receptor highly induced by starvation such as fasting of mice and treatment of mammalian cells with a starvation medium that does not contain amino acids, glucose and growth factors. However, which starvation signal mediates the induction of FAM134B2 is still obscure. In this study, we found that amino acid deficiency (AAD) could mimic the starvation condition to induce FAM134B2 expression. Unexpectedly, EIF2AK4/GCN2-mediated integrated signal response (ISR) and MTOR (mechanistic target of rapamycin kinase) signals, which constitute two major signaling pathways that respond to AAD, did not contribute to AAD-induced FAM134B2 induction. mRNA-seq and siRNA screenings identified two ISR-independent transcription factors, MEF2D (myocyte enhancer factor 2D) and NR4A1 (nuclear receptor subfamily 4 group A member 1), involved in AAD-induced FAM134B2 expression. AAD induces MEF2D, resulting in the induction of NR4A1, which in turn induces FAM134B2-mediated reticulophagy to maintain intracellular amino acid levels. In conclusion, the MEF2D-NR4A1-FAM134B2 cascade is a critical signal in amino acid homeostasis.
Collapse
Affiliation(s)
- Yuji Shiozaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey L Keenan
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Xie C, Liu S, Wu B, Zhao Y, Chen B, Guo J, Qiu S, Cao YM. miR-19 Promotes Cell Proliferation, Invasion, Migration, and EMT by Inhibiting SPRED2-mediated Autophagy in Osteosarcoma Cells. Cell Transplant 2021; 29:963689720962460. [PMID: 33023313 PMCID: PMC7784565 DOI: 10.1177/0963689720962460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial-mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengyao Liu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyi Wu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binwei Chen
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Guo
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ShouHong Qiu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Ming Cao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
21
|
García-Casas P, Alvarez-Illera P, Fonteriz RI, Montero M, Alvarez J. Mechanism of the lifespan extension induced by submaximal SERCA inhibition in C. elegans. Mech Ageing Dev 2021; 196:111474. [PMID: 33766744 DOI: 10.1016/j.mad.2021.111474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
We have reported recently that submaximal inhibition of the Sarco Endoplasmic Reticulum Ca2+ ATPase (SERCA) produces an increase in the lifespan of C. elegans worms. We have explored here the mechanism of this increased survival by studying the effect of SERCA inhibition in several mutants of signaling pathways related to longevity. Our data show that the mechanism of the effect is unrelated with the insulin signaling pathway or the sirtuin activity, because SERCA inhibitors increased lifespan similarly in mutants of these pathways. However, the effect required functional mitochondria and both the AMP kinase and TOR pathways, as the SERCA inhibitors were ineffective in the corresponding mutants. The same effects were obtained after reducing SERCA expression with submaximal RNAi treatment. The SERCA inhibitors did not induce ER-stress at the concentrations used, and their effect was not modified by inactivation of the OP50 bacterial food. Altogether, our data suggest that the effect may be due to a reduced ER-mitochondria Ca2+ transfer acting via AMPK activation and mTOR inhibition to promote survival.
Collapse
Affiliation(s)
- Paloma García-Casas
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Rosalba I Fonteriz
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Mayte Montero
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain
| | - Javier Alvarez
- Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005, Valladolid, Spain.
| |
Collapse
|
22
|
Sugama J, Katayama Y, Moritoh Y, Watanabe M. Enteropeptidase inhibition improves kidney function in a rat model of diabetic kidney disease. Diabetes Obes Metab 2021; 23:86-96. [PMID: 32893449 PMCID: PMC7756647 DOI: 10.1111/dom.14190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
AIM To examine the effects of an enteropeptidase inhibitor, SCO-792, on kidney function in rats. MATERIALS AND METHODS The pharmacological effects of SCO-792 were evaluated in Wistar fatty (WF) rats, a rat model of diabetic kidney disease (DKD). RESULTS Oral administration of SCO-792 increased faecal protein content and improved glycaemic control in WF rats. SCO-792 elicited a rapid decrease in urine albumin-to-creatinine ratio (UACR). SCO-792 also normalized glomerular hyperfiltration and decreased fibrosis, inflammation and tubular injury markers in the kidneys. However, pioglitazone-induced glycaemic improvement had no effect on kidney variables. Dietary supplementation of amino acids (AAs), which bypass the action of enteropeptidase inhibition, mitigated the effect of SCO-792 on UACR reduction, suggesting a pivotal role for enteropeptidase. Furthermore, autophagy activity in the glomerulus, which is impaired in DKD, was elevated in SCO-792-treated rats. Finally, a therapeutically additive effect on UACR reduction was observed with a combination of SCO-792 with irbesartan, an angiotensin II receptor blocker. CONCLUSIONS This study is the first to demonstrate that enteropeptidase inhibition is effective in improving disease conditions in DKD. SCO-792-induced therapeutic efficacy is likely to be independent of glycaemic control and mediated by the regulation of AAs and autophagy. Taken together with a combination effect of irbesartan, SCO-792 may be a novel therapeutic option for patients with DKD.
Collapse
|
23
|
Xu C, Markova M, Seebeck N, Loft A, Hornemann S, Gantert T, Kabisch S, Herz K, Loske J, Ost M, Coleman V, Klauschen F, Rosenthal A, Lange V, Machann J, Klaus S, Grune T, Herzig S, Pivovarova-Ramich O, Pfeiffer AFH. High-protein diet more effectively reduces hepatic fat than low-protein diet despite lower autophagy and FGF21 levels. Liver Int 2020; 40:2982-2997. [PMID: 32652799 DOI: 10.1111/liv.14596] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent and nutrition intervention remains the most important therapeutic approach for NAFLD. Our aim was to investigate whether low- (LP) or high-protein (HP) diets are more effective in reducing liver fat and reversing NAFLD and which mechanisms are involved. METHODS 19 participants with morbid obesity undergoing bariatric surgery were randomized into two hypocaloric (1500-1600 kcal/day) diet groups, a low protein (10E% protein) and a high protein (30E% protein), for three weeks prior to surgery. Intrahepatic lipid levels (IHL) and serum fibroblast growth factor 21 (FGF21) were measured before and after the dietary intervention. Autophagy flux, histology, mitochondrial activity and gene expression analyses were performed in liver samples collected during surgery. RESULTS IHL levels decreased by 42.6% in the HP group, but were not significantly changed in the LP group despite similar weight loss. Hepatic autophagy flux and serum FGF21 increased by 66.7% and 42.2%, respectively, after 3 weeks in the LP group only. Expression levels of fat uptake and lipid biosynthesis genes were lower in the HP group compared with those in the LP group. RNA-seq analysis revealed lower activity of inflammatory pathways upon HP diet. Hepatic mitochondrial activity and expression of β-oxidation genes did not increase in the HP group. CONCLUSIONS HP diet more effectively reduces hepatic fat than LP diet despite of lower autophagy and FGF21. Our data suggest that liver fat reduction upon HP diets result primarily from suppression of fat uptake and lipid biosynthesis.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Anne Loft
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department for Internal Medicine I and Clinical Chemistry, Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Thomas Gantert
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen Herz
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Verena Coleman
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, Berlin, Germany.,Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, The University of Tübingen, Tübingen, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Klaus
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany.,Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department for Internal Medicine I and Clinical Chemistry, Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Olga Pivovarova-Ramich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, Sun Q, Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther 2020; 5:262. [PMID: 33154350 PMCID: PMC7644763 DOI: 10.1038/s41392-020-00342-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Qi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shengnan Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaogang Zhao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Qifeng Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guimei Lin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Nakai N, Kitai S, Iida N, Inoue S, Higashida K. Autophagy under glucose starvation enhances protein translation initiation in response to re-addition of glucose in C2C12 myotubes. FEBS Open Bio 2020; 10:2149-2156. [PMID: 32882752 PMCID: PMC7530399 DOI: 10.1002/2211-5463.12970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Proteolysis is known to play a crucial role in maintaining skeletal muscle mass and function. Autophagy is a conserved intracellular process for the bulk degradation of proteins in lysosomes. Although nutrient starvation is known to induce autophagy, the effect of nutrient repletion following starvation on the mTOR pathway‐mediated protein translation remains unclear. In the present study, we examined the effect of glucose starvation on the initiation of protein translation in response to glucose re‐addition in C2C12 myotubes. Glucose starvation decreased the phosphorylation of p70 S6 kinase (p70S6K), a bonafide marker for protein translation initiation. Following re‐addition of glucose, phosphorylation of p70S6K markedly increased only in glucose‐starved cells. Inhibiting autophagy using pharmacological inhibitors diminished the effect of glucose re‐addition on the phosphorylation of p70S6K, whereas inhibition of the ubiquitin‐proteasome system did not exert any effect. In conclusion, autophagy under glucose starvation partially accounts for the activation of translation initiation by re‐addition of glucose.
Collapse
Affiliation(s)
- Naoya Nakai
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Saki Kitai
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Noriko Iida
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Sachika Inoue
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Kazuhiko Higashida
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
26
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Suzuki T, Hayashi K, Lamothe S, Hao Y, Kurata H, Sugimoto H, Chik C, Tateno T. L-type amino acid transporter 1, LAT1, in growth hormone-producing pituitary tumor cells. Mol Cell Endocrinol 2020; 515:110868. [PMID: 32579901 DOI: 10.1016/j.mce.2020.110868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
Pituitary tumors (PTs) can cause significant mortality and morbidity due to limited therapeutic options. L-type amino acid transporters (LATs), in particular, the LAT1 isoform, is expressed in a variety of tumor cells. Pharmacological inhibition or genetic ablation of LAT1 can suppress leucine transport into cancer cells, resulting in suppression of cancer cell growth. However, roles of LAT1 in PTs have not been elucidated. Therefore, we assessed LAT1 expression in PTs and evaluated a LAT1-specific inhibitor, JPH203, on rat somatomammotroph tumor cells, GH4 cells. GH4 cells dominantly express LAT1 mRNA rather than other LAT isoforms, whereas LAT2 transcripts were most abundant in normal rat pituitary tissues. JPH203 inhibited leucine uptake and cell growth in GH4 cells in a concentration-dependent manner, and appeared to be independent of the mechanistic target, the rapamycin pathway. Although JPH203 did not induce apoptosis, it suppressed growth hormone production in GH4 cells. Also, genetic downregulation of LAT1 showed similar effects on cell growth and hormone production. These results indicated that restriction of LAT1 substrates by JPH203 modulated both cell growth and hormone production. In conclusion, LAT1 may be a new therapeutic target for PTs because its inhibition leads to suppression of cell growth as well as hormone production. JPH203 may represent a promising drug for clinical use in patients with PTs, with the potential of hormonal control and tumor suppression.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Shawn Lamothe
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yubin Hao
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Harley Kurata
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Koepke L, Winter B, Grenzner A, Regensburger K, Engelhart S, van der Merwe JA, Krebs S, Blum H, Kirchhoff F, Sparrer KMJ. An improved method for high-throughput quantification of autophagy in mammalian cells. Sci Rep 2020; 10:12241. [PMID: 32699244 PMCID: PMC7376206 DOI: 10.1038/s41598-020-68607-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.
Collapse
Affiliation(s)
- Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Winter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Susanne Engelhart
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Stefan Krebs
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center and Laboratory for Functional Genome Analysis, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | |
Collapse
|
28
|
Himoto T, Miyatake K, Maeba T, Masaki T. Verification of the Nutritional and Dietary Factors Associated with Skeletal Muscle Index in Japanese Patients with Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2020; 2020:3576974. [PMID: 32695733 PMCID: PMC7368962 DOI: 10.1155/2020/3576974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
We sought to identify the frequencies of presarcopenia, sarcopenia, and sarcopenic obesity in patients with nonalcoholic fatty liver disease (NAFLD) and to cross-sectionally determine the nutritional and dietary factors associated with loss of skeletal muscle mass in such patients. Dietary and body component changes produced by a diet intervention were longitudinally investigated. Forty-six NAFLD patients (24 males and 22 females) were enrolled. A second diet treatment was performed at 6 months after entry in 19 of the enrolled patients (6 males and 13 females). Body compositions and dietary nutrients at six months later were compared with those at entry. Three of the 24 (13%) males and four of the 22 (18%) females fulfilled the criteria for presarcopenia and one (5%) female NAFLD patient was in the criteria for sarcopenia at baseline. None of the patients were in the criteria for sarcopenic obesity. The factors associated with skeletal muscle index in the males were body mass index (BMI), insulin-like growth factor-1, total energy intake, and lipid intake, but only BMI and bone mineral density in females at baseline. The diet intervention decreased the skeletal muscle mass in the 6 males by decreasing the total energy intake via lower protein and lipid intakes and improved their liver dysfunction. In the 13 females, a decrease in total energy intake via lower carbohydrate and lipid intake did not change the skeletal muscle mass. These results suggest that loss of skeletal muscle mass is frequently observed in nonobese NAFLD patients and that the frequency of sarcopenic obesity seems to be rare in NAFLD patients. The nutritional and dietary factors that regulate loss of skeletal muscle mass were distinct between our male and female NAFLD patients. Thus, the skeletal muscle mass of such patients as well as their body weight and liver function should be monitored during diet interventions.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
| | - Keiko Miyatake
- Department of Nutrition Management, Ritsurin Hospital, 3-5-9, Ritsurin-Cho, Takamatsu, Kagawa 760-0073, Japan
| | - Takashi Maeba
- Department of Surgery, Ritsurin Hospital, 3-5-9, Ritsurin-Cho, Takamatsu, Kagawa 760-0073, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, 1750-1, Ikenobe, Miki-Cho, Kagawa 761-0793, Japan
| |
Collapse
|
29
|
Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071833. [PMID: 32650419 PMCID: PMC7408918 DOI: 10.3390/cancers12071833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396820; Fax: +49-3641-99396822
| |
Collapse
|
30
|
Sanchez-Garrido J, Shenoy AR. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 2020; 17:1571-1591. [PMID: 32627660 PMCID: PMC8354595 DOI: 10.1080/15548627.2020.1783119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin kinase), which is activated by amino acids and growth factors, and AMP-activated protein kinase (AMPK), which is activated by low levels of glucose or ATP. These kinases have wide-ranging activities that can be co-opted by immune cells upon exposure to danger signals, cytokines or pathogens. Here, we discuss recent insight into the regulation and repurposing of nutrient-sensing responses by the innate immune system during infection. Moreover, we examine how natural mutations and pathogen-mediated interventions can alter the balance between anabolic and autophagic pathways leading to a breakdown in tissue homeostasis and/or host defense.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; ATG: autophagy related; BECN1: beclin 1; CGAS: cyclic GMP-AMP synthase; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; FFAR: free fatty acid receptor; GABARAP: GABA type A receptor-associated protein; IFN: interferon; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NLR: NOD (nucleotide-binding oligomerization domain) and leucine-rich repeat containing proteins; PI3K, phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PtdIns3K: phosphatidylinositol 3-kinase; RALB: RAS like proto-oncogene B; RHEB: Ras homolog, MTORC1 binding; RIPK1: receptor interacting serine/threonine kinase 1; RRAG: Ras related GTP binding; SQSTM1/p62: sequestosome 1; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; STK11/LKB1: serine/threonine kinase 11; TBK1: TANK binding kinase 1; TLR: toll like receptor; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; TRIM: tripartite motif protein; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: vacuolar-type H+-proton-translocating ATPase.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Satellite Group Leader, The Francis Crick Institute, London, UK
| |
Collapse
|
31
|
A Newly Identified LncRNA LncIMF4 Controls Adipogenesis of Porcine Intramuscular Preadipocyte through Attenuating Autophagy to Inhibit Lipolysis. Animals (Basel) 2020; 10:ani10060926. [PMID: 32466602 PMCID: PMC7341528 DOI: 10.3390/ani10060926] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Compared with lean-type pigs, the intramuscular fat content of fat-type Bamei pigs was greater. LncRNA, as a vital regular, plays an important role in numerous biological processes. However, there were a few studies on the role of lncRNAs during IMF development in pigs. Based on these, lncRNA sequencing in intramuscular adipocytes was performed to explore the effects of lncRNA on intramuscular fat deposition. RNA sequencing analysis of intramuscular adipocyte from Bamei pig (fat-type) and Yorkshire pig (lean-type) indicated that, a novel lncRNA, lncIMF4, was associated with intramuscular adipogenesis. In addition, further researches showed that knockdown lncIMF4 promoted proliferation and adipogenic differentiation of porcine intramuscular adipocytes, whereas inhibited autophagy. Moreover, knockdown lncIMF4 facilitated intramuscular adipogenesis through attenuating autophagy to repress the lipolysis. Our findings will contribute to better understand the mechanism of lncRNA controlling adipogenesis in pig. Furthermore, it also provides a new perspective to study the role of lncRNA in regulating porcine intramuscular adipogenesis for promoting pork quality. Abstract Intramuscular fat (IMF) is implicated in juiciness, tenderness, and flavor of pork. Meat quality of Chinese fat-type pig is much better than that of lean-type pig because of its higher IMF content. LncRNA is a vital regulator that contributes to adipogenesis. However, it is unknown about the regulation of lncRNA on IMF content. Here, by RNA sequence analysis of intramuscular adipocyte from Bamei pig (fat-type) and Yorkshire pig (lean-type), we found that a novel lncRNA, lncIMF4, was associated with adipogenesis. LncIMF4, abundant in adipose, differently expressed along with intramuscular preadipocyte proliferation and differentiation. Meanwhile, it is located both in cytoplasm and nucleus. Besides, lncIMF4 knockdown promoted proliferation and differentiation of porcine intramuscular preadipocytes, whereas inhibited autophagy. Moreover, lncIMF4 knockdown facilitated intramuscular adipogenesis through attenuating autophagy to repress the lipolysis. Our findings will contribute to understand better the mechanism of lncRNA controlling intramuscular adipogenesis for promoting pork quality.
Collapse
|
32
|
Loos B, Klionsky DJ, Du Toit A, Hofmeyr JHS. On the relevance of precision autophagy flux control in vivo - Points of departure for clinical translation. Autophagy 2020; 16:750-762. [PMID: 31679454 PMCID: PMC7138200 DOI: 10.1080/15548627.2019.1687211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy (which we will call autophagy hereafter) is a critical intracellular bulk degradation system that is active at basal rates in eukaryotic cells. This process is embedded in the homeostasis of nutrient availability and cellular metabolic demands, degrading primarily long-lived proteins and specific organelles.. Autophagy is perturbed in many pathologies, and its manipulation to enhance or inhibit this pathway therapeutically has received considerable attention. Although better probes are being developed for a more precise readout of autophagic activity in vitro and increasingly in vivo, many questions remain. These center in particular around the accurate measurement of autophagic flux and its translation from the in vitro to the in vivo environment as well as its clinical application. In this review, we highlight key aspects that appear to contribute to stumbling blocks on the road toward clinical translation and discuss points of departure for reaching some of the desired goals. We discuss techniques that are well aligned with achieving desirable spatiotemporal resolution to gather data on autophagic flux in a multi-scale fashion, to better apply the existing tools that are based on single-cell analysis and to use them in the living organism. We assess how current techniques may be used for the establishment of autophagic flux standards or reference points and consider strategies for a conceptual approach on titrating autophagy inducers based on their effect on autophagic flux . Finally, we discuss potential solutions for inherent controls for autophagy analysis, so as to better discern systemic and tissue-specific autophagic flux in future clinical applications.Abbreviations: GFP: Green fluorescent protein; J: Flux; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; nA: Number of autophagosomes; TEM: Transmission electron microscopy; τ: Transition time.
Collapse
Affiliation(s)
- Ben Loos
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Andre Du Toit
- Department of Biochemistry, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Jan-Hendrik S. Hofmeyr
- Department of Biochemistry, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
33
|
Carroll B. Spatial regulation of mTORC1 signalling: Beyond the Rag GTPases. Semin Cell Dev Biol 2020; 107:103-111. [PMID: 32122730 DOI: 10.1016/j.semcdb.2020.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
The mechanistic (or mammalian) Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism. By integrating mitogenic signals, mTORC1-dependent phosphorylation of substrates dictates the balance between anabolic, pro-growth and catabolic, recycling processes in the cell. The discovery that amino acids activate mTORC1 by promoting its translocation to the lysosome was a fundamental advance in the understanding of mTORC1 signalling. It has since become clear that the lysosome-cytoplasm shuttling of mTORC1 represents just one layer of spatial control of this signalling pathway. This review will focus on exploring the subcellular localisation of mTORC1 and its regulators to multiple sites within the cell. We will discuss how these spatially distinct regions such as endoplasmic reticulum, plasma membrane and the endosomal pathway co-operate to transduce nutrient availability to mTORC1, allowing for tight control of cell growth.
Collapse
Affiliation(s)
- Bernadette Carroll
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8, United Kingdom.
| |
Collapse
|
34
|
Pinto AP, Vieira TS, Marafon BB, Batitucci G, Cabrera EMB, da Rocha AL, Kohama EB, Rodrigues KCC, de Moura LP, Pauli JR, Cintra DE, Ropelle ER, de Freitas EC, da Silva ASR. The Combination of Fasting, Acute Resistance Exercise, and Protein Ingestion Led to Different Responses of Autophagy Markers in Gastrocnemius and Liver Samples. Nutrients 2020; 12:nu12030641. [PMID: 32121154 PMCID: PMC7146592 DOI: 10.3390/nu12030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.
Collapse
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Tales S. Vieira
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
| | - Gabriela Batitucci
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
| | - Elisa M. B. Cabrera
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44100, Mexico;
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Eike B. Kohama
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Kellen C. C. Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Ellen C. de Freitas
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
- Correspondence: ; Tel.: +55-16-33150522; Fax: +55-16-33150551
| |
Collapse
|
35
|
Lee JJ, Ishihara K, Notomi S, Efstathiou NE, Ueta T, Maidana D, Chen X, Iesato Y, Caligiana A, Vavvas DG. Lysosome-associated membrane protein-2 deficiency increases the risk of reactive oxygen species-induced ferroptosis in retinal pigment epithelial cells. Biochem Biophys Res Commun 2020; 521:414-419. [PMID: 31672277 PMCID: PMC6935401 DOI: 10.1016/j.bbrc.2019.10.138] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Lysosome-associated membrane protein-2 (LAMP2), is a highly glycosylated lysosomal membrane protein involved in chaperone mediated autophagy. Mutations of LAMP2 cause the classic triad of myopathy, cardiomyopathy and encephalopathy of Danon disease (DD). Additionally, retinopathy has also been observed in young DD patients, leading to vision loss. Emerging evidence show LAMP2-deficiency to be involved in oxidative stress (ROS) but the mechanism remains obscure. In the present study, we found that tert-butyl hydroperoxide or antimycin A induced more cell death in LAMP2 knockdown (LAMP2-KD) than in control ARPE-19 cells. Mechanistically, LAMP2-KD reduced the concentration of cytosolic cysteine, resulting in low glutathione (GSH), inferior antioxidant capability and mitochondrial lipid peroxidation. ROS induced RPE cell death through ferroptosis. Inhibition of glutathione peroxidase 4 (GPx4) increased lethality in LAMP2-KD cells compared to controls. Cysteine and glutamine supplementation restored GSH and prevented ROS-induced cell death of LAMP2-KD RPE cells.
Collapse
Affiliation(s)
- Jong-Jer Lee
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Kenji Ishihara
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shoji Notomi
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nikolaos E Efstathiou
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Takashi Ueta
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Daniel Maidana
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Xiaohong Chen
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Yasuhiro Iesato
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Alberto Caligiana
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Demetrios G Vavvas
- Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Bunchorntavakul C, Reddy KR. Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther 2020; 51:64-77. [PMID: 31701570 DOI: 10.1111/apt.15571] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Malnutrition/sarcopenia and frailty are common in patients with cirrhosis and are associated with poor outcomes. AIM To provide an overview of data on the importance, assessment and management of malnutrition/sarcopenia and frailty in cirrhosis. METHODS A literature search was conducted in PubMed and other sources, using the search terms "sarcopenia," "muscle," "malnutrition," "cirrhosis," "liver" and "frailty" from inception to April 2019, to identify the relevant studies and international guidelines. RESULTS The prevalence of malnutrition/sarcopenia in cirrhosis is 23%-60%. Frailty generally overlaps with malnutrition/sarcopenia in cirrhosis, leading to increased morbidity and mortality. Rapid nutritional screening assessment should be performed in all patients with cirrhosis, and more specific tests for sarcopenia should be performed in those at high risk. The pathogenesis of malnutrition/sarcopenia in cirrhosis is complex/multifactorial and not just reduction in protein/calorie intake. Hyperammonemia appears to be the main driver of sarcopenia in cirrhosis through several molecular signalling pathways. Nutritional management in malnourished patients with cirrhosis should be undertaken by a multidisciplinary team to achieve adequate protein/calorie intake. While the role of branched-chained amino acids remains somewhat contentious in achieving a global benefit of decreasing mortality- and liver-related events, they, and vitamin supplements, are recommended for those with advanced liver disease. Novel strategies to reverse sarcopenia such as hormone supplementation, long-term ammonia-lowering agents and myostatin antagonists, are currently under investigation. CONCLUSIONS Malnutrition/sarcopenia and frailty are unique, inter-related and multi-dimensional problems in cirrhosis which require special attention, prompt assessment and appropriate management as they significantly impact morbidity and mortality.
Collapse
Affiliation(s)
- Chalermrat Bunchorntavakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients 2019; 11:nu11112623. [PMID: 31683948 PMCID: PMC6893825 DOI: 10.3390/nu11112623] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Here an overview of the special issue "Amino acid nutrition and metabolism in health and disease" is given. In addition to several comprehensive and timely reviews, this issue had some original research contributions on fundamental research in animal models as well as human clinical trials exploring how the critical nutrients amino acids affect various traits.
Collapse
|
38
|
Kucheryavenko O, Nelson G, von Zglinicki T, Korolchuk VI, Carroll B. The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology 2019; 20:331-335. [PMID: 30798505 PMCID: PMC6535413 DOI: 10.1007/s10522-019-09802-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
Cellular senescence has recently been established as a key driver of organismal ageing. The state of senescence is controlled by extensive rewiring of signalling pathways, at the heart of which lies the mammalian Target of Rapamycin Complex I (mTORC1). Here we discuss recent publications aiming to establish the mechanisms by which mTORC1 drives the senescence program. In particular, we highlight our data indicating that mTORC1 can be used as a target for senescence cell elimination in vitro. Suppression of mTORC1 is known to extend lifespan of yeast, worms, flies and some mouse models and our proof-of-concept experiments suggest that it can also act by reducing senescent cell load in vivo.
Collapse
Affiliation(s)
- Olena Kucheryavenko
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- The Federal Institute for Risk Assessment, 10589, Berlin, Germany
| | - Glyn Nelson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Bernadette Carroll
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
39
|
Gioia S, Merli M, Nardelli S, Lattanzi B, Pitocchi F, Ridola L, Riggio O. The modification of quantity and quality of muscle mass improves the cognitive impairment after TIPS. Liver Int 2019; 39:871-877. [PMID: 30667572 DOI: 10.1111/liv.14050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatic encephalopathy (HE) is the major complication of transjugular intrahepatic portosystemic shunt (TIPS). In cirrhotic patients, a correlation between sarcopenia and HE has been suggested. AIM To evaluate the evolution of the skeletal muscle quantity and quality at CT scan and of the patients' cognitive impairment (both overt and minimal HE) before and after TIPS. PATIENTS AND METHODS Twenty-seven cirrhotic patients submitted to TIPS were studied. The modification of Skeletal Muscle Index (SMI), muscle attenuation, HE and plasma ammonia were evaluated before and after a mean follow-up of 9.8 ± 4 months after TIPS. RESULTS During the follow-up, the mean SMI and muscle attenuation increased significantly, although not uniformly in all patients. Psychometric Hepatic Encephalopathy Score (PHES) and ammonia improved significantly in the patients with amelioration in SMI >10% (n = 16) and not in those without (n = 11) (PHES: -1.6 ± 2 vs -4.8 ± 2.1; P = 0.0005; ammonia: 48.5 ± 28.7 vs 96 ± 31.5 μg/dL; P = 0.0004). Moreover, the prevalence of minimal HE (12.5% vs 73%, P = 0.001) as well as the number of episodes of overt HE during the follow-up were significantly reduced in the patients with improved SMI. Model for end-stage liver disease remained stable or worsened after TIPS and was not significantly different between the groups with or without SMI improvement. CONCLUSION The amelioration of muscle wasting and HE independent of liver function observed after TIPS supports the causal relationship between muscle wasting and HE.
Collapse
Affiliation(s)
- Stefania Gioia
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Manuela Merli
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Nardelli
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Barbara Lattanzi
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Pitocchi
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lorenzo Ridola
- Department of Gastroenterology, Sapienza" University of Rome, Latina, Italy
| | - Oliviero Riggio
- Department of Clinical Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
40
|
Panda PK, Fahrner A, Vats S, Seranova E, Sharma V, Chipara M, Desai P, Torresi J, Rosenstock T, Kumar D, Sarkar S. Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases. Front Cell Dev Biol 2019; 7:38. [PMID: 30949479 PMCID: PMC6436197 DOI: 10.3389/fcell.2019.00038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation pathway for malfunctioning aggregation-prone proteins, damaged organelles, unwanted macromolecules and invading pathogens. This process is essential for maintaining cellular and tissue homeostasis that contribute to organismal survival. Autophagy dysfunction has been implicated in the pathogenesis of diverse human diseases, and therefore, therapeutic exploitation of autophagy is of potential biomedical relevance. A number of chemical screening approaches have been established for the drug discovery of autophagy modulators based on the perturbations of autophagy reporters or the clearance of autophagy substrates. These readouts can be detected by fluorescence and high-content microscopy, flow cytometry, microplate reader and immunoblotting, and the assays have evolved to enable high-throughput screening and measurement of autophagic flux. Several pharmacological modulators of autophagy have been identified that act either via the classical mechanistic target of rapamycin (mTOR) pathway or independently of mTOR. Many of these autophagy modulators have been demonstrated to exert beneficial effects in transgenic models of neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies as well as in lifespan extension. This review describes the commonly used chemical screening approaches in mammalian cells and the key autophagy modulators identified through these methods, and highlights the therapeutic benefits of these compounds in specific disease contexts.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Fahrner
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Somya Vats
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Vartika Sharma
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Priyal Desai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tatiana Rosenstock
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
41
|
Carroll B, Korolchuk VI. Dysregulation of mTORC1/autophagy axis in senescence. Aging (Albany NY) 2019; 9:1851-1852. [PMID: 28783710 PMCID: PMC5611974 DOI: 10.18632/aging.101277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Bernadette Carroll
- Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
42
|
Abstract
Autophagy is a lysosome-dependent catabolic process. Both extra- and intra-cellular components are engulfed in autophagic vacuoles and degraded to simple molecules, such as monosaccharides, fatty acids and amino acids. Then, these molecules can be further used to produce ATP through catabolic reactions and/or provide building blocks for the synthesis of essential proteins. Therefore, we consider autophagy a critical and fine-tuned process in maintaining energy homeostasis. The complicated relationships between autophagy and energy metabolism have raised broad interest and have been extensively studied. In this chapter, we summarize the relationships enabling autophagy to control or modulate energy metabolism and allowing metabolic pathways to regulate autophagy. Specifically, we review the correlations between autophagy and energy homeostasis in terms of oxidative phosphorylation, reactive oxygen species in mitochondria, glycolysis, metabolism of glycogen and protein, and so on. An understanding of the role of autophagy in energy homeostasis could help us better appreciate how autophagy determines cell fate under stressful conditions or pathological processes.
Collapse
|
43
|
Study on Cardiotoxicity and Mechanism of "Fuzi" Extracts Based on Metabonomics. Int J Mol Sci 2018; 19:ijms19113506. [PMID: 30405071 PMCID: PMC6274692 DOI: 10.3390/ijms19113506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/15/2023] Open
Abstract
To investigate the toxicity of water and ethanol "Fuzi" (FZ) extracts and to explore the toxicity mechanism in rats. Water and ethanol extracts were prepared. Three groups of rats received the water extract, ethanol extract, or water by oral gavage for seven days. Pathological section staining of heart tissue. Colorimetric analysis was used to determine serum lactate dehydrogenase. The metabolic expression of small molecules in rats was measured by a metabolomics method. Western blotting was used to detect the expression of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-β1 (TGF-β1), and caspase-3. Immunohistochemistry was used to detect the expression of CTnI, mTOR, and TGF-β1. The water and ethanol FZ extracts exert cardiotoxic effects via activating the PI3K/Akt/mTOR signaling pathway to induce cardiomyocyte apoptosis.
Collapse
|
44
|
Yuan H, Jiang C, Zhao J, Zhao Y, Zhang Y, Xu Y, Gao X, Guo L, Liu Y, Liu K, Xu B, Sun G. Euxanthone Attenuates Aβ1–42-Induced Oxidative Stress and Apoptosis by Triggering Autophagy. J Mol Neurosci 2018; 66:512-523. [DOI: 10.1007/s12031-018-1175-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
|
45
|
Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol 2018; 6:96. [PMID: 30234109 PMCID: PMC6131531 DOI: 10.3389/fcell.2018.00096] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
SLC1A5, known as ASCT2, is a neutral amino acid transporter belonging to the SLC1 family and localized in the plasma membrane of several body districts. ASCT2 is an acronym standing for Alanine, Serine, Cysteine Transporter 2 even if the preferred substrate is the conditionally essential amino acid glutamine, with cysteine being a modulator and not a substrate. The studies around amino acid transport in cells and tissues began in the '60s by using radiolabeled compounds and competition assays. After identification of murine and human genes, the function of the coded protein has been studied in cell system and in proteoliposomes revealing that this transporter is a Na+ dependent antiporter of neutral amino acids, some of which are only inwardly transported and others are bi-directionally exchanged. The functional asymmetry merged with the kinetic asymmetry in line with the physiological role of amino acid pool harmonization. An intriguing function has been described for ASCT2 that is exploited as a receptor by a group of retroviruses to infect human cells. Interactions with scaffold proteins and post-translational modifications regulate ASCT2 stability, trafficking and transport activity. Two asparagine residues, namely N163 and N212, are the sites of glycosylation that is responsible for the definitive localization into the plasma membrane. ASCT2 expression increases in highly proliferative cells such as inflammatory and stem cells to fulfill the augmented glutamine demand. Interestingly, for the same reason, the expression of ASCT2 is greatly enhanced in many human cancers. This finding has generated interest in its candidacy as a pharmacological target for new anticancer drugs. The recently solved 3D structure of ASCT2 will aid in the rational design of such therapeutic compounds.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Maria A Losso
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
46
|
García-Casas P, Arias-Del-Val J, Alvarez-Illera P, Fonteriz RI, Montero M, Alvarez J. Inhibition of Sarco-Endoplasmic Reticulum Ca 2+ ATPase Extends the Lifespan in C. elegans Worms. Front Pharmacol 2018; 9:669. [PMID: 29988547 PMCID: PMC6026643 DOI: 10.3389/fphar.2018.00669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
The sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) refills the endoplasmic reticulum (ER) with Ca2+ up to the millimolar range and is therefore the main controller of the ER [Ca2+] level ([Ca2+]ER), which has a key role in the modulation of cytosolic Ca2+ signaling and ER-mitochondria Ca2+ transfer. Given that both cytosolic and mitochondrial Ca2+ dynamics strongly interplay with energy metabolism and nutrient-sensitive pathways, both of them involved in the aging process, we have studied the effect of SERCA inhibitors on lifespan in C. elegans. We have used thapsigargin and 2,5-Di-tert-butylhydroquinone (2,5-BHQ) as SERCA inhibitors, and the inactive analog 2,6-Di-tert-butylhydroquinone (2,6-BHQ) as a control for 2,5-BHQ. Every drug was administered to the worms either directly in the agar or via an inclusion compound with γ-cyclodextrin. The results show that 2,6-BHQ produced a small but significant increase in survival, perhaps because of its antioxidant properties. However, 2,5-BHQ produced in all the conditions a much higher increase in lifespan, and the potent and specific SERCA inhibitor thapsigargin also extended the lifespan. The effects of 2,5-BHQ and thapsigargin had a bell-shaped concentration dependence, with a maximum effect at a certain dose and smaller or even toxic effects at higher concentrations. Our data show therefore that submaximal inhibition of SERCA pumps has a pro-longevity effect, suggesting that Ca2+ signaling plays an important role in the aging process and that it could be a promising novel target pathway to act on aging.
Collapse
Affiliation(s)
- Paloma García-Casas
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| | - Jessica Arias-Del-Val
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| | - Rosalba I Fonteriz
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| | - Mayte Montero
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| | - Javier Alvarez
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics (IBGM), Faculty of Medicine, University of Valladolid - CSIC, Valladolid, Spain
| |
Collapse
|
47
|
Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front Chem 2018; 6:243. [PMID: 29988369 PMCID: PMC6023973 DOI: 10.3389/fchem.2018.00243] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
SLC7A5, known as LAT1, belongs to the APC superfamily and forms a heterodimeric amino acid transporter interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide. The complex is responsible for uptake of essential amino acids in crucial body districts such as placenta and blood brain barrier. LAT1/CD98 heterodimer has been studied over the years to unravel the transport mechanism and the role of each subunit. Studies conducted in intact cells demonstrated that LAT1/CD98 mediates a Na+ and pH independent antiport of amino acids. Some novel insights into the function of LAT1 derived from studies conducted in proteoliposomes reconstituted with the recombinant human LAT1. Using this experimental tool, it has been demonstrated that the preferred substrate is histidine and that CD98 is not required for transport being, plausibly, involved in routing LAT1 to the plasma membrane. Since a 3D structure of LAT1 is not available, homology models have been built on the basis of the AdiC transporter from E.coli. Crucial residues for substrate recognition and gating have been identified using a combined approach of bioinformatics and site-directed mutagenesis coupled to functional assays. Over the years, the interest around LAT1 increased because this transporter is involved in important human diseases such as neurological disorders and cancer. Therefore, LAT1 became an important pharmacological target together with other nutrient membrane transporters. Moving from knowledge on structure/function relationships, two cysteine residues, lying on the substrate binding site, have been exploited for designing thiol reacting covalent inhibitors. Some lead compounds have been characterized whose efficacy has been tested in a cancer cell line.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
48
|
Carroll B, Korolchuk VI. Nutrient sensing, growth and senescence. FEBS J 2018; 285:1948-1958. [PMID: 29405586 PMCID: PMC6001427 DOI: 10.1111/febs.14400] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/15/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Cell growth is dictated by a wide range of mitogenic signals, the amplitude and relative contribution of which vary throughout development, differentiation and in a tissue-specific manner. The ability to sense and appropriately respond to changes in mitogens is fundamental to control cell growth, and reduced responsiveness of nutrient sensing pathways is widely associated with human disease and ageing. Cellular senescence is an important tumour suppressor mechanism that is characterised by an irreversible exit from the cell cycle in response to replicative exhaustion or excessive DNA damage. Despite the fact that senescent cells can no longer divide, they remain metabolically active and display a range of pro-growth phenotypes that are supported in part by the mTORC1-autophagy signalling axis. As our understanding of the basic mechanisms of controlling mTORC1-autophagy activity and cell growth continues to expand, we are able to explore how changes in nutrient sensing contribute to the acquisition and maintenance of cellular senescence. Furthermore, while the protective effect of senescence to limit cellular transformation is clear, more recently, the age-related accumulation of these pro-inflammatory senescent cells has been shown to contribute to a decline in organismal fitness. We will further discuss whether dysregulation of nutrient sensing pathways can be targeted to promote senescent cell death which would have important implications for healthy ageing.
Collapse
|
49
|
van Leeuwen W, van der Krift F, Rabouille C. Modulation of the secretory pathway by amino-acid starvation. J Cell Biol 2018; 217:2261-2271. [PMID: 29669743 PMCID: PMC6028531 DOI: 10.1083/jcb.201802003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
As a major anabolic pathway, the secretory pathway needs to adapt to the demands of the surrounding environment and responds to different exogenous signals and stimuli. In this context, the transport in the early secretory pathway from the endoplasmic reticulum (ER) to the Golgi apparatus appears particularly regulated. For instance, protein export from the ER is critically stimulated by growth factors. Conversely, nutrient starvation also modulates functions of the early secretory pathway in multiple ways. In this review, we focus on amino-acid starvation and how the function of the early secretory pathway is redirected to fuel autophagy, how the ER exit sites are remodeled into novel cytoprotective stress assemblies, and how secretion is modulated in vivo in starving organisms. With the increasingly exciting knowledge on mechanistic target of rapamycin complex 1 (mTORC1), the major nutrient sensor, it is also a good moment to establish how the modulation of the secretory pathway by amino-acid restriction intersects with this major signaling hub.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Felix van der Krift
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands .,Department of Cell Biology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
Yin J, Ren W, Huang X, Li T, Yin Y. Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:256-262. [PMID: 29596961 DOI: 10.1016/j.bbcan.2018.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers.
Collapse
Affiliation(s)
- Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xingguo Huang
- Department of Animal science, Hunan Agriculture University, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|